Add a new method which enables one to change register classes.
[oota-llvm.git] / include / llvm / Target / TargetLowering.h
1 //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes how to lower LLVM code to machine code.  This has two
11 // main components:
12 //
13 //  1. Which ValueTypes are natively supported by the target.
14 //  2. Which operations are supported for supported ValueTypes.
15 //  3. Cost thresholds for alternative implementations of certain operations.
16 //
17 // In addition it has a few other components, like information about FP
18 // immediates.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #ifndef LLVM_TARGET_TARGETLOWERING_H
23 #define LLVM_TARGET_TARGETLOWERING_H
24
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/CodeGen/DAGCombine.h"
27 #include "llvm/CodeGen/RuntimeLibcalls.h"
28 #include "llvm/CodeGen/SelectionDAGNodes.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/Support/CallSite.h"
33 #include "llvm/Support/DebugLoc.h"
34 #include "llvm/Target/TargetCallingConv.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <climits>
37 #include <map>
38 #include <vector>
39
40 namespace llvm {
41   class CallInst;
42   class CCState;
43   class FastISel;
44   class FunctionLoweringInfo;
45   class ImmutableCallSite;
46   class IntrinsicInst;
47   class MachineBasicBlock;
48   class MachineFunction;
49   class MachineInstr;
50   class MachineJumpTableInfo;
51   class MCContext;
52   class MCExpr;
53   template<typename T> class SmallVectorImpl;
54   class DataLayout;
55   class TargetRegisterClass;
56   class TargetLibraryInfo;
57   class TargetLoweringObjectFile;
58   class Value;
59
60   namespace Sched {
61     enum Preference {
62       None,             // No preference
63       Source,           // Follow source order.
64       RegPressure,      // Scheduling for lowest register pressure.
65       Hybrid,           // Scheduling for both latency and register pressure.
66       ILP,              // Scheduling for ILP in low register pressure mode.
67       VLIW              // Scheduling for VLIW targets.
68     };
69   }
70
71 /// TargetLoweringBase - This base class for TargetLowering contains the
72 /// SelectionDAG-independent parts that can be used from the rest of CodeGen.
73 class TargetLoweringBase {
74   TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
75   void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
76
77 public:
78   /// LegalizeAction - This enum indicates whether operations are valid for a
79   /// target, and if not, what action should be used to make them valid.
80   enum LegalizeAction {
81     Legal,      // The target natively supports this operation.
82     Promote,    // This operation should be executed in a larger type.
83     Expand,     // Try to expand this to other ops, otherwise use a libcall.
84     Custom      // Use the LowerOperation hook to implement custom lowering.
85   };
86
87   /// LegalizeTypeAction - This enum indicates whether a types are legal for a
88   /// target, and if not, what action should be used to make them valid.
89   enum LegalizeTypeAction {
90     TypeLegal,           // The target natively supports this type.
91     TypePromoteInteger,  // Replace this integer with a larger one.
92     TypeExpandInteger,   // Split this integer into two of half the size.
93     TypeSoftenFloat,     // Convert this float to a same size integer type.
94     TypeExpandFloat,     // Split this float into two of half the size.
95     TypeScalarizeVector, // Replace this one-element vector with its element.
96     TypeSplitVector,     // Split this vector into two of half the size.
97     TypeWidenVector      // This vector should be widened into a larger vector.
98   };
99
100   /// LegalizeKind holds the legalization kind that needs to happen to EVT
101   /// in order to type-legalize it.
102   typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
103
104   enum BooleanContent { // How the target represents true/false values.
105     UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
106     ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
107     ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
108   };
109
110   enum SelectSupportKind {
111     ScalarValSelect,      // The target supports scalar selects (ex: cmov).
112     ScalarCondVectorVal,  // The target supports selects with a scalar condition
113                           // and vector values (ex: cmov).
114     VectorMaskSelect      // The target supports vector selects with a vector
115                           // mask (ex: x86 blends).
