Remove redundant virtual on overriden functions.
[oota-llvm.git] / lib / Analysis / StratifiedSets.h
1 //===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_ADT_STRATIFIEDSETS_H
11 #define LLVM_ADT_STRATIFIEDSETS_H
12
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Optional.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Support/Compiler.h"
19 #include <bitset>
20 #include <cassert>
21 #include <cmath>
22 #include <limits>
23 #include <type_traits>
24 #include <utility>
25 #include <vector>
26
27 namespace llvm {
28 // \brief An index into Stratified Sets.
29 typedef unsigned StratifiedIndex;
30 // NOTE: ^ This can't be a short -- bootstrapping clang has a case where
31 // ~1M sets exist.
32
33 // \brief Container of information related to a value in a StratifiedSet.
34 struct StratifiedInfo {
35   StratifiedIndex Index;
36   // For field sensitivity, etc. we can tack attributes on to this struct.
37 };
38
39 // The number of attributes that StratifiedAttrs should contain. Attributes are
40 // described below, and 32 was an arbitrary choice because it fits nicely in 32
41 // bits (because we use a bitset for StratifiedAttrs).
42 static const unsigned NumStratifiedAttrs = 32;
43
44 // These are attributes that the users of StratifiedSets/StratifiedSetBuilders
45 // may use for various purposes. These also have the special property of that
46 // they are merged down. So, if set A is above set B, and one decides to set an
47 // attribute in set A, then the attribute will automatically be set in set B.
48 typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
49
50 // \brief A "link" between two StratifiedSets.
51 struct StratifiedLink {
52   // \brief This is a value used to signify "does not exist" where
53   // the StratifiedIndex type is used. This is used instead of
54   // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
55   // eat up a considerable amount of extra memory, after struct
56   // padding/alignment is taken into account.
57   static const StratifiedIndex SetSentinel;
58
59   // \brief The index for the set "above" current
60   StratifiedIndex Above;
61
62   // \brief The link for the set "below" current
63   StratifiedIndex Below;
64
65   // \brief Attributes for these StratifiedSets.
66   StratifiedAttrs Attrs;
67
68   StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
69
70   bool hasBelow() const { return Below != SetSentinel; }
71   bool hasAbove() const { return Above != SetSentinel; }
72
73   void clearBelow() { Below = SetSentinel; }
74   void clearAbove() { Above = SetSentinel; }
75 };
76
77 // \brief These are stratified sets, as described in "Fast algorithms for
78 // Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
79 // R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
80 // of Value*s. If two Value*s are in the same set, or if both sets have 
81 // overlapping attributes, then the Value*s are said to alias.
82 //
83 // Sets may be related by position, meaning that one set may be considered as
84 // above or below another. In CFL Alias Analysis, this gives us an indication
85 // of how two variables are related; if the set of variable A is below a set
86 // containing variable B, then at some point, a variable that has interacted
87 // with B (or B itself) was either used in order to extract the variable A, or
88 // was used as storage of variable A.
89 //
90 // Sets may also have attributes (as noted above). These attributes are
91 // generally used for noting whether a variable in the set has interacted with
92 // a variable whose origins we don't quite know (i.e. globals/arguments), or if
93 // the variable may have had operations performed on it (modified in a function
94 // call). All attributes that exist in a set A must exist in all sets marked as
95 // below set A.
96 template <typename T> class StratifiedSets {
97 public:
98   StratifiedSets() {}
99
100   StratifiedSets(DenseMap<T, StratifiedInfo> Map,
101                  std::vector<StratifiedLink> Links)
102       : Values(std::move(Map)), Links(std::move(Links)) {}
103
104   StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
105
106   StratifiedSets &operator=(StratifiedSets<T> &&Other) {
107     Values = std::move(Other.Values);
108     Links = std::move(Other.Links);
109     return *this;
110   }
111
112   Optional<StratifiedInfo> find(const T &Elem) const {
113     auto Iter = Values.find(Elem);
114     if (Iter == Values.end()) {
115       return NoneType();
116     }
117     return Iter->second;
118   }
119
120   const StratifiedLink &getLink(StratifiedIndex Index) const {
121     assert(inbounds(Index));
122     return Links[Index];
123   }
124
125 private:
126   DenseMap<T, StratifiedInfo> Values;
127   std::vector<StratifiedLink> Links;
128
129   bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
130 };
131
132 // \brief Generic Builder class that produces StratifiedSets instances.
