Revert part of r237975, "Fix Clang -Wmissing-override warning" in DIContext.h, to...
[oota-llvm.git] / lib / Analysis / Lint.cpp
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
12 //
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
24 //
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
36
37 #include "llvm/Analysis/Lint.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/InstructionSimplify.h"
44 #include "llvm/Analysis/Loads.h"
45 #include "llvm/Analysis/Passes.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstVisitor.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/LegacyPassManager.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 using namespace llvm;
59
60 namespace {
61   namespace MemRef {
62     static const unsigned Read     = 1;
63     static const unsigned Write    = 2;
64     static const unsigned Callee   = 4;
65     static const unsigned Branchee = 8;
66   }
67
68   class Lint : public FunctionPass, public InstVisitor<Lint> {
69     friend class InstVisitor<Lint>;
70
71     void visitFunction(Function &F);
72
73     void visitCallSite(CallSite CS);
74     void visitMemoryReference(Instruction &I, Value *Ptr,
75                               uint64_t Size, unsigned Align,
76                               Type *Ty, unsigned Flags);
77     void visitEHBeginCatch(IntrinsicInst *II);
78     void visitEHEndCatch(IntrinsicInst *II);
79
80     void visitCallInst(CallInst &I);
81     void visitInvokeInst(InvokeInst &I);
82     void visitReturnInst(ReturnInst &I);
83     void visitLoadInst(LoadInst &I);
84     void visitStoreInst(StoreInst &I);
85     void visitXor(BinaryOperator &I);
86     void visitSub(BinaryOperator &I);
87     void visitLShr(BinaryOperator &I);
88     void visitAShr(BinaryOperator &I);
89     void visitShl(BinaryOperator &I);
90     void visitSDiv(BinaryOperator &I);
91     void visitUDiv(BinaryOperator &I);
92     void visitSRem(BinaryOperator &I);
93     void visitURem(BinaryOperator &I);
94     void visitAllocaInst(AllocaInst &I);
95     void visitVAArgInst(VAArgInst &I);
96     void visitIndirectBrInst(IndirectBrInst &I);
97     void visitExtractElementInst(ExtractElementInst &I);
98     void visitInsertElementInst(InsertElementInst &I);
99     void visitUnreachableInst(UnreachableInst &I);
100
101     Value *findValue(Value *V, const DataLayout &DL, bool OffsetOk) const;
102     Value *findValueImpl(Value *V, const DataLayout &DL, bool OffsetOk,
103                          SmallPtrSetImpl<Value *> &Visited) const;
104
105   public:
106     Module *Mod;
107     AliasAnalysis *AA;
108     AssumptionCache *AC;
109     DominatorTree *DT;
110     TargetLibraryInfo *TLI;
111
112     std::string Messages;
113     raw_string_ostream MessagesStr;
114
115     static char ID; // Pass identification, replacement for typeid
116     Lint() : FunctionPass(ID), MessagesStr(Messages) {
117       initializeLintPass(*PassRegistry::getPassRegistry());
118     }
119
120     bool runOnFunction(Function &F) override;
121
122     void getAnalysisUsage(AnalysisUsage &AU) const override {
123       AU.setPreservesAll();
124       AU.addRequired<AliasAnalysis>();
125       AU.addRequired<AssumptionCacheTracker>();
126       AU.addRequired<TargetLibraryInfoWrapperPass>();
127       AU.addRequired<DominatorTreeWrapperPass>();
128     }
129     void print(raw_ostream &O, const Module *M) const override {}
130
131     void WriteValues(ArrayRef<const Value *> Vs) {
132       for (const Value *V : Vs) {
133         if (!V)
134           continue;
135         if (isa<Instruction>(V)) {
136           MessagesStr << *V << '\n';
137         } else {
138           V->printAsOperand(MessagesStr, true, Mod);
139           MessagesStr << '\n';
140         }
141       }
142     }
143
144     /// \brief A check failed, so printout out the condition and the message.
145     ///
146     /// This provides a nice place to put a breakpoint if you want to see why
147     /// something is not correct.
148     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
149
150     /// \brief A check failed (with values to print).
