1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/TargetTransformInfo.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Instruction.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Operator.h"
17 #include "llvm/Support/ErrorHandling.h"
21 #define DEBUG_TYPE "tti"
23 // Setup the analysis group to manage the TargetTransformInfo passes.
24 INITIALIZE_ANALYSIS_GROUP(TargetTransformInfo, "Target Information", NoTTI)
25 char TargetTransformInfo::ID = 0;
27 TargetTransformInfo::~TargetTransformInfo() {
30 void TargetTransformInfo::pushTTIStack(Pass *P) {
32 PrevTTI = &P->getAnalysis<TargetTransformInfo>();
34 // Walk up the chain and update the top TTI pointer.
35 for (TargetTransformInfo *PTTI = PrevTTI; PTTI; PTTI = PTTI->PrevTTI)
39 void TargetTransformInfo::getAnalysisUsage(AnalysisUsage &AU) const {
40 AU.addRequired<TargetTransformInfo>();
43 unsigned TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
45 return PrevTTI->getOperationCost(Opcode, Ty, OpTy);
48 unsigned TargetTransformInfo::getGEPCost(
49 const Value *Ptr, ArrayRef<const Value *> Operands) const {
50 return PrevTTI->getGEPCost(Ptr, Operands);
53 unsigned TargetTransformInfo::getCallCost(FunctionType *FTy,
55 return PrevTTI->getCallCost(FTy, NumArgs);
58 unsigned TargetTransformInfo::getCallCost(const Function *F,
60 return PrevTTI->getCallCost(F, NumArgs);
63 unsigned TargetTransformInfo::getCallCost(
64 const Function *F, ArrayRef<const Value *> Arguments) const {
65 return PrevTTI->getCallCost(F, Arguments);
68 unsigned TargetTransformInfo::getIntrinsicCost(
69 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> ParamTys) const {
70 return PrevTTI->getIntrinsicCost(IID, RetTy, ParamTys);
73 unsigned TargetTransformInfo::getIntrinsicCost(
74 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
75 return PrevTTI->getIntrinsicCost(IID, RetTy, Arguments);
78 unsigned TargetTransformInfo::getUserCost(const User *U) const {
79 return PrevTTI->getUserCost(U);
82 bool TargetTransformInfo::hasBranchDivergence() const {
83 return PrevTTI->hasBranchDivergence();
86 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
87 return PrevTTI->isLoweredToCall(F);
91 TargetTransformInfo::getUnrollingPreferences(const Function *F, Loop *L,
92 UnrollingPreferences &UP) const {
93 PrevTTI->getUnrollingPreferences(F, L, UP);
96 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
97 return PrevTTI->isLegalAddImmediate(Imm);
100 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
101 return PrevTTI->isLegalICmpImmediate(Imm);
104 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
107 int64_t Scale) const {
108 return PrevTTI->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
112 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
115 int64_t Scale) const {
116 return PrevTTI->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
120 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
121 return PrevTTI->isTruncateFree(Ty1, Ty2);
124 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
125 return PrevTTI->isTypeLegal(Ty);
128 unsigned TargetTransformInfo::getJumpBufAlignment() const {
129 return PrevTTI->getJumpBufAlignment();
132 unsigned TargetTransformInfo::getJumpBufSize() const {
133 return PrevTTI->getJumpBufSize();
136 bool TargetTransformInfo::shouldBuildLookupTables() const {
137 return PrevTTI->shouldBuildLookupTables();
140 TargetTransformInfo::PopcntSupportKind
141 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
142 return PrevTTI->getPopcntSupport(IntTyWidthInBit);
145 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
146 return PrevTTI->haveFastSqrt(Ty);
149 unsigned TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
150 return PrevTTI->getIntImmCost(Imm, Ty);
153 unsigned TargetTransformInfo::getIntImmCost(unsigned Opc, unsigned Idx,
154 const APInt &Imm, Type *Ty) const {
155 return PrevTTI->getIntImmCost(Opc, Idx, Imm, Ty);
158 unsigned TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
159 const APInt &Imm, Type *Ty) const {
