1 //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the default implementation of the Alias Analysis interface
11 // that simply implements a few identities (two different globals cannot alias,
12 // etc), but otherwise does no analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/Passes.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/Operator.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Target/TargetData.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Support/ErrorHandling.h"
36 //===----------------------------------------------------------------------===//
38 //===----------------------------------------------------------------------===//
40 /// isKnownNonNull - Return true if we know that the specified value is never
42 static bool isKnownNonNull(const Value *V) {
43 // Alloca never returns null, malloc might.
44 if (isa<AllocaInst>(V)) return true;
46 // A byval argument is never null.
47 if (const Argument *A = dyn_cast<Argument>(V))
48 return A->hasByValAttr();
50 // Global values are not null unless extern weak.
51 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
52 return !GV->hasExternalWeakLinkage();
56 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
57 /// object that never escapes from the function.
58 static bool isNonEscapingLocalObject(const Value *V) {
59 // If this is a local allocation, check to see if it escapes.
60 if (isa<AllocaInst>(V) || isNoAliasCall(V))
61 // Set StoreCaptures to True so that we can assume in our callers that the
62 // pointer is not the result of a load instruction. Currently
63 // PointerMayBeCaptured doesn't have any special analysis for the
64 // StoreCaptures=false case; if it did, our callers could be refined to be
66 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
68 // If this is an argument that corresponds to a byval or noalias argument,
69 // then it has not escaped before entering the function. Check if it escapes
70 // inside the function.
71 if (const Argument *A = dyn_cast<Argument>(V))
72 if (A->hasByValAttr() || A->hasNoAliasAttr()) {
73 // Don't bother analyzing arguments already known not to escape.
74 if (A->hasNoCaptureAttr())
76 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 /// isEscapeSource - Return true if the pointer is one which would have
82 /// been considered an escape by isNonEscapingLocalObject.
83 static bool isEscapeSource(const Value *V) {
84 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
87 // The load case works because isNonEscapingLocalObject considers all
88 // stores to be escapes (it passes true for the StoreCaptures argument
89 // to PointerMayBeCaptured).
96 /// isObjectSmallerThan - Return true if we can prove that the object specified
97 /// by V is smaller than Size.
98 static bool isObjectSmallerThan(const Value *V, unsigned Size,
99 const TargetData &TD) {
100 const Type *AccessTy;
101 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
102 AccessTy = GV->getType()->getElementType();
103 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
104 if (!AI->isArrayAllocation())
105 AccessTy = AI->getType()->getElementType();
108 } else if (const CallInst* CI = extractMallocCall(V)) {
109 if (!isArrayMalloc(V, &TD))
110 // The size is the argument to the malloc call.
111 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
112 return (C->getZExtValue() < Size);
114 } else if (const Argument *A = dyn_cast<Argument>(V)) {
115 if (A->hasByValAttr())
116 AccessTy = cast<PointerType>(A->getType())->getElementType();
123 if (AccessTy->isSized())
124 return TD.getTypeAllocSize(AccessTy) < Size;
128 //===----------------------------------------------------------------------===//
130 //===----------------------------------------------------------------------===//
133 /// NoAA - This class implements the -no-aa pass, which always returns "I
134 /// don't know" for alias queries. NoAA is unlike other alias analysis
135 /// implementations, in that it does not chain to a previous analysis. As
136 /// such it doesn't follow many of the rules that other alias analyses must.
138 struct NoAA : public ImmutablePass, public AliasAnalysis {
139 static char ID; // Class identification, replacement for typeinfo
140 NoAA() : ImmutablePass(&ID) {}
141 explicit NoAA(void *PID) : ImmutablePass(PID) { }
143 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146 virtual void initializePass() {
147 TD = getAnalysisIfAvailable<TargetData>();
150 virtual AliasResult alias(const Value *V1, unsigned V1Size,
151 const Value *V2, unsigned V2Size) {
155 virtual void getArgumentAccesses(Function *F, CallSite CS,
156 std::vector<PointerAccessInfo> &Info) {
157 llvm_unreachable("This method may not be called on this function!");
160 virtual bool pointsToConstantMemory(const Value *P) { return false; }
161 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
164 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
168 virtual void deleteValue(Value *V) {}
169 virtual void copyValue(Value *From, Value *To) {}
171 /// getAdjustedAnalysisPointer - This method is used when a pass implements
172 /// an analysis interface through multiple inheritance. If needed, it should
173 /// override this to adjust the this pointer as needed for the specified pass
175 virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
176 if (PI->isPassID(&AliasAnalysis::ID))
177 return (AliasAnalysis*)this;
181 } // End of anonymous namespace
183 // Register this pass...
