1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/Passes.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionTracker.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/CaptureTracking.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Target/TargetLibraryInfo.h"
45 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
46 /// in a cycle. Because we are analysing 'through' phi nodes we need to be
47 /// careful with value equivalence. We use reachability to make sure a value
48 /// cannot be involved in a cycle.
49 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
51 // The max limit of the search depth in DecomposeGEPExpression() and
52 // GetUnderlyingObject(), both functions need to use the same search
53 // depth otherwise the algorithm in aliasGEP will assert.
54 static const unsigned MaxLookupSearchDepth = 6;
56 //===----------------------------------------------------------------------===//
58 //===----------------------------------------------------------------------===//
60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
61 /// object that never escapes from the function.
62 static bool isNonEscapingLocalObject(const Value *V) {
63 // If this is a local allocation, check to see if it escapes.
64 if (isa<AllocaInst>(V) || isNoAliasCall(V))
65 // Set StoreCaptures to True so that we can assume in our callers that the
66 // pointer is not the result of a load instruction. Currently
67 // PointerMayBeCaptured doesn't have any special analysis for the
68 // StoreCaptures=false case; if it did, our callers could be refined to be
70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
72 // If this is an argument that corresponds to a byval or noalias argument,
73 // then it has not escaped before entering the function. Check if it escapes
74 // inside the function.
75 if (const Argument *A = dyn_cast<Argument>(V))
76 if (A->hasByValAttr() || A->hasNoAliasAttr())
77 // Note even if the argument is marked nocapture we still need to check
78 // for copies made inside the function. The nocapture attribute only
79 // specifies that there are no copies made that outlive the function.
80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
85 /// isEscapeSource - Return true if the pointer is one which would have
86 /// been considered an escape by isNonEscapingLocalObject.
87 static bool isEscapeSource(const Value *V) {
88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
91 // The load case works because isNonEscapingLocalObject considers all
92 // stores to be escapes (it passes true for the StoreCaptures argument
93 // to PointerMayBeCaptured).
100 /// getObjectSize - Return the size of the object specified by V, or
101 /// UnknownSize if unknown.
102 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
103 const TargetLibraryInfo &TLI,
104 bool RoundToAlign = false) {
106 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign))
108 return AliasAnalysis::UnknownSize;
111 /// isObjectSmallerThan - Return true if we can prove that the object specified
112 /// by V is smaller than Size.
113 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
114 const DataLayout &DL,
115 const TargetLibraryInfo &TLI) {
116 // Note that the meanings of the "object" are slightly different in the
117 // following contexts:
118 // c1: llvm::getObjectSize()
119 // c2: llvm.objectsize() intrinsic
120 // c3: isObjectSmallerThan()
121 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
122 // refers to the "entire object".
124 // Consider this example:
125 // char *p = (char*)malloc(100)
128 // In the context of c1 and c2, the "object" pointed by q refers to the
129 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
131 // However, in the context of c3, the "object" refers to the chunk of memory
132 // being allocated. So, the "object" has 100 bytes, and q points to the middle
133 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
134 // parameter, before the llvm::getObjectSize() is called to get the size of
135 // entire object, we should:
136 // - either rewind the pointer q to the base-address of the object in
137 // question (in this case rewind to p), or
138 // - just give up. It is up to caller to make sure the pointer is pointing
139 // to the base address the object.
141 // We go for 2nd option for simplicity.
142 if (!isIdentifiedObject(V))
145 // This function needs to use the aligned object size because we allow
146 // reads a bit past the end given sufficient alignment.
147 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
149 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
152 /// isObjectSize - Return true if we can prove that the object specified
153 /// by V has size Size.
154 static bool isObjectSize(const Value *V, uint64_t Size,
155 const DataLayout &DL, const TargetLibraryInfo &TLI) {
156 uint64_t ObjectSize = getObjectSize(V, DL, TLI);
157 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
160 //===----------------------------------------------------------------------===//
161 // GetElementPtr Instruction Decomposition and Analysis
162 //===----------------------------------------------------------------------===//
171 struct VariableGEPIndex {
173 ExtensionKind Extension;
176 bool operator==(const VariableGEPIndex &Other) const {
177 return V == Other.V && Extension == Other.Extension &&
178 Scale == Other.Scale;
181 bool operator!=(const VariableGEPIndex &Other) const {
182 return !operator==(Other);
188 /// GetLinearExpression - Analyze the specified value as a linear expression:
189 /// "A*V + B", where A and B are constant integers. Return the scale and offset
190 /// values as APInts and return V as a Value*, and return whether we looked
191 /// through any sign or zero extends. The incoming Value is known to have
192 /// IntegerType and it may already be sign or zero extended.
194 /// Note that this looks through extends, so the high bits may not be
195 /// represented in the result.
196 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
197 ExtensionKind &Extension,
198 const DataLayout &DL, unsigned Depth,
199 AssumptionTracker *AT,
201 assert(V->getType()->isIntegerTy() && "Not an integer value");
203 // Limit our recursion depth.