151     ///
152     /// This calls the Message-only version so that the above is easier to set
153     /// a breakpoint on.
154     template <typename T1, typename... Ts>
155     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
156       CheckFailed(Message);
157       WriteValues({V1, Vs...});
158     }
159   };
160 }
161
162 char Lint::ID = 0;
163 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
164                       false, true)
165 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
166 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
168 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
169 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
170                     false, true)
171
172 // Assert - We know that cond should be true, if not print an error message.
173 #define Assert(C, ...) \
174     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
175
176 // Lint::run - This is the main Analysis entry point for a
177 // function.
178 //
179 bool Lint::runOnFunction(Function &F) {
180   Mod = F.getParent();
181   AA = &getAnalysis<AliasAnalysis>();
182   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
183   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
184   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
185   visit(F);
186   dbgs() << MessagesStr.str();
187   Messages.clear();
188   return false;
189 }
190
191 void Lint::visitFunction(Function &F) {
192   // This isn't undefined behavior, it's just a little unusual, and it's a
193   // fairly common mistake to neglect to name a function.
194   Assert(F.hasName() || F.hasLocalLinkage(),
195          "Unusual: Unnamed function with non-local linkage", &F);
196
197   // TODO: Check for irreducible control flow.
198 }
199
200 void Lint::visitCallSite(CallSite CS) {
201   Instruction &I = *CS.getInstruction();
202   Value *Callee = CS.getCalledValue();
203   const DataLayout &DL = CS->getModule()->getDataLayout();
204
205   visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
206                        0, nullptr, MemRef::Callee);
207
208   if (Function *F = dyn_cast<Function>(findValue(Callee, DL,
209                                                  /*OffsetOk=*/false))) {
210     Assert(CS.getCallingConv() == F->getCallingConv(),
211            "Undefined behavior: Caller and callee calling convention differ",
212            &I);
213
214     FunctionType *FT = F->getFunctionType();
215     unsigned NumActualArgs = CS.arg_size();
216
217     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
218                           : FT->getNumParams() == NumActualArgs,
219            "Undefined behavior: Call argument count mismatches callee "
220            "argument count",
221            &I);
222
223     Assert(FT->getReturnType() == I.getType(),
224            "Undefined behavior: Call return type mismatches "
225            "callee return type",
226            &I);
227
228     // Check argument types (in case the callee was casted) and attributes.
229     // TODO: Verify that caller and callee attributes are compatible.
230     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
231     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
232     for (; AI != AE; ++AI) {
233       Value *Actual = *AI;
234       if (PI != PE) {
235         Argument *Formal = PI++;
236         Assert(Formal->getType() == Actual->getType(),
237                "Undefined behavior: Call argument type mismatches "
238                "callee parameter type",
239                &I);
240
241         // Check that noalias arguments don't alias other arguments. This is
242         // not fully precise because we don't know the sizes of the dereferenced
243         // memory regions.
244         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
245           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
246             if (AI != BI && (*BI)->getType()->isPointerTy()) {
247               AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
248               Assert(Result != AliasAnalysis::MustAlias &&
249                          Result != AliasAnalysis::PartialAlias,
250                      "Unusual: noalias argument aliases another argument", &I);
251             }
252
253         // Check that an sret argument points to valid memory.
254         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
255           Type *Ty =
256             cast<PointerType>(Formal->getType())->getElementType();
257           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
258                                DL.getABITypeAlignment(Ty), Ty,
259                                MemRef::Read | MemRef::Write);
260         }
261       }
262     }
263   }
264
265   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
266     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
267          AI != AE; ++AI) {
268       Value *Obj = findValue(*AI, DL, /*OffsetOk=*/true);
269       Assert(!isa<AllocaInst>(Obj),
270              "Undefined behavior: Call with \"tail\" keyword references "
271              "alloca",
272              &I);
273     }
274
275
276   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
277     switch (II->getIntrinsicID()) {
278     default: break;
279
280     // TODO: Check more intrinsics
281
282     case Intrinsic::memcpy: {
283       MemCpyInst *MCI = cast<MemCpyInst>(&I);
284       // TODO: If the size is known, use it.
