Make llvm.eh.actions an intrinsic and add docs for it
[oota-llvm.git] / lib / Analysis / Loads.cpp
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines simple local analyses for load instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/Loads.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GlobalAlias.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 using namespace llvm;
25
26 /// \brief Test if A and B will obviously have the same value.
27 ///
28 /// This includes recognizing that %t0 and %t1 will have the same
29 /// value in code like this:
30 /// \code
31 ///   %t0 = getelementptr \@a, 0, 3
32 ///   store i32 0, i32* %t0
33 ///   %t1 = getelementptr \@a, 0, 3
34 ///   %t2 = load i32* %t1
35 /// \endcode
36 ///
37 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
38   // Test if the values are trivially equivalent.
39   if (A == B)
40     return true;
41
42   // Test if the values come from identical arithmetic instructions.
43   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
44   // this function is only used when one address use dominates the
45   // other, which means that they'll always either have the same
46   // value or one of them will have an undefined value.
47   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
48       isa<GetElementPtrInst>(A))
49     if (const Instruction *BI = dyn_cast<Instruction>(B))
50       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
51         return true;
52
53   // Otherwise they may not be equivalent.
54   return false;
55 }
56
57 /// \brief Check if executing a load of this pointer value cannot trap.
58 ///
59 /// If it is not obviously safe to load from the specified pointer, we do
60 /// a quick local scan of the basic block containing \c ScanFrom, to determine
61 /// if the address is already accessed.
62 ///
63 /// This uses the pointee type to determine how many bytes need to be safe to
64 /// load from the pointer.
65 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
66                                        unsigned Align) {
67   const DataLayout &DL = ScanFrom->getModule()->getDataLayout();
68   int64_t ByteOffset = 0;
69   Value *Base = V;
70   Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
71
72   if (ByteOffset < 0) // out of bounds
73     return false;
74
75   Type *BaseType = nullptr;
76   unsigned BaseAlign = 0;
77   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
78     // An alloca is safe to load from as load as it is suitably aligned.
79     BaseType = AI->getAllocatedType();
80     BaseAlign = AI->getAlignment();
81   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
82     // Global variables are not necessarily safe to load from if they are
83     // overridden. Their size may change or they may be weak and require a test
84     // to determine if they were in fact provided.
85     if (!GV->mayBeOverridden()) {
86       BaseType = GV->getType()->getElementType();
87       BaseAlign = GV->getAlignment();
88     }
89   }
90
91   PointerType *AddrTy = cast<PointerType>(V->getType());
92   uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
93
94   // If we found a base allocated type from either an alloca or global variable,
95   // try to see if we are definitively within the allocated region. We need to
96   // know the size of the base type and the loaded type to do anything in this
97   // case.
98   if (BaseType && BaseType->isSized()) {
99     if (BaseAlign == 0)
100       BaseAlign = DL.getPrefTypeAlignment(BaseType);
101
102     if (Align <= BaseAlign) {
103       // Check if the load is within the bounds of the underlying object.
104       if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
105           (Align == 0 || (ByteOffset % Align) == 0))
106         return true;
107     }
108   }
109
110   // Otherwise, be a little bit aggressive by scanning the local block where we
111   // want to check to see if the pointer is already being loaded or stored
112   // from/to.  If so, the previous load or store would have already trapped,
113   // so there is no harm doing an extra load (also, CSE will later eliminate
114   // the load entirely).
115   BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
116
117   // We can at least always strip pointer casts even though we can't use the
118   // base here.
119   V = V->stripPointerCasts();
120
121   while (BBI != E) {
122     --BBI;
123
124     // If we see a free or a call which may write to memory (i.e. which might do
125     // a free) the pointer could be marked invalid.
126     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
127         !isa<DbgInfoIntrinsic>(BBI))
128       return false;
129
130     Value *AccessedPtr;
131     if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
132       AccessedPtr = LI->getPointerOperand();
133     else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
134       AccessedPtr = SI->getPointerOperand();
135     else
136       continue;
137
138     // Handle trivial cases.
