Change CallGraphNode to maintain it's Function as an AssertingVH
[oota-llvm.git] / lib / Analysis / ScalarEvolutionExpander.cpp
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/ADT/STLExtras.h"
21 using namespace llvm;
22
23 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
24 /// which must be possible with a noop cast, doing what we can to share
25 /// the casts.
26 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
27   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
28   assert((Op == Instruction::BitCast ||
29           Op == Instruction::PtrToInt ||
30           Op == Instruction::IntToPtr) &&
31          "InsertNoopCastOfTo cannot perform non-noop casts!");
32   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
33          "InsertNoopCastOfTo cannot change sizes!");
34
35   // Short-circuit unnecessary bitcasts.
36   if (Op == Instruction::BitCast && V->getType() == Ty)
37     return V;
38
39   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
40   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
41       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
42     if (CastInst *CI = dyn_cast<CastInst>(V))
43       if ((CI->getOpcode() == Instruction::PtrToInt ||
44            CI->getOpcode() == Instruction::IntToPtr) &&
45           SE.getTypeSizeInBits(CI->getType()) ==
46           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
47         return CI->getOperand(0);
48     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
49       if ((CE->getOpcode() == Instruction::PtrToInt ||
50            CE->getOpcode() == Instruction::IntToPtr) &&
51           SE.getTypeSizeInBits(CE->getType()) ==
52           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
53         return CE->getOperand(0);
54   }
55
56   if (Constant *C = dyn_cast<Constant>(V))
57     return ConstantExpr::getCast(Op, C, Ty);
58
59   if (Argument *A = dyn_cast<Argument>(V)) {
60     // Check to see if there is already a cast!
61     for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
62          UI != E; ++UI)
63       if ((*UI)->getType() == Ty)
64         if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
65           if (CI->getOpcode() == Op) {
66             // If the cast isn't the first instruction of the function, move it.
67             if (BasicBlock::iterator(CI) !=
68                 A->getParent()->getEntryBlock().begin()) {
69               // Recreate the cast at the beginning of the entry block.
70               // The old cast is left in place in case it is being used
71               // as an insert point.
72               Instruction *NewCI =
73                 CastInst::Create(Op, V, Ty, "",
74                                  A->getParent()->getEntryBlock().begin());
75               NewCI->takeName(CI);
76               CI->replaceAllUsesWith(NewCI);
77               return NewCI;
78             }
79             return CI;
80           }
81
82     Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
83                                       A->getParent()->getEntryBlock().begin());
84     InsertedValues.insert(I);
85     return I;
86   }
87
88   Instruction *I = cast<Instruction>(V);
89
90   // Check to see if there is already a cast.  If there is, use it.
91   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
92        UI != E; ++UI) {
93     if ((*UI)->getType() == Ty)
94       if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
95         if (CI->getOpcode() == Op) {
96           BasicBlock::iterator It = I; ++It;
97           if (isa<InvokeInst>(I))
98             It = cast<InvokeInst>(I)->getNormalDest()->begin();
99           while (isa<PHINode>(It)) ++It;
100           if (It != BasicBlock::iterator(CI)) {
101             // Recreate the cast at the beginning of the entry block.
102             // The old cast is left in place in case it is being used
103             // as an insert point.
104             Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
105             NewCI->takeName(CI);
106             CI->replaceAllUsesWith(NewCI);
107             return NewCI;
108           }
109           return CI;
110         }
111   }
112   BasicBlock::iterator IP = I; ++IP;
113   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
114     IP = II->getNormalDest()->begin();
115   while (isa<PHINode>(IP)) ++IP;
116   Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
117   InsertedValues.insert(CI);
118   return CI;
119 }
120
121 /// InsertBinop - Insert the specified binary operator, doing a small amount
122 /// of work to avoid inserting an obviously redundant operation.
123 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
124                                  Value *LHS, Value *RHS) {
125   // Fold a binop with constant operands.
126   if (Constant *CLHS = dyn_cast<Constant>(LHS))
127     if (Constant *CRHS = dyn_cast<Constant>(RHS))
128       return ConstantExpr::get(Opcode, CLHS, CRHS);
129
130   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
131   unsigned ScanLimit = 6;
132   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
133   // Scanning starts from the last instruction before the insertion point.