285       visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
286                            MCI->getAlignment(), nullptr,
287                            MemRef::Write);
288       visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
289                            MCI->getAlignment(), nullptr,
290                            MemRef::Read);
291
292       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
293       // isn't expressive enough for what we really want to do. Known partial
294       // overlap is not distinguished from the case where nothing is known.
295       uint64_t Size = 0;
296       if (const ConstantInt *Len =
297               dyn_cast<ConstantInt>(findValue(MCI->getLength(), DL,
298                                               /*OffsetOk=*/false)))
299         if (Len->getValue().isIntN(32))
300           Size = Len->getValue().getZExtValue();
301       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
302                  AliasAnalysis::MustAlias,
303              "Undefined behavior: memcpy source and destination overlap", &I);
304       break;
305     }
306     case Intrinsic::memmove: {
307       MemMoveInst *MMI = cast<MemMoveInst>(&I);
308       // TODO: If the size is known, use it.
309       visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
310                            MMI->getAlignment(), nullptr,
311                            MemRef::Write);
312       visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
313                            MMI->getAlignment(), nullptr,
314                            MemRef::Read);
315       break;
316     }
317     case Intrinsic::memset: {
318       MemSetInst *MSI = cast<MemSetInst>(&I);
319       // TODO: If the size is known, use it.
320       visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
321                            MSI->getAlignment(), nullptr,
322                            MemRef::Write);
323       break;
324     }
325
326     case Intrinsic::vastart:
327       Assert(I.getParent()->getParent()->isVarArg(),
328              "Undefined behavior: va_start called in a non-varargs function",
329              &I);
330
331       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
332                            0, nullptr, MemRef::Read | MemRef::Write);
333       break;
334     case Intrinsic::vacopy:
335       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
336                            0, nullptr, MemRef::Write);
337       visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
338                            0, nullptr, MemRef::Read);
339       break;
340     case Intrinsic::vaend:
341       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
342                            0, nullptr, MemRef::Read | MemRef::Write);
343       break;
344
345     case Intrinsic::stackrestore:
346       // Stackrestore doesn't read or write memory, but it sets the
347       // stack pointer, which the compiler may read from or write to
348       // at any time, so check it for both readability and writeability.
349       visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
350                            0, nullptr, MemRef::Read | MemRef::Write);
351       break;
352
353     case Intrinsic::eh_begincatch:
354       visitEHBeginCatch(II);
355       break;
356     case Intrinsic::eh_endcatch:
357       visitEHEndCatch(II);
358       break;
359     }
360 }
361
362 void Lint::visitCallInst(CallInst &I) {
363   return visitCallSite(&I);
364 }
365
366 void Lint::visitInvokeInst(InvokeInst &I) {
367   return visitCallSite(&I);
368 }
369
370 void Lint::visitReturnInst(ReturnInst &I) {
371   Function *F = I.getParent()->getParent();
372   Assert(!F->doesNotReturn(),
373          "Unusual: Return statement in function with noreturn attribute", &I);
374
375   if (Value *V = I.getReturnValue()) {
376     Value *Obj =
377         findValue(V, F->getParent()->getDataLayout(), /*OffsetOk=*/true);
378     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
379   }
380 }
381
382 // TODO: Check that the reference is in bounds.
383 // TODO: Check readnone/readonly function attributes.
384 void Lint::visitMemoryReference(Instruction &I,
385                                 Value *Ptr, uint64_t Size, unsigned Align,
386                                 Type *Ty, unsigned Flags) {
387   // If no memory is being referenced, it doesn't matter if the pointer
388   // is valid.
