[SystemZ] Add STOC and STOCG
[oota-llvm.git] / lib / AsmParser / LLParser.cpp
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/AutoUpgrade.h"
17 #include "llvm/IR/CallingConv.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/InlineAsm.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/ValueSymbolTable.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28
29 static std::string getTypeString(Type *T) {
30   std::string Result;
31   raw_string_ostream Tmp(Result);
32   Tmp << *T;
33   return Tmp.str();
34 }
35
36 /// Run: module ::= toplevelentity*
37 bool LLParser::Run() {
38   // Prime the lexer.
39   Lex.Lex();
40
41   return ParseTopLevelEntities() ||
42          ValidateEndOfModule();
43 }
44
45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46 /// module.
47 bool LLParser::ValidateEndOfModule() {
48   // Handle any instruction metadata forward references.
49   if (!ForwardRefInstMetadata.empty()) {
50     for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51          I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52          I != E; ++I) {
53       Instruction *Inst = I->first;
54       const std::vector<MDRef> &MDList = I->second;
55
56       for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57         unsigned SlotNo = MDList[i].MDSlot;
58
59         if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60           return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                        Twine(SlotNo) + "'");
62         Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63       }
64     }
65     ForwardRefInstMetadata.clear();
66   }
67
68   // Handle any function attribute group forward references.
69   for (std::map<Value*, std::vector<unsigned> >::iterator
70          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71          I != E; ++I) {
72     Value *V = I->first;
73     std::vector<unsigned> &Vec = I->second;
74     AttrBuilder B;
75
76     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77          VI != VE; ++VI)
78       B.merge(NumberedAttrBuilders[*VI]);
79
80     if (Function *Fn = dyn_cast<Function>(V)) {
81       AttributeSet AS = Fn->getAttributes();
82       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84                                AS.getFnAttributes());
85
86       FnAttrs.merge(B);
87
88       // If the alignment was parsed as an attribute, move to the alignment
89       // field.
90       if (FnAttrs.hasAlignmentAttr()) {
91         Fn->setAlignment(FnAttrs.getAlignment());
92         FnAttrs.removeAttribute(Attribute::Alignment);
93       }
94
95       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96                             AttributeSet::get(Context,
97                                               AttributeSet::FunctionIndex,
98                                               FnAttrs));
99       Fn->setAttributes(AS);
100     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101       AttributeSet AS = CI->getAttributes();
102       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104                                AS.getFnAttributes());
105       FnAttrs.merge(B);
106       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107                             AttributeSet::get(Context,
108                                               AttributeSet::FunctionIndex,
109                                               FnAttrs));
110       CI->setAttributes(AS);
111     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112       AttributeSet AS = II->getAttributes();
113       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115                                AS.getFnAttributes());
116       FnAttrs.merge(B);
117       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118                             AttributeSet::get(Context,
119                                               AttributeSet::FunctionIndex,
120                                               FnAttrs));
121       II->setAttributes(AS);
122     } else {
123       llvm_unreachable("invalid object with forward attribute group reference");
124     }
125   }
126
127   // If there are entries in ForwardRefBlockAddresses at this point, they are
128   // references after the function was defined.  Resolve those now.
129   while (!ForwardRefBlockAddresses.empty()) {
130     // Okay, we are referencing an already-parsed function, resolve them now.
131     Function *TheFn = 0;
132     const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133     if (Fn.Kind == ValID::t_GlobalName)
134       TheFn = M->getFunction(Fn.StrVal);
135     else if (Fn.UIntVal < NumberedVals.size())
136       TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138     if (TheFn == 0)
139       return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141     // Resolve all these references.
142     if (ResolveForwardRefBlockAddresses(TheFn,
143                                       ForwardRefBlockAddresses.begin()->second,
144                                         0))
145       return true;
146
147     ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148   }
149
150   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151     if (NumberedTypes[i].second.isValid())
152       return Error(NumberedTypes[i].second,
153                    "use of undefined type '%" + Twine(i) + "'");
154
155   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157     if (I->second.second.isValid())
158       return Error(I->second.second,
159                    "use of undefined type named '" + I->getKey() + "'");
160
161   if (!ForwardRefVals.empty())
162     return Error(ForwardRefVals.begin()->second.second,
163                  "use of undefined value '@" + ForwardRefVals.begin()->first +
164                  "'");
165
166   if (!ForwardRefValIDs.empty())
167     return Error(ForwardRefValIDs.begin()->second.second,
168                  "use of undefined value '@" +
169                  Twine(ForwardRefValIDs.begin()->first) + "'");
170
171   if (!ForwardRefMDNodes.empty())
172     return Error(ForwardRefMDNodes.begin()->second.second,
173                  "use of undefined metadata '!" +
174                  Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177   // Look for intrinsic functions and CallInst that need to be upgraded
178   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181   return false;
182 }
183
184 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185                              std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186                                                PerFunctionState *PFS) {
187   // Loop over all the references, resolving them.
188   for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189     BasicBlock *Res;
190     if (PFS) {
191       if (Refs[i].first.Kind == ValID::t_LocalName)
192         Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193       else
194         Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195     } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196       return Error(Refs[i].first.Loc,
197        "cannot take address of numeric label after the function is defined");
198     } else {
199       Res = dyn_cast_or_null<BasicBlock>(
200                      TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201     }
202
203     if (Res == 0)
204       return Error(Refs[i].first.Loc,
205                    "referenced value is not a basic block");
206
207     // Get the BlockAddress for this and update references to use it.
208     BlockAddress *BA = BlockAddress::get(TheFn, Res);
209     Refs[i].second->replaceAllUsesWith(BA);
210     Refs[i].second->eraseFromParent();
211   }
212   return false;
213 }
214
215
216 //===----------------------------------------------------------------------===//
217 // Top-Level Entities
218 //===----------------------------------------------------------------------===//
219
220 bool LLParser::ParseTopLevelEntities() {
221   while (1) {
222     switch (Lex.getKind()) {
223     default:         return TokError("expected top-level entity");
224     case lltok::Eof: return false;
225     case lltok::kw_declare: if (ParseDeclare()) return true; break;
226     case lltok::kw_define:  if (ParseDefine()) return true; break;
227     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
228     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
229     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
232     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
233     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
234     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
235     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237     // The Global variable production with no name can have many different
238     // optional leading prefixes, the production is:
239     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240     //               OptionalAddrSpace OptionalUnNammedAddr
241     //               ('constant'|'global') ...
242     case lltok::kw_private:             // OptionalLinkage
243     case lltok::kw_linker_private:      // OptionalLinkage
244     case lltok::kw_linker_private_weak: // OptionalLinkage
245     case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246     case lltok::kw_internal:            // OptionalLinkage
247     case lltok::kw_weak:                // OptionalLinkage
248     case lltok::kw_weak_odr:            // OptionalLinkage
249     case lltok::kw_linkonce:            // OptionalLinkage
250     case lltok::kw_linkonce_odr:        // OptionalLinkage
251     case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252     case lltok::kw_appending:           // OptionalLinkage
253     case lltok::kw_dllexport:           // OptionalLinkage
254     case lltok::kw_common:              // OptionalLinkage
255     case lltok::kw_dllimport:           // OptionalLinkage
256     case lltok::kw_extern_weak:         // OptionalLinkage
257     case lltok::kw_external: {          // OptionalLinkage
258       unsigned Linkage, Visibility;
259       if (ParseOptionalLinkage(Linkage) ||
260           ParseOptionalVisibility(Visibility) ||
261           ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262         return true;
263       break;
264     }
265     case lltok::kw_default:       // OptionalVisibility
266     case lltok::kw_hidden:        // OptionalVisibility
267     case lltok::kw_protected: {   // OptionalVisibility
268       unsigned Visibility;
269       if (ParseOptionalVisibility(Visibility) ||
270           ParseGlobal("", SMLoc(), 0, false, Visibility))
271         return true;
272       break;
273     }
274
275     case lltok::kw_thread_local:  // OptionalThreadLocal
276     case lltok::kw_addrspace:     // OptionalAddrSpace
277     case lltok::kw_constant:      // GlobalType
278     case lltok::kw_global:        // GlobalType
279       if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280       break;
281
282     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283     }
284   }
285 }
286
287
288 /// toplevelentity
289 ///   ::= 'module' 'asm' STRINGCONSTANT
290 bool LLParser::ParseModuleAsm() {
291   assert(Lex.getKind() == lltok::kw_module);
292   Lex.Lex();
293
294   std::string AsmStr;
295   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296       ParseStringConstant(AsmStr)) return true;
297
298   M->appendModuleInlineAsm(AsmStr);
299   return false;
300 }
301
302 /// toplevelentity
303 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
304 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
305 bool LLParser::ParseTargetDefinition() {
306   assert(Lex.getKind() == lltok::kw_target);
307   std::string Str;
308   switch (Lex.Lex()) {
309   default: return TokError("unknown target property");
310   case lltok::kw_triple:
311     Lex.Lex();
312     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313         ParseStringConstant(Str))
314       return true;
315     M->setTargetTriple(Str);
316     return false;
317   case lltok::kw_datalayout:
318     Lex.Lex();
319     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320         ParseStringConstant(Str))
321       return true;
322     M->setDataLayout(Str);
323     return false;
324   }
325 }
326
327 /// toplevelentity
328 ///   ::= 'deplibs' '=' '[' ']'
329 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330 /// FIXME: Remove in 4.0. Currently parse, but ignore.
331 bool LLParser::ParseDepLibs() {
332   assert(Lex.getKind() == lltok::kw_deplibs);
333   Lex.Lex();
334   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336     return true;
337
338   if (EatIfPresent(lltok::rsquare))
339     return false;
340
341   do {
342     std::string Str;
343     if (ParseStringConstant(Str)) return true;
344   } while (EatIfPresent(lltok::comma));
345
346   return ParseToken(lltok::rsquare, "expected ']' at end of list");
347 }
348
349 /// ParseUnnamedType:
350 ///   ::= LocalVarID '=' 'type' type
351 bool LLParser::ParseUnnamedType() {
352   LocTy TypeLoc = Lex.getLoc();
353   unsigned TypeID = Lex.getUIntVal();
354   Lex.Lex(); // eat LocalVarID;
355
356   if (ParseToken(lltok::equal, "expected '=' after name") ||
357       ParseToken(lltok::kw_type, "expected 'type' after '='"))
358     return true;
359
360   if (TypeID >= NumberedTypes.size())
361     NumberedTypes.resize(TypeID+1);
362
363   Type *Result = 0;
364   if (ParseStructDefinition(TypeLoc, "",
365                             NumberedTypes[TypeID], Result)) return true;
366
367   if (!isa<StructType>(Result)) {
368     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369     if (Entry.first)
370       return Error(TypeLoc, "non-struct types may not be recursive");
371     Entry.first = Result;
372     Entry.second = SMLoc();
373   }
374
375   return false;
376 }
377
378
379 /// toplevelentity
380 ///   ::= LocalVar '=' 'type' type
381 bool LLParser::ParseNamedType() {
382   std::string Name = Lex.getStrVal();
383   LocTy NameLoc = Lex.getLoc();
384   Lex.Lex();  // eat LocalVar.
385
386   if (ParseToken(lltok::equal, "expected '=' after name") ||
387       ParseToken(lltok::kw_type, "expected 'type' after name"))
388     return true;
389
390   Type *Result = 0;
391   if (ParseStructDefinition(NameLoc, Name,
392                             NamedTypes[Name], Result)) return true;
393
394   if (!isa<StructType>(Result)) {
395     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396     if (Entry.first)
397       return Error(NameLoc, "non-struct types may not be recursive");
398     Entry.first = Result;
399     Entry.second = SMLoc();
400   }
401
402   return false;
403 }
404
405
406 /// toplevelentity
407 ///   ::= 'declare' FunctionHeader
408 bool LLParser::ParseDeclare() {
409   assert(Lex.getKind() == lltok::kw_declare);
410   Lex.Lex();
411
412   Function *F;
413   return ParseFunctionHeader(F, false);
414 }
415
416 /// toplevelentity
417 ///   ::= 'define' FunctionHeader '{' ...
418 bool LLParser::ParseDefine() {
419   assert(Lex.getKind() == lltok::kw_define);
420   Lex.Lex();
421
422   Function *F;
423   return ParseFunctionHeader(F, true) ||
424          ParseFunctionBody(*F);
425 }
426
427 /// ParseGlobalType
428 ///   ::= 'constant'
429 ///   ::= 'global'
430 bool LLParser::ParseGlobalType(bool &IsConstant) {
431   if (Lex.getKind() == lltok::kw_constant)
432     IsConstant = true;
433   else if (Lex.getKind() == lltok::kw_global)
434     IsConstant = false;
435   else {
436     IsConstant = false;
437     return TokError("expected 'global' or 'constant'");
438   }
439   Lex.Lex();
440   return false;
441 }
442
443 /// ParseUnnamedGlobal:
444 ///   OptionalVisibility ALIAS ...
445 ///   OptionalLinkage OptionalVisibility ...   -> global variable
446 ///   GlobalID '=' OptionalVisibility ALIAS ...
447 ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
448 bool LLParser::ParseUnnamedGlobal() {
449   unsigned VarID = NumberedVals.size();
450   std::string Name;
451   LocTy NameLoc = Lex.getLoc();
452
453   // Handle the GlobalID form.
454   if (Lex.getKind() == lltok::GlobalID) {
455     if (Lex.getUIntVal() != VarID)
456       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457                    Twine(VarID) + "'");
458     Lex.Lex(); // eat GlobalID;
459
460     if (ParseToken(lltok::equal, "expected '=' after name"))
461       return true;
462   }
463
464   bool HasLinkage;
465   unsigned Linkage, Visibility;
466   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467       ParseOptionalVisibility(Visibility))
468     return true;
469
470   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472   return ParseAlias(Name, NameLoc, Visibility);
473 }
474
475 /// ParseNamedGlobal:
476 ///   GlobalVar '=' OptionalVisibility ALIAS ...
477 ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
478 bool LLParser::ParseNamedGlobal() {
479   assert(Lex.getKind() == lltok::GlobalVar);
480   LocTy NameLoc = Lex.getLoc();
481   std::string Name = Lex.getStrVal();
482   Lex.Lex();
483
484   bool HasLinkage;
485   unsigned Linkage, Visibility;
486   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487       ParseOptionalLinkage(Linkage, HasLinkage) ||
488       ParseOptionalVisibility(Visibility))
489     return true;
490
491   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493   return ParseAlias(Name, NameLoc, Visibility);
494 }
495
496 // MDString:
497 //   ::= '!' STRINGCONSTANT
498 bool LLParser::ParseMDString(MDString *&Result) {
499   std::string Str;
500   if (ParseStringConstant(Str)) return true;
501   Result = MDString::get(Context, Str);
502   return false;
503 }
504
505 // MDNode:
506 //   ::= '!' MDNodeNumber
507 //
508 /// This version of ParseMDNodeID returns the slot number and null in the case
509 /// of a forward reference.
510 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511   // !{ ..., !42, ... }
512   if (ParseUInt32(SlotNo)) return true;
513
514   // Check existing MDNode.
515   if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516     Result = NumberedMetadata[SlotNo];
517   else
518     Result = 0;
519   return false;
520 }
521
522 bool LLParser::ParseMDNodeID(MDNode *&Result) {
523   // !{ ..., !42, ... }
524   unsigned MID = 0;
525   if (ParseMDNodeID(Result, MID)) return true;
526
527   // If not a forward reference, just return it now.
528   if (Result) return false;
529
530   // Otherwise, create MDNode forward reference.
531   MDNode *FwdNode = MDNode::getTemporary(Context, None);
532   ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534   if (NumberedMetadata.size() <= MID)
535     NumberedMetadata.resize(MID+1);
536   NumberedMetadata[MID] = FwdNode;
537   Result = FwdNode;
538   return false;
539 }
540
541 /// ParseNamedMetadata:
542 ///   !foo = !{ !1, !2 }
543 bool LLParser::ParseNamedMetadata() {
544   assert(Lex.getKind() == lltok::MetadataVar);
545   std::string Name = Lex.getStrVal();
546   Lex.Lex();
547
548   if (ParseToken(lltok::equal, "expected '=' here") ||
549       ParseToken(lltok::exclaim, "Expected '!' here") ||
550       ParseToken(lltok::lbrace, "Expected '{' here"))
551     return true;
552
553   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554   if (Lex.getKind() != lltok::rbrace)
555     do {
556       if (ParseToken(lltok::exclaim, "Expected '!' here"))
557         return true;
558
559       MDNode *N = 0;
560       if (ParseMDNodeID(N)) return true;
561       NMD->addOperand(N);
562     } while (EatIfPresent(lltok::comma));
563
564   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565     return true;
566
567   return false;
568 }
569
570 /// ParseStandaloneMetadata:
571 ///   !42 = !{...}
572 bool LLParser::ParseStandaloneMetadata() {
573   assert(Lex.getKind() == lltok::exclaim);
574   Lex.Lex();
575   unsigned MetadataID = 0;
576
577   LocTy TyLoc;
578   Type *Ty = 0;
579   SmallVector<Value *, 16> Elts;
580   if (ParseUInt32(MetadataID) ||
581       ParseToken(lltok::equal, "expected '=' here") ||
582       ParseType(Ty, TyLoc) ||
583       ParseToken(lltok::exclaim, "Expected '!' here") ||
584       ParseToken(lltok::lbrace, "Expected '{' here") ||
585       ParseMDNodeVector(Elts, NULL) ||
586       ParseToken(lltok::rbrace, "expected end of metadata node"))
587     return true;
588
589   MDNode *Init = MDNode::get(Context, Elts);
590
591   // See if this was forward referenced, if so, handle it.