160 return PrevTTI->getIntImmCost(IID, Idx, Imm, Ty);
163 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
164 return PrevTTI->getNumberOfRegisters(Vector);
167 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
168 return PrevTTI->getRegisterBitWidth(Vector);
171 unsigned TargetTransformInfo::getMaxInterleaveFactor() const {
172 return PrevTTI->getMaxInterleaveFactor();
175 unsigned TargetTransformInfo::getArithmeticInstrCost(
176 unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
177 OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
178 OperandValueProperties Opd2PropInfo) const {
179 return PrevTTI->getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
180 Opd1PropInfo, Opd2PropInfo);
183 unsigned TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Tp,
184 int Index, Type *SubTp) const {
185 return PrevTTI->getShuffleCost(Kind, Tp, Index, SubTp);
188 unsigned TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
190 return PrevTTI->getCastInstrCost(Opcode, Dst, Src);
193 unsigned TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
194 return PrevTTI->getCFInstrCost(Opcode);
197 unsigned TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
198 Type *CondTy) const {
199 return PrevTTI->getCmpSelInstrCost(Opcode, ValTy, CondTy);
202 unsigned TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
203 unsigned Index) const {
204 return PrevTTI->getVectorInstrCost(Opcode, Val, Index);
207 unsigned TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
209 unsigned AddressSpace) const {
210 return PrevTTI->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
215 TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID,
217 ArrayRef<Type *> Tys) const {
218 return PrevTTI->getIntrinsicInstrCost(ID, RetTy, Tys);
221 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
222 return PrevTTI->getNumberOfParts(Tp);
225 unsigned TargetTransformInfo::getAddressComputationCost(Type *Tp,
226 bool IsComplex) const {
227 return PrevTTI->getAddressComputationCost(Tp, IsComplex);
230 unsigned TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty,
231 bool IsPairwise) const {
232 return PrevTTI->getReductionCost(Opcode, Ty, IsPairwise);
235 unsigned TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys)
237 return PrevTTI->getCostOfKeepingLiveOverCall(Tys);
242 struct NoTTI final : ImmutablePass, TargetTransformInfo {
243 const DataLayout *DL;
245 NoTTI() : ImmutablePass(ID), DL(nullptr) {
246 initializeNoTTIPass(*PassRegistry::getPassRegistry());
249 void initializePass() override {
250 // Note that this subclass is special, and must *not* call initializeTTI as
251 // it does not chain.
254 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
255 DL = DLP ? &DLP->getDataLayout() : nullptr;
258 void getAnalysisUsage(AnalysisUsage &AU) const override {
259 // Note that this subclass is special, and must *not* call
260 // TTI::getAnalysisUsage as it breaks the recursion.
263 /// Pass identification.
266 /// Provide necessary pointer adjustments for the two base classes.
267 void *getAdjustedAnalysisPointer(const void *ID) override {
268 if (ID == &TargetTransformInfo::ID)
269 return (TargetTransformInfo*)this;
273 unsigned getOperationCost(unsigned Opcode, Type *Ty,
274 Type *OpTy) const override {
277 // By default, just classify everything as 'basic'.
280 case Instruction::GetElementPtr:
281 llvm_unreachable("Use getGEPCost for GEP operations!");
283 case Instruction::BitCast:
284 assert(OpTy && "Cast instructions must provide the operand type");
285 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
286 // Identity and pointer-to-pointer casts are free.
289 // Otherwise, the default basic cost is used.
292 case Instruction::IntToPtr: {
296 // An inttoptr cast is free so long as the input is a legal integer type
297 // which doesn't contain values outside the range of a pointer.
298 unsigned OpSize = OpTy->getScalarSizeInBits();
299 if (DL->isLegalInteger(OpSize) &&
300 OpSize <= DL->getPointerTypeSizeInBits(Ty))
303 // Otherwise it's not a no-op.