210 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
211 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
212 switch (BOp->getOpcode()) {
214 case Instruction::Or:
215 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
217 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL, 0,
221 case Instruction::Add:
222 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
223 DL, Depth+1, AT, DT);
224 Offset += RHSC->getValue();
226 case Instruction::Mul:
227 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
228 DL, Depth+1, AT, DT);
229 Offset *= RHSC->getValue();
230 Scale *= RHSC->getValue();
232 case Instruction::Shl:
233 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
234 DL, Depth+1, AT, DT);
235 Offset <<= RHSC->getValue().getLimitedValue();
236 Scale <<= RHSC->getValue().getLimitedValue();
242 // Since GEP indices are sign extended anyway, we don't care about the high
243 // bits of a sign or zero extended value - just scales and offsets. The
244 // extensions have to be consistent though.
245 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
246 (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
247 Value *CastOp = cast<CastInst>(V)->getOperand(0);
248 unsigned OldWidth = Scale.getBitWidth();
249 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
250 Scale = Scale.trunc(SmallWidth);
251 Offset = Offset.trunc(SmallWidth);
252 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
254 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
255 DL, Depth+1, AT, DT);
256 Scale = Scale.zext(OldWidth);
257 Offset = Offset.zext(OldWidth);
267 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
268 /// into a base pointer with a constant offset and a number of scaled symbolic
271 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
272 /// the VarIndices vector) are Value*'s that are known to be scaled by the
273 /// specified amount, but which may have other unrepresented high bits. As such,
274 /// the gep cannot necessarily be reconstructed from its decomposed form.
276 /// When DataLayout is around, this function is capable of analyzing everything
277 /// that GetUnderlyingObject can look through. To be able to do that
278 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
279 /// depth (MaxLookupSearchDepth).
280 /// When DataLayout not is around, it just looks through pointer casts.
283 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
284 SmallVectorImpl<VariableGEPIndex> &VarIndices,
285 bool &MaxLookupReached, const DataLayout *DL,
286 AssumptionTracker *AT, DominatorTree *DT) {
287 // Limit recursion depth to limit compile time in crazy cases.
288 unsigned MaxLookup = MaxLookupSearchDepth;
289 MaxLookupReached = false;
293 // See if this is a bitcast or GEP.
294 const Operator *Op = dyn_cast<Operator>(V);
296 // The only non-operator case we can handle are GlobalAliases.
297 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
298 if (!GA->mayBeOverridden()) {
299 V = GA->getAliasee();
306 if (Op->getOpcode() == Instruction::BitCast ||
307 Op->getOpcode() == Instruction::AddrSpaceCast) {
308 V = Op->getOperand(0);
312 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
314 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
315 // can come up with something. This matches what GetUnderlyingObject does.
316 if (const Instruction *I = dyn_cast<Instruction>(V))
317 // TODO: Get a DominatorTree and AssumptionTracker and use them here
318 // (these are both now available in this function, but this should be
319 // updated when GetUnderlyingObject is updated). TLI should be
321 if (const Value *Simplified =
322 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
330 // Don't attempt to analyze GEPs over unsized objects.
331 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
334 // If we are lacking DataLayout information, we can't compute the offets of
335 // elements computed by GEPs. However, we can handle bitcast equivalent
338 if (!GEPOp->hasAllZeroIndices())
340 V = GEPOp->getOperand(0);
344 unsigned AS = GEPOp->getPointerAddressSpace();
345 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
346 gep_type_iterator GTI = gep_type_begin(GEPOp);
347 for (User::const_op_iterator I = GEPOp->op_begin()+1,
348 E = GEPOp->op_end(); I != E; ++I) {
350 // Compute the (potentially symbolic) offset in bytes for this index.
351 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
352 // For a struct, add the member offset.
353 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
354 if (FieldNo == 0) continue;
356 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo);
360 // For an array/pointer, add the element offset, explicitly scaled.
361 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
362 if (CIdx->isZero()) continue;
363 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
367 uint64_t Scale = DL->getTypeAllocSize(*GTI);
368 ExtensionKind Extension = EK_NotExtended;
370 // If the integer type is smaller than the pointer size, it is implicitly
371 // sign extended to pointer size.
372 unsigned Width = Index->getType()->getIntegerBitWidth();
373 if (DL->getPointerSizeInBits(AS) > Width)
374 Extension = EK_SignExt;
376 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
377 APInt IndexScale(Width, 0), IndexOffset(Width, 0);
378 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
381 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
382 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
383 BaseOffs += IndexOffset.getSExtValue()*Scale;
384 Scale *= IndexScale.getSExtValue();
386 // If we already had an occurrence of this index variable, merge this
387 // scale into it. For example, we want to handle:
388 // A[x][x] -> x*16 + x*4 -> x*20
389 // This also ensures that 'x' only appears in the index list once.