133 //
134 // The goal of this builder is to efficiently produce correct StratifiedSets
135 // instances. To this end, we use a few tricks:
136 //   > Set chains (A method for linking sets together)
137 //   > Set remaps (A method for marking a set as an alias [irony?] of another)
138 //
139 // ==== Set chains ====
140 // This builder has a notion of some value A being above, below, or with some
141 // other value B:
142 //   > The `A above B` relationship implies that there is a reference edge going
143 //   from A to B. Namely, it notes that A can store anything in B's set.
144 //   > The `A below B` relationship is the opposite of `A above B`. It implies
145 //   that there's a dereference edge going from A to B.
146 //   > The `A with B` relationship states that there's an assignment edge going
147 //   from A to B, and that A and B should be treated as equals.
148 //
149 // As an example, take the following code snippet:
150 //
151 // %a = alloca i32, align 4
152 // %ap = alloca i32*, align 8
153 // %app = alloca i32**, align 8
154 // store %a, %ap
155 // store %ap, %app
156 // %aw = getelementptr %ap, 0
157 //
158 // Given this, the follow relations exist:
159 //   - %a below %ap & %ap above %a
160 //   - %ap below %app & %app above %ap
161 //   - %aw with %ap & %ap with %aw
162 //
163 // These relations produce the following sets:
164 //   [{%a}, {%ap, %aw}, {%app}]
165 //
166 // ...Which states that the only MayAlias relationship in the above program is
167 // between %ap and %aw.
168 //
169 // Life gets more complicated when we actually have logic in our programs. So,
170 // we either must remove this logic from our programs, or make consessions for
171 // it in our AA algorithms. In this case, we have decided to select the latter
172 // option.
173 //
174 // First complication: Conditionals
175 // Motivation:
176 //  %ad = alloca int, align 4
177 //  %a = alloca int*, align 8
178 //  %b = alloca int*, align 8
179 //  %bp = alloca int**, align 8
180 //  %c = call i1 @SomeFunc()
181 //  %k = select %c, %ad, %bp
182 //  store %ad, %a
183 //  store %b, %bp
184 //
185 // %k has 'with' edges to both %a and %b, which ordinarily would not be linked
186 // together. So, we merge the set that contains %a with the set that contains
187 // %b. We then recursively merge the set above %a with the set above %b, and
188 // the set below  %a with the set below %b, etc. Ultimately, the sets for this
189 // program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
190 // {%a, %b, %c} is below {%ad}.
191 //
192 // Second complication: Arbitrary casts
193 // Motivation:
194 //  %ip = alloca int*, align 8
195 //  %ipp = alloca int**, align 8
196 //  %i = bitcast ipp to int
197 //  store %ip, %ipp
198 //  store %i, %ip
199 //
200 // This is impossible to construct with any of the rules above, because a set
201 // containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
202 // to be below the set with %ip, and the set with %ip is supposed to be below
203 // the set with %ipp. Because we don't allow circular relationships like this,
204 // we merge all concerned sets into one. So, the above code would generate a
205 // single StratifiedSet: {%ip, %ipp, %i}.
206 //
207 // ==== Set remaps ====
208 // More of an implementation detail than anything -- when merging sets, we need
209 // to update the numbers of all of the elements mapped to those sets. Rather
210 // than doing this at each merge, we note in the BuilderLink structure that a
211 // remap has occurred, and use this information so we can defer renumbering set
212 // elements until build time.