134   BasicBlock::iterator IP = Builder.GetInsertPoint();
135   if (IP != BlockBegin) {
136     --IP;
137     for (; ScanLimit; --IP, --ScanLimit) {
138       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
139           IP->getOperand(1) == RHS)
140         return IP;
141       if (IP == BlockBegin) break;
142     }
143   }
144
145   // If we haven't found this binop, insert it.
146   Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
147   InsertedValues.insert(BO);
148   return BO;
149 }
150
151 /// FactorOutConstant - Test if S is divisible by Factor, using signed
152 /// division. If so, update S with Factor divided out and return true.
153 /// S need not be evenly divisble if a reasonable remainder can be
154 /// computed.
155 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
156 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
157 /// check to see if the divide was folded.
158 static bool FactorOutConstant(const SCEV *&S,
159                               const SCEV *&Remainder,
160                               const SCEV *Factor,
161                               ScalarEvolution &SE,
162                               const TargetData *TD) {
163   // Everything is divisible by one.
164   if (Factor->isOne())
165     return true;
166
167   // x/x == 1.
168   if (S == Factor) {
169     S = SE.getIntegerSCEV(1, S->getType());
170     return true;
171   }
172
173   // For a Constant, check for a multiple of the given factor.
174   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
175     // 0/x == 0.
176     if (C->isZero())
177       return true;
178     // Check for divisibility.
179     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
180       ConstantInt *CI =
181         ConstantInt::get(SE.getContext(),
182                          C->getValue()->getValue().sdiv(
183                                                    FC->getValue()->getValue()));
184       // If the quotient is zero and the remainder is non-zero, reject
185       // the value at this scale. It will be considered for subsequent
186       // smaller scales.
187       if (!CI->isZero()) {
188         const SCEV *Div = SE.getConstant(CI);
189         S = Div;
190         Remainder =
191           SE.getAddExpr(Remainder,
192                         SE.getConstant(C->getValue()->getValue().srem(
193                                                   FC->getValue()->getValue())));
194         return true;
195       }
196     }
197   }
198
199   // In a Mul, check if there is a constant operand which is a multiple
200   // of the given factor.
201   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
202     if (TD) {
203       // With TargetData, the size is known. Check if there is a constant
204       // operand which is a multiple of the given factor. If so, we can
205       // factor it.
206       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
207       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
208         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
209           const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
210           SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
211                                                  MOperands.end());
212           NewMulOps[0] =
213             SE.getConstant(C->getValue()->getValue().sdiv(
214                                                    FC->getValue()->getValue()));
215           S = SE.getMulExpr(NewMulOps);
216           return true;
217         }
218     } else {
219       // Without TargetData, check if Factor can be factored out of any of the
220       // Mul's operands. If so, we can just remove it.
221       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
222         const SCEV *SOp = M->getOperand(i);
223         const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
224         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
225             Remainder->isZero()) {
226           const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
227           SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
228                                                  MOperands.end());
229           NewMulOps[i] = SOp;
230           S = SE.getMulExpr(NewMulOps);
231           return true;
232         }
233       }
234     }
235   }
236
237   // In an AddRec, check if both start and step are divisible.
238   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
239     const SCEV *Step = A->getStepRecurrence(SE);
240     const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
241     if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
242       return false;
243     if (!StepRem->isZero())
244       return false;
245     const SCEV *Start = A->getStart();
246     if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
247       return false;
248     S = SE.getAddRecExpr(Start, Step, A->getLoop());
249     return true;
250   }
251
252   return false;
253 }
254
255 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
256 /// is the number of SCEVAddRecExprs present, which are kept at the end of
257 /// the list.
258 ///
259 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
260                                 const Type *Ty,
261                                 ScalarEvolution &SE) {
262   unsigned NumAddRecs = 0;
263   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
264     ++NumAddRecs;
265   // Group Ops into non-addrecs and addrecs.
266   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
267   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
268   // Let ScalarEvolution sort and simplify the non-addrecs list.