389   if (Size == 0)
390     return;
391
392   Value *UnderlyingObject =
393       findValue(Ptr, I.getModule()->getDataLayout(), /*OffsetOk=*/true);
394   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
395          "Undefined behavior: Null pointer dereference", &I);
396   Assert(!isa<UndefValue>(UnderlyingObject),
397          "Undefined behavior: Undef pointer dereference", &I);
398   Assert(!isa<ConstantInt>(UnderlyingObject) ||
399              !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
400          "Unusual: All-ones pointer dereference", &I);
401   Assert(!isa<ConstantInt>(UnderlyingObject) ||
402              !cast<ConstantInt>(UnderlyingObject)->isOne(),
403          "Unusual: Address one pointer dereference", &I);
404
405   if (Flags & MemRef::Write) {
406     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
407       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
408              &I);
409     Assert(!isa<Function>(UnderlyingObject) &&
410                !isa<BlockAddress>(UnderlyingObject),
411            "Undefined behavior: Write to text section", &I);
412   }
413   if (Flags & MemRef::Read) {
414     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
415            &I);
416     Assert(!isa<BlockAddress>(UnderlyingObject),
417            "Undefined behavior: Load from block address", &I);
418   }
419   if (Flags & MemRef::Callee) {
420     Assert(!isa<BlockAddress>(UnderlyingObject),
421            "Undefined behavior: Call to block address", &I);
422   }
423   if (Flags & MemRef::Branchee) {
424     Assert(!isa<Constant>(UnderlyingObject) ||
425                isa<BlockAddress>(UnderlyingObject),
426            "Undefined behavior: Branch to non-blockaddress", &I);
427   }
428
429   // Check for buffer overflows and misalignment.
430   // Only handles memory references that read/write something simple like an
431   // alloca instruction or a global variable.
432   auto &DL = I.getModule()->getDataLayout();
433   int64_t Offset = 0;
434   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, DL)) {
435     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
436     // something we can handle and if so extract the size of this base object
437     // along with its alignment.
438     uint64_t BaseSize = AliasAnalysis::UnknownSize;
439     unsigned BaseAlign = 0;
440
441     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
442       Type *ATy = AI->getAllocatedType();
443       if (!AI->isArrayAllocation() && ATy->isSized())
444         BaseSize = DL.getTypeAllocSize(ATy);
445       BaseAlign = AI->getAlignment();
446       if (BaseAlign == 0 && ATy->isSized())
447         BaseAlign = DL.getABITypeAlignment(ATy);
448     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
449       // If the global may be defined differently in another compilation unit
450       // then don't warn about funky memory accesses.
451       if (GV->hasDefinitiveInitializer()) {
452         Type *GTy = GV->getType()->getElementType();
453         if (GTy->isSized())
454           BaseSize = DL.getTypeAllocSize(GTy);
455         BaseAlign = GV->getAlignment();
456         if (BaseAlign == 0 && GTy->isSized())
457           BaseAlign = DL.getABITypeAlignment(GTy);
458       }
459     }
460
461     // Accesses from before the start or after the end of the object are not
462     // defined.
463     Assert(Size == AliasAnalysis::UnknownSize ||
464                BaseSize == AliasAnalysis::UnknownSize ||
465                (Offset >= 0 && Offset + Size <= BaseSize),
466            "Undefined behavior: Buffer overflow", &I);
467
468     // Accesses that say that the memory is more aligned than it is are not
469     // defined.
470     if (Align == 0 && Ty && Ty->isSized())
471       Align = DL.getABITypeAlignment(Ty);
472     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
473            "Undefined behavior: Memory reference address is misaligned", &I);
474   }
475 }
476
477 void Lint::visitLoadInst(LoadInst &I) {
478   visitMemoryReference(I, I.getPointerOperand(),
479                        AA->getTypeStoreSize(I.getType()), I.getAlignment(),
480                        I.getType(), MemRef::Read);
481 }
482
483 void Lint::visitStoreInst(StoreInst &I) {
484   visitMemoryReference(I, I.getPointerOperand(),
485                        AA->getTypeStoreSize(I.getOperand(0)->getType()),
486                        I.getAlignment(),
487                        I.getOperand(0)->getType(), MemRef::Write);
488 }
489
490 void Lint::visitXor(BinaryOperator &I) {
491   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
492          "Undefined result: xor(undef, undef)", &I);
493 }
494
495 void Lint::visitSub(BinaryOperator &I) {
496   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
497          "Undefined result: sub(undef, undef)", &I);
498 }
499
500 void Lint::visitLShr(BinaryOperator &I) {
501   if (ConstantInt *CI = dyn_cast<ConstantInt>(
502           findValue(I.getOperand(1), I.getModule()->getDataLayout(),
503                     /*OffsetOk=*/false)))
504     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
505            "Undefined result: Shift count out of range", &I);
506 }
507
508 void Lint::visitAShr(BinaryOperator &I) {
509   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(
510           I.getOperand(1), I.getModule()->getDataLayout(), /*OffsetOk=*/false)))
511     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
512            "Undefined result: Shift count out of range", &I);
513 }
514
515 void Lint::visitShl(BinaryOperator &I) {
516   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(
517           I.getOperand(1), I.getModule()->getDataLayout(), /*OffsetOk=*/false)))
518     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
519            "Undefined result: Shift count out of range", &I);
520 }
521
522 static bool
523 allPredsCameFromLandingPad(BasicBlock *BB,
524                            SmallSet<BasicBlock *, 4> &VisitedBlocks) {
525   VisitedBlocks.insert(BB);
526   if (BB->isLandingPad())
527     return true;
528   // If we find a block with no predecessors, the search failed.