390 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
391 if (VarIndices[i].V == Index &&
392 VarIndices[i].Extension == Extension) {
393 Scale += VarIndices[i].Scale;
394 VarIndices.erase(VarIndices.begin()+i);
399 // Make sure that we have a scale that makes sense for this target's
401 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) {
403 Scale = (int64_t)Scale >> ShiftBits;
407 VariableGEPIndex Entry = {Index, Extension,
408 static_cast<int64_t>(Scale)};
409 VarIndices.push_back(Entry);
413 // Analyze the base pointer next.
414 V = GEPOp->getOperand(0);
415 } while (--MaxLookup);
417 // If the chain of expressions is too deep, just return early.
418 MaxLookupReached = true;
422 //===----------------------------------------------------------------------===//
423 // BasicAliasAnalysis Pass
424 //===----------------------------------------------------------------------===//
427 static const Function *getParent(const Value *V) {
428 if (const Instruction *inst = dyn_cast<Instruction>(V))
429 return inst->getParent()->getParent();
431 if (const Argument *arg = dyn_cast<Argument>(V))
432 return arg->getParent();
437 static bool notDifferentParent(const Value *O1, const Value *O2) {
439 const Function *F1 = getParent(O1);
440 const Function *F2 = getParent(O2);
442 return !F1 || !F2 || F1 == F2;
447 /// BasicAliasAnalysis - This is the primary alias analysis implementation.
448 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
449 static char ID; // Class identification, replacement for typeinfo
450 BasicAliasAnalysis() : ImmutablePass(ID) {
451 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
454 void initializePass() override {
455 InitializeAliasAnalysis(this);
458 void getAnalysisUsage(AnalysisUsage &AU) const override {
459 AU.addRequired<AliasAnalysis>();
460 AU.addRequired<AssumptionTracker>();
461 AU.addRequired<TargetLibraryInfo>();
464 AliasResult alias(const Location &LocA, const Location &LocB) override {
465 assert(AliasCache.empty() && "AliasCache must be cleared after use!");
466 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
467 "BasicAliasAnalysis doesn't support interprocedural queries.");
468 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
469 LocB.Ptr, LocB.Size, LocB.AATags);
470 // AliasCache rarely has more than 1 or 2 elements, always use
471 // shrink_and_clear so it quickly returns to the inline capacity of the
472 // SmallDenseMap if it ever grows larger.
473 // FIXME: This should really be shrink_to_inline_capacity_and_clear().
474 AliasCache.shrink_and_clear();
475 VisitedPhiBBs.clear();
479 ModRefResult getModRefInfo(ImmutableCallSite CS,
480 const Location &Loc) override;
482 ModRefResult getModRefInfo(ImmutableCallSite CS1,
483 ImmutableCallSite CS2) override;
485 /// pointsToConstantMemory - Chase pointers until we find a (constant
487 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
489 /// Get the location associated with a pointer argument of a callsite.
490 Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
491 ModRefResult &Mask) override;
493 /// getModRefBehavior - Return the behavior when calling the given
495 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
497 /// getModRefBehavior - Return the behavior when calling the given function.
498 /// For use when the call site is not known.
499 ModRefBehavior getModRefBehavior(const Function *F) override;
501 /// getAdjustedAnalysisPointer - This method is used when a pass implements
502 /// an analysis interface through multiple inheritance. If needed, it
503 /// should override this to adjust the this pointer as needed for the
504 /// specified pass info.
505 void *getAdjustedAnalysisPointer(const void *ID) override {
506 if (ID == &AliasAnalysis::ID)
507 return (AliasAnalysis*)this;
512 // AliasCache - Track alias queries to guard against recursion.
513 typedef std::pair<Location, Location> LocPair;
514 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
515 AliasCacheTy AliasCache;
517 /// \brief Track phi nodes we have visited. When interpret "Value" pointer
518 /// equality as value equality we need to make sure that the "Value" is not
519 /// part of a cycle. Otherwise, two uses could come from different
520 /// "iterations" of a cycle and see different values for the same "Value"
522 /// The following example shows the problem:
523 /// %p = phi(%alloca1, %addr2)
525 /// %addr1 = gep, %alloca2, 0, %l
526 /// %addr2 = gep %alloca2, 0, (%l + 1)
527 /// alias(%p, %addr1) -> MayAlias !
529 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
531 // Visited - Track instructions visited by pointsToConstantMemory.
532 SmallPtrSet<const Value*, 16> Visited;
534 /// \brief Check whether two Values can be considered equivalent.
536 /// In addition to pointer equivalence of \p V1 and \p V2 this checks
537 /// whether they can not be part of a cycle in the value graph by looking at
538 /// all visited phi nodes an making sure that the phis cannot reach the
539 /// value. We have to do this because we are looking through phi nodes (That
540 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
541 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
543 /// \brief Dest and Src are the variable indices from two decomposed
544 /// GetElementPtr instructions GEP1 and GEP2 which have common base
545 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
546 /// difference between the two pointers.
547 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
548 const SmallVectorImpl<VariableGEPIndex> &Src);
550 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
551 // instruction against another.
