1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions performs analyses on basic blocks, and instructions
11 // contained within basic blocks.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/CFG.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/Dominators.h"
22 /// FindFunctionBackedges - Analyze the specified function to find all of the
23 /// loop backedges in the function and return them. This is a relatively cheap
24 /// (compared to computing dominators and loop info) analysis.
26 /// The output is added to Result, as pairs of <from,to> edge info.
27 void llvm::FindFunctionBackedges(const Function &F,
28 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
29 const BasicBlock *BB = &F.getEntryBlock();
33 SmallPtrSet<const BasicBlock*, 8> Visited;
34 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
35 SmallPtrSet<const BasicBlock*, 8> InStack;
38 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
41 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
42 const BasicBlock *ParentBB = Top.first;
43 succ_const_iterator &I = Top.second;
45 bool FoundNew = false;
46 while (I != succ_end(ParentBB)) {
48 if (Visited.insert(BB).second) {
52 // Successor is in VisitStack, it's a back edge.
53 if (InStack.count(BB))
54 Result.push_back(std::make_pair(ParentBB, BB));
58 // Go down one level if there is a unvisited successor.
60 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
63 InStack.erase(VisitStack.pop_back_val().first);
65 } while (!VisitStack.empty());
68 /// GetSuccessorNumber - Search for the specified successor of basic block BB
69 /// and return its position in the terminator instruction's list of
70 /// successors. It is an error to call this with a block that is not a
72 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
73 TerminatorInst *Term = BB->getTerminator();
75 unsigned e = Term->getNumSuccessors();
77 for (unsigned i = 0; ; ++i) {
78 assert(i != e && "Didn't find edge?");
79 if (Term->getSuccessor(i) == Succ)
84 /// isCriticalEdge - Return true if the specified edge is a critical edge.
85 /// Critical edges are edges from a block with multiple successors to a block
86 /// with multiple predecessors.
87 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
88 bool AllowIdenticalEdges) {
89 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
90 if (TI->getNumSuccessors() == 1) return false;
92 const BasicBlock *Dest = TI->getSuccessor(SuccNum);
93 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
95 // If there is more than one predecessor, this is a critical edge...
96 assert(I != E && "No preds, but we have an edge to the block?");
97 const BasicBlock *FirstPred = *I;
98 ++I; // Skip one edge due to the incoming arc from TI.
99 if (!AllowIdenticalEdges)
102 // If AllowIdenticalEdges is true, then we allow this edge to be considered
103 // non-critical iff all preds come from TI's block.
110 // LoopInfo contains a mapping from basic block to the innermost loop. Find
111 // the outermost loop in the loop nest that contains BB.
112 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
113 const Loop *L = LI->getLoopFor(BB);
115 while (const Loop *Parent = L->getParentLoop())
121 // True if there is a loop which contains both BB1 and BB2.
122 static bool loopContainsBoth(const LoopInfo *LI,
123 const BasicBlock *BB1, const BasicBlock *BB2) {
124 const Loop *L1 = getOutermostLoop(LI, BB1);
125 const Loop *L2 = getOutermostLoop(LI, BB2);
126 return L1 != nullptr && L1 == L2;
129 bool llvm::isPotentiallyReachableFromMany(
130 SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
131 const DominatorTree *DT, const LoopInfo *LI) {
132 // When the stop block is unreachable, it's dominated from everywhere,
133 // regardless of whether there's a path between the two blocks.
134 if (DT && !DT->isReachableFromEntry(StopBB))
137 // Limit the number of blocks we visit. The goal is to avoid run-away compile
138 // times on large CFGs without hampering sensible code. Arbitrarily chosen.
140 SmallSet<const BasicBlock*, 64> Visited;
142 BasicBlock *BB = Worklist.pop_back_val();
143 if (!Visited.insert(BB).second)
147 if (DT && DT->dominates(BB, StopBB))
149 if (LI && loopContainsBoth(LI, BB, StopBB))
153 // We haven't been able to prove it one way or the other. Conservatively
154 // answer true -- that there is potentially a path.
158 if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) {
159 // All blocks in a single loop are reachable from all other blocks. From
160 // any of these blocks, we can skip directly to the exits of the loop,
161 // ignoring any other blocks inside the loop body.
162 Outer->getExitBlocks(Worklist);
164 Worklist.append(succ_begin(BB), succ_end(BB));
166 } while (!Worklist.empty());
168 // We have exhausted all possible paths and are certain that 'To' can not be
169 // reached from 'From'.
173 bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
174 const DominatorTree *DT, const LoopInfo *LI) {
175 assert(A->getParent() == B->getParent() &&
176 "This analysis is function-local!");
178 SmallVector<BasicBlock*, 32> Worklist;
179 Worklist.push_back(const_cast<BasicBlock*>(A));
181 return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
185 bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
186 const DominatorTree *DT, const LoopInfo *LI) {
187 assert(A->getParent()->getParent() == B->getParent()->getParent() &&
188 "This analysis is function-local!");
190 SmallVector<BasicBlock*, 32> Worklist;
192 if (A->getParent() == B->getParent()) {
193 // The same block case is special because it's the only time we're looking
194 // within a single block to see which instruction comes first. Once we
195 // start looking at multiple blocks, the first instruction of the block is
196 // reachable, so we only need to determine reachability between whole
198 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
200 // If the block is in a loop then we can reach any instruction in the block
201 // from any other instruction in the block by going around a backedge.
202 if (LI && LI->getLoopFor(BB) != nullptr)
205 // Linear scan, start at 'A', see whether we hit 'B' or the end first.
206 for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E;
212 // Can't be in a loop if it's the entry block -- the entry block may not
213 // have predecessors.
214 if (BB == &BB->getParent()->getEntryBlock())
217 // Otherwise, continue doing the normal per-BB CFG walk.
218 Worklist.append(succ_begin(BB), succ_end(BB));
220 if (Worklist.empty()) {
221 // We've proven that there's no path!
225 Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
228 if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
230 if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
233 return isPotentiallyReachableFromMany(
234 Worklist, const_cast<BasicBlock *>(B->getParent()), DT, LI);