306 case Instruction::PtrToInt: {
310 // A ptrtoint cast is free so long as the result is large enough to store
311 // the pointer, and a legal integer type.
312 unsigned DestSize = Ty->getScalarSizeInBits();
313 if (DL->isLegalInteger(DestSize) &&
314 DestSize >= DL->getPointerTypeSizeInBits(OpTy))
317 // Otherwise it's not a no-op.
320 case Instruction::Trunc:
321 // trunc to a native type is free (assuming the target has compare and
322 // shift-right of the same width).
323 if (DL && DL->isLegalInteger(DL->getTypeSizeInBits(Ty)))
330 unsigned getGEPCost(const Value *Ptr,
331 ArrayRef<const Value *> Operands) const override {
332 // In the basic model, we just assume that all-constant GEPs will be folded
333 // into their uses via addressing modes.
334 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
335 if (!isa<Constant>(Operands[Idx]))
341 unsigned getCallCost(FunctionType *FTy, int NumArgs = -1) const override
343 assert(FTy && "FunctionType must be provided to this routine.");
345 // The target-independent implementation just measures the size of the
346 // function by approximating that each argument will take on average one
347 // instruction to prepare.
350 // Set the argument number to the number of explicit arguments in the
352 NumArgs = FTy->getNumParams();
354 return TCC_Basic * (NumArgs + 1);
357 unsigned getCallCost(const Function *F, int NumArgs = -1) const override
359 assert(F && "A concrete function must be provided to this routine.");
362 // Set the argument number to the number of explicit arguments in the
364 NumArgs = F->arg_size();
366 if (Intrinsic::ID IID = (Intrinsic::ID)F->getIntrinsicID()) {
367 FunctionType *FTy = F->getFunctionType();
368 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
369 return TopTTI->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
372 if (!TopTTI->isLoweredToCall(F))
373 return TCC_Basic; // Give a basic cost if it will be lowered directly.
375 return TopTTI->getCallCost(F->getFunctionType(), NumArgs);
378 unsigned getCallCost(const Function *F,
379 ArrayRef<const Value *> Arguments) const override {
380 // Simply delegate to generic handling of the call.
381 // FIXME: We should use instsimplify or something else to catch calls which
382 // will constant fold with these arguments.
383 return TopTTI->getCallCost(F, Arguments.size());
386 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
387 ArrayRef<Type *> ParamTys) const override {
390 // Intrinsics rarely (if ever) have normal argument setup constraints.
391 // Model them as having a basic instruction cost.
392 // FIXME: This is wrong for libc intrinsics.
395 case Intrinsic::annotation:
396 case Intrinsic::assume:
397 case Intrinsic::dbg_declare:
398 case Intrinsic::dbg_value:
399 case Intrinsic::invariant_start:
400 case Intrinsic::invariant_end:
401 case Intrinsic::lifetime_start:
402 case Intrinsic::lifetime_end:
403 case Intrinsic::objectsize:
404 case Intrinsic::ptr_annotation:
405 case Intrinsic::var_annotation:
406 // These intrinsics don't actually represent code after lowering.
412 getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
413 ArrayRef<const Value *> Arguments) const override {
414 // Delegate to the generic intrinsic handling code. This mostly provides an
415 // opportunity for targets to (for example) special case the cost of
416 // certain intrinsics based on constants used as arguments.
417 SmallVector<Type *, 8> ParamTys;
418 ParamTys.reserve(Arguments.size());
419 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
420 ParamTys.push_back(Arguments[Idx]->getType());
421 return TopTTI->getIntrinsicCost(IID, RetTy, ParamTys);
424 unsigned getUserCost(const User *U) const override {
426 return TCC_Free; // Model all PHI nodes as free.