552 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
553 const AAMDNodes &V1AAInfo,
554 const Value *V2, uint64_t V2Size,
555 const AAMDNodes &V2AAInfo,
556 const Value *UnderlyingV1, const Value *UnderlyingV2);
558 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
559 // instruction against another.
560 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
561 const AAMDNodes &PNAAInfo,
562 const Value *V2, uint64_t V2Size,
563 const AAMDNodes &V2AAInfo);
565 /// aliasSelect - Disambiguate a Select instruction against another value.
566 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
567 const AAMDNodes &SIAAInfo,
568 const Value *V2, uint64_t V2Size,
569 const AAMDNodes &V2AAInfo);
571 AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
573 const Value *V2, uint64_t V2Size,
576 } // End of anonymous namespace
578 // Register this pass...
579 char BasicAliasAnalysis::ID = 0;
580 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
581 "Basic Alias Analysis (stateless AA impl)",
583 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
584 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
585 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
586 "Basic Alias Analysis (stateless AA impl)",
590 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
591 return new BasicAliasAnalysis();
594 /// pointsToConstantMemory - Returns whether the given pointer value
595 /// points to memory that is local to the function, with global constants being
596 /// considered local to all functions.
598 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
599 assert(Visited.empty() && "Visited must be cleared after use!");
601 unsigned MaxLookup = 8;
602 SmallVector<const Value *, 16> Worklist;
603 Worklist.push_back(Loc.Ptr);
605 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
606 if (!Visited.insert(V)) {
608 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
611 // An alloca instruction defines local memory.
612 if (OrLocal && isa<AllocaInst>(V))
615 // A global constant counts as local memory for our purposes.
616 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
617 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
618 // global to be marked constant in some modules and non-constant in
619 // others. GV may even be a declaration, not a definition.
620 if (!GV->isConstant()) {
622 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
627 // If both select values point to local memory, then so does the select.
628 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
629 Worklist.push_back(SI->getTrueValue());
630 Worklist.push_back(SI->getFalseValue());
634 // If all values incoming to a phi node point to local memory, then so does
636 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
637 // Don't bother inspecting phi nodes with many operands.
638 if (PN->getNumIncomingValues() > MaxLookup) {
640 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
643 Worklist.push_back(PN->getIncomingValue(i));
647 // Otherwise be conservative.
649 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
651 } while (!Worklist.empty() && --MaxLookup);
654 return Worklist.empty();
657 static bool isMemsetPattern16(const Function *MS,
658 const TargetLibraryInfo &TLI) {
659 if (TLI.has(LibFunc::memset_pattern16) &&
660 MS->getName() == "memset_pattern16") {
661 FunctionType *MemsetType = MS->getFunctionType();
662 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
663 isa<PointerType>(MemsetType->getParamType(0)) &&
664 isa<PointerType>(MemsetType->getParamType(1)) &&
665 isa<IntegerType>(MemsetType->getParamType(2)))
672 /// getModRefBehavior - Return the behavior when calling the given call site.
673 AliasAnalysis::ModRefBehavior
674 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
675 if (CS.doesNotAccessMemory())
676 // Can't do better than this.
677 return DoesNotAccessMemory;
679 ModRefBehavior Min = UnknownModRefBehavior;
681 // If the callsite knows it only reads memory, don't return worse
683 if (CS.onlyReadsMemory())
684 Min = OnlyReadsMemory;
686 // The AliasAnalysis base class has some smarts, lets use them.
687 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
690 /// getModRefBehavior - Return the behavior when calling the given function.
691 /// For use when the call site is not known.
692 AliasAnalysis::ModRefBehavior
693 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
694 // If the function declares it doesn't access memory, we can't do better.
695 if (F->doesNotAccessMemory())
696 return DoesNotAccessMemory;
698 // For intrinsics, we can check the table.
699 if (unsigned iid = F->getIntrinsicID()) {
700 #define GET_INTRINSIC_MODREF_BEHAVIOR
701 #include "llvm/IR/Intrinsics.gen"
702 #undef GET_INTRINSIC_MODREF_BEHAVIOR
705 ModRefBehavior Min = UnknownModRefBehavior;
707 // If the function declares it only reads memory, go with that.
708 if (F->onlyReadsMemory())
709 Min = OnlyReadsMemory;
711 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
712 if (isMemsetPattern16(F, TLI))
713 Min = OnlyAccessesArgumentPointees;
715 // Otherwise be conservative.