213 template <typename T> class StratifiedSetsBuilder {
214   // \brief Represents a Stratified Set, with information about the Stratified
215   // Set above it, the set below it, and whether the current set has been
216   // remapped to another.
217   struct BuilderLink {
218     const StratifiedIndex Number;
219
220     BuilderLink(StratifiedIndex N) : Number(N) {
221       Remap = StratifiedLink::SetSentinel;
222     }
223
224     bool hasAbove() const {
225       assert(!isRemapped());
226       return Link.hasAbove();
227     }
228
229     bool hasBelow() const {
230       assert(!isRemapped());
231       return Link.hasBelow();
232     }
233
234     void setBelow(StratifiedIndex I) {
235       assert(!isRemapped());
236       Link.Below = I;
237     }
238
239     void setAbove(StratifiedIndex I) {
240       assert(!isRemapped());
241       Link.Above = I;
242     }
243
244     void clearBelow() {
245       assert(!isRemapped());
246       Link.clearBelow();
247     }
248
249     void clearAbove() {
250       assert(!isRemapped());
251       Link.clearAbove();
252     }
253
254     StratifiedIndex getBelow() const {
255       assert(!isRemapped());
256       assert(hasBelow());
257       return Link.Below;
258     }
259
260     StratifiedIndex getAbove() const {
261       assert(!isRemapped());
262       assert(hasAbove());
263       return Link.Above;
264     }
265
266     StratifiedAttrs &getAttrs() {
267       assert(!isRemapped());
268       return Link.Attrs;
269     }
270
271     void setAttr(unsigned index) {
272       assert(!isRemapped());
273       assert(index < NumStratifiedAttrs);
274       Link.Attrs.set(index);
275     }
276
277     void setAttrs(const StratifiedAttrs &other) {
278       assert(!isRemapped());
279       Link.Attrs |= other;
280     }
281
282     bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
283
284     // \brief For initial remapping to another set
285     void remapTo(StratifiedIndex Other) {
286       assert(!isRemapped());
287       Remap = Other;
288     }
289
290     StratifiedIndex getRemapIndex() const {
291       assert(isRemapped());
292       return Remap;
293     }
294
295     // \brief Should only be called when we're already remapped.
296     void updateRemap(StratifiedIndex Other) {
297       assert(isRemapped());
298       Remap = Other;
299     }
300
301     // \brief Prefer the above functions to calling things directly on what's
302     // returned from this -- they guard against unexpected calls when the
303     // current BuilderLink is remapped.
304     const StratifiedLink &getLink() const { return Link; }
305
306   private:
307     StratifiedLink Link;
308     StratifiedIndex Remap;
309   };
310
311   // \brief This function performs all of the set unioning/value renumbering
312   // that we've been putting off, and generates a vector<StratifiedLink> that
313   // may be placed in a StratifiedSets instance.
314   void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
315     DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
316     for (auto &Link : Links) {
317       if (Link.isRemapped()) {
318         continue;
319       }
320
321       StratifiedIndex Number = StratLinks.size();
322       Remaps.insert(std::make_pair(Link.Number, Number));
323       StratLinks.push_back(Link.getLink());
324     }
325
326     for (auto &Link : StratLinks) {
327       if (Link.hasAbove()) {
328         auto &Above = linksAt(Link.Above);
329         auto Iter = Remaps.find(Above.Number);
330         assert(Iter != Remaps.end());
331         Link.Above = Iter->second;
332       }
333
334       if (Link.hasBelow()) {
335         auto &Below = linksAt(Link.Below);
336         auto Iter = Remaps.find(Below.Number);
337         assert(Iter != Remaps.end());
338         Link.Below = Iter->second;
339       }
340     }
341
342     for (auto &Pair : Values) {
343       auto &Info = Pair.second;
344       auto &Link = linksAt(Info.Index);
345       auto Iter = Remaps.find(Link.Number);
346       assert(Iter != Remaps.end());
347       Info.Index = Iter->second;
348     }
349   }
350
351   // \brief There's a guarantee in StratifiedLink where all bits set in a
352   // Link.externals will be set in all Link.externals "below" it.