269   const SCEV *Sum = NoAddRecs.empty() ?
270                     SE.getIntegerSCEV(0, Ty) :
271                     SE.getAddExpr(NoAddRecs);
272   // If it returned an add, use the operands. Otherwise it simplified
273   // the sum into a single value, so just use that.
274   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
275     Ops = Add->getOperands();
276   else {
277     Ops.clear();
278     if (!Sum->isZero())
279       Ops.push_back(Sum);
280   }
281   // Then append the addrecs.
282   Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
283 }
284
285 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
286 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
287 /// This helps expose more opportunities for folding parts of the expressions
288 /// into GEP indices.
289 ///
290 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
291                          const Type *Ty,
292                          ScalarEvolution &SE) {
293   // Find the addrecs.
294   SmallVector<const SCEV *, 8> AddRecs;
295   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
296     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
297       const SCEV *Start = A->getStart();
298       if (Start->isZero()) break;
299       const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
300       AddRecs.push_back(SE.getAddRecExpr(Zero,
301                                          A->getStepRecurrence(SE),
302                                          A->getLoop()));
303       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
304         Ops[i] = Zero;
305         Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
306         e += Add->getNumOperands();
307       } else {
308         Ops[i] = Start;
309       }
310     }
311   if (!AddRecs.empty()) {
312     // Add the addrecs onto the end of the list.
313     Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
314     // Resort the operand list, moving any constants to the front.
315     SimplifyAddOperands(Ops, Ty, SE);
316   }
317 }
318
319 /// expandAddToGEP - Expand an addition expression with a pointer type into
320 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
321 /// BasicAliasAnalysis and other passes analyze the result. See the rules
322 /// for getelementptr vs. inttoptr in
323 /// http://llvm.org/docs/LangRef.html#pointeraliasing
324 /// for details.
325 ///
326 /// Design note: The correctness of using getelmeentptr here depends on
327 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
328 /// they may introduce pointer arithmetic which may not be safely converted
329 /// into getelementptr.
330 ///
331 /// Design note: It might seem desirable for this function to be more
332 /// loop-aware. If some of the indices are loop-invariant while others
333 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
334 /// loop-invariant portions of the overall computation outside the loop.
335 /// However, there are a few reasons this is not done here. Hoisting simple
336 /// arithmetic is a low-level optimization that often isn't very
337 /// important until late in the optimization process. In fact, passes
338 /// like InstructionCombining will combine GEPs, even if it means
339 /// pushing loop-invariant computation down into loops, so even if the
340 /// GEPs were split here, the work would quickly be undone. The
341 /// LoopStrengthReduction pass, which is usually run quite late (and
342 /// after the last InstructionCombining pass), takes care of hoisting
343 /// loop-invariant portions of expressions, after considering what
344 /// can be folded using target addressing modes.
345 ///
346 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
347                                     const SCEV *const *op_end,
348                                     const PointerType *PTy,
349                                     const Type *Ty,
350                                     Value *V) {
351   const Type *ElTy = PTy->getElementType();
352   SmallVector<Value *, 4> GepIndices;
353   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
354   bool AnyNonZeroIndices = false;
355
356   // Split AddRecs up into parts as either of the parts may be usable
357   // without the other.
358   SplitAddRecs(Ops, Ty, SE);
359
360   // Decend down the pointer's type and attempt to convert the other
361   // operands into GEP indices, at each level. The first index in a GEP
362   // indexes into the array implied by the pointer operand; the rest of
363   // the indices index into the element or field type selected by the
364   // preceding index.
365   for (;;) {
366     const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
367     // If the scale size is not 0, attempt to factor out a scale for
368     // array indexing.
369     SmallVector<const SCEV *, 8> ScaledOps;
370     if (ElTy->isSized() && !ElSize->isZero()) {
371       SmallVector<const SCEV *, 8> NewOps;
372       for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
373         const SCEV *Op = Ops[i];
374         const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
375         if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
376           // Op now has ElSize factored out.
377           ScaledOps.push_back(Op);
378           if (!Remainder->isZero())
379             NewOps.push_back(Remainder);
380           AnyNonZeroIndices = true;
381         } else {
382           // The operand was not divisible, so add it to the list of operands
383           // we'll scan next iteration.