185 static RegisterPass<NoAA>
186 U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
188 // Declare that we implement the AliasAnalysis interface
189 static RegisterAnalysisGroup<AliasAnalysis> V(U);
191 ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
193 //===----------------------------------------------------------------------===//
194 // BasicAliasAnalysis Pass
195 //===----------------------------------------------------------------------===//
197 static const Function *getParent(const Value *V) {
198 if (const Instruction *inst = dyn_cast<Instruction>(V))
199 return inst->getParent()->getParent();
201 if (const Argument *arg = dyn_cast<Argument>(V))
202 return arg->getParent();
207 static bool sameParent(const Value *O1, const Value *O2) {
209 const Function *F1 = getParent(O1);
210 const Function *F2 = getParent(O2);
212 return F1 && F1 == F2;
216 static bool notDifferentParent(const Value *O1, const Value *O2) {
218 const Function *F1 = getParent(O1);
219 const Function *F2 = getParent(O2);
221 return !F1 || !F2 || F1 == F2;
226 /// BasicAliasAnalysis - This is the default alias analysis implementation.
227 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
228 /// derives from the NoAA class.
229 struct BasicAliasAnalysis : public NoAA {
230 /// Interprocedural - Flag for "interprocedural" mode, where we must
231 /// support queries of values which live in different functions.
232 bool Interprocedural;
234 static char ID; // Class identification, replacement for typeinfo
236 : NoAA(&ID), Interprocedural(false) {}
237 BasicAliasAnalysis(void *PID, bool interprocedural)
238 : NoAA(PID), Interprocedural(interprocedural) {}
240 AliasResult alias(const Value *V1, unsigned V1Size,
241 const Value *V2, unsigned V2Size) {
242 assert(Visited.empty() && "Visited must be cleared after use!");
244 assert((Interprocedural || notDifferentParent(V1, V2)) &&
245 "BasicAliasAnalysis (-basicaa) doesn't support interprocedural "
246 "queries; use InterproceduralAliasAnalysis "
247 "(-interprocedural-basic-aa) instead.");
249 AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
254 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
255 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
257 /// pointsToConstantMemory - Chase pointers until we find a (constant
259 bool pointsToConstantMemory(const Value *P);
261 /// getAdjustedAnalysisPointer - This method is used when a pass implements
262 /// an analysis interface through multiple inheritance. If needed, it should
263 /// override this to adjust the this pointer as needed for the specified pass
265 virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) {
266 if (PI->isPassID(&AliasAnalysis::ID))
267 return (AliasAnalysis*)this;
272 // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
273 SmallPtrSet<const Value*, 16> Visited;
275 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
276 // instruction against another.
277 AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
278 const Value *V2, unsigned V2Size,
279 const Value *UnderlyingV1, const Value *UnderlyingV2);
281 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
282 // instruction against another.
283 AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
284 const Value *V2, unsigned V2Size);
286 /// aliasSelect - Disambiguate a Select instruction against another value.
287 AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
288 const Value *V2, unsigned V2Size);
290 AliasResult aliasCheck(const Value *V1, unsigned V1Size,
291 const Value *V2, unsigned V2Size);
293 } // End of anonymous namespace
295 // Register this pass...
296 char BasicAliasAnalysis::ID = 0;
297 static RegisterPass<BasicAliasAnalysis>
298 X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
300 // Declare that we implement the AliasAnalysis interface
301 static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
303 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
304 return new BasicAliasAnalysis();
308 /// pointsToConstantMemory - Chase pointers until we find a (constant
310 bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
311 if (const GlobalVariable *GV =
312 dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
313 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
314 // global to be marked constant in some modules and non-constant in others.
315 // GV may even be a declaration, not a definition.
