1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions identifies calls to builtin functions that allocate
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Metadata.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/Local.h"
32 #define DEBUG_TYPE "memory-builtins"
35 OpNewLike = 1<<0, // allocates; never returns null
36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null
37 CallocLike = 1<<2, // allocates + bzero
38 ReallocLike = 1<<3, // reallocates
40 AllocLike = MallocLike | CallocLike | StrDupLike,
41 AnyAlloc = AllocLike | ReallocLike
47 unsigned char NumParams;
48 // First and Second size parameters (or -1 if unused)
49 signed char FstParam, SndParam;
52 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
53 // know which functions are nounwind, noalias, nocapture parameters, etc.
54 static const AllocFnsTy AllocationFnData[] = {
55 {LibFunc::malloc, MallocLike, 1, 0, -1},
56 {LibFunc::valloc, MallocLike, 1, 0, -1},
57 {LibFunc::Znwj, OpNewLike, 1, 0, -1}, // new(unsigned int)
58 {LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow)
59 {LibFunc::Znwm, OpNewLike, 1, 0, -1}, // new(unsigned long)
60 {LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow)
61 {LibFunc::Znaj, OpNewLike, 1, 0, -1}, // new[](unsigned int)
62 {LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow)
63 {LibFunc::Znam, OpNewLike, 1, 0, -1}, // new[](unsigned long)
64 {LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow)
65 {LibFunc::calloc, CallocLike, 2, 0, 1},
66 {LibFunc::realloc, ReallocLike, 2, 1, -1},
67 {LibFunc::reallocf, ReallocLike, 2, 1, -1},
68 {LibFunc::strdup, StrDupLike, 1, -1, -1},
69 {LibFunc::strndup, StrDupLike, 2, 1, -1}
70 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
74 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
75 if (LookThroughBitCast)
76 V = V->stripPointerCasts();
78 CallSite CS(const_cast<Value*>(V));
79 if (!CS.getInstruction())
85 Function *Callee = CS.getCalledFunction();
86 if (!Callee || !Callee->isDeclaration())
91 /// \brief Returns the allocation data for the given value if it is a call to a
92 /// known allocation function, and NULL otherwise.
93 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
94 const TargetLibraryInfo *TLI,
95 bool LookThroughBitCast = false) {
97 if (isa<IntrinsicInst>(V))
100 Function *Callee = getCalledFunction(V, LookThroughBitCast);
104 // Make sure that the function is available.
105 StringRef FnName = Callee->getName();
107 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
110 const AllocFnsTy *FnData =
111 std::find_if(std::begin(AllocationFnData), std::end(AllocationFnData),
112 [TLIFn](const AllocFnsTy &Fn) { return Fn.Func == TLIFn; });
114 if (FnData == std::end(AllocationFnData))
117 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
120 // Check function prototype.
121 int FstParam = FnData->FstParam;
122 int SndParam = FnData->SndParam;
123 FunctionType *FTy = Callee->getFunctionType();
125 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
126 FTy->getNumParams() == FnData->NumParams &&
128 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
129 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
131 FTy->getParamType(SndParam)->isIntegerTy(32) ||
132 FTy->getParamType(SndParam)->isIntegerTy(64)))
137 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
138 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
139 return CS && CS.hasFnAttr(Attribute::NoAlias);
143 /// \brief Tests if a value is a call or invoke to a library function that
144 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
146 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
147 bool LookThroughBitCast) {
148 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast);
151 /// \brief Tests if a value is a call or invoke to a function that returns a
152 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
153 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
154 bool LookThroughBitCast) {
155 // it's safe to consider realloc as noalias since accessing the original
156 // pointer is undefined behavior
157 return isAllocationFn(V, TLI, LookThroughBitCast) ||
158 hasNoAliasAttr(V, LookThroughBitCast);
161 /// \brief Tests if a value is a call or invoke to a library function that
162 /// allocates uninitialized memory (such as malloc).
163 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
164 bool LookThroughBitCast) {
165 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast);
168 /// \brief Tests if a value is a call or invoke to a library function that
169 /// allocates zero-filled memory (such as calloc).
170 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
171 bool LookThroughBitCast) {
172 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast);
175 /// \brief Tests if a value is a call or invoke to a library function that
176 /// allocates memory (either malloc, calloc, or strdup like).
177 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
178 bool LookThroughBitCast) {
179 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast);
182 /// \brief Tests if a value is a call or invoke to a library function that
183 /// reallocates memory (such as realloc).