384           NewOps.push_back(Ops[i]);
385         }
386       }
387       // If we made any changes, update Ops.
388       if (!ScaledOps.empty()) {
389         Ops = NewOps;
390         SimplifyAddOperands(Ops, Ty, SE);
391       }
392     }
393
394     // Record the scaled array index for this level of the type. If
395     // we didn't find any operands that could be factored, tentatively
396     // assume that element zero was selected (since the zero offset
397     // would obviously be folded away).
398     Value *Scaled = ScaledOps.empty() ?
399                     Constant::getNullValue(Ty) :
400                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
401     GepIndices.push_back(Scaled);
402
403     // Collect struct field index operands.
404     while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
405       bool FoundFieldNo = false;
406       // An empty struct has no fields.
407       if (STy->getNumElements() == 0) break;
408       if (SE.TD) {
409         // With TargetData, field offsets are known. See if a constant offset
410         // falls within any of the struct fields.
411         if (Ops.empty()) break;
412         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
413           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
414             const StructLayout &SL = *SE.TD->getStructLayout(STy);
415             uint64_t FullOffset = C->getValue()->getZExtValue();
416             if (FullOffset < SL.getSizeInBytes()) {
417               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
418               GepIndices.push_back(
419                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
420               ElTy = STy->getTypeAtIndex(ElIdx);
421               Ops[0] =
422                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
423               AnyNonZeroIndices = true;
424               FoundFieldNo = true;
425             }
426           }
427       } else {
428         // Without TargetData, just check for a SCEVFieldOffsetExpr of the
429         // appropriate struct type.
430         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
431           if (const SCEVFieldOffsetExpr *FO =
432                 dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
433             if (FO->getStructType() == STy) {
434               unsigned FieldNo = FO->getFieldNo();
435               GepIndices.push_back(
436                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
437                                    FieldNo));
438               ElTy = STy->getTypeAtIndex(FieldNo);
439               Ops[i] = SE.getConstant(Ty, 0);
440               AnyNonZeroIndices = true;
441               FoundFieldNo = true;
442               break;
443             }
444       }
445       // If no struct field offsets were found, tentatively assume that
446       // field zero was selected (since the zero offset would obviously
447       // be folded away).
448       if (!FoundFieldNo) {
449         ElTy = STy->getTypeAtIndex(0u);
450         GepIndices.push_back(
451           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
452       }
453     }
454
455     if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
456       ElTy = ATy->getElementType();
457     else
458       break;
459   }
460
461   // If none of the operands were convertable to proper GEP indices, cast
462   // the base to i8* and do an ugly getelementptr with that. It's still
463   // better than ptrtoint+arithmetic+inttoptr at least.
464   if (!AnyNonZeroIndices) {
465     // Cast the base to i8*.
466     V = InsertNoopCastOfTo(V,
467        Type::getInt8Ty(Ty->getContext())->getPointerTo(PTy->getAddressSpace()));
468
469     // Expand the operands for a plain byte offset.
470     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
471
472     // Fold a GEP with constant operands.
473     if (Constant *CLHS = dyn_cast<Constant>(V))
474       if (Constant *CRHS = dyn_cast<Constant>(Idx))
475         return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
476
477     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
478     unsigned ScanLimit = 6;
479     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
480     // Scanning starts from the last instruction before the insertion point.
481     BasicBlock::iterator IP = Builder.GetInsertPoint();
482     if (IP != BlockBegin) {
483       --IP;
484       for (; ScanLimit; --IP, --ScanLimit) {
485         if (IP->getOpcode() == Instruction::GetElementPtr &&
486             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
487           return IP;
488         if (IP == BlockBegin) break;
489       }
490     }
491
492     // Emit a GEP.
493     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
494     InsertedValues.insert(GEP);
495     return GEP;
496   }
497
498   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
499   // because ScalarEvolution may have changed the address arithmetic to
500   // compute a value which is beyond the end of the allocated object.