592   std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593     FI = ForwardRefMDNodes.find(MetadataID);
594   if (FI != ForwardRefMDNodes.end()) {
595     MDNode *Temp = FI->second.first;
596     Temp->replaceAllUsesWith(Init);
597     MDNode::deleteTemporary(Temp);
598     ForwardRefMDNodes.erase(FI);
599
600     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601   } else {
602     if (MetadataID >= NumberedMetadata.size())
603       NumberedMetadata.resize(MetadataID+1);
604
605     if (NumberedMetadata[MetadataID] != 0)
606       return TokError("Metadata id is already used");
607     NumberedMetadata[MetadataID] = Init;
608   }
609
610   return false;
611 }
612
613 /// ParseAlias:
614 ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615 /// Aliasee
616 ///   ::= TypeAndValue
617 ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618 ///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
619 ///
620 /// Everything through visibility has already been parsed.
621 ///
622 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623                           unsigned Visibility) {
624   assert(Lex.getKind() == lltok::kw_alias);
625   Lex.Lex();
626   unsigned Linkage;
627   LocTy LinkageLoc = Lex.getLoc();
628   if (ParseOptionalLinkage(Linkage))
629     return true;
630
631   if (Linkage != GlobalValue::ExternalLinkage &&
632       Linkage != GlobalValue::WeakAnyLinkage &&
633       Linkage != GlobalValue::WeakODRLinkage &&
634       Linkage != GlobalValue::InternalLinkage &&
635       Linkage != GlobalValue::PrivateLinkage &&
636       Linkage != GlobalValue::LinkerPrivateLinkage &&
637       Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638     return Error(LinkageLoc, "invalid linkage type for alias");
639
640   Constant *Aliasee;
641   LocTy AliaseeLoc = Lex.getLoc();
642   if (Lex.getKind() != lltok::kw_bitcast &&
643       Lex.getKind() != lltok::kw_getelementptr) {
644     if (ParseGlobalTypeAndValue(Aliasee)) return true;
645   } else {
646     // The bitcast dest type is not present, it is implied by the dest type.
647     ValID ID;
648     if (ParseValID(ID)) return true;
649     if (ID.Kind != ValID::t_Constant)
650       return Error(AliaseeLoc, "invalid aliasee");
651     Aliasee = ID.ConstantVal;
652   }
653
654   if (!Aliasee->getType()->isPointerTy())
655     return Error(AliaseeLoc, "alias must have pointer type");
656
657   // Okay, create the alias but do not insert it into the module yet.
658   GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659                                     (GlobalValue::LinkageTypes)Linkage, Name,
660                                     Aliasee);
661   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663   // See if this value already exists in the symbol table.  If so, it is either
664   // a redefinition or a definition of a forward reference.
665   if (GlobalValue *Val = M->getNamedValue(Name)) {
666     // See if this was a redefinition.  If so, there is no entry in
667     // ForwardRefVals.
668     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669       I = ForwardRefVals.find(Name);
670     if (I == ForwardRefVals.end())
671       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673     // Otherwise, this was a definition of forward ref.  Verify that types
674     // agree.
675     if (Val->getType() != GA->getType())
676       return Error(NameLoc,
677               "forward reference and definition of alias have different types");
678
679     // If they agree, just RAUW the old value with the alias and remove the
680     // forward ref info.
681     Val->replaceAllUsesWith(GA);
682     Val->eraseFromParent();
683     ForwardRefVals.erase(I);
684   }
685
686   // Insert into the module, we know its name won't collide now.
687   M->getAliasList().push_back(GA);
688   assert(GA->getName() == Name && "Should not be a name conflict!");
689
690   return false;
691 }
692
693 /// ParseGlobal
694 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695 ///       OptionalAddrSpace OptionalUnNammedAddr
696 ///       OptionalExternallyInitialized GlobalType Type Const
697 ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698 ///       OptionalAddrSpace OptionalUnNammedAddr
699 ///       OptionalExternallyInitialized GlobalType Type Const
700 ///
701 /// Everything through visibility has been parsed already.
702 ///
703 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704                            unsigned Linkage, bool HasLinkage,
705                            unsigned Visibility) {
706   unsigned AddrSpace;
707   bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708   GlobalVariable::ThreadLocalMode TLM;
709   LocTy UnnamedAddrLoc;
710   LocTy IsExternallyInitializedLoc;
711   LocTy TyLoc;
712
713   Type *Ty = 0;
714   if (ParseOptionalThreadLocal(TLM) ||
715       ParseOptionalAddrSpace(AddrSpace) ||
716       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717                          &UnnamedAddrLoc) ||
718       ParseOptionalToken(lltok::kw_externally_initialized,
719                          IsExternallyInitialized,
720                          &IsExternallyInitializedLoc) ||
721       ParseGlobalType(IsConstant) ||
722       ParseType(Ty, TyLoc))
723     return true;
724
725   // If the linkage is specified and is external, then no initializer is
726   // present.
727   Constant *Init = 0;
728   if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729                       Linkage != GlobalValue::ExternalWeakLinkage &&
730                       Linkage != GlobalValue::ExternalLinkage)) {
731     if (ParseGlobalValue(Ty, Init))
732       return true;
733   }
734
735   if (Ty->isFunctionTy() || Ty->isLabelTy())
736     return Error(TyLoc, "invalid type for global variable");
737
738   GlobalVariable *GV = 0;
739
740   // See if the global was forward referenced, if so, use the global.
741   if (!Name.empty()) {
742     if (GlobalValue *GVal = M->getNamedValue(Name)) {
743       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744         return Error(NameLoc, "redefinition of global '@" + Name + "'");
745       GV = cast<GlobalVariable>(GVal);
746     }
747   } else {
748     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749       I = ForwardRefValIDs.find(NumberedVals.size());
750     if (I != ForwardRefValIDs.end()) {
751       GV = cast<GlobalVariable>(I->second.first);
752       ForwardRefValIDs.erase(I);
753     }
754   }
755
756   if (GV == 0) {
757     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758                             Name, 0, GlobalVariable::NotThreadLocal,
759                             AddrSpace);
760   } else {
761     if (GV->getType()->getElementType() != Ty)
762       return Error(TyLoc,
763             "forward reference and definition of global have different types");
764
765     // Move the forward-reference to the correct spot in the module.
766     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767   }
768
769   if (Name.empty())
770     NumberedVals.push_back(GV);
771
772   // Set the parsed properties on the global.
773   if (Init)
774     GV->setInitializer(Init);
775   GV->setConstant(IsConstant);
776   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778   GV->setExternallyInitialized(IsExternallyInitialized);
779   GV->setThreadLocalMode(TLM);
780   GV->setUnnamedAddr(UnnamedAddr);
781
782   // Parse attributes on the global.
783   while (Lex.getKind() == lltok::comma) {
784     Lex.Lex();
785
786     if (Lex.getKind() == lltok::kw_section) {
787       Lex.Lex();
788       GV->setSection(Lex.getStrVal());
789       if (ParseToken(lltok::StringConstant, "expected global section string"))
790         return true;
791     } else if (Lex.getKind() == lltok::kw_align) {
792       unsigned Alignment;
793       if (ParseOptionalAlignment(Alignment)) return true;
794       GV->setAlignment(Alignment);
795     } else {
796       TokError("unknown global variable property!");
797     }
798   }
799
800   return false;
801 }
802
803 /// ParseUnnamedAttrGrp
804 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
805 bool LLParser::ParseUnnamedAttrGrp() {
806   assert(Lex.getKind() == lltok::kw_attributes);
807   LocTy AttrGrpLoc = Lex.getLoc();
808   Lex.Lex();
809
810   assert(Lex.getKind() == lltok::AttrGrpID);
811   unsigned VarID = Lex.getUIntVal();
812   std::vector<unsigned> unused;
813   LocTy BuiltinLoc;
814   Lex.Lex();
815
816   if (ParseToken(lltok::equal, "expected '=' here") ||
817       ParseToken(lltok::lbrace, "expected '{' here") ||
818       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819                                  BuiltinLoc) ||
820       ParseToken(lltok::rbrace, "expected end of attribute group"))
821     return true;
822
823   if (!NumberedAttrBuilders[VarID].hasAttributes())
824     return Error(AttrGrpLoc, "attribute group has no attributes");
825
826   return false;
827 }
828
829 /// ParseFnAttributeValuePairs
830 ///   ::= <attr> | <attr> '=' <value>
831 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832                                           std::vector<unsigned> &FwdRefAttrGrps,
833                                           bool inAttrGrp, LocTy &BuiltinLoc) {
834   bool HaveError = false;
835
836   B.clear();
837
838   while (true) {
839     lltok::Kind Token = Lex.getKind();
840     if (Token == lltok::kw_builtin)
841       BuiltinLoc = Lex.getLoc();
842     switch (Token) {
843     default:
844       if (!inAttrGrp) return HaveError;
845       return Error(Lex.getLoc(), "unterminated attribute group");
846     case lltok::rbrace:
847       // Finished.
848       return false;
849
850     case lltok::AttrGrpID: {
851       // Allow a function to reference an attribute group:
852       //
853       //   define void @foo() #1 { ... }
854       if (inAttrGrp)
855         HaveError |=
856           Error(Lex.getLoc(),
857               "cannot have an attribute group reference in an attribute group");
858
859       unsigned AttrGrpNum = Lex.getUIntVal();
860       if (inAttrGrp) break;
861
862       // Save the reference to the attribute group. We'll fill it in later.
863       FwdRefAttrGrps.push_back(AttrGrpNum);
864       break;
865     }
866     // Target-dependent attributes:
867     case lltok::StringConstant: {
868       std::string Attr = Lex.getStrVal();
869       Lex.Lex();
870       std::string Val;
871       if (EatIfPresent(lltok::equal) &&
872           ParseStringConstant(Val))
873         return true;
874
875       B.addAttribute(Attr, Val);
876       continue;
877     }
878
879     // Target-independent attributes:
880     case lltok::kw_align: {
881       // As a hack, we allow function alignment to be initially parsed as an
882       // attribute on a function declaration/definition or added to an attribute
883       // group and later moved to the alignment field.
884       unsigned Alignment;
885       if (inAttrGrp) {
886         Lex.Lex();
887         if (ParseToken(lltok::equal, "expected '=' here") ||
888             ParseUInt32(Alignment))
889           return true;
890       } else {
891         if (ParseOptionalAlignment(Alignment))
892           return true;
893       }
894       B.addAlignmentAttr(Alignment);
895       continue;
896     }
897     case lltok::kw_alignstack: {
898       unsigned Alignment;
899       if (inAttrGrp) {
900         Lex.Lex();
901         if (ParseToken(lltok::equal, "expected '=' here") ||
902             ParseUInt32(Alignment))
903           return true;
904       } else {
905         if (ParseOptionalStackAlignment(Alignment))
906           return true;
907       }
908       B.addStackAlignmentAttr(Alignment);
909       continue;
910     }
911     case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
912     case lltok::kw_builtin:           B.addAttribute(Attribute::Builtin); break;
913     case lltok::kw_cold:              B.addAttribute(Attribute::Cold); break;
914     case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
915     case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
916     case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
917     case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
918     case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
919     case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
920     case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
921     case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
922     case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
923     case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
924     case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
925     case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
926     case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
927     case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
928     case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
929     case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
930     case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
931     case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
932     case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
933     case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
934     case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
935     case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
936
937     // Error handling.
938     case lltok::kw_inreg:
939     case lltok::kw_signext:
940     case lltok::kw_zeroext:
941       HaveError |=
942         Error(Lex.getLoc(),
943               "invalid use of attribute on a function");
944       break;
945     case lltok::kw_byval:
946     case lltok::kw_nest:
947     case lltok::kw_noalias:
948     case lltok::kw_nocapture:
949     case lltok::kw_returned:
950     case lltok::kw_sret:
951       HaveError |=
952         Error(Lex.getLoc(),
953               "invalid use of parameter-only attribute on a function");
954       break;
955     }
956
957     Lex.Lex();
958   }
959 }
960
961 //===----------------------------------------------------------------------===//
962 // GlobalValue Reference/Resolution Routines.
963 //===----------------------------------------------------------------------===//
964
965 /// GetGlobalVal - Get a value with the specified name or ID, creating a
966 /// forward reference record if needed.  This can return null if the value
967 /// exists but does not have the right type.
968 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
969                                     LocTy Loc) {
970   PointerType *PTy = dyn_cast<PointerType>(Ty);
971   if (PTy == 0) {
972     Error(Loc, "global variable reference must have pointer type");
973     return 0;
974   }
975
976   // Look this name up in the normal function symbol table.
977   GlobalValue *Val =
978     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
979
980   // If this is a forward reference for the value, see if we already created a
981   // forward ref record.
982   if (Val == 0) {
983     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
984       I = ForwardRefVals.find(Name);
985     if (I != ForwardRefVals.end())
986       Val = I->second.first;
987   }
988
989   // If we have the value in the symbol table or fwd-ref table, return it.
990   if (Val) {
991     if (Val->getType() == Ty) return Val;
992     Error(Loc, "'@" + Name + "' defined with type '" +
993           getTypeString(Val->getType()) + "'");
994     return 0;
995   }
996
997   // Otherwise, create a new forward reference for this value and remember it.
998   GlobalValue *FwdVal;
999   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1000     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1001   else
1002     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1003                                 GlobalValue::ExternalWeakLinkage, 0, Name,
1004                                 0, GlobalVariable::NotThreadLocal,
1005                                 PTy->getAddressSpace());
1006
1007   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1008   return FwdVal;
1009 }
1010
1011 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1012   PointerType *PTy = dyn_cast<PointerType>(Ty);
1013   if (PTy == 0) {
1014     Error(Loc, "global variable reference must have pointer type");
1015     return 0;
1016   }
1017
1018   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1019
1020   // If this is a forward reference for the value, see if we already created a
1021   // forward ref record.
1022   if (Val == 0) {
1023     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1024       I = ForwardRefValIDs.find(ID);
1025     if (I != ForwardRefValIDs.end())
1026       Val = I->second.first;
1027   }
1028
1029   // If we have the value in the symbol table or fwd-ref table, return it.
1030   if (Val) {
1031     if (Val->getType() == Ty) return Val;
1032     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1033           getTypeString(Val->getType()) + "'");
1034     return 0;
1035   }
1036
1037   // Otherwise, create a new forward reference for this value and remember it.
1038   GlobalValue *FwdVal;
1039   if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1040     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1041   else
1042     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1043                                 GlobalValue::ExternalWeakLinkage, 0, "");
1044
1045   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1046   return FwdVal;
1047 }
1048
1049
1050 //===----------------------------------------------------------------------===//
1051 // Helper Routines.
1052 //===----------------------------------------------------------------------===//
1053
1054 /// ParseToken - If the current token has the specified kind, eat it and return
1055 /// success.  Otherwise, emit the specified error and return failure.
1056 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1057   if (Lex.getKind() != T)
1058     return TokError(ErrMsg);
1059   Lex.Lex();
1060   return false;
1061 }
1062
1063 /// ParseStringConstant
1064 ///   ::= StringConstant
1065 bool LLParser::ParseStringConstant(std::string &Result) {
1066   if (Lex.getKind() != lltok::StringConstant)
1067     return TokError("expected string constant");
1068   Result = Lex.getStrVal();
1069   Lex.Lex();
1070   return false;
1071 }
1072
1073 /// ParseUInt32
1074 ///   ::= uint32
1075 bool LLParser::ParseUInt32(unsigned &Val) {
1076   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1077     return TokError("expected integer");
1078   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1079   if (Val64 != unsigned(Val64))
1080     return TokError("expected 32-bit integer (too large)");
1081   Val = Val64;
1082   Lex.Lex();
1083   return false;
1084 }
1085
1086 /// ParseTLSModel
1087 ///   := 'localdynamic'
1088 ///   := 'initialexec'
1089 ///   := 'localexec'
1090 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1091   switch (Lex.getKind()) {
1092     default:
1093       return TokError("expected localdynamic, initialexec or localexec");
1094     case lltok::kw_localdynamic:
1095       TLM = GlobalVariable::LocalDynamicTLSModel;
1096       break;
1097     case lltok::kw_initialexec:
1098       TLM = GlobalVariable::InitialExecTLSModel;
1099       break;
1100     case lltok::kw_localexec:
1101       TLM = GlobalVariable::LocalExecTLSModel;
1102       break;
1103   }
1104
1105   Lex.Lex();
1106   return false;
1107 }
1108
1109 /// ParseOptionalThreadLocal
1110 ///   := /*empty*/
1111 ///   := 'thread_local'
1112 ///   := 'thread_local' '(' tlsmodel ')'
1113 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1114   TLM = GlobalVariable::NotThreadLocal;
1115   if (!EatIfPresent(lltok::kw_thread_local))
1116     return false;
1117
1118   TLM = GlobalVariable::GeneralDynamicTLSModel;
1119   if (Lex.getKind() == lltok::lparen) {
1120     Lex.Lex();
1121     return ParseTLSModel(TLM) ||
1122       ParseToken(lltok::rparen, "expected ')' after thread local model");
1123   }
1124   return false;
1125 }
1126
1127 /// ParseOptionalAddrSpace
1128 ///   := /*empty*/
1129 ///   := 'addrspace' '(' uint32 ')'
1130 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1131   AddrSpace = 0;
1132   if (!EatIfPresent(lltok::kw_addrspace))
1133     return false;
1134   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1135          ParseUInt32(AddrSpace) ||
1136          ParseToken(lltok::rparen, "expected ')' in address space");
1137 }
1138
1139 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1140 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1141   bool HaveError = false;
1142
1143   B.clear();
1144
1145   while (1) {
1146     lltok::Kind Token = Lex.getKind();
1147     switch (Token) {
1148     default:  // End of attributes.