353   static void propagateAttrs(std::vector<StratifiedLink> &Links) {
354     const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
355       const auto *Link = &Links[Idx];
356       while (Link->hasAbove()) {
357         Idx = Link->Above;
358         Link = &Links[Idx];
359       }
360       return Idx;
361     };
362
363     SmallSet<StratifiedIndex, 16> Visited;
364     for (unsigned I = 0, E = Links.size(); I < E; ++I) {
365       auto CurrentIndex = getHighestParentAbove(I);
366       if (!Visited.insert(CurrentIndex)) {
367         continue;
368       }
369
370       while (Links[CurrentIndex].hasBelow()) {
371         auto &CurrentBits = Links[CurrentIndex].Attrs;
372         auto NextIndex = Links[CurrentIndex].Below;
373         auto &NextBits = Links[NextIndex].Attrs;
374         NextBits |= CurrentBits;
375         CurrentIndex = NextIndex;
376       }
377     }
378   }
379
380 public:
381   // \brief Builds a StratifiedSet from the information we've been given since
382   // either construction or the prior build() call.
383   StratifiedSets<T> build() {
384     std::vector<StratifiedLink> StratLinks;
385     finalizeSets(StratLinks);
386     propagateAttrs(StratLinks);
387     Links.clear();
388     return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
389   }
390
391   std::size_t size() const { return Values.size(); }
392   std::size_t numSets() const { return Links.size(); }
393
394   bool has(const T &Elem) const { return get(Elem).hasValue(); }
395
396   bool add(const T &Main) {
397     if (get(Main).hasValue())
398       return false;
399
400     auto NewIndex = getNewUnlinkedIndex();
401     return addAtMerging(Main, NewIndex);
402   }
403
404   // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
405   // set above "Main". There are some cases where this is not possible (see
406   // above), so we merge them such that ToAdd and Main are in the same set.
407   bool addAbove(const T &Main, const T &ToAdd) {
408     assert(has(Main));
409     auto Index = *indexOf(Main);
410     if (!linksAt(Index).hasAbove())
411       addLinkAbove(Index);
412
413     auto Above = linksAt(Index).getAbove();
414     return addAtMerging(ToAdd, Above);
415   }
416
417   // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
418   // set below "Main". There are some cases where this is not possible (see
419   // above), so we merge them such that ToAdd and Main are in the same set.
420   bool addBelow(const T &Main, const T &ToAdd) {
421     assert(has(Main));
422     auto Index = *indexOf(Main);
423     if (!linksAt(Index).hasBelow())
424       addLinkBelow(Index);
425
426     auto Below = linksAt(Index).getBelow();
427     return addAtMerging(ToAdd, Below);
428   }
429
430   bool addWith(const T &Main, const T &ToAdd) {
431     assert(has(Main));
432     auto MainIndex = *indexOf(Main);
433     return addAtMerging(ToAdd, MainIndex);
434   }
435
436   void noteAttribute(const T &Main, unsigned AttrNum) {
437     assert(has(Main));
438     assert(AttrNum < StratifiedLink::SetSentinel);
439     auto *Info = *get(Main);
440     auto &Link = linksAt(Info->Index);
441     Link.setAttr(AttrNum);
442   }
443
444   void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
445     assert(has(Main));
446     auto *Info = *get(Main);
447     auto &Link = linksAt(Info->Index);
448     Link.setAttrs(NewAttrs);
449   }
450
451   StratifiedAttrs getAttributes(const T &Main) {
452     assert(has(Main));
453     auto *Info = *get(Main);
454     auto *Link = &linksAt(Info->Index);
455     auto Attrs = Link->getAttrs();
456     while (Link->hasAbove()) {
457       Link = &linksAt(Link->getAbove());
458       Attrs |= Link->getAttrs();
459     }
460
461     return Attrs;
462   }
463
464   bool getAttribute(const T &Main, unsigned AttrNum) {
465     assert(AttrNum < StratifiedLink::SetSentinel);
466     auto Attrs = getAttributes(Main);
467     return Attrs[AttrNum];
468   }
469
470   // \brief Gets the attributes that have been applied to the set that Main
471   // belongs to. It ignores attributes in any sets above the one that Main
472   // resides in.