501   Value *GEP = Builder.CreateGEP(V,
502                                  GepIndices.begin(),
503                                  GepIndices.end(),
504                                  "scevgep");
505   Ops.push_back(SE.getUnknown(GEP));
506   InsertedValues.insert(GEP);
507   return expand(SE.getAddExpr(Ops));
508 }
509
510 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
511   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
512   Value *V = expand(S->getOperand(S->getNumOperands()-1));
513
514   // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
515   // comments on expandAddToGEP for details.
516   if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
517     const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
518     return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V);
519   }
520
521   V = InsertNoopCastOfTo(V, Ty);
522
523   // Emit a bunch of add instructions
524   for (int i = S->getNumOperands()-2; i >= 0; --i) {
525     Value *W = expandCodeFor(S->getOperand(i), Ty);
526     V = InsertBinop(Instruction::Add, V, W);
527   }
528   return V;
529 }
530
531 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
532   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
533   int FirstOp = 0;  // Set if we should emit a subtract.
534   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
535     if (SC->getValue()->isAllOnesValue())
536       FirstOp = 1;
537
538   int i = S->getNumOperands()-2;
539   Value *V = expandCodeFor(S->getOperand(i+1), Ty);
540
541   // Emit a bunch of multiply instructions
542   for (; i >= FirstOp; --i) {
543     Value *W = expandCodeFor(S->getOperand(i), Ty);
544     V = InsertBinop(Instruction::Mul, V, W);
545   }
546
547   // -1 * ...  --->  0 - ...
548   if (FirstOp == 1)
549     V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
550   return V;
551 }
552
553 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
554   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
555
556   Value *LHS = expandCodeFor(S->getLHS(), Ty);
557   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
558     const APInt &RHS = SC->getValue()->getValue();
559     if (RHS.isPowerOf2())
560       return InsertBinop(Instruction::LShr, LHS,
561                          ConstantInt::get(Ty, RHS.logBase2()));
562   }
563
564   Value *RHS = expandCodeFor(S->getRHS(), Ty);
565   return InsertBinop(Instruction::UDiv, LHS, RHS);
566 }
567
568 /// Move parts of Base into Rest to leave Base with the minimal
569 /// expression that provides a pointer operand suitable for a
570 /// GEP expansion.
571 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
572                               ScalarEvolution &SE) {
573   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
574     Base = A->getStart();
575     Rest = SE.getAddExpr(Rest,
576                          SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
577                                           A->getStepRecurrence(SE),
578                                           A->getLoop()));
579   }
580   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
581     Base = A->getOperand(A->getNumOperands()-1);
582     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
583     NewAddOps.back() = Rest;
584     Rest = SE.getAddExpr(NewAddOps);
585     ExposePointerBase(Base, Rest, SE);
586   }
587 }
588
589 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
590   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
591   const Loop *L = S->getLoop();
592
593   // First check for an existing canonical IV in a suitable type.
594   PHINode *CanonicalIV = 0;
595   if (PHINode *PN = L->getCanonicalInductionVariable())
596     if (SE.isSCEVable(PN->getType()) &&
597         isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
598         SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
599       CanonicalIV = PN;
600
601   // Rewrite an AddRec in terms of the canonical induction variable, if
602   // its type is more narrow.
603   if (CanonicalIV &&
604       SE.getTypeSizeInBits(CanonicalIV->getType()) >
605       SE.getTypeSizeInBits(Ty)) {
606     const SCEV *Start = SE.getAnyExtendExpr(S->getStart(),
607                                             CanonicalIV->getType());
608     const SCEV *Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
609                                            CanonicalIV->getType());
610     Value *V = expand(SE.getAddRecExpr(Start, Step, S->getLoop()));
611     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
612     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
613     BasicBlock::iterator NewInsertPt =
614       next(BasicBlock::iterator(cast<Instruction>(V)));
615     while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
616     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
617                       NewInsertPt);
618     Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
619     return V;
620   }
621
622   // {X,+,F} --> X + {0,+,F}
623   if (!S->getStart()->isZero()) {
624     const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
625     SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
626     NewOps[0] = SE.getIntegerSCEV(0, Ty);
627     const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
628
629     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
630     // comments on expandAddToGEP for details.