316 return GV->isConstant();
321 /// getModRefInfo - Check to see if the specified callsite can clobber the
322 /// specified memory object. Since we only look at local properties of this
323 /// function, we really can't say much about this query. We do, however, use
324 /// simple "address taken" analysis on local objects.
325 AliasAnalysis::ModRefResult
326 BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
327 const Value *Object = P->getUnderlyingObject();
329 // If this is a tail call and P points to a stack location, we know that
330 // the tail call cannot access or modify the local stack.
331 // We cannot exclude byval arguments here; these belong to the caller of
332 // the current function not to the current function, and a tail callee
333 // may reference them.
334 if (isa<AllocaInst>(Object))
335 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
336 if (CI->isTailCall())
339 // If we can identify an object and it's known to be within the
340 // same function as the call, we can ignore interprocedural concerns.
341 bool EffectivelyInterprocedural =
342 Interprocedural && !sameParent(Object, CS.getInstruction());
344 // If the pointer is to a locally allocated object that does not escape,
345 // then the call can not mod/ref the pointer unless the call takes the pointer
346 // as an argument, and itself doesn't capture it.
347 if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
348 !EffectivelyInterprocedural &&
349 isNonEscapingLocalObject(Object)) {
350 bool PassedAsArg = false;
352 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
353 CI != CE; ++CI, ++ArgNo) {
354 // Only look at the no-capture pointer arguments.
355 if (!(*CI)->getType()->isPointerTy() ||
356 !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
359 // If this is a no-capture pointer argument, see if we can tell that it
360 // is impossible to alias the pointer we're checking. If not, we have to
361 // assume that the call could touch the pointer, even though it doesn't
363 if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
373 // Finally, handle specific knowledge of intrinsics.
374 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
376 return AliasAnalysis::getModRefInfo(CS, P, Size);
378 switch (II->getIntrinsicID()) {
380 case Intrinsic::memcpy:
381 case Intrinsic::memmove: {
383 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
384 Len = LenCI->getZExtValue();
385 Value *Dest = II->getArgOperand(0);
386 Value *Src = II->getArgOperand(1);
387 if (isNoAlias(Dest, Len, P, Size)) {
388 if (isNoAlias(Src, Len, P, Size))
394 case Intrinsic::memset:
395 // Since memset is 'accesses arguments' only, the AliasAnalysis base class
396 // will handle it for the variable length case.
397 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
398 unsigned Len = LenCI->getZExtValue();
399 Value *Dest = II->getArgOperand(0);
400 if (isNoAlias(Dest, Len, P, Size))
404 case Intrinsic::atomic_cmp_swap:
405 case Intrinsic::atomic_swap:
406 case Intrinsic::atomic_load_add:
407 case Intrinsic::atomic_load_sub:
408 case Intrinsic::atomic_load_and:
409 case Intrinsic::atomic_load_nand:
410 case Intrinsic::atomic_load_or:
411 case Intrinsic::atomic_load_xor:
412 case Intrinsic::atomic_load_max:
413 case Intrinsic::atomic_load_min:
414 case Intrinsic::atomic_load_umax:
415 case Intrinsic::atomic_load_umin:
417 Value *Op1 = II->getArgOperand(0);
418 unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
419 if (isNoAlias(Op1, Op1Size, P, Size))
423 case Intrinsic::lifetime_start:
424 case Intrinsic::lifetime_end:
425 case Intrinsic::invariant_start: {
426 unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
427 if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size))
431 case Intrinsic::invariant_end: {
432 unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
433 if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size))
439 // The AliasAnalysis base class has some smarts, lets use them.
440 return AliasAnalysis::getModRefInfo(CS, P, Size);
444 AliasAnalysis::ModRefResult
445 BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
446 // If CS1 or CS2 are readnone, they don't interact.
447 ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
448 if (CS1B == DoesNotAccessMemory) return NoModRef;
450 ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
451 if (CS2B == DoesNotAccessMemory) return NoModRef;
453 // If they both only read from memory, just return ref.
454 if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
457 // Otherwise, fall back to NoAA (mod+ref).
458 return NoAA::getModRefInfo(CS1, CS2);
461 /// GetIndiceDifference - Dest and Src are the variable indices from two
462 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
463 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
464 /// difference between the two pointers.