716 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
719 AliasAnalysis::Location
720 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
721 ModRefResult &Mask) {
722 Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
723 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
724 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
726 switch (II->getIntrinsicID()) {
728 case Intrinsic::memset:
729 case Intrinsic::memcpy:
730 case Intrinsic::memmove: {
731 assert((ArgIdx == 0 || ArgIdx == 1) &&
732 "Invalid argument index for memory intrinsic");
733 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
734 Loc.Size = LenCI->getZExtValue();
735 assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
736 "Memory intrinsic location pointer not argument?");
737 Mask = ArgIdx ? Ref : Mod;
740 case Intrinsic::lifetime_start:
741 case Intrinsic::lifetime_end:
742 case Intrinsic::invariant_start: {
743 assert(ArgIdx == 1 && "Invalid argument index");
744 assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
745 "Intrinsic location pointer not argument?");
746 Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
749 case Intrinsic::invariant_end: {
750 assert(ArgIdx == 2 && "Invalid argument index");
751 assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
752 "Intrinsic location pointer not argument?");
753 Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
756 case Intrinsic::arm_neon_vld1: {
757 assert(ArgIdx == 0 && "Invalid argument index");
758 assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
759 "Intrinsic location pointer not argument?");
760 // LLVM's vld1 and vst1 intrinsics currently only support a single
763 Loc.Size = DL->getTypeStoreSize(II->getType());
766 case Intrinsic::arm_neon_vst1: {
767 assert(ArgIdx == 0 && "Invalid argument index");
768 assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
769 "Intrinsic location pointer not argument?");
771 Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
776 // We can bound the aliasing properties of memset_pattern16 just as we can
777 // for memcpy/memset. This is particularly important because the
778 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
779 // whenever possible.
780 else if (CS.getCalledFunction() &&
781 isMemsetPattern16(CS.getCalledFunction(), TLI)) {
782 assert((ArgIdx == 0 || ArgIdx == 1) &&
783 "Invalid argument index for memset_pattern16");
786 else if (const ConstantInt *LenCI =
787 dyn_cast<ConstantInt>(CS.getArgument(2)))
788 Loc.Size = LenCI->getZExtValue();
789 assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
790 "memset_pattern16 location pointer not argument?");
791 Mask = ArgIdx ? Ref : Mod;
793 // FIXME: Handle memset_pattern4 and memset_pattern8 also.
798 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
799 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
800 if (II && II->getIntrinsicID() == Intrinsic::assume)
806 /// getModRefInfo - Check to see if the specified callsite can clobber the
807 /// specified memory object. Since we only look at local properties of this
808 /// function, we really can't say much about this query. We do, however, use
809 /// simple "address taken" analysis on local objects.
810 AliasAnalysis::ModRefResult
811 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
812 const Location &Loc) {
813 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
814 "AliasAnalysis query involving multiple functions!");
816 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
818 // If this is a tail call and Loc.Ptr points to a stack location, we know that
819 // the tail call cannot access or modify the local stack.
820 // We cannot exclude byval arguments here; these belong to the caller of
821 // the current function not to the current function, and a tail callee
822 // may reference them.
823 if (isa<AllocaInst>(Object))
824 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
825 if (CI->isTailCall())
828 // If the pointer is to a locally allocated object that does not escape,
829 // then the call can not mod/ref the pointer unless the call takes the pointer
830 // as an argument, and itself doesn't capture it.
831 if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
832 isNonEscapingLocalObject(Object)) {
833 bool PassedAsArg = false;
835 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
836 CI != CE; ++CI, ++ArgNo) {
837 // Only look at the no-capture or byval pointer arguments. If this
838 // pointer were passed to arguments that were neither of these, then it
839 // couldn't be no-capture.
840 if (!(*CI)->getType()->isPointerTy() ||
841 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
844 // If this is a no-capture pointer argument, see if we can tell that it
845 // is impossible to alias the pointer we're checking. If not, we have to
846 // assume that the call could touch the pointer, even though it doesn't
848 if (!isNoAlias(Location(*CI), Location(Object))) {
858 // While the assume intrinsic is marked as arbitrarily writing so that
859 // proper control dependencies will be maintained, it never aliases any
860 // particular memory location.
861 if (isAssumeIntrinsic(CS))
864 // The AliasAnalysis base class has some smarts, lets use them.
865 return AliasAnalysis::getModRefInfo(CS, Loc);
868 AliasAnalysis::ModRefResult
869 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
870 ImmutableCallSite CS2) {
871 // While the assume intrinsic is marked as arbitrarily writing so that
872 // proper control dependencies will be maintained, it never aliases any
873 // particular memory location.
874 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
877 // The AliasAnalysis base class has some smarts, lets use them.
878 return AliasAnalysis::getModRefInfo(CS1, CS2);
881 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
882 /// against another pointer. We know that V1 is a GEP, but we don't know
883 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
884 /// UnderlyingV2 is the same for V2.
886 AliasAnalysis::AliasResult
887 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
888 const AAMDNodes &V1AAInfo,
889 const Value *V2, uint64_t V2Size,
890 const AAMDNodes &V2AAInfo,
891 const Value *UnderlyingV1,
892 const Value *UnderlyingV2) {
893 int64_t GEP1BaseOffset;
894 bool GEP1MaxLookupReached;
895 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
897 AssumptionTracker *AT = &getAnalysis<AssumptionTracker>();
898 DominatorTreeWrapperPass *DTWP =
899 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
900 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
902 // If we have two gep instructions with must-alias or not-alias'ing base
903 // pointers, figure out if the indexes to the GEP tell us anything about the
905 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
906 // Do the base pointers alias?