631     const SCEV *Base = S->getStart();
632     const SCEV *RestArray[1] = { Rest };
633     // Dig into the expression to find the pointer base for a GEP.
634     ExposePointerBase(Base, RestArray[0], SE);
635     // If we found a pointer, expand the AddRec with a GEP.
636     if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
637       // Make sure the Base isn't something exotic, such as a multiplied
638       // or divided pointer value. In those cases, the result type isn't
639       // actually a pointer type.
640       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
641         Value *StartV = expand(Base);
642         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
643         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
644       }
645     }
646
647     // Just do a normal add. Pre-expand the operands to suppress folding.
648     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
649                                 SE.getUnknown(expand(Rest))));
650   }
651
652   // {0,+,1} --> Insert a canonical induction variable into the loop!
653   if (S->isAffine() &&
654       S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
655     // If there's a canonical IV, just use it.
656     if (CanonicalIV) {
657       assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
658              "IVs with types different from the canonical IV should "
659              "already have been handled!");
660       return CanonicalIV;
661     }
662
663     // Create and insert the PHI node for the induction variable in the
664     // specified loop.
665     BasicBlock *Header = L->getHeader();
666     BasicBlock *Preheader = L->getLoopPreheader();
667     PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
668     InsertedValues.insert(PN);
669     PN->addIncoming(Constant::getNullValue(Ty), Preheader);
670
671     pred_iterator HPI = pred_begin(Header);
672     assert(HPI != pred_end(Header) && "Loop with zero preds???");
673     if (!L->contains(*HPI)) ++HPI;
674     assert(HPI != pred_end(Header) && L->contains(*HPI) &&
675            "No backedge in loop?");
676
677     // Insert a unit add instruction right before the terminator corresponding
678     // to the back-edge.
679     Constant *One = ConstantInt::get(Ty, 1);
680     Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
681                                                  (*HPI)->getTerminator());
682     InsertedValues.insert(Add);
683
684     pred_iterator PI = pred_begin(Header);
685     if (*PI == Preheader)
686       ++PI;
687     PN->addIncoming(Add, *PI);
688     return PN;
689   }
690
691   // {0,+,F} --> {0,+,1} * F
692   // Get the canonical induction variable I for this loop.
693   Value *I = CanonicalIV ?
694              CanonicalIV :
695              getOrInsertCanonicalInductionVariable(L, Ty);
696
697   // If this is a simple linear addrec, emit it now as a special case.
698   if (S->isAffine())    // {0,+,F} --> i*F
699     return
700       expand(SE.getTruncateOrNoop(
701         SE.getMulExpr(SE.getUnknown(I),
702                       SE.getNoopOrAnyExtend(S->getOperand(1),
703                                             I->getType())),
704         Ty));
705
706   // If this is a chain of recurrences, turn it into a closed form, using the
707   // folders, then expandCodeFor the closed form.  This allows the folders to
708   // simplify the expression without having to build a bunch of special code
709   // into this folder.
710   const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
711
712   // Promote S up to the canonical IV type, if the cast is foldable.
713   const SCEV *NewS = S;
714   const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
715   if (isa<SCEVAddRecExpr>(Ext))
716     NewS = Ext;
717
718   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
719   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
720
721   // Truncate the result down to the original type, if needed.
722   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
723   return expand(T);
724 }
725
726 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
727   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
728   Value *V = expandCodeFor(S->getOperand(),
729                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
730   Value *I = Builder.CreateTrunc(V, Ty, "tmp");
731   InsertedValues.insert(I);
732   return I;
733 }
734
735 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
736   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
737   Value *V = expandCodeFor(S->getOperand(),
738                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
739   Value *I = Builder.CreateZExt(V, Ty, "tmp");
740   InsertedValues.insert(I);
741   return I;
742 }
743
744 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
745   const Type *Ty = SE.getEffectiveSCEVType(S->getType());
746   Value *V = expandCodeFor(S->getOperand(),
747                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
748   Value *I = Builder.CreateSExt(V, Ty, "tmp");
749   InsertedValues.insert(I);
750   return I;
751 }
752
753 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
754   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
755   const Type *Ty = LHS->getType();
756   for (int i = S->getNumOperands()-2; i >= 0; --i) {
757     // In the case of mixed integer and pointer types, do the
758     // rest of the comparisons as integer.