465 static void GetIndiceDifference(
466 SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
467 const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
468 if (Src.empty()) return;
470 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
471 const Value *V = Src[i].first;
472 int64_t Scale = Src[i].second;
474 // Find V in Dest. This is N^2, but pointer indices almost never have more
475 // than a few variable indexes.
476 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
477 if (Dest[j].first != V) continue;
479 // If we found it, subtract off Scale V's from the entry in Dest. If it
480 // goes to zero, remove the entry.
481 if (Dest[j].second != Scale)
482 Dest[j].second -= Scale;
484 Dest.erase(Dest.begin()+j);
489 // If we didn't consume this entry, add it to the end of the Dest list.
491 Dest.push_back(std::make_pair(V, -Scale));
495 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
496 /// against another pointer. We know that V1 is a GEP, but we don't know
497 /// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(),
498 /// UnderlyingV2 is the same for V2.
500 AliasAnalysis::AliasResult
501 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
502 const Value *V2, unsigned V2Size,
503 const Value *UnderlyingV1,
504 const Value *UnderlyingV2) {
505 // If this GEP has been visited before, we're on a use-def cycle.
506 // Such cycles are only valid when PHI nodes are involved or in unreachable
507 // code. The visitPHI function catches cycles containing PHIs, but there
508 // could still be a cycle without PHIs in unreachable code.
509 if (!Visited.insert(GEP1))
512 int64_t GEP1BaseOffset;
513 SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
515 // If we have two gep instructions with must-alias'ing base pointers, figure
516 // out if the indexes to the GEP tell us anything about the derived pointer.
517 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
518 // Do the base pointers alias?
519 AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U);
521 // If we get a No or May, then return it immediately, no amount of analysis
522 // will improve this situation.
523 if (BaseAlias != MustAlias) return BaseAlias;
525 // Otherwise, we have a MustAlias. Since the base pointers alias each other
526 // exactly, see if the computed offset from the common pointer tells us
527 // about the relation of the resulting pointer.
528 const Value *GEP1BasePtr =
529 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
531 int64_t GEP2BaseOffset;
532 SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
533 const Value *GEP2BasePtr =
534 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
536 // If DecomposeGEPExpression isn't able to look all the way through the
537 // addressing operation, we must not have TD and this is too complex for us
538 // to handle without it.
539 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
541 "DecomposeGEPExpression and getUnderlyingObject disagree!");
545 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
546 // symbolic difference.
547 GEP1BaseOffset -= GEP2BaseOffset;
548 GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
551 // Check to see if these two pointers are related by the getelementptr
552 // instruction. If one pointer is a GEP with a non-zero index of the other
553 // pointer, we know they cannot alias.
555 // If both accesses are unknown size, we can't do anything useful here.
556 if (V1Size == ~0U && V2Size == ~0U)
559 AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size);
561 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
562 // If V2 is known not to alias GEP base pointer, then the two values
563 // cannot alias per GEP semantics: "A pointer value formed from a
564 // getelementptr instruction is associated with the addresses associated
565 // with the first operand of the getelementptr".
568 const Value *GEP1BasePtr =
569 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
571 // If DecomposeGEPExpression isn't able to look all the way through the
572 // addressing operation, we must not have TD and this is too complex for us
573 // to handle without it.
574 if (GEP1BasePtr != UnderlyingV1) {
576 "DecomposeGEPExpression and getUnderlyingObject disagree!");
581 // In the two GEP Case, if there is no difference in the offsets of the
582 // computed pointers, the resultant pointers are a must alias. This
583 // hapens when we have two lexically identical GEP's (for example).
585 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
586 // must aliases the GEP, the end result is a must alias also.
587 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
590 // If we have a known constant offset, see if this offset is larger than the
591 // access size being queried. If so, and if no variable indices can remove
592 // pieces of this constant, then we know we have a no-alias. For example,
595 // In order to handle cases like &A[100][i] where i is an out of range
596 // subscript, we have to ignore all constant offset pieces that are a multiple
597 // of a scaled index. Do this by removing constant offsets that are a
598 // multiple of any of our variable indices. This allows us to transform
599 // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
600 // provides an offset of 4 bytes (assuming a <= 4 byte access).