1149       return HaveError;
1150     case lltok::kw_align: {
1151       unsigned Alignment;
1152       if (ParseOptionalAlignment(Alignment))
1153         return true;
1154       B.addAlignmentAttr(Alignment);
1155       continue;
1156     }
1157     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1158     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1159     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1160     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1161     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1162     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1163     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1164     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1165     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1166     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1167     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1168
1169     case lltok::kw_alignstack:
1170     case lltok::kw_alwaysinline:
1171     case lltok::kw_builtin:
1172     case lltok::kw_inlinehint:
1173     case lltok::kw_minsize:
1174     case lltok::kw_naked:
1175     case lltok::kw_nobuiltin:
1176     case lltok::kw_noduplicate:
1177     case lltok::kw_noimplicitfloat:
1178     case lltok::kw_noinline:
1179     case lltok::kw_nonlazybind:
1180     case lltok::kw_noredzone:
1181     case lltok::kw_noreturn:
1182     case lltok::kw_nounwind:
1183     case lltok::kw_optsize:
1184     case lltok::kw_returns_twice:
1185     case lltok::kw_sanitize_address:
1186     case lltok::kw_sanitize_memory:
1187     case lltok::kw_sanitize_thread:
1188     case lltok::kw_ssp:
1189     case lltok::kw_sspreq:
1190     case lltok::kw_sspstrong:
1191     case lltok::kw_uwtable:
1192       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1193       break;
1194     }
1195
1196     Lex.Lex();
1197   }
1198 }
1199
1200 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1201 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1202   bool HaveError = false;
1203
1204   B.clear();
1205
1206   while (1) {
1207     lltok::Kind Token = Lex.getKind();
1208     switch (Token) {
1209     default:  // End of attributes.
1210       return HaveError;
1211     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1212     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1213     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1214     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1215
1216     // Error handling.
1217     case lltok::kw_align:
1218     case lltok::kw_byval:
1219     case lltok::kw_nest:
1220     case lltok::kw_nocapture:
1221     case lltok::kw_returned:
1222     case lltok::kw_sret:
1223       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1224       break;
1225
1226     case lltok::kw_alignstack:
1227     case lltok::kw_alwaysinline:
1228     case lltok::kw_builtin:
1229     case lltok::kw_cold:
1230     case lltok::kw_inlinehint:
1231     case lltok::kw_minsize:
1232     case lltok::kw_naked:
1233     case lltok::kw_nobuiltin:
1234     case lltok::kw_noduplicate:
1235     case lltok::kw_noimplicitfloat:
1236     case lltok::kw_noinline:
1237     case lltok::kw_nonlazybind:
1238     case lltok::kw_noredzone:
1239     case lltok::kw_noreturn:
1240     case lltok::kw_nounwind:
1241     case lltok::kw_optsize:
1242     case lltok::kw_returns_twice:
1243     case lltok::kw_sanitize_address:
1244     case lltok::kw_sanitize_memory:
1245     case lltok::kw_sanitize_thread:
1246     case lltok::kw_ssp:
1247     case lltok::kw_sspreq:
1248     case lltok::kw_sspstrong:
1249     case lltok::kw_uwtable:
1250       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1251       break;
1252
1253     case lltok::kw_readnone:
1254     case lltok::kw_readonly:
1255       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1256     }
1257
1258     Lex.Lex();
1259   }
1260 }
1261
1262 /// ParseOptionalLinkage
1263 ///   ::= /*empty*/
1264 ///   ::= 'private'
1265 ///   ::= 'linker_private'
1266 ///   ::= 'linker_private_weak'
1267 ///   ::= 'internal'
1268 ///   ::= 'weak'
1269 ///   ::= 'weak_odr'
1270 ///   ::= 'linkonce'
1271 ///   ::= 'linkonce_odr'
1272 ///   ::= 'linkonce_odr_auto_hide'
1273 ///   ::= 'available_externally'
1274 ///   ::= 'appending'
1275 ///   ::= 'dllexport'
1276 ///   ::= 'common'
1277 ///   ::= 'dllimport'
1278 ///   ::= 'extern_weak'
1279 ///   ::= 'external'
1280 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1281   HasLinkage = false;
1282   switch (Lex.getKind()) {
1283   default:                       Res=GlobalValue::ExternalLinkage; return false;
1284   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1285   case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1286   case lltok::kw_linker_private_weak:
1287     Res = GlobalValue::LinkerPrivateWeakLinkage;
1288     break;
1289   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1290   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1291   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1292   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1293   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1294   case lltok::kw_linkonce_odr_auto_hide:
1295   case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1296     Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1297     break;
1298   case lltok::kw_available_externally:
1299     Res = GlobalValue::AvailableExternallyLinkage;
1300     break;
1301   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1302   case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1303   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1304   case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1305   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1306   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1307   }
1308   Lex.Lex();
1309   HasLinkage = true;
1310   return false;
1311 }
1312
1313 /// ParseOptionalVisibility
1314 ///   ::= /*empty*/
1315 ///   ::= 'default'
1316 ///   ::= 'hidden'
1317 ///   ::= 'protected'
1318 ///
1319 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1320   switch (Lex.getKind()) {
1321   default:                  Res = GlobalValue::DefaultVisibility; return false;
1322   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1323   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1324   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1325   }
1326   Lex.Lex();
1327   return false;
1328 }
1329
1330 /// ParseOptionalCallingConv
1331 ///   ::= /*empty*/
1332 ///   ::= 'ccc'
1333 ///   ::= 'fastcc'
1334 ///   ::= 'kw_intel_ocl_bicc'
1335 ///   ::= 'coldcc'
1336 ///   ::= 'x86_stdcallcc'
1337 ///   ::= 'x86_fastcallcc'
1338 ///   ::= 'x86_thiscallcc'
1339 ///   ::= 'arm_apcscc'
1340 ///   ::= 'arm_aapcscc'
1341 ///   ::= 'arm_aapcs_vfpcc'
1342 ///   ::= 'msp430_intrcc'
1343 ///   ::= 'ptx_kernel'
1344 ///   ::= 'ptx_device'
1345 ///   ::= 'spir_func'
1346 ///   ::= 'spir_kernel'
1347 ///   ::= 'x86_64_sysvcc'
1348 ///   ::= 'x86_64_win64cc'
1349 ///   ::= 'cc' UINT
1350 ///
1351 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1352   switch (Lex.getKind()) {
1353   default:                       CC = CallingConv::C; return false;
1354   case lltok::kw_ccc:            CC = CallingConv::C; break;
1355   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1356   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1357   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1358   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1359   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1360   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1361   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1362   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1363   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1364   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1365   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1366   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1367   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1368   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1369   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1370   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1371   case lltok::kw_cc: {
1372       unsigned ArbitraryCC;
1373       Lex.Lex();
1374       if (ParseUInt32(ArbitraryCC))
1375         return true;
1376       CC = static_cast<CallingConv::ID>(ArbitraryCC);
1377       return false;
1378     }
1379   }
1380
1381   Lex.Lex();
1382   return false;
1383 }
1384
1385 /// ParseInstructionMetadata
1386 ///   ::= !dbg !42 (',' !dbg !57)*
1387 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1388                                         PerFunctionState *PFS) {
1389   do {
1390     if (Lex.getKind() != lltok::MetadataVar)
1391       return TokError("expected metadata after comma");
1392
1393     std::string Name = Lex.getStrVal();
1394     unsigned MDK = M->getMDKindID(Name);
1395     Lex.Lex();
1396
1397     MDNode *Node;
1398     SMLoc Loc = Lex.getLoc();
1399
1400     if (ParseToken(lltok::exclaim, "expected '!' here"))
1401       return true;
1402
1403     // This code is similar to that of ParseMetadataValue, however it needs to
1404     // have special-case code for a forward reference; see the comments on
1405     // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1406     // at the top level here.
1407     if (Lex.getKind() == lltok::lbrace) {
1408       ValID ID;
1409       if (ParseMetadataListValue(ID, PFS))
1410         return true;
1411       assert(ID.Kind == ValID::t_MDNode);
1412       Inst->setMetadata(MDK, ID.MDNodeVal);
1413     } else {
1414       unsigned NodeID = 0;
1415       if (ParseMDNodeID(Node, NodeID))
1416         return true;
1417       if (Node) {
1418         // If we got the node, add it to the instruction.
1419         Inst->setMetadata(MDK, Node);
1420       } else {
1421         MDRef R = { Loc, MDK, NodeID };
1422         // Otherwise, remember that this should be resolved later.
1423         ForwardRefInstMetadata[Inst].push_back(R);
1424       }
1425     }
1426
1427     // If this is the end of the list, we're done.
1428   } while (EatIfPresent(lltok::comma));
1429   return false;
1430 }
1431
1432 /// ParseOptionalAlignment
1433 ///   ::= /* empty */
1434 ///   ::= 'align' 4
1435 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1436   Alignment = 0;
1437   if (!EatIfPresent(lltok::kw_align))
1438     return false;
1439   LocTy AlignLoc = Lex.getLoc();
1440   if (ParseUInt32(Alignment)) return true;
1441   if (!isPowerOf2_32(Alignment))
1442     return Error(AlignLoc, "alignment is not a power of two");
1443   if (Alignment > Value::MaximumAlignment)
1444     return Error(AlignLoc, "huge alignments are not supported yet");
1445   return false;
1446 }
1447
1448 /// ParseOptionalCommaAlign
1449 ///   ::=
1450 ///   ::= ',' align 4
1451 ///
1452 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1453 /// end.
1454 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1455                                        bool &AteExtraComma) {
1456   AteExtraComma = false;
1457   while (EatIfPresent(lltok::comma)) {
1458     // Metadata at the end is an early exit.
1459     if (Lex.getKind() == lltok::MetadataVar) {
1460       AteExtraComma = true;
1461       return false;
1462     }
1463
1464     if (Lex.getKind() != lltok::kw_align)
1465       return Error(Lex.getLoc(), "expected metadata or 'align'");
1466
1467     if (ParseOptionalAlignment(Alignment)) return true;
1468   }
1469
1470   return false;
1471 }
1472
1473 /// ParseScopeAndOrdering
1474 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1475 ///   else: ::=
1476 ///
1477 /// This sets Scope and Ordering to the parsed values.
1478 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1479                                      AtomicOrdering &Ordering) {
1480   if (!isAtomic)
1481     return false;
1482
1483   Scope = CrossThread;
1484   if (EatIfPresent(lltok::kw_singlethread))
1485     Scope = SingleThread;
1486   switch (Lex.getKind()) {
1487   default: return TokError("Expected ordering on atomic instruction");
1488   case lltok::kw_unordered: Ordering = Unordered; break;
1489   case lltok::kw_monotonic: Ordering = Monotonic; break;
1490   case lltok::kw_acquire: Ordering = Acquire; break;
1491   case lltok::kw_release: Ordering = Release; break;
1492   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1493   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1494   }
1495   Lex.Lex();
1496   return false;
1497 }
1498
1499 /// ParseOptionalStackAlignment
1500 ///   ::= /* empty */
1501 ///   ::= 'alignstack' '(' 4 ')'
1502 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1503   Alignment = 0;
1504   if (!EatIfPresent(lltok::kw_alignstack))
1505     return false;
1506   LocTy ParenLoc = Lex.getLoc();
1507   if (!EatIfPresent(lltok::lparen))
1508     return Error(ParenLoc, "expected '('");
1509   LocTy AlignLoc = Lex.getLoc();
1510   if (ParseUInt32(Alignment)) return true;
1511   ParenLoc = Lex.getLoc();
1512   if (!EatIfPresent(lltok::rparen))
1513     return Error(ParenLoc, "expected ')'");
1514   if (!isPowerOf2_32(Alignment))
1515     return Error(AlignLoc, "stack alignment is not a power of two");
1516   return false;
1517 }
1518
1519 /// ParseIndexList - This parses the index list for an insert/extractvalue
1520 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1521 /// comma at the end of the line and find that it is followed by metadata.
1522 /// Clients that don't allow metadata can call the version of this function that
1523 /// only takes one argument.
1524 ///
1525 /// ParseIndexList
1526 ///    ::=  (',' uint32)+
1527 ///
1528 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1529                               bool &AteExtraComma) {
1530   AteExtraComma = false;
1531
1532   if (Lex.getKind() != lltok::comma)
1533     return TokError("expected ',' as start of index list");
1534
1535   while (EatIfPresent(lltok::comma)) {
1536     if (Lex.getKind() == lltok::MetadataVar) {
1537       AteExtraComma = true;
1538       return false;
1539     }
1540     unsigned Idx = 0;
1541     if (ParseUInt32(Idx)) return true;
1542     Indices.push_back(Idx);
1543   }
1544
1545   return false;
1546 }
1547
1548 //===----------------------------------------------------------------------===//
1549 // Type Parsing.
1550 //===----------------------------------------------------------------------===//
1551
1552 /// ParseType - Parse a type.
1553 bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1554   SMLoc TypeLoc = Lex.getLoc();
1555   switch (Lex.getKind()) {
1556   default:
1557     return TokError("expected type");
1558   case lltok::Type:
1559     // Type ::= 'float' | 'void' (etc)
1560     Result = Lex.getTyVal();
1561     Lex.Lex();
1562     break;
1563   case lltok::lbrace:
1564     // Type ::= StructType
1565     if (ParseAnonStructType(Result, false))
1566       return true;
1567     break;
1568   case lltok::lsquare:
1569     // Type ::= '[' ... ']'
1570     Lex.Lex(); // eat the lsquare.
1571     if (ParseArrayVectorType(Result, false))
1572       return true;
1573     break;
1574   case lltok::less: // Either vector or packed struct.
1575     // Type ::= '<' ... '>'
1576     Lex.Lex();
1577     if (Lex.getKind() == lltok::lbrace) {
1578       if (ParseAnonStructType(Result, true) ||
1579           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1580         return true;
1581     } else if (ParseArrayVectorType(Result, true))
1582       return true;
1583     break;
1584   case lltok::LocalVar: {
1585     // Type ::= %foo
1586     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1587
1588     // If the type hasn't been defined yet, create a forward definition and
1589     // remember where that forward def'n was seen (in case it never is defined).
1590     if (Entry.first == 0) {
1591       Entry.first = StructType::create(Context, Lex.getStrVal());
1592       Entry.second = Lex.getLoc();
1593     }
1594     Result = Entry.first;
1595     Lex.Lex();
1596     break;
1597   }
1598
1599   case lltok::LocalVarID: {
1600     // Type ::= %4
1601     if (Lex.getUIntVal() >= NumberedTypes.size())
1602       NumberedTypes.resize(Lex.getUIntVal()+1);
1603     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1604
1605     // If the type hasn't been defined yet, create a forward definition and
1606     // remember where that forward def'n was seen (in case it never is defined).
1607     if (Entry.first == 0) {
1608       Entry.first = StructType::create(Context);
1609       Entry.second = Lex.getLoc();
1610     }
1611     Result = Entry.first;
1612     Lex.Lex();
1613     break;
1614   }
1615   }
1616
1617   // Parse the type suffixes.
1618   while (1) {
1619     switch (Lex.getKind()) {
1620     // End of type.
1621     default:
1622       if (!AllowVoid && Result->isVoidTy())
1623         return Error(TypeLoc, "void type only allowed for function results");
1624       return false;
1625
1626     // Type ::= Type '*'
1627     case lltok::star:
1628       if (Result->isLabelTy())
1629         return TokError("basic block pointers are invalid");
1630       if (Result->isVoidTy())
1631         return TokError("pointers to void are invalid - use i8* instead");
1632       if (!PointerType::isValidElementType(Result))
1633         return TokError("pointer to this type is invalid");
1634       Result = PointerType::getUnqual(Result);
1635       Lex.Lex();
1636       break;
1637
1638     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1639     case lltok::kw_addrspace: {
1640       if (Result->isLabelTy())
1641         return TokError("basic block pointers are invalid");
1642       if (Result->isVoidTy())
1643         return TokError("pointers to void are invalid; use i8* instead");
1644       if (!PointerType::isValidElementType(Result))
1645         return TokError("pointer to this type is invalid");
1646       unsigned AddrSpace;
1647       if (ParseOptionalAddrSpace(AddrSpace) ||
1648           ParseToken(lltok::star, "expected '*' in address space"))
1649         return true;
1650
1651       Result = PointerType::get(Result, AddrSpace);
1652       break;
1653     }
1654
1655     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1656     case lltok::lparen:
1657       if (ParseFunctionType(Result))
1658         return true;
1659       break;
1660     }
1661   }
1662 }
1663
1664 /// ParseParameterList
1665 ///    ::= '(' ')'
1666 ///    ::= '(' Arg (',' Arg)* ')'
1667 ///  Arg
1668 ///    ::= Type OptionalAttributes Value OptionalAttributes
1669 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1670                                   PerFunctionState &PFS) {
1671   if (ParseToken(lltok::lparen, "expected '(' in call"))
1672     return true;
1673
1674   unsigned AttrIndex = 1;
1675   while (Lex.getKind() != lltok::rparen) {
1676     // If this isn't the first argument, we need a comma.
1677     if (!ArgList.empty() &&
1678         ParseToken(lltok::comma, "expected ',' in argument list"))
1679       return true;
1680
1681     // Parse the argument.
1682     LocTy ArgLoc;
1683     Type *ArgTy = 0;
1684     AttrBuilder ArgAttrs;
1685     Value *V;
1686     if (ParseType(ArgTy, ArgLoc))
1687       return true;
1688
1689     // Otherwise, handle normal operands.
1690     if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1691       return true;
1692     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1693                                                              AttrIndex++,
1694                                                              ArgAttrs)));
1695   }
1696
1697   Lex.Lex();  // Lex the ')'.
1698   return false;
1699 }
1700
1701
1702
1703 /// ParseArgumentList - Parse the argument list for a function type or function
1704 /// prototype.
1705 ///   ::= '(' ArgTypeListI ')'
1706 /// ArgTypeListI
1707 ///   ::= /*empty*/
1708 ///   ::= '...'