529   if (pred_empty(BB))
530     return false;
531   for (BasicBlock *Pred : predecessors(BB)) {
532     if (VisitedBlocks.count(Pred))
533       continue;
534     if (!allPredsCameFromLandingPad(Pred, VisitedBlocks))
535       return false;
536   }
537   return true;
538 }
539
540 static bool
541 allSuccessorsReachEndCatch(BasicBlock *BB, BasicBlock::iterator InstBegin,
542                            IntrinsicInst **SecondBeginCatch,
543                            SmallSet<BasicBlock *, 4> &VisitedBlocks) {
544   VisitedBlocks.insert(BB);
545   for (BasicBlock::iterator I = InstBegin, E = BB->end(); I != E; ++I) {
546     IntrinsicInst *IC = dyn_cast<IntrinsicInst>(I);
547     if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch)
548       return true;
549     // If we find another begincatch while looking for an endcatch,
550     // that's also an error.
551     if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch) {
552       *SecondBeginCatch = IC;
553       return false;
554     }
555   }
556
557   // If we reach a block with no successors while searching, the
558   // search has failed.
559   if (succ_empty(BB))
560     return false;
561   // Otherwise, search all of the successors.
562   for (BasicBlock *Succ : successors(BB)) {
563     if (VisitedBlocks.count(Succ))
564       continue;
565     if (!allSuccessorsReachEndCatch(Succ, Succ->begin(), SecondBeginCatch,
566                                     VisitedBlocks))
567       return false;
568   }
569   return true;
570 }
571
572 void Lint::visitEHBeginCatch(IntrinsicInst *II) {
573   // The checks in this function make a potentially dubious assumption about
574   // the CFG, namely that any block involved in a catch is only used for the
575   // catch.  This will very likely be true of IR generated by a front end,
576   // but it may cease to be true, for example, if the IR is run through a
577   // pass which combines similar blocks.
578   //
579   // In general, if we encounter a block the isn't dominated by the catch
580   // block while we are searching the catch block's successors for a call
581   // to end catch intrinsic, then it is possible that it will be legal for
582   // a path through this block to never reach a call to llvm.eh.endcatch.
583   // An analogous statement could be made about our search for a landing
584   // pad among the catch block's predecessors.
585   //
586   // What is actually required is that no path is possible at runtime that
587   // reaches a call to llvm.eh.begincatch without having previously visited
588   // a landingpad instruction and that no path is possible at runtime that
589   // calls llvm.eh.begincatch and does not subsequently call llvm.eh.endcatch
590   // (mentally adjusting for the fact that in reality these calls will be
591   // removed before code generation).
592   //
593   // Because this is a lint check, we take a pessimistic approach and warn if
594   // the control flow is potentially incorrect.
595
596   SmallSet<BasicBlock *, 4> VisitedBlocks;
597   BasicBlock *CatchBB = II->getParent();
598
599   // The begin catch must occur in a landing pad block or all paths
600   // to it must have come from a landing pad.
601   Assert(allPredsCameFromLandingPad(CatchBB, VisitedBlocks),
602          "llvm.eh.begincatch may be reachable without passing a landingpad",
603          II);
604
605   // Reset the visited block list.