601 for (unsigned i = 0, e = GEP1VariableIndices.size();
602 i != e && GEP1BaseOffset;++i)
603 if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
604 GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
606 // If our known offset is bigger than the access size, we know we don't have
608 if (GEP1BaseOffset) {
609 if (GEP1BaseOffset >= (int64_t)V2Size ||
610 GEP1BaseOffset <= -(int64_t)V1Size)
617 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
618 /// instruction against another.
619 AliasAnalysis::AliasResult
620 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
621 const Value *V2, unsigned V2Size) {
622 // If this select has been visited before, we're on a use-def cycle.
623 // Such cycles are only valid when PHI nodes are involved or in unreachable
624 // code. The visitPHI function catches cycles containing PHIs, but there
625 // could still be a cycle without PHIs in unreachable code.
626 if (!Visited.insert(SI))
629 // If the values are Selects with the same condition, we can do a more precise
630 // check: just check for aliases between the values on corresponding arms.
631 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
632 if (SI->getCondition() == SI2->getCondition()) {
634 aliasCheck(SI->getTrueValue(), SISize,
635 SI2->getTrueValue(), V2Size);
636 if (Alias == MayAlias)
638 AliasResult ThisAlias =
639 aliasCheck(SI->getFalseValue(), SISize,
640 SI2->getFalseValue(), V2Size);
641 if (ThisAlias != Alias)
646 // If both arms of the Select node NoAlias or MustAlias V2, then returns
647 // NoAlias / MustAlias. Otherwise, returns MayAlias.
649 aliasCheck(V2, V2Size, SI->getTrueValue(), SISize);
650 if (Alias == MayAlias)
653 // If V2 is visited, the recursive case will have been caught in the
654 // above aliasCheck call, so these subsequent calls to aliasCheck
655 // don't need to assume that V2 is being visited recursively.
658 AliasResult ThisAlias =
659 aliasCheck(V2, V2Size, SI->getFalseValue(), SISize);
660 if (ThisAlias != Alias)
665 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
667 AliasAnalysis::AliasResult
668 BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
669 const Value *V2, unsigned V2Size) {
670 // The PHI node has already been visited, avoid recursion any further.
671 if (!Visited.insert(PN))
674 // If the values are PHIs in the same block, we can do a more precise
675 // as well as efficient check: just check for aliases between the values
676 // on corresponding edges.
677 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
678 if (PN2->getParent() == PN->getParent()) {
680 aliasCheck(PN->getIncomingValue(0), PNSize,
681 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
683 if (Alias == MayAlias)
685 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
686 AliasResult ThisAlias =
687 aliasCheck(PN->getIncomingValue(i), PNSize,
688 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
690 if (ThisAlias != Alias)
696 SmallPtrSet<Value*, 4> UniqueSrc;
697 SmallVector<Value*, 4> V1Srcs;
698 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
699 Value *PV1 = PN->getIncomingValue(i);
700 if (isa<PHINode>(PV1))
701 // If any of the source itself is a PHI, return MayAlias conservatively
702 // to avoid compile time explosion. The worst possible case is if both
703 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
704 // and 'n' are the number of PHI sources.
706 if (UniqueSrc.insert(PV1))
707 V1Srcs.push_back(PV1);
710 AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
711 // Early exit if the check of the first PHI source against V2 is MayAlias.
712 // Other results are not possible.
713 if (Alias == MayAlias)
716 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
717 // NoAlias / MustAlias. Otherwise, returns MayAlias.
718 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
719 Value *V = V1Srcs[i];
721 // If V2 is visited, the recursive case will have been caught in the
722 // above aliasCheck call, so these subsequent calls to aliasCheck
723 // don't need to assume that V2 is being visited recursively.
726 AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
727 if (ThisAlias != Alias || ThisAlias == MayAlias)
734 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
735 // such as array references.
737 AliasAnalysis::AliasResult
738 BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
739 const Value *V2, unsigned V2Size) {
740 // If either of the memory references is empty, it doesn't matter what the
741 // pointer values are.
742 if (V1Size == 0 || V2Size == 0)
745 // Strip off any casts if they exist.