428 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
429 SmallVector<const Value *, 4> Indices(GEP->idx_begin(), GEP->idx_end());
430 return TopTTI->getGEPCost(GEP->getPointerOperand(), Indices);
433 if (ImmutableCallSite CS = U) {
434 const Function *F = CS.getCalledFunction();
436 // Just use the called value type.
437 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
438 return TopTTI->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
441 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
442 return TopTTI->getCallCost(F, Arguments);
445 if (const CastInst *CI = dyn_cast<CastInst>(U)) {
446 // Result of a cmp instruction is often extended (to be used by other
447 // cmp instructions, logical or return instructions). These are usually
448 // nop on most sane targets.
449 if (isa<CmpInst>(CI->getOperand(0)))
453 // Otherwise delegate to the fully generic implementations.
454 return getOperationCost(Operator::getOpcode(U), U->getType(),
455 U->getNumOperands() == 1 ?
456 U->getOperand(0)->getType() : nullptr);
459 bool hasBranchDivergence() const override { return false; }
461 bool isLoweredToCall(const Function *F) const override {
462 // FIXME: These should almost certainly not be handled here, and instead
463 // handled with the help of TLI or the target itself. This was largely
464 // ported from existing analysis heuristics here so that such refactorings
465 // can take place in the future.
467 if (F->isIntrinsic())
470 if (F->hasLocalLinkage() || !F->hasName())
473 StringRef Name = F->getName();
475 // These will all likely lower to a single selection DAG node.
476 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
477 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
478 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
479 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
482 // These are all likely to be optimized into something smaller.
483 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
484 Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name ==
485 "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" ||
486 Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs")
492 void getUnrollingPreferences(const Function *, Loop *,
493 UnrollingPreferences &) const override {}
495 bool isLegalAddImmediate(int64_t Imm) const override {
499 bool isLegalICmpImmediate(int64_t Imm) const override {
503 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
504 bool HasBaseReg, int64_t Scale) const override
506 // Guess that reg+reg addressing is allowed. This heuristic is taken from
507 // the implementation of LSR.
508 return !BaseGV && BaseOffset == 0 && Scale <= 1;
511 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
512 bool HasBaseReg, int64_t Scale) const override {
513 // Guess that all legal addressing mode are free.
514 if(isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale))
519 bool isTruncateFree(Type *Ty1, Type *Ty2) const override {
523 bool isTypeLegal(Type *Ty) const override {
527 unsigned getJumpBufAlignment() const override {
531 unsigned getJumpBufSize() const override {
535 bool shouldBuildLookupTables() const override {
540 getPopcntSupport(unsigned IntTyWidthInBit) const override {
544 bool haveFastSqrt(Type *Ty) const override {
548 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override {
552 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
553 Type *Ty) const override {
557 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
558 Type *Ty) const override {
562 unsigned getNumberOfRegisters(bool Vector) const override {
566 unsigned getRegisterBitWidth(bool Vector) const override {
570 unsigned getMaxInterleaveFactor() const override {
574 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
575 OperandValueKind, OperandValueProperties,
576 OperandValueProperties) const override {
580 unsigned getShuffleCost(ShuffleKind Kind, Type *Ty,
581 int Index = 0, Type *SubTp = nullptr) const override {
585 unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
586 Type *Src) const override {
590 unsigned getCFInstrCost(unsigned Opcode) const override {
594 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
595 Type *CondTy = nullptr) const override {
599 unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
600 unsigned Index = -1) const override {
604 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
605 unsigned AddressSpace) const override {
609 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
610 ArrayRef<Type*> Tys) const override {
614 unsigned getNumberOfParts(Type *Tp) const override {
618 unsigned getAddressComputationCost(Type *Tp, bool) const override {
622 unsigned getReductionCost(unsigned, Type *, bool) const override {
626 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override {
632 } // end anonymous namespace
634 INITIALIZE_AG_PASS(NoTTI, TargetTransformInfo, "notti",
635 "No target information", true, true, true)
638 ImmutablePass *llvm::createNoTargetTransformInfoPass() {