184 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
185 bool LookThroughBitCast) {
186 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast);
189 /// \brief Tests if a value is a call or invoke to a library function that
190 /// allocates memory and never returns null (such as operator new).
191 bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
192 bool LookThroughBitCast) {
193 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast);
196 /// extractMallocCall - Returns the corresponding CallInst if the instruction
197 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
198 /// ignore InvokeInst here.
199 const CallInst *llvm::extractMallocCall(const Value *I,
200 const TargetLibraryInfo *TLI) {
201 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
204 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
205 const TargetLibraryInfo *TLI,
206 bool LookThroughSExt = false) {
210 // The size of the malloc's result type must be known to determine array size.
211 Type *T = getMallocAllocatedType(CI, TLI);
212 if (!T || !T->isSized())
215 unsigned ElementSize = DL.getTypeAllocSize(T);
216 if (StructType *ST = dyn_cast<StructType>(T))
217 ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
219 // If malloc call's arg can be determined to be a multiple of ElementSize,
220 // return the multiple. Otherwise, return NULL.
221 Value *MallocArg = CI->getArgOperand(0);
222 Value *Multiple = nullptr;
223 if (ComputeMultiple(MallocArg, ElementSize, Multiple,
230 /// getMallocType - Returns the PointerType resulting from the malloc call.
231 /// The PointerType depends on the number of bitcast uses of the malloc call:
232 /// 0: PointerType is the calls' return type.
233 /// 1: PointerType is the bitcast's result type.
234 /// >1: Unique PointerType cannot be determined, return NULL.
235 PointerType *llvm::getMallocType(const CallInst *CI,
236 const TargetLibraryInfo *TLI) {
237 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
239 PointerType *MallocType = nullptr;
240 unsigned NumOfBitCastUses = 0;
242 // Determine if CallInst has a bitcast use.
243 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
245 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
246 MallocType = cast<PointerType>(BCI->getDestTy());
250 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
251 if (NumOfBitCastUses == 1)
254 // Malloc call was not bitcast, so type is the malloc function's return type.
255 if (NumOfBitCastUses == 0)
256 return cast<PointerType>(CI->getType());
258 // Type could not be determined.
262 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
263 /// The Type depends on the number of bitcast uses of the malloc call:
264 /// 0: PointerType is the malloc calls' return type.
265 /// 1: PointerType is the bitcast's result type.
266 /// >1: Unique PointerType cannot be determined, return NULL.
267 Type *llvm::getMallocAllocatedType(const CallInst *CI,
268 const TargetLibraryInfo *TLI) {
269 PointerType *PT = getMallocType(CI, TLI);
270 return PT ? PT->getElementType() : nullptr;
273 /// getMallocArraySize - Returns the array size of a malloc call. If the
274 /// argument passed to malloc is a multiple of the size of the malloced type,
275 /// then return that multiple. For non-array mallocs, the multiple is
276 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
278 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
279 const TargetLibraryInfo *TLI,
280 bool LookThroughSExt) {
281 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
282 return computeArraySize(CI, DL, TLI, LookThroughSExt);
286 /// extractCallocCall - Returns the corresponding CallInst if the instruction
287 /// is a calloc call.
288 const CallInst *llvm::extractCallocCall(const Value *I,
289 const TargetLibraryInfo *TLI) {
290 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
294 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
295 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
296 const CallInst *CI = dyn_cast<CallInst>(I);
297 if (!CI || isa<IntrinsicInst>(CI))
299 Function *Callee = CI->getCalledFunction();
300 if (Callee == nullptr)
303 StringRef FnName = Callee->getName();
305 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
308 unsigned ExpectedNumParams;
309 if (TLIFn == LibFunc::free ||
310 TLIFn == LibFunc::ZdlPv || // operator delete(void*)
311 TLIFn == LibFunc::ZdaPv) // operator delete[](void*)
312 ExpectedNumParams = 1;
313 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint)
314 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong)
315 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
316 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint)
317 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong)
318 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow)
319 ExpectedNumParams = 2;
323 // Check free prototype.
324 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
325 // attribute will exist.
326 FunctionType *FTy = Callee->getFunctionType();
327 if (!FTy->getReturnType()->isVoidTy())
329 if (FTy->getNumParams() != ExpectedNumParams)
331 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
339 //===----------------------------------------------------------------------===//
340 // Utility functions to compute size of objects.
344 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
345 /// object size in Size if successful, and false otherwise.
346 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
347 /// byval arguments, and global variables.