473   StratifiedAttrs getRawAttributes(const T &Main) {
474     assert(has(Main));
475     auto *Info = *get(Main);
476     auto &Link = linksAt(Info->Index);
477     return Link.getAttrs();
478   }
479
480   // \brief Gets an attribute from the attributes that have been applied to the
481   // set that Main belongs to. It ignores attributes in any sets above the one
482   // that Main resides in.
483   bool getRawAttribute(const T &Main, unsigned AttrNum) {
484     assert(AttrNum < StratifiedLink::SetSentinel);
485     auto Attrs = getRawAttributes(Main);
486     return Attrs[AttrNum];
487   }
488
489 private:
490   DenseMap<T, StratifiedInfo> Values;
491   std::vector<BuilderLink> Links;
492
493   // \brief Adds the given element at the given index, merging sets if
494   // necessary.
495   bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
496     StratifiedInfo Info = {Index};
497     auto Pair = Values.insert(std::make_pair(ToAdd, Info));
498     if (Pair.second)
499       return true;
500
501     auto &Iter = Pair.first;
502     auto &IterSet = linksAt(Iter->second.Index);
503     auto &ReqSet = linksAt(Index);
504
505     // Failed to add where we wanted to. Merge the sets.
506     if (&IterSet != &ReqSet)
507       merge(IterSet.Number, ReqSet.Number);
508
509     return false;
510   }
511
512   // \brief Gets the BuilderLink at the given index, taking set remapping into
513   // account.
514   BuilderLink &linksAt(StratifiedIndex Index) {
515     auto *Start = &Links[Index];
516     if (!Start->isRemapped())
517       return *Start;
518
519     auto *Current = Start;
520     while (Current->isRemapped())
521       Current = &Links[Current->getRemapIndex()];
522
523     auto NewRemap = Current->Number;
524
525     // Run through everything that has yet to be updated, and update them to
526     // remap to NewRemap
527     Current = Start;
528     while (Current->isRemapped()) {
529       auto *Next = &Links[Current->getRemapIndex()];
530       Current->updateRemap(NewRemap);
531       Current = Next;
532     }
533
534     return *Current;
535   }
536
537   // \brief Merges two sets into one another. Assumes that these sets are not
538   // already one in the same
539   void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
540     assert(inbounds(Idx1) && inbounds(Idx2));
541     assert(&linksAt(Idx1) != &linksAt(Idx2) &&
542            "Merging a set into itself is not allowed");
543
544     // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
545     // both the
546     // given sets, and all sets between them, into one.
547     if (tryMergeUpwards(Idx1, Idx2))
548       return;
549
550     if (tryMergeUpwards(Idx2, Idx1))
551       return;
552
553     // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
554     // We therefore need to merge the two chains together.
555     mergeDirect(Idx1, Idx2);
556   }
557
558   // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
559   // traversing above or below the set at `Idx2`.
560   void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
561     assert(inbounds(Idx1) && inbounds(Idx2));
562
563     auto *LinksInto = &linksAt(Idx1);
564     auto *LinksFrom = &linksAt(Idx2);
565     // Merging everything above LinksInto then proceeding to merge everything
566     // below LinksInto becomes problematic, so we go as far "up" as possible!