1709 ///   ::= ArgTypeList ',' '...'
1710 ///   ::= ArgType (',' ArgType)*
1711 ///
1712 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1713                                  bool &isVarArg){
1714   isVarArg = false;
1715   assert(Lex.getKind() == lltok::lparen);
1716   Lex.Lex(); // eat the (.
1717
1718   if (Lex.getKind() == lltok::rparen) {
1719     // empty
1720   } else if (Lex.getKind() == lltok::dotdotdot) {
1721     isVarArg = true;
1722     Lex.Lex();
1723   } else {
1724     LocTy TypeLoc = Lex.getLoc();
1725     Type *ArgTy = 0;
1726     AttrBuilder Attrs;
1727     std::string Name;
1728
1729     if (ParseType(ArgTy) ||
1730         ParseOptionalParamAttrs(Attrs)) return true;
1731
1732     if (ArgTy->isVoidTy())
1733       return Error(TypeLoc, "argument can not have void type");
1734
1735     if (Lex.getKind() == lltok::LocalVar) {
1736       Name = Lex.getStrVal();
1737       Lex.Lex();
1738     }
1739
1740     if (!FunctionType::isValidArgumentType(ArgTy))
1741       return Error(TypeLoc, "invalid type for function argument");
1742
1743     unsigned AttrIndex = 1;
1744     ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1745                               AttributeSet::get(ArgTy->getContext(),
1746                                                 AttrIndex++, Attrs), Name));
1747
1748     while (EatIfPresent(lltok::comma)) {
1749       // Handle ... at end of arg list.
1750       if (EatIfPresent(lltok::dotdotdot)) {
1751         isVarArg = true;
1752         break;
1753       }
1754
1755       // Otherwise must be an argument type.
1756       TypeLoc = Lex.getLoc();
1757       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1758
1759       if (ArgTy->isVoidTy())
1760         return Error(TypeLoc, "argument can not have void type");
1761
1762       if (Lex.getKind() == lltok::LocalVar) {
1763         Name = Lex.getStrVal();
1764         Lex.Lex();
1765       } else {
1766         Name = "";
1767       }
1768
1769       if (!ArgTy->isFirstClassType())
1770         return Error(TypeLoc, "invalid type for function argument");
1771
1772       ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1773                                 AttributeSet::get(ArgTy->getContext(),
1774                                                   AttrIndex++, Attrs),
1775                                 Name));
1776     }
1777   }
1778
1779   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1780 }
1781
1782 /// ParseFunctionType
1783 ///  ::= Type ArgumentList OptionalAttrs
1784 bool LLParser::ParseFunctionType(Type *&Result) {
1785   assert(Lex.getKind() == lltok::lparen);
1786
1787   if (!FunctionType::isValidReturnType(Result))
1788     return TokError("invalid function return type");
1789
1790   SmallVector<ArgInfo, 8> ArgList;
1791   bool isVarArg;
1792   if (ParseArgumentList(ArgList, isVarArg))
1793     return true;
1794
1795   // Reject names on the arguments lists.
1796   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1797     if (!ArgList[i].Name.empty())
1798       return Error(ArgList[i].Loc, "argument name invalid in function type");
1799     if (ArgList[i].Attrs.hasAttributes(i + 1))
1800       return Error(ArgList[i].Loc,
1801                    "argument attributes invalid in function type");
1802   }
1803
1804   SmallVector<Type*, 16> ArgListTy;
1805   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1806     ArgListTy.push_back(ArgList[i].Ty);
1807
1808   Result = FunctionType::get(Result, ArgListTy, isVarArg);
1809   return false;
1810 }
1811
1812 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1813 /// other structs.
1814 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1815   SmallVector<Type*, 8> Elts;
1816   if (ParseStructBody(Elts)) return true;
1817
1818   Result = StructType::get(Context, Elts, Packed);
1819   return false;
1820 }
1821
1822 /// ParseStructDefinition - Parse a struct in a 'type' definition.
1823 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1824                                      std::pair<Type*, LocTy> &Entry,
1825                                      Type *&ResultTy) {
1826   // If the type was already defined, diagnose the redefinition.
1827   if (Entry.first && !Entry.second.isValid())
1828     return Error(TypeLoc, "redefinition of type");
1829
1830   // If we have opaque, just return without filling in the definition for the
1831   // struct.  This counts as a definition as far as the .ll file goes.
1832   if (EatIfPresent(lltok::kw_opaque)) {
1833     // This type is being defined, so clear the location to indicate this.
1834     Entry.second = SMLoc();
1835
1836     // If this type number has never been uttered, create it.
1837     if (Entry.first == 0)
1838       Entry.first = StructType::create(Context, Name);
1839     ResultTy = Entry.first;
1840     return false;
1841   }
1842
1843   // If the type starts with '<', then it is either a packed struct or a vector.
1844   bool isPacked = EatIfPresent(lltok::less);
1845
1846   // If we don't have a struct, then we have a random type alias, which we
1847   // accept for compatibility with old files.  These types are not allowed to be
1848   // forward referenced and not allowed to be recursive.
1849   if (Lex.getKind() != lltok::lbrace) {
1850     if (Entry.first)
1851       return Error(TypeLoc, "forward references to non-struct type");
1852
1853     ResultTy = 0;
1854     if (isPacked)
1855       return ParseArrayVectorType(ResultTy, true);
1856     return ParseType(ResultTy);
1857   }
1858
1859   // This type is being defined, so clear the location to indicate this.
1860   Entry.second = SMLoc();
1861
1862   // If this type number has never been uttered, create it.
1863   if (Entry.first == 0)
1864     Entry.first = StructType::create(Context, Name);
1865
1866   StructType *STy = cast<StructType>(Entry.first);
1867
1868   SmallVector<Type*, 8> Body;
1869   if (ParseStructBody(Body) ||
1870       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1871     return true;
1872
1873   STy->setBody(Body, isPacked);
1874   ResultTy = STy;
1875   return false;
1876 }
1877
1878
1879 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1880 ///   StructType
1881 ///     ::= '{' '}'
1882 ///     ::= '{' Type (',' Type)* '}'
1883 ///     ::= '<' '{' '}' '>'
1884 ///     ::= '<' '{' Type (',' Type)* '}' '>'
1885 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1886   assert(Lex.getKind() == lltok::lbrace);
1887   Lex.Lex(); // Consume the '{'
1888
1889   // Handle the empty struct.
1890   if (EatIfPresent(lltok::rbrace))
1891     return false;
1892
1893   LocTy EltTyLoc = Lex.getLoc();
1894   Type *Ty = 0;
1895   if (ParseType(Ty)) return true;
1896   Body.push_back(Ty);
1897
1898   if (!StructType::isValidElementType(Ty))
1899     return Error(EltTyLoc, "invalid element type for struct");
1900
1901   while (EatIfPresent(lltok::comma)) {
1902     EltTyLoc = Lex.getLoc();
1903     if (ParseType(Ty)) return true;
1904
1905     if (!StructType::isValidElementType(Ty))
1906       return Error(EltTyLoc, "invalid element type for struct");
1907
1908     Body.push_back(Ty);
1909   }
1910
1911   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1912 }
1913
1914 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1915 /// token has already been consumed.
1916 ///   Type
1917 ///     ::= '[' APSINTVAL 'x' Types ']'
1918 ///     ::= '<' APSINTVAL 'x' Types '>'
1919 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1920   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1921       Lex.getAPSIntVal().getBitWidth() > 64)
1922     return TokError("expected number in address space");
1923
1924   LocTy SizeLoc = Lex.getLoc();
1925   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1926   Lex.Lex();
1927
1928   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1929       return true;
1930
1931   LocTy TypeLoc = Lex.getLoc();
1932   Type *EltTy = 0;
1933   if (ParseType(EltTy)) return true;
1934
1935   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1936                  "expected end of sequential type"))
1937     return true;
1938
1939   if (isVector) {
1940     if (Size == 0)
1941       return Error(SizeLoc, "zero element vector is illegal");
1942     if ((unsigned)Size != Size)
1943       return Error(SizeLoc, "size too large for vector");
1944     if (!VectorType::isValidElementType(EltTy))
1945       return Error(TypeLoc, "invalid vector element type");
1946     Result = VectorType::get(EltTy, unsigned(Size));
1947   } else {
1948     if (!ArrayType::isValidElementType(EltTy))
1949       return Error(TypeLoc, "invalid array element type");
1950     Result = ArrayType::get(EltTy, Size);
1951   }
1952   return false;
1953 }
1954
1955 //===----------------------------------------------------------------------===//
1956 // Function Semantic Analysis.
1957 //===----------------------------------------------------------------------===//
1958
1959 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1960                                              int functionNumber)
1961   : P(p), F(f), FunctionNumber(functionNumber) {
1962
1963   // Insert unnamed arguments into the NumberedVals list.
1964   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1965        AI != E; ++AI)
1966     if (!AI->hasName())
1967       NumberedVals.push_back(AI);
1968 }
1969
1970 LLParser::PerFunctionState::~PerFunctionState() {
1971   // If there were any forward referenced non-basicblock values, delete them.
1972   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1973        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1974     if (!isa<BasicBlock>(I->second.first)) {
1975       I->second.first->replaceAllUsesWith(
1976                            UndefValue::get(I->second.first->getType()));
1977       delete I->second.first;
1978       I->second.first = 0;
1979     }
1980
1981   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1982        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1983     if (!isa<BasicBlock>(I->second.first)) {
1984       I->second.first->replaceAllUsesWith(
1985                            UndefValue::get(I->second.first->getType()));
1986       delete I->second.first;
1987       I->second.first = 0;
1988     }
1989 }
1990
1991 bool LLParser::PerFunctionState::FinishFunction() {
1992   // Check to see if someone took the address of labels in this block.
1993   if (!P.ForwardRefBlockAddresses.empty()) {
1994     ValID FunctionID;
1995     if (!F.getName().empty()) {
1996       FunctionID.Kind = ValID::t_GlobalName;
1997       FunctionID.StrVal = F.getName();
1998     } else {
1999       FunctionID.Kind = ValID::t_GlobalID;
2000       FunctionID.UIntVal = FunctionNumber;
2001     }
2002
2003     std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
2004       FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
2005     if (FRBAI != P.ForwardRefBlockAddresses.end()) {
2006       // Resolve all these references.
2007       if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
2008         return true;
2009
2010       P.ForwardRefBlockAddresses.erase(FRBAI);
2011     }
2012   }
2013
2014   if (!ForwardRefVals.empty())
2015     return P.Error(ForwardRefVals.begin()->second.second,
2016                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2017                    "'");
2018   if (!ForwardRefValIDs.empty())
2019     return P.Error(ForwardRefValIDs.begin()->second.second,
2020                    "use of undefined value '%" +
2021                    Twine(ForwardRefValIDs.begin()->first) + "'");
2022   return false;
2023 }
2024
2025
2026 /// GetVal - Get a value with the specified name or ID, creating a
2027 /// forward reference record if needed.  This can return null if the value
2028 /// exists but does not have the right type.
2029 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2030                                           Type *Ty, LocTy Loc) {
2031   // Look this name up in the normal function symbol table.
2032   Value *Val = F.getValueSymbolTable().lookup(Name);
2033
2034   // If this is a forward reference for the value, see if we already created a
2035   // forward ref record.
2036   if (Val == 0) {
2037     std::map<std::string, std::pair<Value*, LocTy> >::iterator
2038       I = ForwardRefVals.find(Name);
2039     if (I != ForwardRefVals.end())
2040       Val = I->second.first;
2041   }
2042
2043   // If we have the value in the symbol table or fwd-ref table, return it.
2044   if (Val) {
2045     if (Val->getType() == Ty) return Val;
2046     if (Ty->isLabelTy())
2047       P.Error(Loc, "'%" + Name + "' is not a basic block");
2048     else
2049       P.Error(Loc, "'%" + Name + "' defined with type '" +
2050               getTypeString(Val->getType()) + "'");
2051     return 0;
2052   }
2053
2054   // Don't make placeholders with invalid type.
2055   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2056     P.Error(Loc, "invalid use of a non-first-class type");
2057     return 0;
2058   }
2059
2060   // Otherwise, create a new forward reference for this value and remember it.
2061   Value *FwdVal;
2062   if (Ty->isLabelTy())
2063     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2064   else
2065     FwdVal = new Argument(Ty, Name);
2066
2067   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2068   return FwdVal;
2069 }
2070
2071 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2072                                           LocTy Loc) {
2073   // Look this name up in the normal function symbol table.
2074   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2075
2076   // If this is a forward reference for the value, see if we already created a
2077   // forward ref record.
2078   if (Val == 0) {
2079     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2080       I = ForwardRefValIDs.find(ID);
2081     if (I != ForwardRefValIDs.end())
2082       Val = I->second.first;
2083   }
2084
2085   // If we have the value in the symbol table or fwd-ref table, return it.
2086   if (Val) {
2087     if (Val->getType() == Ty) return Val;
2088     if (Ty->isLabelTy())
2089       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2090     else
2091       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2092               getTypeString(Val->getType()) + "'");
2093     return 0;
2094   }
2095
2096   if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2097     P.Error(Loc, "invalid use of a non-first-class type");
2098     return 0;
2099   }
2100
2101   // Otherwise, create a new forward reference for this value and remember it.
2102   Value *FwdVal;
2103   if (Ty->isLabelTy())
2104     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2105   else
2106     FwdVal = new Argument(Ty);
2107
2108   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2109   return FwdVal;
2110 }
2111
2112 /// SetInstName - After an instruction is parsed and inserted into its
2113 /// basic block, this installs its name.
2114 bool LLParser::PerFunctionState::SetInstName(int NameID,
2115                                              const std::string &NameStr,
2116                                              LocTy NameLoc, Instruction *Inst) {
2117   // If this instruction has void type, it cannot have a name or ID specified.
2118   if (Inst->getType()->isVoidTy()) {
2119     if (NameID != -1 || !NameStr.empty())
2120       return P.Error(NameLoc, "instructions returning void cannot have a name");
2121     return false;
2122   }
2123
2124   // If this was a numbered instruction, verify that the instruction is the
2125   // expected value and resolve any forward references.
2126   if (NameStr.empty()) {
2127     // If neither a name nor an ID was specified, just use the next ID.
2128     if (NameID == -1)
2129       NameID = NumberedVals.size();
2130
2131     if (unsigned(NameID) != NumberedVals.size())
2132       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2133                      Twine(NumberedVals.size()) + "'");
2134
2135     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2136       ForwardRefValIDs.find(NameID);
2137     if (FI != ForwardRefValIDs.end()) {
2138       if (FI->second.first->getType() != Inst->getType())
2139         return P.Error(NameLoc, "instruction forward referenced with type '" +
2140                        getTypeString(FI->second.first->getType()) + "'");
2141       FI->second.first->replaceAllUsesWith(Inst);
2142       delete FI->second.first;
2143       ForwardRefValIDs.erase(FI);
2144     }
2145
2146     NumberedVals.push_back(Inst);
2147     return false;
2148   }
2149
2150   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2151   std::map<std::string, std::pair<Value*, LocTy> >::iterator
2152     FI = ForwardRefVals.find(NameStr);
2153   if (FI != ForwardRefVals.end()) {
2154     if (FI->second.first->getType() != Inst->getType())
2155       return P.Error(NameLoc, "instruction forward referenced with type '" +
2156                      getTypeString(FI->second.first->getType()) + "'");
2157     FI->second.first->replaceAllUsesWith(Inst);
2158     delete FI->second.first;
2159     ForwardRefVals.erase(FI);
2160   }
2161
2162   // Set the name on the instruction.
2163   Inst->setName(NameStr);
2164
2165   if (Inst->getName() != NameStr)
2166     return P.Error(NameLoc, "multiple definition of local value named '" +
2167                    NameStr + "'");
2168   return false;
2169 }
2170
2171 /// GetBB - Get a basic block with the specified name or ID, creating a
2172 /// forward reference record if needed.
2173 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2174                                               LocTy Loc) {
2175   return cast_or_null<BasicBlock>(GetVal(Name,
2176                                         Type::getLabelTy(F.getContext()), Loc));
2177 }
2178
2179 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2180   return cast_or_null<BasicBlock>(GetVal(ID,
2181                                         Type::getLabelTy(F.getContext()), Loc));
2182 }
2183
2184 /// DefineBB - Define the specified basic block, which is either named or
2185 /// unnamed.  If there is an error, this returns null otherwise it returns
2186 /// the block being defined.
2187 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2188                                                  LocTy Loc) {
2189   BasicBlock *BB;
2190   if (Name.empty())
2191     BB = GetBB(NumberedVals.size(), Loc);
2192   else
2193     BB = GetBB(Name, Loc);
2194   if (BB == 0) return 0; // Already diagnosed error.
2195
2196   // Move the block to the end of the function.  Forward ref'd blocks are
2197   // inserted wherever they happen to be referenced.
2198   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2199
2200   // Remove the block from forward ref sets.
2201   if (Name.empty()) {
2202     ForwardRefValIDs.erase(NumberedVals.size());
2203     NumberedVals.push_back(BB);
2204   } else {
2205     // BB forward references are already in the function symbol table.
2206     ForwardRefVals.erase(Name);
2207   }
2208
2209   return BB;
2210 }
2211
2212 //===----------------------------------------------------------------------===//
2213 // Constants.
2214 //===----------------------------------------------------------------------===//
2215
2216 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2217 /// type implied.  For example, if we parse "4" we don't know what integer type
2218 /// it has.  The value will later be combined with its type and checked for
2219 /// sanity.  PFS is used to convert function-local operands of metadata (since
2220 /// metadata operands are not just parsed here but also converted to values).
2221 /// PFS can be null when we are not parsing metadata values inside a function.