348 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
349 const TargetLibraryInfo *TLI, bool RoundToAlign) {
350 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign);
351 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
352 if (!Visitor.bothKnown(Data))
355 APInt ObjSize = Data.first, Offset = Data.second;
356 // check for overflow
357 if (Offset.slt(0) || ObjSize.ult(Offset))
360 Size = (ObjSize - Offset).getZExtValue();
365 STATISTIC(ObjectVisitorArgument,
366 "Number of arguments with unsolved size and offset");
367 STATISTIC(ObjectVisitorLoad,
368 "Number of load instructions with unsolved size and offset");
371 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
372 if (RoundToAlign && Align)
373 return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
377 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
378 const TargetLibraryInfo *TLI,
379 LLVMContext &Context,
381 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) {
382 // Pointer size must be rechecked for each object visited since it could have
383 // a different address space.
386 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
387 IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
388 Zero = APInt::getNullValue(IntTyBits);
390 V = V->stripPointerCasts();
391 if (Instruction *I = dyn_cast<Instruction>(V)) {
392 // If we have already seen this instruction, bail out. Cycles can happen in
393 // unreachable code after constant propagation.
394 if (!SeenInsts.insert(I).second)
397 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
398 return visitGEPOperator(*GEP);
401 if (Argument *A = dyn_cast<Argument>(V))
402 return visitArgument(*A);
403 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
404 return visitConstantPointerNull(*P);
405 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
406 return visitGlobalAlias(*GA);
407 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
408 return visitGlobalVariable(*GV);
409 if (UndefValue *UV = dyn_cast<UndefValue>(V))
410 return visitUndefValue(*UV);
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
412 if (CE->getOpcode() == Instruction::IntToPtr)
413 return unknown(); // clueless
414 if (CE->getOpcode() == Instruction::GetElementPtr)
415 return visitGEPOperator(cast<GEPOperator>(*CE));
418 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
423 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
424 if (!I.getAllocatedType()->isSized())
427 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
428 if (!I.isArrayAllocation())
429 return std::make_pair(align(Size, I.getAlignment()), Zero);
431 Value *ArraySize = I.getArraySize();
432 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
433 Size *= C->getValue().zextOrSelf(IntTyBits);
434 return std::make_pair(align(Size, I.getAlignment()), Zero);
439 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
440 // no interprocedural analysis is done at the moment
441 if (!A.hasByValOrInAllocaAttr()) {
442 ++ObjectVisitorArgument;
445 PointerType *PT = cast<PointerType>(A.getType());
446 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
447 return std::make_pair(align(Size, A.getParamAlignment()), Zero);
450 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
451 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
456 // handle strdup-like functions separately
457 if (FnData->AllocTy == StrDupLike) {
458 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
462 // strndup limits strlen
463 if (FnData->FstParam > 0) {
464 ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
468 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
469 if (Size.ugt(MaxSize))
472 return std::make_pair(Size, Zero);
475 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
479 APInt Size = Arg->getValue().zextOrSelf(IntTyBits);
480 // size determined by just 1 parameter
481 if (FnData->SndParam < 0)
482 return std::make_pair(Size, Zero);
484 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
488 Size *= Arg->getValue().zextOrSelf(IntTyBits);
489 return std::make_pair(Size, Zero);
491 // TODO: handle more standard functions (+ wchar cousins):
492 // - strdup / strndup
493 // - strcpy / strncpy
494 // - strcat / strncat
495 // - memcpy / memmove
496 // - strcat / strncat
501 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
502 return std::make_pair(Zero, Zero);
506 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
511 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
512 // Easy cases were already folded by previous passes.
516 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
517 SizeOffsetType PtrData = compute(GEP.getPointerOperand());
518 APInt Offset(IntTyBits, 0);
519 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
522 return std::make_pair(PtrData.first, PtrData.second + Offset);
525 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
526 if (GA.mayBeOverridden())
528 return compute(GA.getAliasee());
531 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
532 if (!GV.hasDefinitiveInitializer())
535 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
536 return std::make_pair(align(Size, GV.getAlignment()), Zero);
539 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
544 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
549 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
550 // too complex to analyze statically.
554 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
555 SizeOffsetType TrueSide = compute(I.getTrueValue());
556 SizeOffsetType FalseSide = compute(I.getFalseValue());
557 if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
562 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
563 return std::make_pair(Zero, Zero);
566 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
567 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
571 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
572 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
574 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
575 RoundToAlign(RoundToAlign) {
576 // IntTy and Zero must be set for each compute() since the address space may
577 // be different for later objects.