606   VisitedBlocks.clear();
607
608   IntrinsicInst *SecondBeginCatch = nullptr;
609
610   // This has to be called before it is asserted.  Otherwise, the first assert
611   // below can never be hit.
612   bool EndCatchFound = allSuccessorsReachEndCatch(
613       CatchBB, std::next(static_cast<BasicBlock::iterator>(II)),
614       &SecondBeginCatch, VisitedBlocks);
615   Assert(
616       SecondBeginCatch == nullptr,
617       "llvm.eh.begincatch may be called a second time before llvm.eh.endcatch",
618       II, SecondBeginCatch);
619   Assert(EndCatchFound,
620          "Some paths from llvm.eh.begincatch may not reach llvm.eh.endcatch",
621          II);
622 }
623
624 static bool allPredCameFromBeginCatch(
625     BasicBlock *BB, BasicBlock::reverse_iterator InstRbegin,
626     IntrinsicInst **SecondEndCatch, SmallSet<BasicBlock *, 4> &VisitedBlocks) {
627   VisitedBlocks.insert(BB);
628   // Look for a begincatch in this block.
629   for (BasicBlock::reverse_iterator RI = InstRbegin, RE = BB->rend(); RI != RE;
630        ++RI) {
631     IntrinsicInst *IC = dyn_cast<IntrinsicInst>(&*RI);
632     if (IC && IC->getIntrinsicID() == Intrinsic::eh_begincatch)
633       return true;
634     // If we find another end catch before we find a begin catch, that's
635     // an error.
636     if (IC && IC->getIntrinsicID() == Intrinsic::eh_endcatch) {
637       *SecondEndCatch = IC;
638       return false;
639     }
640     // If we encounter a landingpad instruction, the search failed.
641     if (isa<LandingPadInst>(*RI))
642       return false;
643   }
644   // If while searching we find a block with no predeccesors,
645   // the search failed.
646   if (pred_empty(BB))
647     return false;
648   // Search any predecessors we haven't seen before.
649   for (BasicBlock *Pred : predecessors(BB)) {
650     if (VisitedBlocks.count(Pred))
651       continue;
652     if (!allPredCameFromBeginCatch(Pred, Pred->rbegin(), SecondEndCatch,
653                                    VisitedBlocks))
654       return false;
655   }
656   return true;
657 }
658
659 void Lint::visitEHEndCatch(IntrinsicInst *II) {
660   // The check in this function makes a potentially dubious assumption about
661   // the CFG, namely that any block involved in a catch is only used for the
662   // catch.  This will very likely be true of IR generated by a front end,
663   // but it may cease to be true, for example, if the IR is run through a
664   // pass which combines similar blocks.
665   //
666   // In general, if we encounter a block the isn't post-dominated by the
667   // end catch block while we are searching the end catch block's predecessors
668   // for a call to the begin catch intrinsic, then it is possible that it will
669   // be legal for a path to reach the end catch block without ever having
670   // called llvm.eh.begincatch.
671   //
672   // What is actually required is that no path is possible at runtime that
673   // reaches a call to llvm.eh.endcatch without having previously visited
674   // a call to llvm.eh.begincatch (mentally adjusting for the fact that in
675   // reality these calls will be removed before code generation).
676   //
677   // Because this is a lint check, we take a pessimistic approach and warn if
678   // the control flow is potentially incorrect.
679
680   BasicBlock *EndCatchBB = II->getParent();
681
682   // Alls paths to the end catch call must pass through a begin catch call.
683
684   // If llvm.eh.begincatch wasn't called in the current block, we'll use this
685   // lambda to recursively look for it in predecessors.
686   SmallSet<BasicBlock *, 4> VisitedBlocks;
687   IntrinsicInst *SecondEndCatch = nullptr;
688
689   // This has to be called before it is asserted.  Otherwise, the first assert
690   // below can never be hit.