759     if (S->getOperand(i)->getType() != Ty) {
760       Ty = SE.getEffectiveSCEVType(Ty);
761       LHS = InsertNoopCastOfTo(LHS, Ty);
762     }
763     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
764     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
765     InsertedValues.insert(ICmp);
766     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
767     InsertedValues.insert(Sel);
768     LHS = Sel;
769   }
770   // In the case of mixed integer and pointer types, cast the
771   // final result back to the pointer type.
772   if (LHS->getType() != S->getType())
773     LHS = InsertNoopCastOfTo(LHS, S->getType());
774   return LHS;
775 }
776
777 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
778   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
779   const Type *Ty = LHS->getType();
780   for (int i = S->getNumOperands()-2; i >= 0; --i) {
781     // In the case of mixed integer and pointer types, do the
782     // rest of the comparisons as integer.
783     if (S->getOperand(i)->getType() != Ty) {
784       Ty = SE.getEffectiveSCEVType(Ty);
785       LHS = InsertNoopCastOfTo(LHS, Ty);
786     }
787     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
788     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
789     InsertedValues.insert(ICmp);
790     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
791     InsertedValues.insert(Sel);
792     LHS = Sel;
793   }
794   // In the case of mixed integer and pointer types, cast the
795   // final result back to the pointer type.
796   if (LHS->getType() != S->getType())
797     LHS = InsertNoopCastOfTo(LHS, S->getType());
798   return LHS;
799 }
800
801 Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
802   return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
803 }
804
805 Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
806   return ConstantExpr::getSizeOf(S->getAllocType());
807 }
808
809 Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
810   // Expand the code for this SCEV.
811   Value *V = expand(SH);
812   if (Ty) {
813     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
814            "non-trivial casts should be done with the SCEVs directly!");
815     V = InsertNoopCastOfTo(V, Ty);
816   }
817   return V;
818 }
819
820 Value *SCEVExpander::expand(const SCEV *S) {
821   // Compute an insertion point for this SCEV object. Hoist the instructions
822   // as far out in the loop nest as possible.
823   Instruction *InsertPt = Builder.GetInsertPoint();
824   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
825        L = L->getParentLoop())
826     if (S->isLoopInvariant(L)) {
827       if (!L) break;
828       if (BasicBlock *Preheader = L->getLoopPreheader())
829         InsertPt = Preheader->getTerminator();
830     } else {
831       // If the SCEV is computable at this level, insert it into the header
832       // after the PHIs (and after any other instructions that we've inserted
833       // there) so that it is guaranteed to dominate any user inside the loop.
834       if (L && S->hasComputableLoopEvolution(L))
835         InsertPt = L->getHeader()->getFirstNonPHI();
836       while (isInsertedInstruction(InsertPt))
837         InsertPt = next(BasicBlock::iterator(InsertPt));
838       break;
839     }
840
841   // Check to see if we already expanded this here.
842   std::map<std::pair<const SCEV *, Instruction *>,
843            AssertingVH<Value> >::iterator I =
844     InsertedExpressions.find(std::make_pair(S, InsertPt));
845   if (I != InsertedExpressions.end())
846     return I->second;
847
848   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
849   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
850   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
851
852   // Expand the expression into instructions.
853   Value *V = visit(S);
854
855   // Remember the expanded value for this SCEV at this location.
856   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
857
858   Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
859   return V;
860 }
861
862 /// getOrInsertCanonicalInductionVariable - This method returns the
863 /// canonical induction variable of the specified type for the specified
864 /// loop (inserting one if there is none).  A canonical induction variable
865 /// starts at zero and steps by one on each iteration.
866 Value *
867 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
868                                                     const Type *Ty) {
869   assert(Ty->isInteger() && "Can only insert integer induction variables!");
870   const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
871                                    SE.getIntegerSCEV(1, Ty), L);
872   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
873   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
874   Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
875   if (SaveInsertBB)
876     Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
877   return V;
878 }