116   };
117
118   static ISD::NodeType getExtendForContent(BooleanContent Content) {
119     switch (Content) {
120     case UndefinedBooleanContent:
121       // Extend by adding rubbish bits.
122       return ISD::ANY_EXTEND;
123     case ZeroOrOneBooleanContent:
124       // Extend by adding zero bits.
125       return ISD::ZERO_EXTEND;
126     case ZeroOrNegativeOneBooleanContent:
127       // Extend by copying the sign bit.
128       return ISD::SIGN_EXTEND;
129     }
130     llvm_unreachable("Invalid content kind");
131   }
132
133   /// NOTE: The constructor takes ownership of TLOF.
134   explicit TargetLoweringBase(const TargetMachine &TM,
135                               const TargetLoweringObjectFile *TLOF);
136   virtual ~TargetLoweringBase();
137
138   const TargetMachine &getTargetMachine() const { return TM; }
139   const DataLayout *getDataLayout() const { return TD; }
140   const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
141
142   bool isBigEndian() const { return !IsLittleEndian; }
143   bool isLittleEndian() const { return IsLittleEndian; }
144   // Return the pointer type for the given address space, defaults to
145   // the pointer type from the data layout.
146   // FIXME: The default needs to be removed once all the code is updated.
147   virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
148   virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
149
150   EVT getShiftAmountTy(EVT LHSTy) const;
151
152   /// isSelectExpensive - Return true if the select operation is expensive for
153   /// this target.
154   bool isSelectExpensive() const { return SelectIsExpensive; }
155
156   virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
157
158   /// shouldSplitVectorElementType - Return true if a vector of the given type
159   /// should be split (TypeSplitVector) instead of promoted
160   /// (TypePromoteInteger) during type legalization.
161   virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
162
163   /// isIntDivCheap() - Return true if integer divide is usually cheaper than
164   /// a sequence of several shifts, adds, and multiplies for this target.
165   bool isIntDivCheap() const { return IntDivIsCheap; }
166
167   /// isSlowDivBypassed - Returns true if target has indicated at least one
168   /// type should be bypassed.
169   bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
170
171   /// getBypassSlowDivTypes - Returns map of slow types for division or
172   /// remainder with corresponding fast types
173   const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
174     return BypassSlowDivWidths;
175   }
176
177   /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
178   /// srl/add/sra.
179   bool isPow2DivCheap() const { return Pow2DivIsCheap; }
180
181   /// isJumpExpensive() - Return true if Flow Control is an expensive operation
182   /// that should be avoided.
183   bool isJumpExpensive() const { return JumpIsExpensive; }
184
185   /// isPredictableSelectExpensive - Return true if selects are only cheaper
186   /// than branches if the branch is unlikely to be predicted right.
187   bool isPredictableSelectExpensive() const {
188     return PredictableSelectIsExpensive;
189   }
190
191   /// getSetCCResultType - Return the ValueType of the result of SETCC
192   /// operations.  Also used to obtain the target's preferred type for
193   /// the condition operand of SELECT and BRCOND nodes.  In the case of
194   /// BRCOND the argument passed is MVT::Other since there are no other
195   /// operands to get a type hint from.
196   virtual EVT getSetCCResultType(EVT VT) const;
197
198   /// getCmpLibcallReturnType - Return the ValueType for comparison
199   /// libcalls. Comparions libcalls include floating point comparion calls,
200   /// and Ordered/Unordered check calls on floating point numbers.
201   virtual
202   MVT::SimpleValueType getCmpLibcallReturnType() const;
203
204   /// getBooleanContents - For targets without i1 registers, this gives the
205   /// nature of the high-bits of boolean values held in types wider than i1.
206   /// "Boolean values" are special true/false values produced by nodes like
207   /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
208   /// Not to be confused with general values promoted from i1.