691   bool BeginCatchFound =
692       allPredCameFromBeginCatch(EndCatchBB, BasicBlock::reverse_iterator(II),
693                                 &SecondEndCatch, VisitedBlocks);
694   Assert(
695       SecondEndCatch == nullptr,
696       "llvm.eh.endcatch may be called a second time after llvm.eh.begincatch",
697       II, SecondEndCatch);
698   Assert(BeginCatchFound,
699          "llvm.eh.endcatch may be reachable without passing llvm.eh.begincatch",
700          II);
701 }
702
703 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
704                    AssumptionCache *AC) {
705   // Assume undef could be zero.
706   if (isa<UndefValue>(V))
707     return true;
708
709   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
710   if (!VecTy) {
711     unsigned BitWidth = V->getType()->getIntegerBitWidth();
712     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
713     computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC,
714                      dyn_cast<Instruction>(V), DT);
715     return KnownZero.isAllOnesValue();
716   }
717
718   // Per-component check doesn't work with zeroinitializer
719   Constant *C = dyn_cast<Constant>(V);
720   if (!C)
721     return false;
722
723   if (C->isZeroValue())
724     return true;
725
726   // For a vector, KnownZero will only be true if all values are zero, so check
727   // this per component
728   unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
729   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
730     Constant *Elem = C->getAggregateElement(I);
731     if (isa<UndefValue>(Elem))
732       return true;
733
734     APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
735     computeKnownBits(Elem, KnownZero, KnownOne, DL);
736     if (KnownZero.isAllOnesValue())
737       return true;
738   }
739
740   return false;
741 }
742
743 void Lint::visitSDiv(BinaryOperator &I) {
744   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
745          "Undefined behavior: Division by zero", &I);
746 }
747
748 void Lint::visitUDiv(BinaryOperator &I) {
749   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
750          "Undefined behavior: Division by zero", &I);
751 }
752
753 void Lint::visitSRem(BinaryOperator &I) {
754   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
755          "Undefined behavior: Division by zero", &I);
756 }
757
758 void Lint::visitURem(BinaryOperator &I) {
759   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
760          "Undefined behavior: Division by zero", &I);
761 }
762
763 void Lint::visitAllocaInst(AllocaInst &I) {
764   if (isa<ConstantInt>(I.getArraySize()))
765     // This isn't undefined behavior, it's just an obvious pessimization.
766     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
767            "Pessimization: Static alloca outside of entry block", &I);
768
769   // TODO: Check for an unusual size (MSB set?)
770 }
771
772 void Lint::visitVAArgInst(VAArgInst &I) {
773   visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0,
774                        nullptr, MemRef::Read | MemRef::Write);
775 }
776
777 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
778   visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0,
779                        nullptr, MemRef::Branchee);
780
781   Assert(I.getNumDestinations() != 0,
782          "Undefined behavior: indirectbr with no destinations", &I);
783 }
784
785 void Lint::visitExtractElementInst(ExtractElementInst &I) {
786   if (ConstantInt *CI = dyn_cast<ConstantInt>(
787           findValue(I.getIndexOperand(), I.getModule()->getDataLayout(),
788                     /*OffsetOk=*/false)))
789     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
790            "Undefined result: extractelement index out of range", &I);
791 }
792
793 void Lint::visitInsertElementInst(InsertElementInst &I) {
794   if (ConstantInt *CI = dyn_cast<ConstantInt>(
795           findValue(I.getOperand(2), I.getModule()->getDataLayout(),
796                     /*OffsetOk=*/false)))
797     Assert(CI->getValue().ult(I.getType()->getNumElements()),
798            "Undefined result: insertelement index out of range", &I);
799 }
800
801 void Lint::visitUnreachableInst(UnreachableInst &I) {
802   // This isn't undefined behavior, it's merely suspicious.
803   Assert(&I == I.getParent()->begin() ||
804              std::prev(BasicBlock::iterator(&I))->mayHaveSideEffects(),
805          "Unusual: unreachable immediately preceded by instruction without "
806          "side effects",
807          &I);
808 }
809
810 /// findValue - Look through bitcasts and simple memory reference patterns
811 /// to identify an equivalent, but more informative, value.  If OffsetOk
812 /// is true, look through getelementptrs with non-zero offsets too.