139     if (AccessedPtr == V)
140       return true;
141
142     auto *AccessedTy = cast<PointerType>(AccessedPtr->getType());
143     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
144         LoadSize <= DL.getTypeStoreSize(AccessedTy->getElementType()))
145       return true;
146   }
147   return false;
148 }
149
150 /// \brief Scan the ScanBB block backwards to see if we have the value at the
151 /// memory address *Ptr locally available within a small number of instructions.
152 ///
153 /// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum
154 /// instructions to scan in the block. If it is set to \c 0, it will scan the whole
155 /// block.
156 ///
157 /// If the value is available, this function returns it. If not, it returns the
158 /// iterator for the last validated instruction that the value would be live
159 /// through. If we scanned the entire block and didn't find something that
160 /// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last
161 /// instruction processed and this returns null.
162 ///
163 /// You can also optionally specify an alias analysis implementation, which
164 /// makes this more precise.
165 ///
166 /// If \c AATags is non-null and a load or store is found, the AA tags from the
167 /// load or store are recorded there. If there are no AA tags or if no access is
168 /// found, it is left unmodified.
169 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
170                                       BasicBlock::iterator &ScanFrom,
171                                       unsigned MaxInstsToScan,
172                                       AliasAnalysis *AA, AAMDNodes *AATags) {
173   if (MaxInstsToScan == 0)
174     MaxInstsToScan = ~0U;
175
176   Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
177
178   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
179
180   // Try to get the store size for the type.
181   uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
182
183   Value *StrippedPtr = Ptr->stripPointerCasts();
184
185   while (ScanFrom != ScanBB->begin()) {
186     // We must ignore debug info directives when counting (otherwise they
187     // would affect codegen).
188     Instruction *Inst = --ScanFrom;
189     if (isa<DbgInfoIntrinsic>(Inst))
190       continue;
191
192     // Restore ScanFrom to expected value in case next test succeeds
193     ScanFrom++;
194
195     // Don't scan huge blocks.
196     if (MaxInstsToScan-- == 0)
197       return nullptr;
198
199     --ScanFrom;
200     // If this is a load of Ptr, the loaded value is available.
201     // (This is true even if the load is volatile or atomic, although
202     // those cases are unlikely.)
203     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
204       if (AreEquivalentAddressValues(
205               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
206           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
207         if (AATags)
208           LI->getAAMetadata(*AATags);
209         return LI;
210       }
211
212     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
213       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
214       // If this is a store through Ptr, the value is available!
215       // (This is true even if the store is volatile or atomic, although
216       // those cases are unlikely.)
217       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
218           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
219                                                AccessTy, DL)) {
220         if (AATags)
221           SI->getAAMetadata(*AATags);
222         return SI->getOperand(0);
223       }
224
225       // If both StrippedPtr and StorePtr reach all the way to an alloca or
226       // global and they are different, ignore the store. This is a trivial form
227       // of alias analysis that is important for reg2mem'd code.
228       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
229           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
230           StrippedPtr != StorePtr)
231         continue;
232
233       // If we have alias analysis and it says the store won't modify the loaded
234       // value, ignore the store.
235       if (AA &&
236           (AA->getModRefInfo(SI, StrippedPtr, AccessSize) &
237            AliasAnalysis::Mod) == 0)
238         continue;
239
240       // Otherwise the store that may or may not alias the pointer, bail out.
241       ++ScanFrom;
242       return nullptr;
243     }
244
245     // If this is some other instruction that may clobber Ptr, bail out.
246     if (Inst->mayWriteToMemory()) {
247       // If alias analysis claims that it really won't modify the load,
248       // ignore it.
249       if (AA &&
250           (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) &
251            AliasAnalysis::Mod) == 0)
252         continue;
253
254       // May modify the pointer, bail out.
255       ++ScanFrom;
256       return nullptr;
257     }
258   }
259
260   // Got to the start of the block, we didn't find it, but are done for this
261   // block.
262   return nullptr;
263 }