209   /// Some cpus distinguish between vectors of boolean and scalars; the isVec
210   /// parameter selects between the two kinds.  For example on X86 a scalar
211   /// boolean should be zero extended from i1, while the elements of a vector
212   /// of booleans should be sign extended from i1.
213   BooleanContent getBooleanContents(bool isVec) const {
214     return isVec ? BooleanVectorContents : BooleanContents;
215   }
216
217   /// getSchedulingPreference - Return target scheduling preference.
218   Sched::Preference getSchedulingPreference() const {
219     return SchedPreferenceInfo;
220   }
221
222   /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
223   /// different scheduling heuristics for different nodes. This function returns
224   /// the preference (or none) for the given node.
225   virtual Sched::Preference getSchedulingPreference(SDNode *) const {
226     return Sched::None;
227   }
228
229   /// getRegClassFor - Return the register class that should be used for the
230   /// specified value type.
231   virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
232     const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
233     assert(RC && "This value type is not natively supported!");
234     return RC;
235   }
236
237   /// getRepRegClassFor - Return the 'representative' register class for the
238   /// specified value type. The 'representative' register class is the largest
239   /// legal super-reg register class for the register class of the value type.
240   /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
241   /// while the rep register class is GR64 on x86_64.
242   virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
243     const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
244     return RC;
245   }
246
247   /// getRepRegClassCostFor - Return the cost of the 'representative' register
248   /// class for the specified value type.
249   virtual uint8_t getRepRegClassCostFor(MVT VT) const {
250     return RepRegClassCostForVT[VT.SimpleTy];
251   }
252
253   /// isTypeLegal - Return true if the target has native support for the
254   /// specified value type.  This means that it has a register that directly
255   /// holds it without promotions or expansions.
256   bool isTypeLegal(EVT VT) const {
257     assert(!VT.isSimple() ||
258            (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
259     return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
260   }
261
262   class ValueTypeActionImpl {
263     /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
264     /// that indicates how instruction selection should deal with the type.
265     uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
266
267   public:
268     ValueTypeActionImpl() {
269       std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
270     }
271
272     LegalizeTypeAction getTypeAction(MVT VT) const {
273       return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
274     }
275
276     void setTypeAction(MVT VT, LegalizeTypeAction Action) {
277       unsigned I = VT.SimpleTy;
278       ValueTypeActions[I] = Action;
279     }
280   };
281
282   const ValueTypeActionImpl &getValueTypeActions() const {
283     return ValueTypeActions;
284   }
285
286   /// getTypeAction - Return how we should legalize values of this type, either
287   /// it is already legal (return 'Legal') or we need to promote it to a larger
288   /// type (return 'Promote'), or we need to expand it into multiple registers
289   /// of smaller integer type (return 'Expand').  'Custom' is not an option.
290   LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
291     return getTypeConversion(Context, VT).first;
292   }
293   LegalizeTypeAction getTypeAction(MVT VT) const {
294     return ValueTypeActions.getTypeAction(VT);
295   }
296
297   /// getTypeToTransformTo - For types supported by the target, this is an
298   /// identity function.  For types that must be promoted to larger types, this
299   /// returns the larger type to promote to.  For integer types that are larger
300   /// than the largest integer register, this contains one step in the expansion
301   /// to get to the smaller register. For illegal floating point types, this
302   /// returns the integer type to transform to.
303   EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
304     return getTypeConversion(Context, VT).second;
305   }
306
307   /// getTypeToExpandTo - For types supported by the target, this is an
308   /// identity function.  For types that must be expanded (i.e. integer types
309   /// that are larger than the largest integer register or illegal floating
310   /// point types), this returns the largest legal type it will be expanded to.