2222 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2223   ID.Loc = Lex.getLoc();
2224   switch (Lex.getKind()) {
2225   default: return TokError("expected value token");
2226   case lltok::GlobalID:  // @42
2227     ID.UIntVal = Lex.getUIntVal();
2228     ID.Kind = ValID::t_GlobalID;
2229     break;
2230   case lltok::GlobalVar:  // @foo
2231     ID.StrVal = Lex.getStrVal();
2232     ID.Kind = ValID::t_GlobalName;
2233     break;
2234   case lltok::LocalVarID:  // %42
2235     ID.UIntVal = Lex.getUIntVal();
2236     ID.Kind = ValID::t_LocalID;
2237     break;
2238   case lltok::LocalVar:  // %foo
2239     ID.StrVal = Lex.getStrVal();
2240     ID.Kind = ValID::t_LocalName;
2241     break;
2242   case lltok::exclaim:   // !42, !{...}, or !"foo"
2243     return ParseMetadataValue(ID, PFS);
2244   case lltok::APSInt:
2245     ID.APSIntVal = Lex.getAPSIntVal();
2246     ID.Kind = ValID::t_APSInt;
2247     break;
2248   case lltok::APFloat:
2249     ID.APFloatVal = Lex.getAPFloatVal();
2250     ID.Kind = ValID::t_APFloat;
2251     break;
2252   case lltok::kw_true:
2253     ID.ConstantVal = ConstantInt::getTrue(Context);
2254     ID.Kind = ValID::t_Constant;
2255     break;
2256   case lltok::kw_false:
2257     ID.ConstantVal = ConstantInt::getFalse(Context);
2258     ID.Kind = ValID::t_Constant;
2259     break;
2260   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2261   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2262   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2263
2264   case lltok::lbrace: {
2265     // ValID ::= '{' ConstVector '}'
2266     Lex.Lex();
2267     SmallVector<Constant*, 16> Elts;
2268     if (ParseGlobalValueVector(Elts) ||
2269         ParseToken(lltok::rbrace, "expected end of struct constant"))
2270       return true;
2271
2272     ID.ConstantStructElts = new Constant*[Elts.size()];
2273     ID.UIntVal = Elts.size();
2274     memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2275     ID.Kind = ValID::t_ConstantStruct;
2276     return false;
2277   }
2278   case lltok::less: {
2279     // ValID ::= '<' ConstVector '>'         --> Vector.
2280     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2281     Lex.Lex();
2282     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2283
2284     SmallVector<Constant*, 16> Elts;
2285     LocTy FirstEltLoc = Lex.getLoc();
2286     if (ParseGlobalValueVector(Elts) ||
2287         (isPackedStruct &&
2288          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2289         ParseToken(lltok::greater, "expected end of constant"))
2290       return true;
2291
2292     if (isPackedStruct) {
2293       ID.ConstantStructElts = new Constant*[Elts.size()];
2294       memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2295       ID.UIntVal = Elts.size();
2296       ID.Kind = ValID::t_PackedConstantStruct;
2297       return false;
2298     }
2299
2300     if (Elts.empty())
2301       return Error(ID.Loc, "constant vector must not be empty");
2302
2303     if (!Elts[0]->getType()->isIntegerTy() &&
2304         !Elts[0]->getType()->isFloatingPointTy() &&
2305         !Elts[0]->getType()->isPointerTy())
2306       return Error(FirstEltLoc,
2307             "vector elements must have integer, pointer or floating point type");
2308
2309     // Verify that all the vector elements have the same type.
2310     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2311       if (Elts[i]->getType() != Elts[0]->getType())
2312         return Error(FirstEltLoc,
2313                      "vector element #" + Twine(i) +
2314                     " is not of type '" + getTypeString(Elts[0]->getType()));
2315
2316     ID.ConstantVal = ConstantVector::get(Elts);
2317     ID.Kind = ValID::t_Constant;
2318     return false;
2319   }
2320   case lltok::lsquare: {   // Array Constant
2321     Lex.Lex();
2322     SmallVector<Constant*, 16> Elts;
2323     LocTy FirstEltLoc = Lex.getLoc();
2324     if (ParseGlobalValueVector(Elts) ||
2325         ParseToken(lltok::rsquare, "expected end of array constant"))
2326       return true;
2327
2328     // Handle empty element.
2329     if (Elts.empty()) {
2330       // Use undef instead of an array because it's inconvenient to determine
2331       // the element type at this point, there being no elements to examine.
2332       ID.Kind = ValID::t_EmptyArray;
2333       return false;
2334     }
2335
2336     if (!Elts[0]->getType()->isFirstClassType())
2337       return Error(FirstEltLoc, "invalid array element type: " +
2338                    getTypeString(Elts[0]->getType()));
2339
2340     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2341
2342     // Verify all elements are correct type!
2343     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2344       if (Elts[i]->getType() != Elts[0]->getType())
2345         return Error(FirstEltLoc,
2346                      "array element #" + Twine(i) +
2347                      " is not of type '" + getTypeString(Elts[0]->getType()));
2348     }
2349
2350     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2351     ID.Kind = ValID::t_Constant;
2352     return false;
2353   }
2354   case lltok::kw_c:  // c "foo"
2355     Lex.Lex();
2356     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2357                                                   false);
2358     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2359     ID.Kind = ValID::t_Constant;
2360     return false;
2361
2362   case lltok::kw_asm: {
2363     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2364     //             STRINGCONSTANT
2365     bool HasSideEffect, AlignStack, AsmDialect;
2366     Lex.Lex();
2367     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2368         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2369         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2370         ParseStringConstant(ID.StrVal) ||
2371         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2372         ParseToken(lltok::StringConstant, "expected constraint string"))
2373       return true;
2374     ID.StrVal2 = Lex.getStrVal();
2375     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2376       (unsigned(AsmDialect)<<2);
2377     ID.Kind = ValID::t_InlineAsm;
2378     return false;
2379   }
2380
2381   case lltok::kw_blockaddress: {
2382     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2383     Lex.Lex();
2384
2385     ValID Fn, Label;
2386     LocTy FnLoc, LabelLoc;
2387
2388     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2389         ParseValID(Fn) ||
2390         ParseToken(lltok::comma, "expected comma in block address expression")||
2391         ParseValID(Label) ||
2392         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2393       return true;
2394
2395     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2396       return Error(Fn.Loc, "expected function name in blockaddress");
2397     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2398       return Error(Label.Loc, "expected basic block name in blockaddress");
2399
2400     // Make a global variable as a placeholder for this reference.
2401     GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2402                                            false, GlobalValue::InternalLinkage,
2403                                                 0, "");
2404     ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2405     ID.ConstantVal = FwdRef;
2406     ID.Kind = ValID::t_Constant;
2407     return false;
2408   }
2409
2410   case lltok::kw_trunc:
2411   case lltok::kw_zext:
2412   case lltok::kw_sext:
2413   case lltok::kw_fptrunc:
2414   case lltok::kw_fpext:
2415   case lltok::kw_bitcast:
2416   case lltok::kw_uitofp:
2417   case lltok::kw_sitofp:
2418   case lltok::kw_fptoui:
2419   case lltok::kw_fptosi:
2420   case lltok::kw_inttoptr:
2421   case lltok::kw_ptrtoint: {
2422     unsigned Opc = Lex.getUIntVal();
2423     Type *DestTy = 0;
2424     Constant *SrcVal;
2425     Lex.Lex();
2426     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2427         ParseGlobalTypeAndValue(SrcVal) ||
2428         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2429         ParseType(DestTy) ||
2430         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2431       return true;
2432     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2433       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2434                    getTypeString(SrcVal->getType()) + "' to '" +
2435                    getTypeString(DestTy) + "'");
2436     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2437                                                  SrcVal, DestTy);
2438     ID.Kind = ValID::t_Constant;
2439     return false;
2440   }
2441   case lltok::kw_extractvalue: {
2442     Lex.Lex();
2443     Constant *Val;
2444     SmallVector<unsigned, 4> Indices;
2445     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2446         ParseGlobalTypeAndValue(Val) ||
2447         ParseIndexList(Indices) ||
2448         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2449       return true;
2450
2451     if (!Val->getType()->isAggregateType())
2452       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2453     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2454       return Error(ID.Loc, "invalid indices for extractvalue");
2455     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2456     ID.Kind = ValID::t_Constant;
2457     return false;
2458   }
2459   case lltok::kw_insertvalue: {
2460     Lex.Lex();
2461     Constant *Val0, *Val1;
2462     SmallVector<unsigned, 4> Indices;
2463     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2464         ParseGlobalTypeAndValue(Val0) ||
2465         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2466         ParseGlobalTypeAndValue(Val1) ||
2467         ParseIndexList(Indices) ||
2468         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2469       return true;
2470     if (!Val0->getType()->isAggregateType())
2471       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2472     if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2473       return Error(ID.Loc, "invalid indices for insertvalue");
2474     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2475     ID.Kind = ValID::t_Constant;
2476     return false;
2477   }
2478   case lltok::kw_icmp:
2479   case lltok::kw_fcmp: {
2480     unsigned PredVal, Opc = Lex.getUIntVal();
2481     Constant *Val0, *Val1;
2482     Lex.Lex();
2483     if (ParseCmpPredicate(PredVal, Opc) ||
2484         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2485         ParseGlobalTypeAndValue(Val0) ||
2486         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2487         ParseGlobalTypeAndValue(Val1) ||
2488         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2489       return true;
2490
2491     if (Val0->getType() != Val1->getType())
2492       return Error(ID.Loc, "compare operands must have the same type");
2493
2494     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2495
2496     if (Opc == Instruction::FCmp) {
2497       if (!Val0->getType()->isFPOrFPVectorTy())
2498         return Error(ID.Loc, "fcmp requires floating point operands");
2499       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2500     } else {
2501       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2502       if (!Val0->getType()->isIntOrIntVectorTy() &&
2503           !Val0->getType()->getScalarType()->isPointerTy())
2504         return Error(ID.Loc, "icmp requires pointer or integer operands");
2505       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2506     }
2507     ID.Kind = ValID::t_Constant;
2508     return false;
2509   }
2510
2511   // Binary Operators.
2512   case lltok::kw_add:
2513   case lltok::kw_fadd:
2514   case lltok::kw_sub:
2515   case lltok::kw_fsub:
2516   case lltok::kw_mul:
2517   case lltok::kw_fmul:
2518   case lltok::kw_udiv:
2519   case lltok::kw_sdiv:
2520   case lltok::kw_fdiv:
2521   case lltok::kw_urem:
2522   case lltok::kw_srem:
2523   case lltok::kw_frem:
2524   case lltok::kw_shl:
2525   case lltok::kw_lshr:
2526   case lltok::kw_ashr: {
2527     bool NUW = false;
2528     bool NSW = false;
2529     bool Exact = false;
2530     unsigned Opc = Lex.getUIntVal();
2531     Constant *Val0, *Val1;
2532     Lex.Lex();
2533     LocTy ModifierLoc = Lex.getLoc();
2534     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2535         Opc == Instruction::Mul || Opc == Instruction::Shl) {
2536       if (EatIfPresent(lltok::kw_nuw))
2537         NUW = true;
2538       if (EatIfPresent(lltok::kw_nsw)) {
2539         NSW = true;
2540         if (EatIfPresent(lltok::kw_nuw))
2541           NUW = true;
2542       }
2543     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2544                Opc == Instruction::LShr || Opc == Instruction::AShr) {
2545       if (EatIfPresent(lltok::kw_exact))
2546         Exact = true;
2547     }
2548     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2549         ParseGlobalTypeAndValue(Val0) ||
2550         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2551         ParseGlobalTypeAndValue(Val1) ||
2552         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2553       return true;
2554     if (Val0->getType() != Val1->getType())
2555       return Error(ID.Loc, "operands of constexpr must have same type");
2556     if (!Val0->getType()->isIntOrIntVectorTy()) {
2557       if (NUW)
2558         return Error(ModifierLoc, "nuw only applies to integer operations");
2559       if (NSW)
2560         return Error(ModifierLoc, "nsw only applies to integer operations");
2561     }
2562     // Check that the type is valid for the operator.
2563     switch (Opc) {
2564     case Instruction::Add:
2565     case Instruction::Sub:
2566     case Instruction::Mul:
2567     case Instruction::UDiv:
2568     case Instruction::SDiv:
2569     case Instruction::URem:
2570     case Instruction::SRem:
2571     case Instruction::Shl:
2572     case Instruction::AShr:
2573     case Instruction::LShr:
2574       if (!Val0->getType()->isIntOrIntVectorTy())
2575         return Error(ID.Loc, "constexpr requires integer operands");
2576       break;
2577     case Instruction::FAdd:
2578     case Instruction::FSub:
2579     case Instruction::FMul:
2580     case Instruction::FDiv:
2581     case Instruction::FRem:
2582       if (!Val0->getType()->isFPOrFPVectorTy())
2583         return Error(ID.Loc, "constexpr requires fp operands");
2584       break;
2585     default: llvm_unreachable("Unknown binary operator!");
2586     }
2587     unsigned Flags = 0;
2588     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2589     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2590     if (Exact) Flags |= PossiblyExactOperator::IsExact;
2591     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2592     ID.ConstantVal = C;
2593     ID.Kind = ValID::t_Constant;
2594     return false;
2595   }
2596
2597   // Logical Operations
2598   case lltok::kw_and:
2599   case lltok::kw_or:
2600   case lltok::kw_xor: {
2601     unsigned Opc = Lex.getUIntVal();
2602     Constant *Val0, *Val1;
2603     Lex.Lex();
2604     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2605         ParseGlobalTypeAndValue(Val0) ||
2606         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2607         ParseGlobalTypeAndValue(Val1) ||
2608         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2609       return true;
2610     if (Val0->getType() != Val1->getType())
2611       return Error(ID.Loc, "operands of constexpr must have same type");
2612     if (!Val0->getType()->isIntOrIntVectorTy())
2613       return Error(ID.Loc,
2614                    "constexpr requires integer or integer vector operands");
2615     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2616     ID.Kind = ValID::t_Constant;
2617     return false;
2618   }
2619
2620   case lltok::kw_getelementptr:
2621   case lltok::kw_shufflevector:
2622   case lltok::kw_insertelement:
2623   case lltok::kw_extractelement:
2624   case lltok::kw_select: {
2625     unsigned Opc = Lex.getUIntVal();
2626     SmallVector<Constant*, 16> Elts;
2627     bool InBounds = false;
2628     Lex.Lex();
2629     if (Opc == Instruction::GetElementPtr)
2630       InBounds = EatIfPresent(lltok::kw_inbounds);
2631     if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2632         ParseGlobalValueVector(Elts) ||
2633         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2634       return true;
2635
2636     if (Opc == Instruction::GetElementPtr) {
2637       if (Elts.size() == 0 ||
2638           !Elts[0]->getType()->getScalarType()->isPointerTy())
2639         return Error(ID.Loc, "getelementptr requires pointer operand");
2640
2641       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2642       if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2643         return Error(ID.Loc, "invalid indices for getelementptr");
2644       ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2645                                                       InBounds);
2646     } else if (Opc == Instruction::Select) {
2647       if (Elts.size() != 3)
2648         return Error(ID.Loc, "expected three operands to select");
2649       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2650                                                               Elts[2]))
2651         return Error(ID.Loc, Reason);
2652       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2653     } else if (Opc == Instruction::ShuffleVector) {
2654       if (Elts.size() != 3)
2655         return Error(ID.Loc, "expected three operands to shufflevector");
2656       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2657         return Error(ID.Loc, "invalid operands to shufflevector");
2658       ID.ConstantVal =
2659                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2660     } else if (Opc == Instruction::ExtractElement) {
2661       if (Elts.size() != 2)
2662         return Error(ID.Loc, "expected two operands to extractelement");
2663       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2664         return Error(ID.Loc, "invalid extractelement operands");
2665       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2666     } else {
2667       assert(Opc == Instruction::InsertElement && "Unknown opcode");
2668       if (Elts.size() != 3)
2669       return Error(ID.Loc, "expected three operands to insertelement");
2670       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2671         return Error(ID.Loc, "invalid insertelement operands");
2672       ID.ConstantVal =
2673                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2674     }
2675
2676     ID.Kind = ValID::t_Constant;
2677     return false;
2678   }
2679   }
2680
2681   Lex.Lex();
2682   return false;
2683 }
2684
2685 /// ParseGlobalValue - Parse a global value with the specified type.
2686 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2687   C = 0;
2688   ValID ID;
2689   Value *V = NULL;
2690   bool Parsed = ParseValID(ID) ||
2691                 ConvertValIDToValue(Ty, ID, V, NULL);
2692   if (V && !(C = dyn_cast<Constant>(V)))
2693     return Error(ID.Loc, "global values must be constants");
2694   return Parsed;
2695 }
2696
2697 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2698   Type *Ty = 0;
2699   return ParseType(Ty) ||
2700          ParseGlobalValue(Ty, V);
2701 }
2702
2703 /// ParseGlobalValueVector
2704 ///   ::= /*empty*/
2705 ///   ::= TypeAndValue (',' TypeAndValue)*
2706 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2707   // Empty list.