907 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
908 UnderlyingV2, UnknownSize, AAMDNodes());
910 // Check for geps of non-aliasing underlying pointers where the offsets are
912 if ((BaseAlias == MayAlias) && V1Size == V2Size) {
913 // Do the base pointers alias assuming type and size.
914 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
915 V1AAInfo, UnderlyingV2,
917 if (PreciseBaseAlias == NoAlias) {
918 // See if the computed offset from the common pointer tells us about the
919 // relation of the resulting pointer.
920 int64_t GEP2BaseOffset;
921 bool GEP2MaxLookupReached;
922 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
923 const Value *GEP2BasePtr =
924 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
925 GEP2MaxLookupReached, DL, AT, DT);
926 const Value *GEP1BasePtr =
927 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
928 GEP1MaxLookupReached, DL, AT, DT);
929 // DecomposeGEPExpression and GetUnderlyingObject should return the
930 // same result except when DecomposeGEPExpression has no DataLayout.
931 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
933 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
936 // If the max search depth is reached the result is undefined
937 if (GEP2MaxLookupReached || GEP1MaxLookupReached)
941 if (GEP1BaseOffset == GEP2BaseOffset &&
942 GEP1VariableIndices == GEP2VariableIndices)
944 GEP1VariableIndices.clear();
948 // If we get a No or May, then return it immediately, no amount of analysis
949 // will improve this situation.
950 if (BaseAlias != MustAlias) return BaseAlias;
952 // Otherwise, we have a MustAlias. Since the base pointers alias each other
953 // exactly, see if the computed offset from the common pointer tells us
954 // about the relation of the resulting pointer.
955 const Value *GEP1BasePtr =
956 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
957 GEP1MaxLookupReached, DL, AT, DT);
959 int64_t GEP2BaseOffset;
960 bool GEP2MaxLookupReached;
961 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
962 const Value *GEP2BasePtr =
963 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
964 GEP2MaxLookupReached, DL, AT, DT);
966 // DecomposeGEPExpression and GetUnderlyingObject should return the
967 // same result except when DecomposeGEPExpression has no DataLayout.
968 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
970 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
973 // If the max search depth is reached the result is undefined
974 if (GEP2MaxLookupReached || GEP1MaxLookupReached)
977 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
978 // symbolic difference.
979 GEP1BaseOffset -= GEP2BaseOffset;
980 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
983 // Check to see if these two pointers are related by the getelementptr
984 // instruction. If one pointer is a GEP with a non-zero index of the other
985 // pointer, we know they cannot alias.
987 // If both accesses are unknown size, we can't do anything useful here.
988 if (V1Size == UnknownSize && V2Size == UnknownSize)
991 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
992 V2, V2Size, V2AAInfo);
994 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
995 // If V2 is known not to alias GEP base pointer, then the two values
996 // cannot alias per GEP semantics: "A pointer value formed from a
997 // getelementptr instruction is associated with the addresses associated
998 // with the first operand of the getelementptr".
1001 const Value *GEP1BasePtr =
1002 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1003 GEP1MaxLookupReached, DL, AT, DT);
1005 // DecomposeGEPExpression and GetUnderlyingObject should return the
1006 // same result except when DecomposeGEPExpression has no DataLayout.
1007 if (GEP1BasePtr != UnderlyingV1) {
1009 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
1012 // If the max search depth is reached the result is undefined
1013 if (GEP1MaxLookupReached)
1017 // In the two GEP Case, if there is no difference in the offsets of the
1018 // computed pointers, the resultant pointers are a must alias. This
1019 // hapens when we have two lexically identical GEP's (for example).
1021 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1022 // must aliases the GEP, the end result is a must alias also.
1023 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1026 // If there is a constant difference between the pointers, but the difference
1027 // is less than the size of the associated memory object, then we know
1028 // that the objects are partially overlapping. If the difference is
1029 // greater, we know they do not overlap.
1030 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1031 if (GEP1BaseOffset >= 0) {
1032 if (V2Size != UnknownSize) {
1033 if ((uint64_t)GEP1BaseOffset < V2Size)
1034 return PartialAlias;
1038 // We have the situation where:
1041 // ---------------->|
1042 // |-->V1Size |-------> V2Size
1044 // We need to know that V2Size is not unknown, otherwise we might have
1045 // stripped a gep with negative index ('gep <ptr>, -1, ...).
1046 if (V1Size != UnknownSize && V2Size != UnknownSize) {
1047 if (-(uint64_t)GEP1BaseOffset < V1Size)
1048 return PartialAlias;
1054 // Try to distinguish something like &A[i][1] against &A[42][0].
1055 // Grab the least significant bit set in any of the scales.
1056 if (!GEP1VariableIndices.empty()) {
1057 uint64_t Modulo = 0;
1058 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
1059 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1060 Modulo = Modulo ^ (Modulo & (Modulo - 1));
1062 // We can compute the difference between the two addresses
1063 // mod Modulo. Check whether that difference guarantees that the
1064 // two locations do not alias.