813 ///
814 /// Most analysis passes don't require this logic, because instcombine
815 /// will simplify most of these kinds of things away. But it's a goal of
816 /// this Lint pass to be useful even on non-optimized IR.
817 Value *Lint::findValue(Value *V, const DataLayout &DL, bool OffsetOk) const {
818   SmallPtrSet<Value *, 4> Visited;
819   return findValueImpl(V, DL, OffsetOk, Visited);
820 }
821
822 /// findValueImpl - Implementation helper for findValue.
823 Value *Lint::findValueImpl(Value *V, const DataLayout &DL, bool OffsetOk,
824                            SmallPtrSetImpl<Value *> &Visited) const {
825   // Detect self-referential values.
826   if (!Visited.insert(V).second)
827     return UndefValue::get(V->getType());
828
829   // TODO: Look through sext or zext cast, when the result is known to
830   // be interpreted as signed or unsigned, respectively.
831   // TODO: Look through eliminable cast pairs.
832   // TODO: Look through calls with unique return values.
833   // TODO: Look through vector insert/extract/shuffle.
834   V = OffsetOk ? GetUnderlyingObject(V, DL) : V->stripPointerCasts();
835   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
836     BasicBlock::iterator BBI = L;
837     BasicBlock *BB = L->getParent();
838     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
839     for (;;) {
840       if (!VisitedBlocks.insert(BB).second)
841         break;
842       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
843                                               BB, BBI, 6, AA))
844         return findValueImpl(U, DL, OffsetOk, Visited);
845       if (BBI != BB->begin()) break;
846       BB = BB->getUniquePredecessor();
847       if (!BB) break;
848       BBI = BB->end();
849     }
850   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
851     if (Value *W = PN->hasConstantValue())
852       if (W != V)
853         return findValueImpl(W, DL, OffsetOk, Visited);
854   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
855     if (CI->isNoopCast(DL))
856       return findValueImpl(CI->getOperand(0), DL, OffsetOk, Visited);
857   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
858     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
859                                      Ex->getIndices()))
860       if (W != V)
861         return findValueImpl(W, DL, OffsetOk, Visited);
862   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
863     // Same as above, but for ConstantExpr instead of Instruction.
864     if (Instruction::isCast(CE->getOpcode())) {
865       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
866                                CE->getOperand(0)->getType(), CE->getType(),
867                                DL.getIntPtrType(V->getType())))
868         return findValueImpl(CE->getOperand(0), DL, OffsetOk, Visited);
869     } else if (CE->getOpcode() == Instruction::ExtractValue) {
870       ArrayRef<unsigned> Indices = CE->getIndices();
871       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
872         if (W != V)
873           return findValueImpl(W, DL, OffsetOk, Visited);
874     }
875   }
876
877   // As a last resort, try SimplifyInstruction or constant folding.
878   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
879     if (Value *W = SimplifyInstruction(Inst, DL, TLI, DT, AC))
880       return findValueImpl(W, DL, OffsetOk, Visited);
881   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
882     if (Value *W = ConstantFoldConstantExpression(CE, DL, TLI))
883       if (W != V)
884         return findValueImpl(W, DL, OffsetOk, Visited);
885   }
886
887   return V;
888 }
889
890 //===----------------------------------------------------------------------===//
891 //  Implement the public interfaces to this file...
892 //===----------------------------------------------------------------------===//
893
894 FunctionPass *llvm::createLintPass() {
895   return new Lint();
896 }
897
898 /// lintFunction - Check a function for errors, printing messages on stderr.
899 ///
900 void llvm::lintFunction(const Function &f) {
901   Function &F = const_cast<Function&>(f);
902   assert(!F.isDeclaration() && "Cannot lint external functions");
903
904   legacy::FunctionPassManager FPM(F.getParent());
905   Lint *V = new Lint();
906   FPM.add(V);
907   FPM.run(F);
908 }
909
910 /// lintModule - Check a module for errors, printing messages on stderr.
911 ///
912 void llvm::lintModule(const Module &M) {
913   legacy::PassManager PM;
914   Lint *V = new Lint();
915   PM.add(V);
916   PM.run(const_cast<Module&>(M));
917 }