2708   if (Lex.getKind() == lltok::rbrace ||
2709       Lex.getKind() == lltok::rsquare ||
2710       Lex.getKind() == lltok::greater ||
2711       Lex.getKind() == lltok::rparen)
2712     return false;
2713
2714   Constant *C;
2715   if (ParseGlobalTypeAndValue(C)) return true;
2716   Elts.push_back(C);
2717
2718   while (EatIfPresent(lltok::comma)) {
2719     if (ParseGlobalTypeAndValue(C)) return true;
2720     Elts.push_back(C);
2721   }
2722
2723   return false;
2724 }
2725
2726 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2727   assert(Lex.getKind() == lltok::lbrace);
2728   Lex.Lex();
2729
2730   SmallVector<Value*, 16> Elts;
2731   if (ParseMDNodeVector(Elts, PFS) ||
2732       ParseToken(lltok::rbrace, "expected end of metadata node"))
2733     return true;
2734
2735   ID.MDNodeVal = MDNode::get(Context, Elts);
2736   ID.Kind = ValID::t_MDNode;
2737   return false;
2738 }
2739
2740 /// ParseMetadataValue
2741 ///  ::= !42
2742 ///  ::= !{...}
2743 ///  ::= !"string"
2744 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2745   assert(Lex.getKind() == lltok::exclaim);
2746   Lex.Lex();
2747
2748   // MDNode:
2749   // !{ ... }
2750   if (Lex.getKind() == lltok::lbrace)
2751     return ParseMetadataListValue(ID, PFS);
2752
2753   // Standalone metadata reference
2754   // !42
2755   if (Lex.getKind() == lltok::APSInt) {
2756     if (ParseMDNodeID(ID.MDNodeVal)) return true;
2757     ID.Kind = ValID::t_MDNode;
2758     return false;
2759   }
2760
2761   // MDString:
2762   //   ::= '!' STRINGCONSTANT
2763   if (ParseMDString(ID.MDStringVal)) return true;
2764   ID.Kind = ValID::t_MDString;
2765   return false;
2766 }
2767
2768
2769 //===----------------------------------------------------------------------===//
2770 // Function Parsing.
2771 //===----------------------------------------------------------------------===//
2772
2773 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2774                                    PerFunctionState *PFS) {
2775   if (Ty->isFunctionTy())
2776     return Error(ID.Loc, "functions are not values, refer to them as pointers");
2777
2778   switch (ID.Kind) {
2779   case ValID::t_LocalID:
2780     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2781     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2782     return (V == 0);
2783   case ValID::t_LocalName:
2784     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2785     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2786     return (V == 0);
2787   case ValID::t_InlineAsm: {
2788     PointerType *PTy = dyn_cast<PointerType>(Ty);
2789     FunctionType *FTy =
2790       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2791     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2792       return Error(ID.Loc, "invalid type for inline asm constraint string");
2793     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2794                        (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2795     return false;
2796   }
2797   case ValID::t_MDNode:
2798     if (!Ty->isMetadataTy())
2799       return Error(ID.Loc, "metadata value must have metadata type");
2800     V = ID.MDNodeVal;
2801     return false;
2802   case ValID::t_MDString:
2803     if (!Ty->isMetadataTy())
2804       return Error(ID.Loc, "metadata value must have metadata type");
2805     V = ID.MDStringVal;
2806     return false;
2807   case ValID::t_GlobalName:
2808     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2809     return V == 0;
2810   case ValID::t_GlobalID:
2811     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2812     return V == 0;
2813   case ValID::t_APSInt:
2814     if (!Ty->isIntegerTy())
2815       return Error(ID.Loc, "integer constant must have integer type");
2816     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2817     V = ConstantInt::get(Context, ID.APSIntVal);
2818     return false;
2819   case ValID::t_APFloat:
2820     if (!Ty->isFloatingPointTy() ||
2821         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2822       return Error(ID.Loc, "floating point constant invalid for type");
2823
2824     // The lexer has no type info, so builds all half, float, and double FP
2825     // constants as double.  Fix this here.  Long double does not need this.
2826     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2827       bool Ignored;
2828       if (Ty->isHalfTy())
2829         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2830                               &Ignored);
2831       else if (Ty->isFloatTy())
2832         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2833                               &Ignored);
2834     }
2835     V = ConstantFP::get(Context, ID.APFloatVal);
2836
2837     if (V->getType() != Ty)
2838       return Error(ID.Loc, "floating point constant does not have type '" +
2839                    getTypeString(Ty) + "'");
2840
2841     return false;
2842   case ValID::t_Null:
2843     if (!Ty->isPointerTy())
2844       return Error(ID.Loc, "null must be a pointer type");
2845     V = ConstantPointerNull::get(cast<PointerType>(Ty));
2846     return false;
2847   case ValID::t_Undef:
2848     // FIXME: LabelTy should not be a first-class type.
2849     if (!Ty->isFirstClassType() || Ty->isLabelTy())
2850       return Error(ID.Loc, "invalid type for undef constant");
2851     V = UndefValue::get(Ty);
2852     return false;
2853   case ValID::t_EmptyArray:
2854     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2855       return Error(ID.Loc, "invalid empty array initializer");
2856     V = UndefValue::get(Ty);
2857     return false;
2858   case ValID::t_Zero:
2859     // FIXME: LabelTy should not be a first-class type.
2860     if (!Ty->isFirstClassType() || Ty->isLabelTy())
2861       return Error(ID.Loc, "invalid type for null constant");
2862     V = Constant::getNullValue(Ty);
2863     return false;
2864   case ValID::t_Constant:
2865     if (ID.ConstantVal->getType() != Ty)
2866       return Error(ID.Loc, "constant expression type mismatch");
2867
2868     V = ID.ConstantVal;
2869     return false;
2870   case ValID::t_ConstantStruct:
2871   case ValID::t_PackedConstantStruct:
2872     if (StructType *ST = dyn_cast<StructType>(Ty)) {
2873       if (ST->getNumElements() != ID.UIntVal)
2874         return Error(ID.Loc,
2875                      "initializer with struct type has wrong # elements");
2876       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2877         return Error(ID.Loc, "packed'ness of initializer and type don't match");
2878
2879       // Verify that the elements are compatible with the structtype.
2880       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2881         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2882           return Error(ID.Loc, "element " + Twine(i) +
2883                     " of struct initializer doesn't match struct element type");
2884
2885       V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2886                                                ID.UIntVal));
2887     } else
2888       return Error(ID.Loc, "constant expression type mismatch");
2889     return false;
2890   }
2891   llvm_unreachable("Invalid ValID");
2892 }
2893
2894 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2895   V = 0;
2896   ValID ID;
2897   return ParseValID(ID, PFS) ||
2898          ConvertValIDToValue(Ty, ID, V, PFS);
2899 }
2900
2901 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2902   Type *Ty = 0;
2903   return ParseType(Ty) ||
2904          ParseValue(Ty, V, PFS);
2905 }
2906
2907 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2908                                       PerFunctionState &PFS) {
2909   Value *V;
2910   Loc = Lex.getLoc();
2911   if (ParseTypeAndValue(V, PFS)) return true;
2912   if (!isa<BasicBlock>(V))
2913     return Error(Loc, "expected a basic block");
2914   BB = cast<BasicBlock>(V);
2915   return false;
2916 }
2917
2918
2919 /// FunctionHeader
2920 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2921 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2922 ///       OptionalAlign OptGC
2923 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2924   // Parse the linkage.
2925   LocTy LinkageLoc = Lex.getLoc();
2926   unsigned Linkage;
2927
2928   unsigned Visibility;
2929   AttrBuilder RetAttrs;
2930   CallingConv::ID CC;
2931   Type *RetType = 0;
2932   LocTy RetTypeLoc = Lex.getLoc();
2933   if (ParseOptionalLinkage(Linkage) ||
2934       ParseOptionalVisibility(Visibility) ||
2935       ParseOptionalCallingConv(CC) ||
2936       ParseOptionalReturnAttrs(RetAttrs) ||
2937       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2938     return true;
2939
2940   // Verify that the linkage is ok.
2941   switch ((GlobalValue::LinkageTypes)Linkage) {
2942   case GlobalValue::ExternalLinkage:
2943     break; // always ok.
2944   case GlobalValue::DLLImportLinkage:
2945   case GlobalValue::ExternalWeakLinkage:
2946     if (isDefine)
2947       return Error(LinkageLoc, "invalid linkage for function definition");
2948     break;
2949   case GlobalValue::PrivateLinkage:
2950   case GlobalValue::LinkerPrivateLinkage:
2951   case GlobalValue::LinkerPrivateWeakLinkage:
2952   case GlobalValue::InternalLinkage:
2953   case GlobalValue::AvailableExternallyLinkage:
2954   case GlobalValue::LinkOnceAnyLinkage:
2955   case GlobalValue::LinkOnceODRLinkage:
2956   case GlobalValue::LinkOnceODRAutoHideLinkage:
2957   case GlobalValue::WeakAnyLinkage:
2958   case GlobalValue::WeakODRLinkage:
2959   case GlobalValue::DLLExportLinkage:
2960     if (!isDefine)
2961       return Error(LinkageLoc, "invalid linkage for function declaration");
2962     break;
2963   case GlobalValue::AppendingLinkage:
2964   case GlobalValue::CommonLinkage:
2965     return Error(LinkageLoc, "invalid function linkage type");
2966   }
2967
2968   if (!FunctionType::isValidReturnType(RetType))
2969     return Error(RetTypeLoc, "invalid function return type");
2970
2971   LocTy NameLoc = Lex.getLoc();
2972
2973   std::string FunctionName;
2974   if (Lex.getKind() == lltok::GlobalVar) {
2975     FunctionName = Lex.getStrVal();
2976   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2977     unsigned NameID = Lex.getUIntVal();
2978
2979     if (NameID != NumberedVals.size())
2980       return TokError("function expected to be numbered '%" +
2981                       Twine(NumberedVals.size()) + "'");
2982   } else {
2983     return TokError("expected function name");
2984   }
2985
2986   Lex.Lex();
2987
2988   if (Lex.getKind() != lltok::lparen)
2989     return TokError("expected '(' in function argument list");
2990
2991   SmallVector<ArgInfo, 8> ArgList;
2992   bool isVarArg;
2993   AttrBuilder FuncAttrs;
2994   std::vector<unsigned> FwdRefAttrGrps;
2995   LocTy BuiltinLoc;
2996   std::string Section;
2997   unsigned Alignment;
2998   std::string GC;
2999   bool UnnamedAddr;
3000   LocTy UnnamedAddrLoc;
3001
3002   if (ParseArgumentList(ArgList, isVarArg) ||
3003       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
3004                          &UnnamedAddrLoc) ||
3005       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
3006                                  BuiltinLoc) ||
3007       (EatIfPresent(lltok::kw_section) &&
3008        ParseStringConstant(Section)) ||
3009       ParseOptionalAlignment(Alignment) ||
3010       (EatIfPresent(lltok::kw_gc) &&
3011        ParseStringConstant(GC)))
3012     return true;
3013
3014   if (FuncAttrs.contains(Attribute::Builtin))
3015     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
3016
3017   // If the alignment was parsed as an attribute, move to the alignment field.
3018   if (FuncAttrs.hasAlignmentAttr()) {
3019     Alignment = FuncAttrs.getAlignment();
3020     FuncAttrs.removeAttribute(Attribute::Alignment);
3021   }
3022
3023   // Okay, if we got here, the function is syntactically valid.  Convert types
3024   // and do semantic checks.
3025   std::vector<Type*> ParamTypeList;
3026   SmallVector<AttributeSet, 8> Attrs;
3027
3028   if (RetAttrs.hasAttributes())
3029     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3030                                       AttributeSet::ReturnIndex,
3031                                       RetAttrs));
3032
3033   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3034     ParamTypeList.push_back(ArgList[i].Ty);
3035     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3036       AttrBuilder B(ArgList[i].Attrs, i + 1);
3037       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3038     }
3039   }
3040
3041   if (FuncAttrs.hasAttributes())
3042     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3043                                       AttributeSet::FunctionIndex,
3044                                       FuncAttrs));
3045
3046   AttributeSet PAL = AttributeSet::get(Context, Attrs);
3047
3048   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3049     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3050
3051   FunctionType *FT =
3052     FunctionType::get(RetType, ParamTypeList, isVarArg);
3053   PointerType *PFT = PointerType::getUnqual(FT);
3054
3055   Fn = 0;
3056   if (!FunctionName.empty()) {
3057     // If this was a definition of a forward reference, remove the definition
3058     // from the forward reference table and fill in the forward ref.
3059     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3060       ForwardRefVals.find(FunctionName);
3061     if (FRVI != ForwardRefVals.end()) {
3062       Fn = M->getFunction(FunctionName);
3063       if (!Fn)
3064         return Error(FRVI->second.second, "invalid forward reference to "
3065                      "function as global value!");
3066       if (Fn->getType() != PFT)
3067         return Error(FRVI->second.second, "invalid forward reference to "
3068                      "function '" + FunctionName + "' with wrong type!");
3069
3070       ForwardRefVals.erase(FRVI);
3071     } else if ((Fn = M->getFunction(FunctionName))) {
3072       // Reject redefinitions.
3073       return Error(NameLoc, "invalid redefinition of function '" +
3074                    FunctionName + "'");
3075     } else if (M->getNamedValue(FunctionName)) {
3076       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3077     }
3078
3079   } else {
3080     // If this is a definition of a forward referenced function, make sure the
3081     // types agree.
3082     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3083       = ForwardRefValIDs.find(NumberedVals.size());
3084     if (I != ForwardRefValIDs.end()) {
3085       Fn = cast<Function>(I->second.first);
3086       if (Fn->getType() != PFT)
3087         return Error(NameLoc, "type of definition and forward reference of '@" +
3088                      Twine(NumberedVals.size()) + "' disagree");
3089       ForwardRefValIDs.erase(I);
3090     }
3091   }
3092
3093   if (Fn == 0)
3094     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3095   else // Move the forward-reference to the correct spot in the module.
3096     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3097
3098   if (FunctionName.empty())
3099     NumberedVals.push_back(Fn);
3100
3101   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3102   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3103   Fn->setCallingConv(CC);
3104   Fn->setAttributes(PAL);
3105   Fn->setUnnamedAddr(UnnamedAddr);
3106   Fn->setAlignment(Alignment);
3107   Fn->setSection(Section);
3108   if (!GC.empty()) Fn->setGC(GC.c_str());
3109   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3110
3111   // Add all of the arguments we parsed to the function.
3112   Function::arg_iterator ArgIt = Fn->arg_begin();
3113   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3114     // If the argument has a name, insert it into the argument symbol table.
3115     if (ArgList[i].Name.empty()) continue;
3116
3117     // Set the name, if it conflicted, it will be auto-renamed.
3118     ArgIt->setName(ArgList[i].Name);
3119
3120     if (ArgIt->getName() != ArgList[i].Name)
3121       return Error(ArgList[i].Loc, "redefinition of argument '%" +
3122                    ArgList[i].Name + "'");
3123   }
3124
3125   return false;
3126 }
3127
3128
3129 /// ParseFunctionBody
3130 ///   ::= '{' BasicBlock+ '}'
3131 ///
3132 bool LLParser::ParseFunctionBody(Function &Fn) {
3133   if (Lex.getKind() != lltok::lbrace)
3134     return TokError("expected '{' in function body");
3135   Lex.Lex();  // eat the {.
3136
3137   int FunctionNumber = -1;
3138   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3139
3140   PerFunctionState PFS(*this, Fn, FunctionNumber);
3141
3142   // We need at least one basic block.
3143   if (Lex.getKind() == lltok::rbrace)
3144     return TokError("function body requires at least one basic block");
3145
3146   while (Lex.getKind() != lltok::rbrace)
3147     if (ParseBasicBlock(PFS)) return true;
3148
3149   // Eat the }.
3150   Lex.Lex();
3151
3152   // Verify function is ok.
3153   return PFS.FinishFunction();
3154 }
3155
3156 /// ParseBasicBlock
3157 ///   ::= LabelStr? Instruction*
3158 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3159   // If this basic block starts out with a name, remember it.
3160   std::string Name;
3161   LocTy NameLoc = Lex.getLoc();
3162   if (Lex.getKind() == lltok::LabelStr) {
3163     Name = Lex.getStrVal();
3164     Lex.Lex();
3165   }
3166
3167   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3168   if (BB == 0) return true;
3169
3170   std::string NameStr;
3171
3172   // Parse the instructions in this block until we get a terminator.
3173   Instruction *Inst;
3174   SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3175   do {
3176     // This instruction may have three possibilities for a name: a) none
3177     // specified, b) name specified "%foo =", c) number specified: "%4 =".
3178     LocTy NameLoc = Lex.getLoc();
3179     int NameID = -1;
3180     NameStr = "";
3181
3182     if (Lex.getKind() == lltok::LocalVarID) {
3183       NameID = Lex.getUIntVal();
3184       Lex.Lex();
3185       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3186         return true;
3187     } else if (Lex.getKind() == lltok::LocalVar) {
3188       NameStr = Lex.getStrVal();
3189       Lex.Lex();
3190       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3191         return true;
3192     }
3193
3194     switch (ParseInstruction(Inst, BB, PFS)) {
3195     default: llvm_unreachable("Unknown ParseInstruction result!");
3196     case InstError: return true;
3197     case InstNormal:
3198       BB->getInstList().push_back(Inst);
3199
3200       // With a normal result, we check to see if the instruction is followed by
3201       // a comma and metadata.
3202       if (EatIfPresent(lltok::comma))
3203         if (ParseInstructionMetadata(Inst, &PFS))
3204           return true;
3205       break;
3206     case InstExtraComma:
3207       BB->getInstList().push_back(Inst);
3208
3209       // If the instruction parser ate an extra comma at the end of it, it
3210       // *must* be followed by metadata.
3211       if (ParseInstructionMetadata(Inst, &PFS))
3212         return true;
3213       break;
3214     }
3215
3216     // Set the name on the instruction.
3217     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3218   } while (!isa<TerminatorInst>(Inst));
3219
3220   return false;
3221 }
3222
3223 //===----------------------------------------------------------------------===//
3224 // Instruction Parsing.
3225 //===----------------------------------------------------------------------===//
3226
3227 /// ParseInstruction - Parse one of the many different instructions.