746 V1 = V1->stripPointerCasts();
747 V2 = V2->stripPointerCasts();
749 // Are we checking for alias of the same value?
750 if (V1 == V2) return MustAlias;
752 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
753 return NoAlias; // Scalars cannot alias each other
755 // Figure out what objects these things are pointing to if we can.
756 const Value *O1 = V1->getUnderlyingObject();
757 const Value *O2 = V2->getUnderlyingObject();
759 // Null values in the default address space don't point to any object, so they
760 // don't alias any other pointer.
761 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
762 if (CPN->getType()->getAddressSpace() == 0)
764 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
765 if (CPN->getType()->getAddressSpace() == 0)
768 // If we can identify two objects and they're known to be within the
769 // same function, we can ignore interprocedural concerns.
770 bool EffectivelyInterprocedural =
771 Interprocedural && !sameParent(O1, O2);
774 // If V1/V2 point to two different objects we know that we have no alias.
775 if (isIdentifiedObject(O1, EffectivelyInterprocedural) &&
776 isIdentifiedObject(O2, EffectivelyInterprocedural))
779 // Constant pointers can't alias with non-const isIdentifiedObject objects.
780 if ((isa<Constant>(O1) &&
781 isIdentifiedObject(O2, EffectivelyInterprocedural) &&
782 !isa<Constant>(O2)) ||
783 (isa<Constant>(O2) &&
784 isIdentifiedObject(O1, EffectivelyInterprocedural) &&
788 // Arguments can't alias with local allocations or noalias calls
789 // in the same function.
790 if (!EffectivelyInterprocedural &&
791 ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
792 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
795 // Most objects can't alias null.
796 if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
797 (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
801 // If the size of one access is larger than the entire object on the other
802 // side, then we know such behavior is undefined and can assume no alias.
804 if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
805 (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
808 // If one pointer is the result of a call/invoke or load and the other is a
809 // non-escaping local object within the same function, then we know the
810 // object couldn't escape to a point where the call could return it.
812 // Note that if the pointers are in different functions, there are a
813 // variety of complications. A call with a nocapture argument may still
814 // temporary store the nocapture argument's value in a temporary memory
815 // location if that memory location doesn't escape. Or it may pass a
816 // nocapture value to other functions as long as they don't capture it.
817 if (O1 != O2 && !EffectivelyInterprocedural) {
818 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
820 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
824 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
825 // GEP can't simplify, we don't even look at the PHI cases.
826 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
828 std::swap(V1Size, V2Size);
831 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
832 return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
834 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
836 std::swap(V1Size, V2Size);
838 if (const PHINode *PN = dyn_cast<PHINode>(V1))
839 return aliasPHI(PN, V1Size, V2, V2Size);
841 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
843 std::swap(V1Size, V2Size);
845 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
846 return aliasSelect(S1, V1Size, V2, V2Size);
851 // Make sure that anything that uses AliasAnalysis pulls in this file.
852 DEFINING_FILE_FOR(BasicAliasAnalysis)
854 //===----------------------------------------------------------------------===//
855 // InterproceduralBasicAliasAnalysis Pass
856 //===----------------------------------------------------------------------===//
859 /// InterproceduralBasicAliasAnalysis - This is similar to basicaa, except
860 /// that it properly supports queries to values which live in different
863 /// Note that we don't currently take this to the extreme, analyzing all
864 /// call sites of a function to answer a query about an Argument.
866 struct InterproceduralBasicAliasAnalysis : public BasicAliasAnalysis {
867 static char ID; // Class identification, replacement for typeinfo
868 InterproceduralBasicAliasAnalysis() : BasicAliasAnalysis(&ID, true) {}
872 // Register this pass...
873 char InterproceduralBasicAliasAnalysis::ID = 0;
874 static RegisterPass<InterproceduralBasicAliasAnalysis>
875 W("interprocedural-basic-aa", "Interprocedural Basic Alias Analysis", false, true);
877 // Declare that we implement the AliasAnalysis interface
878 static RegisterAnalysisGroup<AliasAnalysis> Z(W);
880 ImmutablePass *llvm::createInterproceduralBasicAliasAnalysisPass() {
881 return new InterproceduralBasicAliasAnalysis();