1065 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1066 if (V1Size != UnknownSize && V2Size != UnknownSize &&
1067 ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1071 // Statically, we can see that the base objects are the same, but the
1072 // pointers have dynamic offsets which we can't resolve. And none of our
1073 // little tricks above worked.
1075 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1076 // practical effect of this is protecting TBAA in the case of dynamic
1077 // indices into arrays of unions or malloc'd memory.
1078 return PartialAlias;
1081 static AliasAnalysis::AliasResult
1082 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1083 // If the results agree, take it.
1086 // A mix of PartialAlias and MustAlias is PartialAlias.
1087 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1088 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1089 return AliasAnalysis::PartialAlias;
1090 // Otherwise, we don't know anything.
1091 return AliasAnalysis::MayAlias;
1094 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1095 /// instruction against another.
1096 AliasAnalysis::AliasResult
1097 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1098 const AAMDNodes &SIAAInfo,
1099 const Value *V2, uint64_t V2Size,
1100 const AAMDNodes &V2AAInfo) {
1101 // If the values are Selects with the same condition, we can do a more precise
1102 // check: just check for aliases between the values on corresponding arms.
1103 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1104 if (SI->getCondition() == SI2->getCondition()) {
1106 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1107 SI2->getTrueValue(), V2Size, V2AAInfo);
1108 if (Alias == MayAlias)
1110 AliasResult ThisAlias =
1111 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1112 SI2->getFalseValue(), V2Size, V2AAInfo);
1113 return MergeAliasResults(ThisAlias, Alias);
1116 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1117 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1119 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1120 if (Alias == MayAlias)
1123 AliasResult ThisAlias =
1124 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1125 return MergeAliasResults(ThisAlias, Alias);
1128 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1130 AliasAnalysis::AliasResult
1131 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1132 const AAMDNodes &PNAAInfo,
1133 const Value *V2, uint64_t V2Size,
1134 const AAMDNodes &V2AAInfo) {
1135 // Track phi nodes we have visited. We use this information when we determine
1136 // value equivalence.
1137 VisitedPhiBBs.insert(PN->getParent());
1139 // If the values are PHIs in the same block, we can do a more precise
1140 // as well as efficient check: just check for aliases between the values
1141 // on corresponding edges.
1142 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1143 if (PN2->getParent() == PN->getParent()) {
1144 LocPair Locs(Location(PN, PNSize, PNAAInfo),
1145 Location(V2, V2Size, V2AAInfo));
1147 std::swap(Locs.first, Locs.second);
1148 // Analyse the PHIs' inputs under the assumption that the PHIs are
1150 // If the PHIs are May/MustAlias there must be (recursively) an input
1151 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1152 // there must be an operation on the PHIs within the PHIs' value cycle
1153 // that causes a MayAlias.
1154 // Pretend the phis do not alias.
1155 AliasResult Alias = NoAlias;
1156 assert(AliasCache.count(Locs) &&
1157 "There must exist an entry for the phi node");
1158 AliasResult OrigAliasResult = AliasCache[Locs];
1159 AliasCache[Locs] = NoAlias;
1161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1162 AliasResult ThisAlias =
1163 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1164 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1166 Alias = MergeAliasResults(ThisAlias, Alias);
1167 if (Alias == MayAlias)
1171 // Reset if speculation failed.
1172 if (Alias != NoAlias)
1173 AliasCache[Locs] = OrigAliasResult;
1178 SmallPtrSet<Value*, 4> UniqueSrc;
1179 SmallVector<Value*, 4> V1Srcs;
1180 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1181 Value *PV1 = PN->getIncomingValue(i);
1182 if (isa<PHINode>(PV1))
1183 // If any of the source itself is a PHI, return MayAlias conservatively
1184 // to avoid compile time explosion. The worst possible case is if both
1185 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1186 // and 'n' are the number of PHI sources.
1188 if (UniqueSrc.insert(PV1))
1189 V1Srcs.push_back(PV1);
1192 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
1193 V1Srcs[0], PNSize, PNAAInfo);
1194 // Early exit if the check of the first PHI source against V2 is MayAlias.
1195 // Other results are not possible.
1196 if (Alias == MayAlias)
1199 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1200 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1201 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1202 Value *V = V1Srcs[i];
1204 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
1205 V, PNSize, PNAAInfo);
1206 Alias = MergeAliasResults(ThisAlias, Alias);
1207 if (Alias == MayAlias)
1214 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1215 // such as array references.
1217 AliasAnalysis::AliasResult
1218 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1220 const Value *V2, uint64_t V2Size,
1221 AAMDNodes V2AAInfo) {
1222 // If either of the memory references is empty, it doesn't matter what the
1223 // pointer values are.
1224 if (V1Size == 0 || V2Size == 0)
1227 // Strip off any casts if they exist.
1228 V1 = V1->stripPointerCasts();
1229 V2 = V2->stripPointerCasts();
1231 // Are we checking for alias of the same value?