567     while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
568       LinksInto = &linksAt(LinksInto->getAbove());
569       LinksFrom = &linksAt(LinksFrom->getAbove());
570     }
571
572     if (LinksFrom->hasAbove()) {
573       LinksInto->setAbove(LinksFrom->getAbove());
574       auto &NewAbove = linksAt(LinksInto->getAbove());
575       NewAbove.setBelow(LinksInto->Number);
576     }
577
578     // Merging strategy:
579     //  > If neither has links below, stop.
580     //  > If only `LinksInto` has links below, stop.
581     //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to
582     //  match `LinksFrom.Below`
583     //  > If both have links above, deal with those next.
584     while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
585       auto &FromAttrs = LinksFrom->getAttrs();
586       LinksInto->setAttrs(FromAttrs);
587
588       // Remap needs to happen after getBelow(), but before
589       // assignment of LinksFrom
590       auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
591       LinksFrom->remapTo(LinksInto->Number);
592       LinksFrom = NewLinksFrom;
593       LinksInto = &linksAt(LinksInto->getBelow());
594     }
595
596     if (LinksFrom->hasBelow()) {
597       LinksInto->setBelow(LinksFrom->getBelow());
598       auto &NewBelow = linksAt(LinksInto->getBelow());
599       NewBelow.setAbove(LinksInto->Number);
600     }
601
602     LinksFrom->remapTo(LinksInto->Number);
603   }
604
605   // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
606   // If so, it will merge lowerIndex with upperIndex (and all of the sets
607   // between) and return true. Otherwise, it will return false.
608   bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
609     assert(inbounds(LowerIndex) && inbounds(UpperIndex));
610     auto *Lower = &linksAt(LowerIndex);
611     auto *Upper = &linksAt(UpperIndex);
612     if (Lower == Upper)
613       return true;
614
615     SmallVector<BuilderLink *, 8> Found;
616     auto *Current = Lower;
617     auto Attrs = Current->getAttrs();
618     while (Current->hasAbove() && Current != Upper) {
619       Found.push_back(Current);
620       Attrs |= Current->getAttrs();
621       Current = &linksAt(Current->getAbove());
622     }
623
624     if (Current != Upper)
625       return false;
626
627     Upper->setAttrs(Attrs);
628
629     if (Lower->hasBelow()) {
630       auto NewBelowIndex = Lower->getBelow();
631       Upper->setBelow(NewBelowIndex);
632       auto &NewBelow = linksAt(NewBelowIndex);
633       NewBelow.setAbove(UpperIndex);
634     } else {
635       Upper->clearBelow();
636     }
637
638     for (const auto &Ptr : Found)
639       Ptr->remapTo(Upper->Number);
640
641     return true;
642   }
643
644   Optional<const StratifiedInfo *> get(const T &Val) const {
645     auto Result = Values.find(Val);
646     if (Result == Values.end())
647       return NoneType();
648     return &Result->second;
649   }
650
651   Optional<StratifiedInfo *> get(const T &Val) {
652     auto Result = Values.find(Val);
653     if (Result == Values.end())
654       return NoneType();
655     return &Result->second;
656   }
657
658   Optional<StratifiedIndex> indexOf(const T &Val) {
659     auto MaybeVal = get(Val);
660     if (!MaybeVal.hasValue())
661       return NoneType();
662     auto *Info = *MaybeVal;
663     auto &Link = linksAt(Info->Index);
664     return Link.Number;
665   }
666
667   StratifiedIndex addLinkBelow(StratifiedIndex Set) {
668     auto At = addLinks();
669     Links[Set].setBelow(At);
670     Links[At].setAbove(Set);
671     return At;
672   }
673
674   StratifiedIndex addLinkAbove(StratifiedIndex Set) {
675     auto At = addLinks();
676     Links[At].setBelow(Set);
677     Links[Set].setAbove(At);
678     return At;
679   }
680
681   StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
682
683   StratifiedIndex addLinks() {
684     auto Link = Links.size();
685     Links.push_back(BuilderLink(Link));
686     return Link;
687   }
688
689   bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
690 };
691 }
692 #endif // LLVM_ADT_STRATIFIEDSETS_H