3228 ///
3229 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3230                                PerFunctionState &PFS) {
3231   lltok::Kind Token = Lex.getKind();
3232   if (Token == lltok::Eof)
3233     return TokError("found end of file when expecting more instructions");
3234   LocTy Loc = Lex.getLoc();
3235   unsigned KeywordVal = Lex.getUIntVal();
3236   Lex.Lex();  // Eat the keyword.
3237
3238   switch (Token) {
3239   default:                    return Error(Loc, "expected instruction opcode");
3240   // Terminator Instructions.
3241   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3242   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3243   case lltok::kw_br:          return ParseBr(Inst, PFS);
3244   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3245   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3246   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3247   case lltok::kw_resume:      return ParseResume(Inst, PFS);
3248   // Binary Operators.
3249   case lltok::kw_add:
3250   case lltok::kw_sub:
3251   case lltok::kw_mul:
3252   case lltok::kw_shl: {
3253     bool NUW = EatIfPresent(lltok::kw_nuw);
3254     bool NSW = EatIfPresent(lltok::kw_nsw);
3255     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3256
3257     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3258
3259     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3260     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3261     return false;
3262   }
3263   case lltok::kw_fadd:
3264   case lltok::kw_fsub:
3265   case lltok::kw_fmul:
3266   case lltok::kw_fdiv:
3267   case lltok::kw_frem: {
3268     FastMathFlags FMF = EatFastMathFlagsIfPresent();
3269     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3270     if (Res != 0)
3271       return Res;
3272     if (FMF.any())
3273       Inst->setFastMathFlags(FMF);
3274     return 0;
3275   }
3276
3277   case lltok::kw_sdiv:
3278   case lltok::kw_udiv:
3279   case lltok::kw_lshr:
3280   case lltok::kw_ashr: {
3281     bool Exact = EatIfPresent(lltok::kw_exact);
3282
3283     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3284     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3285     return false;
3286   }
3287
3288   case lltok::kw_urem:
3289   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3290   case lltok::kw_and:
3291   case lltok::kw_or:
3292   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3293   case lltok::kw_icmp:
3294   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3295   // Casts.
3296   case lltok::kw_trunc:
3297   case lltok::kw_zext:
3298   case lltok::kw_sext:
3299   case lltok::kw_fptrunc:
3300   case lltok::kw_fpext:
3301   case lltok::kw_bitcast:
3302   case lltok::kw_uitofp:
3303   case lltok::kw_sitofp:
3304   case lltok::kw_fptoui:
3305   case lltok::kw_fptosi:
3306   case lltok::kw_inttoptr:
3307   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3308   // Other.
3309   case lltok::kw_select:         return ParseSelect(Inst, PFS);
3310   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3311   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3312   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3313   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3314   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3315   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3316   case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3317   case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3318   // Memory.
3319   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3320   case lltok::kw_load:           return ParseLoad(Inst, PFS);
3321   case lltok::kw_store:          return ParseStore(Inst, PFS);
3322   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3323   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3324   case lltok::kw_fence:          return ParseFence(Inst, PFS);
3325   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3326   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3327   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3328   }
3329 }
3330
3331 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3332 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3333   if (Opc == Instruction::FCmp) {
3334     switch (Lex.getKind()) {
3335     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3336     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3337     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3338     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3339     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3340     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3341     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3342     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3343     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3344     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3345     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3346     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3347     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3348     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3349     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3350     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3351     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3352     }
3353   } else {
3354     switch (Lex.getKind()) {
3355     default: return TokError("expected icmp predicate (e.g. 'eq')");
3356     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3357     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3358     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3359     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3360     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3361     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3362     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3363     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3364     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3365     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3366     }
3367   }
3368   Lex.Lex();
3369   return false;
3370 }
3371
3372 //===----------------------------------------------------------------------===//
3373 // Terminator Instructions.
3374 //===----------------------------------------------------------------------===//
3375
3376 /// ParseRet - Parse a return instruction.
3377 ///   ::= 'ret' void (',' !dbg, !1)*
3378 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3379 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3380                         PerFunctionState &PFS) {
3381   SMLoc TypeLoc = Lex.getLoc();
3382   Type *Ty = 0;
3383   if (ParseType(Ty, true /*void allowed*/)) return true;
3384
3385   Type *ResType = PFS.getFunction().getReturnType();
3386
3387   if (Ty->isVoidTy()) {
3388     if (!ResType->isVoidTy())
3389       return Error(TypeLoc, "value doesn't match function result type '" +
3390                    getTypeString(ResType) + "'");
3391
3392     Inst = ReturnInst::Create(Context);
3393     return false;
3394   }
3395
3396   Value *RV;
3397   if (ParseValue(Ty, RV, PFS)) return true;
3398
3399   if (ResType != RV->getType())
3400     return Error(TypeLoc, "value doesn't match function result type '" +
3401                  getTypeString(ResType) + "'");
3402
3403   Inst = ReturnInst::Create(Context, RV);
3404   return false;
3405 }
3406
3407
3408 /// ParseBr
3409 ///   ::= 'br' TypeAndValue
3410 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3411 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3412   LocTy Loc, Loc2;
3413   Value *Op0;
3414   BasicBlock *Op1, *Op2;
3415   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3416
3417   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3418     Inst = BranchInst::Create(BB);
3419     return false;
3420   }
3421
3422   if (Op0->getType() != Type::getInt1Ty(Context))
3423     return Error(Loc, "branch condition must have 'i1' type");
3424
3425   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3426       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3427       ParseToken(lltok::comma, "expected ',' after true destination") ||
3428       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3429     return true;
3430
3431   Inst = BranchInst::Create(Op1, Op2, Op0);
3432   return false;
3433 }
3434
3435 /// ParseSwitch
3436 ///  Instruction
3437 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3438 ///  JumpTable
3439 ///    ::= (TypeAndValue ',' TypeAndValue)*
3440 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3441   LocTy CondLoc, BBLoc;
3442   Value *Cond;
3443   BasicBlock *DefaultBB;
3444   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3445       ParseToken(lltok::comma, "expected ',' after switch condition") ||
3446       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3447       ParseToken(lltok::lsquare, "expected '[' with switch table"))
3448     return true;
3449
3450   if (!Cond->getType()->isIntegerTy())
3451     return Error(CondLoc, "switch condition must have integer type");
3452
3453   // Parse the jump table pairs.
3454   SmallPtrSet<Value*, 32> SeenCases;
3455   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3456   while (Lex.getKind() != lltok::rsquare) {
3457     Value *Constant;
3458     BasicBlock *DestBB;
3459
3460     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3461         ParseToken(lltok::comma, "expected ',' after case value") ||
3462         ParseTypeAndBasicBlock(DestBB, PFS))
3463       return true;
3464
3465     if (!SeenCases.insert(Constant))
3466       return Error(CondLoc, "duplicate case value in switch");
3467     if (!isa<ConstantInt>(Constant))
3468       return Error(CondLoc, "case value is not a constant integer");
3469
3470     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3471   }
3472
3473   Lex.Lex();  // Eat the ']'.
3474
3475   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3476   for (unsigned i = 0, e = Table.size(); i != e; ++i)
3477     SI->addCase(Table[i].first, Table[i].second);
3478   Inst = SI;
3479   return false;
3480 }
3481
3482 /// ParseIndirectBr
3483 ///  Instruction
3484 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3485 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3486   LocTy AddrLoc;
3487   Value *Address;
3488   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3489       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3490       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3491     return true;
3492
3493   if (!Address->getType()->isPointerTy())
3494     return Error(AddrLoc, "indirectbr address must have pointer type");
3495
3496   // Parse the destination list.
3497   SmallVector<BasicBlock*, 16> DestList;
3498
3499   if (Lex.getKind() != lltok::rsquare) {
3500     BasicBlock *DestBB;
3501     if (ParseTypeAndBasicBlock(DestBB, PFS))
3502       return true;
3503     DestList.push_back(DestBB);
3504
3505     while (EatIfPresent(lltok::comma)) {
3506       if (ParseTypeAndBasicBlock(DestBB, PFS))
3507         return true;
3508       DestList.push_back(DestBB);
3509     }
3510   }
3511
3512   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3513     return true;
3514
3515   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3516   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3517     IBI->addDestination(DestList[i]);
3518   Inst = IBI;
3519   return false;
3520 }
3521
3522
3523 /// ParseInvoke
3524 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3525 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3526 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3527   LocTy CallLoc = Lex.getLoc();
3528   AttrBuilder RetAttrs, FnAttrs;
3529   std::vector<unsigned> FwdRefAttrGrps;
3530   LocTy NoBuiltinLoc;
3531   CallingConv::ID CC;
3532   Type *RetType = 0;
3533   LocTy RetTypeLoc;
3534   ValID CalleeID;
3535   SmallVector<ParamInfo, 16> ArgList;
3536
3537   BasicBlock *NormalBB, *UnwindBB;
3538   if (ParseOptionalCallingConv(CC) ||
3539       ParseOptionalReturnAttrs(RetAttrs) ||
3540       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3541       ParseValID(CalleeID) ||
3542       ParseParameterList(ArgList, PFS) ||
3543       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3544                                  NoBuiltinLoc) ||
3545       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3546       ParseTypeAndBasicBlock(NormalBB, PFS) ||
3547       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3548       ParseTypeAndBasicBlock(UnwindBB, PFS))
3549     return true;
3550
3551   // If RetType is a non-function pointer type, then this is the short syntax
3552   // for the call, which means that RetType is just the return type.  Infer the
3553   // rest of the function argument types from the arguments that are present.
3554   PointerType *PFTy = 0;
3555   FunctionType *Ty = 0;
3556   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3557       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3558     // Pull out the types of all of the arguments...
3559     std::vector<Type*> ParamTypes;
3560     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3561       ParamTypes.push_back(ArgList[i].V->getType());
3562
3563     if (!FunctionType::isValidReturnType(RetType))
3564       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3565
3566     Ty = FunctionType::get(RetType, ParamTypes, false);
3567     PFTy = PointerType::getUnqual(Ty);
3568   }
3569
3570   // Look up the callee.
3571   Value *Callee;
3572   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3573
3574   // Set up the Attribute for the function.
3575   SmallVector<AttributeSet, 8> Attrs;
3576   if (RetAttrs.hasAttributes())
3577     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3578                                       AttributeSet::ReturnIndex,
3579                                       RetAttrs));
3580
3581   SmallVector<Value*, 8> Args;
3582
3583   // Loop through FunctionType's arguments and ensure they are specified
3584   // correctly.  Also, gather any parameter attributes.
3585   FunctionType::param_iterator I = Ty->param_begin();
3586   FunctionType::param_iterator E = Ty->param_end();
3587   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3588     Type *ExpectedTy = 0;
3589     if (I != E) {
3590       ExpectedTy = *I++;
3591     } else if (!Ty->isVarArg()) {
3592       return Error(ArgList[i].Loc, "too many arguments specified");
3593     }
3594
3595     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3596       return Error(ArgList[i].Loc, "argument is not of expected type '" +
3597                    getTypeString(ExpectedTy) + "'");
3598     Args.push_back(ArgList[i].V);
3599     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3600       AttrBuilder B(ArgList[i].Attrs, i + 1);
3601       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3602     }
3603   }
3604
3605   if (I != E)
3606     return Error(CallLoc, "not enough parameters specified for call");
3607
3608   if (FnAttrs.hasAttributes())
3609     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3610                                       AttributeSet::FunctionIndex,
3611                                       FnAttrs));
3612
3613   // Finish off the Attribute and check them
3614   AttributeSet PAL = AttributeSet::get(Context, Attrs);
3615
3616   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3617   II->setCallingConv(CC);
3618   II->setAttributes(PAL);
3619   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3620   Inst = II;
3621   return false;
3622 }
3623
3624 /// ParseResume
3625 ///   ::= 'resume' TypeAndValue
3626 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3627   Value *Exn; LocTy ExnLoc;
3628   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3629     return true;
3630
3631   ResumeInst *RI = ResumeInst::Create(Exn);
3632   Inst = RI;
3633   return false;
3634 }
3635
3636 //===----------------------------------------------------------------------===//
3637 // Binary Operators.
3638 //===----------------------------------------------------------------------===//
3639
3640 /// ParseArithmetic
3641 ///  ::= ArithmeticOps TypeAndValue ',' Value
3642 ///
3643 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3644 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3645 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3646                                unsigned Opc, unsigned OperandType) {
3647   LocTy Loc; Value *LHS, *RHS;
3648   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3649       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3650       ParseValue(LHS->getType(), RHS, PFS))
3651     return true;
3652
3653   bool Valid;
3654   switch (OperandType) {
3655   default: llvm_unreachable("Unknown operand type!");
3656   case 0: // int or FP.
3657     Valid = LHS->getType()->isIntOrIntVectorTy() ||
3658             LHS->getType()->isFPOrFPVectorTy();
3659     break;
3660   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3661   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3662   }
3663
3664   if (!Valid)
3665     return Error(Loc, "invalid operand type for instruction");
3666
3667   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3668   return false;
3669 }
3670
3671 /// ParseLogical
3672 ///  ::= ArithmeticOps TypeAndValue ',' Value {
3673 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3674                             unsigned Opc) {
3675   LocTy Loc; Value *LHS, *RHS;
3676   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3677       ParseToken(lltok::comma, "expected ',' in logical operation") ||
3678       ParseValue(LHS->getType(), RHS, PFS))
3679     return true;
3680
3681   if (!LHS->getType()->isIntOrIntVectorTy())
3682     return Error(Loc,"instruction requires integer or integer vector operands");
3683
3684   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3685   return false;
3686 }
3687
3688
3689 /// ParseCompare
3690 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3691 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3692 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3693                             unsigned Opc) {
3694   // Parse the integer/fp comparison predicate.
3695   LocTy Loc;
3696   unsigned Pred;
3697   Value *LHS, *RHS;
3698   if (ParseCmpPredicate(Pred, Opc) ||
3699       ParseTypeAndValue(LHS, Loc, PFS) ||
3700       ParseToken(lltok::comma, "expected ',' after compare value") ||
3701       ParseValue(LHS->getType(), RHS, PFS))
3702     return true;
3703
3704   if (Opc == Instruction::FCmp) {
3705     if (!LHS->getType()->isFPOrFPVectorTy())
3706       return Error(Loc, "fcmp requires floating point operands");
3707     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3708   } else {
3709     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3710     if (!LHS->getType()->isIntOrIntVectorTy() &&
3711         !LHS->getType()->getScalarType()->isPointerTy())
3712       return Error(Loc, "icmp requires integer operands");
3713     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3714   }
3715   return false;
3716 }
3717
3718 //===----------------------------------------------------------------------===//
3719 // Other Instructions.
3720 //===----------------------------------------------------------------------===//
3721
3722
3723 /// ParseCast
3724 ///   ::= CastOpc TypeAndValue 'to' Type
3725 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3726                          unsigned Opc) {
3727   LocTy Loc;
3728   Value *Op;
3729   Type *DestTy = 0;
3730   if (ParseTypeAndValue(Op, Loc, PFS) ||
3731       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3732       ParseType(DestTy))
3733     return true;
3734
3735   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3736     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3737     return Error(Loc, "invalid cast opcode for cast from '" +
3738                  getTypeString(Op->getType()) + "' to '" +
3739                  getTypeString(DestTy) + "'");
3740   }
3741   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3742   return false;
3743 }
3744
3745 /// ParseSelect
3746 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3747 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3748   LocTy Loc;
3749   Value *Op0, *Op1, *Op2;
3750   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3751       ParseToken(lltok::comma, "expected ',' after select condition") ||
3752       ParseTypeAndValue(Op1, PFS) ||
3753       ParseToken(lltok::comma, "expected ',' after select value") ||
3754       ParseTypeAndValue(Op2, PFS))
3755     return true;
3756
3757   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3758     return Error(Loc, Reason);
3759
3760   Inst = SelectInst::Create(Op0, Op1, Op2);
3761   return false;
3762 }
3763
3764 /// ParseVA_Arg
3765 ///   ::= 'va_arg' TypeAndValue ',' Type
3766 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3767   Value *Op;
3768   Type *EltTy = 0;
3769   LocTy TypeLoc;
3770   if (ParseTypeAndValue(Op, PFS) ||
3771       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3772       ParseType(EltTy, TypeLoc))
3773     return true;
3774
3775   if (!EltTy->isFirstClassType())
3776     return Error(TypeLoc, "va_arg requires operand with first class type");
3777
3778   Inst = new VAArgInst(Op, EltTy);
3779   return false;
3780 }
3781
3782 /// ParseExtractElement
3783 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3784 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3785   LocTy Loc;
3786   Value *Op0, *Op1;
3787   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3788       ParseToken(lltok::comma, "expected ',' after extract value") ||
3789       ParseTypeAndValue(Op1, PFS))
3790     return true;
3791
3792   if (!ExtractElementInst::isValidOperands(Op0, Op1))
3793     return Error(Loc, "invalid extractelement operands");
3794
3795   Inst = ExtractElementInst::Create(Op0, Op1);
3796   return false;
3797 }
3798
3799 /// ParseInsertElement
3800 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3801 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3802   LocTy Loc;
3803   Value *Op0, *Op1, *Op2;
3804   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3805       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3806       ParseTypeAndValue(Op1, PFS) ||
3807       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3808       ParseTypeAndValue(Op2, PFS))
3809     return true;
3810
3811   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3812     return Error(Loc, "invalid insertelement operands");
3813
3814   Inst = InsertElementInst::Create(Op0, Op1, Op2);
3815   return false;
3816 }
3817
3818 /// ParseShuffleVector
3819 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3820 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3821   LocTy Loc;
3822   Value *Op0, *Op1, *Op2;
3823   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3824       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3825       ParseTypeAndValue(Op1, PFS) ||
3826       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3827       ParseTypeAndValue(Op2, PFS))
3828     return true;
3829
3830   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3831     return Error(Loc, "invalid shufflevector operands");
3832
3833   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3834   return false;
3835 }
3836
3837 /// ParsePHI
3838 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3839 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3840   Type *Ty = 0;  LocTy TypeLoc;
3841   Value *Op0, *Op1;
3842
3843   if (ParseType(Ty, TypeLoc) ||
3844       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3845       ParseValue(Ty, Op0, PFS) ||
3846       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3847       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3848       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3849     return true;
3850
3851   bool AteExtraComma = false;
3852   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3853   while (1) {
3854     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3855
3856     if (!EatIfPresent(lltok::comma))
3857       break;
3858
3859     if (Lex.getKind() == lltok::MetadataVar) {
3860       AteExtraComma = true;
3861       break;
3862     }
3863
3864     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3865         ParseValue(Ty, Op0, PFS) ||
3866         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3867         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3868         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3869       return true;
3870   }
3871
3872   if (!Ty->isFirstClassType())
3873     return Error(TypeLoc, "phi node must have first class type");
3874
3875   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3876   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3877     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3878   Inst = PN;
3879   return AteExtraComma ? InstExtraComma : InstNormal;
3880 }
3881
3882 /// ParseLandingPad
3883 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3884 /// Clause
3885 ///   ::= 'catch' TypeAndValue
3886 ///   ::= 'filter'
3887 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3888 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3889   Type *Ty = 0; LocTy TyLoc;
3890   Value *PersFn; LocTy PersFnLoc;
3891
3892   if (ParseType(Ty, TyLoc) ||
3893       ParseToken(lltok::kw_personality, "expected 'personality'") ||
3894       ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3895     return true;
3896
3897   LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3898   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3899
3900   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3901     LandingPadInst::ClauseType CT;
3902     if (EatIfPresent(lltok::kw_catch))
3903       CT = LandingPadInst::Catch;
3904     else if (EatIfPresent(lltok::kw_filter))
3905       CT = LandingPadInst::Filter;
3906     else
3907       return TokError("expected 'catch' or 'filter' clause type");
3908
3909     Value *V; LocTy VLoc;
3910     if (ParseTypeAndValue(V, VLoc, PFS)) {
3911       delete LP;
3912       return true;
3913     }
3914
3915     // A 'catch' type expects a non-array constant. A filter clause expects an
3916     // array constant.