1232 // Because we look 'through' phi nodes we could look at "Value" pointers from
1233 // different iterations. We must therefore make sure that this is not the
1234 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1235 // happen by looking at the visited phi nodes and making sure they cannot
1237 if (isValueEqualInPotentialCycles(V1, V2))
1240 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1241 return NoAlias; // Scalars cannot alias each other
1243 // Figure out what objects these things are pointing to if we can.
1244 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1245 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1247 // Null values in the default address space don't point to any object, so they
1248 // don't alias any other pointer.
1249 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1250 if (CPN->getType()->getAddressSpace() == 0)
1252 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1253 if (CPN->getType()->getAddressSpace() == 0)
1257 // If V1/V2 point to two different objects we know that we have no alias.
1258 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1261 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1262 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1263 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1266 // Function arguments can't alias with things that are known to be
1267 // unambigously identified at the function level.
1268 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1269 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1272 // Most objects can't alias null.
1273 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1274 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1277 // If one pointer is the result of a call/invoke or load and the other is a
1278 // non-escaping local object within the same function, then we know the
1279 // object couldn't escape to a point where the call could return it.
1281 // Note that if the pointers are in different functions, there are a
1282 // variety of complications. A call with a nocapture argument may still
1283 // temporary store the nocapture argument's value in a temporary memory
1284 // location if that memory location doesn't escape. Or it may pass a
1285 // nocapture value to other functions as long as they don't capture it.
1286 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1288 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1292 // If the size of one access is larger than the entire object on the other
1293 // side, then we know such behavior is undefined and can assume no alias.
1295 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
1296 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
1299 // Check the cache before climbing up use-def chains. This also terminates
1300 // otherwise infinitely recursive queries.
1301 LocPair Locs(Location(V1, V1Size, V1AAInfo),
1302 Location(V2, V2Size, V2AAInfo));
1304 std::swap(Locs.first, Locs.second);
1305 std::pair<AliasCacheTy::iterator, bool> Pair =
1306 AliasCache.insert(std::make_pair(Locs, MayAlias));
1308 return Pair.first->second;
1310 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1311 // GEP can't simplify, we don't even look at the PHI cases.
1312 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1314 std::swap(V1Size, V2Size);
1316 std::swap(V1AAInfo, V2AAInfo);
1318 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1319 AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1320 if (Result != MayAlias) return AliasCache[Locs] = Result;
1323 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1325 std::swap(V1Size, V2Size);
1326 std::swap(V1AAInfo, V2AAInfo);
1328 if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1329 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1330 V2, V2Size, V2AAInfo);
1331 if (Result != MayAlias) return AliasCache[Locs] = Result;
1334 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1336 std::swap(V1Size, V2Size);
1337 std::swap(V1AAInfo, V2AAInfo);
1339 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1340 AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
1341 V2, V2Size, V2AAInfo);
1342 if (Result != MayAlias) return AliasCache[Locs] = Result;
1345 // If both pointers are pointing into the same object and one of them
1346 // accesses is accessing the entire object, then the accesses must
1347 // overlap in some way.
1349 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
1350 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
1351 return AliasCache[Locs] = PartialAlias;
1353 AliasResult Result =
1354 AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo),
1355 Location(V2, V2Size, V2AAInfo));
1356 return AliasCache[Locs] = Result;
1359 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
1364 const Instruction *Inst = dyn_cast<Instruction>(V);
1368 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1371 // Use dominance or loop info if available.
1372 DominatorTreeWrapperPass *DTWP =
1373 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1374 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1375 LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>();
1377 // Make sure that the visited phis cannot reach the Value. This ensures that
1378 // the Values cannot come from different iterations of a potential cycle the
1379 // phi nodes could be involved in.
1380 for (auto *P : VisitedPhiBBs)
1381 if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
1387 /// GetIndexDifference - Dest and Src are the variable indices from two
1388 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
1389 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic
1390 /// difference between the two pointers.
1391 void BasicAliasAnalysis::GetIndexDifference(
1392 SmallVectorImpl<VariableGEPIndex> &Dest,
1393 const SmallVectorImpl<VariableGEPIndex> &Src) {
1397 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1398 const Value *V = Src[i].V;
1399 ExtensionKind Extension = Src[i].Extension;
1400 int64_t Scale = Src[i].Scale;
1402 // Find V in Dest. This is N^2, but pointer indices almost never have more
1403 // than a few variable indexes.
1404 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1405 if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1406 Dest[j].Extension != Extension)
1409 // If we found it, subtract off Scale V's from the entry in Dest. If it
1410 // goes to zero, remove the entry.
1411 if (Dest[j].Scale != Scale)
1412 Dest[j].Scale -= Scale;
1414 Dest.erase(Dest.begin() + j);
1419 // If we didn't consume this entry, add it to the end of the Dest list.
1421 VariableGEPIndex Entry = { V, Extension, -Scale };
1422 Dest.push_back(Entry);