580 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
581 // XXX - Are vectors of pointers possible here?
582 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
583 Zero = ConstantInt::get(IntTy, 0);
585 SizeOffsetEvalType Result = compute_(V);
587 if (!bothKnown(Result)) {
588 // erase everything that was computed in this iteration from the cache, so
589 // that no dangling references are left behind. We could be a bit smarter if
590 // we kept a dependency graph. It's probably not worth the complexity.
591 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
592 CacheMapTy::iterator CacheIt = CacheMap.find(*I);
593 // non-computable results can be safely cached
594 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
595 CacheMap.erase(CacheIt);
603 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
604 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign);
605 SizeOffsetType Const = Visitor.compute(V);
606 if (Visitor.bothKnown(Const))
607 return std::make_pair(ConstantInt::get(Context, Const.first),
608 ConstantInt::get(Context, Const.second));
610 V = V->stripPointerCasts();
613 CacheMapTy::iterator CacheIt = CacheMap.find(V);
614 if (CacheIt != CacheMap.end())
615 return CacheIt->second;
617 // always generate code immediately before the instruction being
618 // processed, so that the generated code dominates the same BBs
619 BuilderTy::InsertPointGuard Guard(Builder);
620 if (Instruction *I = dyn_cast<Instruction>(V))
621 Builder.SetInsertPoint(I);
623 // now compute the size and offset
624 SizeOffsetEvalType Result;
626 // Record the pointers that were handled in this run, so that they can be
627 // cleaned later if something fails. We also use this set to break cycles that
628 // can occur in dead code.
629 if (!SeenVals.insert(V).second) {
631 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
632 Result = visitGEPOperator(*GEP);
633 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
635 } else if (isa<Argument>(V) ||
636 (isa<ConstantExpr>(V) &&
637 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
638 isa<GlobalAlias>(V) ||
639 isa<GlobalVariable>(V)) {
640 // ignore values where we cannot do more than what ObjectSizeVisitor can
643 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
648 // Don't reuse CacheIt since it may be invalid at this point.
649 CacheMap[V] = Result;
653 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
654 if (!I.getAllocatedType()->isSized())
658 assert(I.isArrayAllocation());
659 Value *ArraySize = I.getArraySize();
660 Value *Size = ConstantInt::get(ArraySize->getType(),
661 DL.getTypeAllocSize(I.getAllocatedType()));
662 Size = Builder.CreateMul(Size, ArraySize);
663 return std::make_pair(Size, Zero);
666 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
667 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
672 // handle strdup-like functions separately
673 if (FnData->AllocTy == StrDupLike) {
678 Value *FirstArg = CS.getArgument(FnData->FstParam);
679 FirstArg = Builder.CreateZExt(FirstArg, IntTy);
680 if (FnData->SndParam < 0)
681 return std::make_pair(FirstArg, Zero);
683 Value *SecondArg = CS.getArgument(FnData->SndParam);
684 SecondArg = Builder.CreateZExt(SecondArg, IntTy);
685 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
686 return std::make_pair(Size, Zero);
688 // TODO: handle more standard functions (+ wchar cousins):
689 // - strdup / strndup
690 // - strcpy / strncpy
691 // - strcat / strncat
692 // - memcpy / memmove
693 // - strcat / strncat
698 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
703 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
708 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
709 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
710 if (!bothKnown(PtrData))
713 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
714 Offset = Builder.CreateAdd(PtrData.second, Offset);
715 return std::make_pair(PtrData.first, Offset);
718 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
723 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
727 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
728 // create 2 PHIs: one for size and another for offset
729 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
730 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
732 // insert right away in the cache to handle recursive PHIs
733 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
735 // compute offset/size for each PHI incoming pointer
736 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
737 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
738 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
740 if (!bothKnown(EdgeData)) {
741 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
742 OffsetPHI->eraseFromParent();
743 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
744 SizePHI->eraseFromParent();
747 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
748 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
751 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
752 if ((Tmp = SizePHI->hasConstantValue())) {
754 SizePHI->replaceAllUsesWith(Size);
755 SizePHI->eraseFromParent();
757 if ((Tmp = OffsetPHI->hasConstantValue())) {
759 OffsetPHI->replaceAllUsesWith(Offset);
760 OffsetPHI->eraseFromParent();
762 return std::make_pair(Size, Offset);
765 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
766 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
767 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
769 if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
771 if (TrueSide == FalseSide)
774 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
776 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
778 return std::make_pair(Size, Offset);
781 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
782 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');