3917     if (CT == LandingPadInst::Catch) {
3918       if (isa<ArrayType>(V->getType()))
3919         Error(VLoc, "'catch' clause has an invalid type");
3920     } else {
3921       if (!isa<ArrayType>(V->getType()))
3922         Error(VLoc, "'filter' clause has an invalid type");
3923     }
3924
3925     LP->addClause(V);
3926   }
3927
3928   Inst = LP;
3929   return false;
3930 }
3931
3932 /// ParseCall
3933 ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3934 ///       ParameterList OptionalAttrs
3935 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3936                          bool isTail) {
3937   AttrBuilder RetAttrs, FnAttrs;
3938   std::vector<unsigned> FwdRefAttrGrps;
3939   LocTy BuiltinLoc;
3940   CallingConv::ID CC;
3941   Type *RetType = 0;
3942   LocTy RetTypeLoc;
3943   ValID CalleeID;
3944   SmallVector<ParamInfo, 16> ArgList;
3945   LocTy CallLoc = Lex.getLoc();
3946
3947   if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3948       ParseOptionalCallingConv(CC) ||
3949       ParseOptionalReturnAttrs(RetAttrs) ||
3950       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3951       ParseValID(CalleeID) ||
3952       ParseParameterList(ArgList, PFS) ||
3953       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3954                                  BuiltinLoc))
3955     return true;
3956
3957   // If RetType is a non-function pointer type, then this is the short syntax
3958   // for the call, which means that RetType is just the return type.  Infer the
3959   // rest of the function argument types from the arguments that are present.
3960   PointerType *PFTy = 0;
3961   FunctionType *Ty = 0;
3962   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3963       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3964     // Pull out the types of all of the arguments...
3965     std::vector<Type*> ParamTypes;
3966     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3967       ParamTypes.push_back(ArgList[i].V->getType());
3968
3969     if (!FunctionType::isValidReturnType(RetType))
3970       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3971
3972     Ty = FunctionType::get(RetType, ParamTypes, false);
3973     PFTy = PointerType::getUnqual(Ty);
3974   }
3975
3976   // Look up the callee.
3977   Value *Callee;
3978   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3979
3980   // Set up the Attribute for the function.
3981   SmallVector<AttributeSet, 8> Attrs;
3982   if (RetAttrs.hasAttributes())
3983     Attrs.push_back(AttributeSet::get(RetType->getContext(),
3984                                       AttributeSet::ReturnIndex,
3985                                       RetAttrs));
3986
3987   SmallVector<Value*, 8> Args;
3988
3989   // Loop through FunctionType's arguments and ensure they are specified
3990   // correctly.  Also, gather any parameter attributes.
3991   FunctionType::param_iterator I = Ty->param_begin();
3992   FunctionType::param_iterator E = Ty->param_end();
3993   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3994     Type *ExpectedTy = 0;
3995     if (I != E) {
3996       ExpectedTy = *I++;
3997     } else if (!Ty->isVarArg()) {
3998       return Error(ArgList[i].Loc, "too many arguments specified");
3999     }
4000
4001     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
4002       return Error(ArgList[i].Loc, "argument is not of expected type '" +
4003                    getTypeString(ExpectedTy) + "'");
4004     Args.push_back(ArgList[i].V);
4005     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4006       AttrBuilder B(ArgList[i].Attrs, i + 1);
4007       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4008     }
4009   }
4010
4011   if (I != E)
4012     return Error(CallLoc, "not enough parameters specified for call");
4013
4014   if (FnAttrs.hasAttributes())
4015     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4016                                       AttributeSet::FunctionIndex,
4017                                       FnAttrs));
4018
4019   // Finish off the Attribute and check them
4020   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4021
4022   CallInst *CI = CallInst::Create(Callee, Args);
4023   CI->setTailCall(isTail);
4024   CI->setCallingConv(CC);
4025   CI->setAttributes(PAL);
4026   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
4027   Inst = CI;
4028   return false;
4029 }
4030
4031 //===----------------------------------------------------------------------===//
4032 // Memory Instructions.
4033 //===----------------------------------------------------------------------===//
4034
4035 /// ParseAlloc
4036 ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
4037 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
4038   Value *Size = 0;
4039   LocTy SizeLoc;
4040   unsigned Alignment = 0;
4041   Type *Ty = 0;
4042   if (ParseType(Ty)) return true;
4043
4044   bool AteExtraComma = false;
4045   if (EatIfPresent(lltok::comma)) {
4046     if (Lex.getKind() == lltok::kw_align) {
4047       if (ParseOptionalAlignment(Alignment)) return true;
4048     } else if (Lex.getKind() == lltok::MetadataVar) {
4049       AteExtraComma = true;
4050     } else {
4051       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4052           ParseOptionalCommaAlign(Alignment, AteExtraComma))
4053         return true;
4054     }
4055   }
4056
4057   if (Size && !Size->getType()->isIntegerTy())
4058     return Error(SizeLoc, "element count must have integer type");
4059
4060   Inst = new AllocaInst(Ty, Size, Alignment);
4061   return AteExtraComma ? InstExtraComma : InstNormal;
4062 }
4063
4064 /// ParseLoad
4065 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4066 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
4067 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4068 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4069   Value *Val; LocTy Loc;
4070   unsigned Alignment = 0;
4071   bool AteExtraComma = false;
4072   bool isAtomic = false;
4073   AtomicOrdering Ordering = NotAtomic;
4074   SynchronizationScope Scope = CrossThread;
4075
4076   if (Lex.getKind() == lltok::kw_atomic) {
4077     isAtomic = true;
4078     Lex.Lex();
4079   }
4080
4081   bool isVolatile = false;
4082   if (Lex.getKind() == lltok::kw_volatile) {
4083     isVolatile = true;
4084     Lex.Lex();
4085   }
4086
4087   if (ParseTypeAndValue(Val, Loc, PFS) ||
4088       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4089       ParseOptionalCommaAlign(Alignment, AteExtraComma))
4090     return true;
4091
4092   if (!Val->getType()->isPointerTy() ||
4093       !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4094     return Error(Loc, "load operand must be a pointer to a first class type");
4095   if (isAtomic && !Alignment)
4096     return Error(Loc, "atomic load must have explicit non-zero alignment");
4097   if (Ordering == Release || Ordering == AcquireRelease)
4098     return Error(Loc, "atomic load cannot use Release ordering");
4099
4100   Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4101   return AteExtraComma ? InstExtraComma : InstNormal;
4102 }
4103
4104 /// ParseStore
4105
4106 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4107 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4108 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4109 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4110   Value *Val, *Ptr; LocTy Loc, PtrLoc;
4111   unsigned Alignment = 0;
4112   bool AteExtraComma = false;
4113   bool isAtomic = false;
4114   AtomicOrdering Ordering = NotAtomic;
4115   SynchronizationScope Scope = CrossThread;
4116
4117   if (Lex.getKind() == lltok::kw_atomic) {
4118     isAtomic = true;
4119     Lex.Lex();
4120   }
4121
4122   bool isVolatile = false;
4123   if (Lex.getKind() == lltok::kw_volatile) {
4124     isVolatile = true;
4125     Lex.Lex();
4126   }
4127
4128   if (ParseTypeAndValue(Val, Loc, PFS) ||
4129       ParseToken(lltok::comma, "expected ',' after store operand") ||
4130       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4131       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4132       ParseOptionalCommaAlign(Alignment, AteExtraComma))
4133     return true;
4134
4135   if (!Ptr->getType()->isPointerTy())
4136     return Error(PtrLoc, "store operand must be a pointer");
4137   if (!Val->getType()->isFirstClassType())
4138     return Error(Loc, "store operand must be a first class value");
4139   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4140     return Error(Loc, "stored value and pointer type do not match");
4141   if (isAtomic && !Alignment)
4142     return Error(Loc, "atomic store must have explicit non-zero alignment");
4143   if (Ordering == Acquire || Ordering == AcquireRelease)
4144     return Error(Loc, "atomic store cannot use Acquire ordering");
4145
4146   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4147   return AteExtraComma ? InstExtraComma : InstNormal;
4148 }
4149
4150 /// ParseCmpXchg
4151 ///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4152 ///       'singlethread'? AtomicOrdering
4153 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4154   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4155   bool AteExtraComma = false;
4156   AtomicOrdering Ordering = NotAtomic;
4157   SynchronizationScope Scope = CrossThread;
4158   bool isVolatile = false;
4159
4160   if (EatIfPresent(lltok::kw_volatile))
4161     isVolatile = true;
4162
4163   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4164       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4165       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4166       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4167       ParseTypeAndValue(New, NewLoc, PFS) ||
4168       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4169     return true;
4170
4171   if (Ordering == Unordered)
4172     return TokError("cmpxchg cannot be unordered");
4173   if (!Ptr->getType()->isPointerTy())
4174     return Error(PtrLoc, "cmpxchg operand must be a pointer");
4175   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4176     return Error(CmpLoc, "compare value and pointer type do not match");
4177   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4178     return Error(NewLoc, "new value and pointer type do not match");
4179   if (!New->getType()->isIntegerTy())
4180     return Error(NewLoc, "cmpxchg operand must be an integer");
4181   unsigned Size = New->getType()->getPrimitiveSizeInBits();
4182   if (Size < 8 || (Size & (Size - 1)))
4183     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4184                          " integer");
4185
4186   AtomicCmpXchgInst *CXI =
4187     new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4188   CXI->setVolatile(isVolatile);
4189   Inst = CXI;
4190   return AteExtraComma ? InstExtraComma : InstNormal;
4191 }
4192
4193 /// ParseAtomicRMW
4194 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4195 ///       'singlethread'? AtomicOrdering
4196 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4197   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4198   bool AteExtraComma = false;
4199   AtomicOrdering Ordering = NotAtomic;
4200   SynchronizationScope Scope = CrossThread;
4201   bool isVolatile = false;
4202   AtomicRMWInst::BinOp Operation;
4203
4204   if (EatIfPresent(lltok::kw_volatile))
4205     isVolatile = true;
4206
4207   switch (Lex.getKind()) {
4208   default: return TokError("expected binary operation in atomicrmw");
4209   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4210   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4211   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4212   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4213   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4214   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4215   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4216   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4217   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4218   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4219   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4220   }
4221   Lex.Lex();  // Eat the operation.
4222
4223   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4224       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4225       ParseTypeAndValue(Val, ValLoc, PFS) ||
4226       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4227     return true;
4228
4229   if (Ordering == Unordered)
4230     return TokError("atomicrmw cannot be unordered");
4231   if (!Ptr->getType()->isPointerTy())
4232     return Error(PtrLoc, "atomicrmw operand must be a pointer");
4233   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4234     return Error(ValLoc, "atomicrmw value and pointer type do not match");
4235   if (!Val->getType()->isIntegerTy())
4236     return Error(ValLoc, "atomicrmw operand must be an integer");
4237   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4238   if (Size < 8 || (Size & (Size - 1)))
4239     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4240                          " integer");
4241
4242   AtomicRMWInst *RMWI =
4243     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4244   RMWI->setVolatile(isVolatile);
4245   Inst = RMWI;
4246   return AteExtraComma ? InstExtraComma : InstNormal;
4247 }
4248
4249 /// ParseFence
4250 ///   ::= 'fence' 'singlethread'? AtomicOrdering
4251 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4252   AtomicOrdering Ordering = NotAtomic;
4253   SynchronizationScope Scope = CrossThread;
4254   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4255     return true;
4256
4257   if (Ordering == Unordered)
4258     return TokError("fence cannot be unordered");
4259   if (Ordering == Monotonic)
4260     return TokError("fence cannot be monotonic");
4261
4262   Inst = new FenceInst(Context, Ordering, Scope);
4263   return InstNormal;
4264 }
4265
4266 /// ParseGetElementPtr
4267 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4268 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4269   Value *Ptr = 0;
4270   Value *Val = 0;
4271   LocTy Loc, EltLoc;
4272
4273   bool InBounds = EatIfPresent(lltok::kw_inbounds);
4274
4275   if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4276
4277   Type *BaseType = Ptr->getType();
4278   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
4279   if (!BasePointerType)
4280     return Error(Loc, "base of getelementptr must be a pointer");
4281
4282   SmallVector<Value*, 16> Indices;
4283   bool AteExtraComma = false;
4284   while (EatIfPresent(lltok::comma)) {
4285     if (Lex.getKind() == lltok::MetadataVar) {
4286       AteExtraComma = true;
4287       break;
4288     }
4289     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4290     if (!Val->getType()->getScalarType()->isIntegerTy())
4291       return Error(EltLoc, "getelementptr index must be an integer");
4292     if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4293       return Error(EltLoc, "getelementptr index type missmatch");
4294     if (Val->getType()->isVectorTy()) {
4295       unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4296       unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4297       if (ValNumEl != PtrNumEl)
4298         return Error(EltLoc,
4299           "getelementptr vector index has a wrong number of elements");
4300     }
4301     Indices.push_back(Val);
4302   }
4303
4304   if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
4305     return Error(Loc, "base element of getelementptr must be sized");
4306
4307   if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
4308     return Error(Loc, "invalid getelementptr indices");
4309   Inst = GetElementPtrInst::Create(Ptr, Indices);
4310   if (InBounds)
4311     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4312   return AteExtraComma ? InstExtraComma : InstNormal;
4313 }
4314
4315 /// ParseExtractValue
4316 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4317 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4318   Value *Val; LocTy Loc;
4319   SmallVector<unsigned, 4> Indices;
4320   bool AteExtraComma;
4321   if (ParseTypeAndValue(Val, Loc, PFS) ||
4322       ParseIndexList(Indices, AteExtraComma))
4323     return true;
4324
4325   if (!Val->getType()->isAggregateType())
4326     return Error(Loc, "extractvalue operand must be aggregate type");
4327
4328   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4329     return Error(Loc, "invalid indices for extractvalue");
4330   Inst = ExtractValueInst::Create(Val, Indices);
4331   return AteExtraComma ? InstExtraComma : InstNormal;
4332 }
4333
4334 /// ParseInsertValue
4335 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4336 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4337   Value *Val0, *Val1; LocTy Loc0, Loc1;
4338   SmallVector<unsigned, 4> Indices;
4339   bool AteExtraComma;
4340   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4341       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4342       ParseTypeAndValue(Val1, Loc1, PFS) ||
4343       ParseIndexList(Indices, AteExtraComma))
4344     return true;
4345
4346   if (!Val0->getType()->isAggregateType())
4347     return Error(Loc0, "insertvalue operand must be aggregate type");
4348
4349   if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4350     return Error(Loc0, "invalid indices for insertvalue");
4351   Inst = InsertValueInst::Create(Val0, Val1, Indices);
4352   return AteExtraComma ? InstExtraComma : InstNormal;
4353 }
4354
4355 //===----------------------------------------------------------------------===//
4356 // Embedded metadata.
4357 //===----------------------------------------------------------------------===//
4358
4359 /// ParseMDNodeVector
4360 ///   ::= Element (',' Element)*
4361 /// Element
4362 ///   ::= 'null' | TypeAndValue
4363 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4364                                  PerFunctionState *PFS) {
4365   // Check for an empty list.
4366   if (Lex.getKind() == lltok::rbrace)
4367     return false;
4368
4369   do {
4370     // Null is a special case since it is typeless.
4371     if (EatIfPresent(lltok::kw_null)) {
4372       Elts.push_back(0);
4373       continue;
4374     }
4375
4376     Value *V = 0;
4377     if (ParseTypeAndValue(V, PFS)) return true;
4378     Elts.push_back(V);
4379   } while (EatIfPresent(lltok::comma));
4380
4381   return false;
4382 }