311   EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
312     assert(!VT.isVector());
313     while (true) {
314       switch (getTypeAction(Context, VT)) {
315       case TypeLegal:
316         return VT;
317       case TypeExpandInteger:
318         VT = getTypeToTransformTo(Context, VT);
319         break;
320       default:
321         llvm_unreachable("Type is not legal nor is it to be expanded!");
322       }
323     }
324   }
325
326   /// getVectorTypeBreakdown - Vector types are broken down into some number of
327   /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
328   /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
329   /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
330   ///
331   /// This method returns the number of registers needed, and the VT for each
332   /// register.  It also returns the VT and quantity of the intermediate values
333   /// before they are promoted/expanded.
334   ///
335   unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
336                                   EVT &IntermediateVT,
337                                   unsigned &NumIntermediates,
338                                   MVT &RegisterVT) const;
339
340   /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
341   /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
342   /// this is the case, it returns true and store the intrinsic
343   /// information into the IntrinsicInfo that was passed to the function.
344   struct IntrinsicInfo {
345     unsigned     opc;         // target opcode
346     EVT          memVT;       // memory VT
347     const Value* ptrVal;      // value representing memory location
348     int          offset;      // offset off of ptrVal
349     unsigned     align;       // alignment
350     bool         vol;         // is volatile?
351     bool         readMem;     // reads memory?
352     bool         writeMem;    // writes memory?
353   };
354
355   virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
356                                   unsigned /*Intrinsic*/) const {
357     return false;
358   }
359
360   /// isFPImmLegal - Returns true if the target can instruction select the
361   /// specified FP immediate natively. If false, the legalizer will materialize
362   /// the FP immediate as a load from a constant pool.
363   virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
364     return false;
365   }
366
367   /// isShuffleMaskLegal - Targets can use this to indicate that they only
368   /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
369   /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
370   /// are assumed to be legal.
371   virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
372                                   EVT /*VT*/) const {
373     return true;
374   }
375
376   /// canOpTrap - Returns true if the operation can trap for the value type.
377   /// VT must be a legal type. By default, we optimistically assume most
378   /// operations don't trap except for divide and remainder.
379   virtual bool canOpTrap(unsigned Op, EVT VT) const;
380
381   /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
382   /// used by Targets can use this to indicate if there is a suitable
383   /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
384   /// pool entry.
385   virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
386                                       EVT /*VT*/) const {
387     return false;
388   }
389
390   /// getOperationAction - Return how this operation should be treated: either
391   /// it is legal, needs to be promoted to a larger size, needs to be
392   /// expanded to some other code sequence, or the target has a custom expander
393   /// for it.
394   LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
395     if (VT.isExtended()) return Expand;
396     // If a target-specific SDNode requires legalization, require the target
397     // to provide custom legalization for it.
398     if (Op > array_lengthof(OpActions[0])) return Custom;
399     unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
400     return (LegalizeAction)OpActions[I][Op];
401   }
402
403   /// isOperationLegalOrCustom - Return true if the specified operation is
404   /// legal on this target or can be made legal with custom lowering. This
405   /// is used to help guide high-level lowering decisions.
406   bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
407     return (VT == MVT::Other || isTypeLegal(VT)) &&
408       (getOperationAction(Op, VT) == Legal ||
409        getOperationAction(Op, VT) == Custom);
410   }
411
412   /// isOperationLegalOrPromote - Return true if the specified operation is
413   /// legal on this target or can be made legal using promotion. This
414   /// is used to help guide high-level lowering decisions.
415   bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
416     return (VT == MVT::Other || isTypeLegal(VT)) &&
417       (getOperationAction(Op, VT) == Legal ||
418        getOperationAction(Op, VT) == Promote);
419   }
420
421   /// isOperationExpand - Return true if the specified operation is illegal on
422   /// this target or unlikely to be made legal with custom lowering. This is
423   /// used to help guide high-level lowering decisions.
424   bool isOperationExpand(unsigned Op, EVT VT) const {
425     return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
426   }
427
428   /// isOperationLegal - Return true if the specified operation is legal on this
429   /// target.
430   bool isOperationLegal(unsigned Op, EVT VT) const {
431     return (VT == MVT::Other || isTypeLegal(VT)) &&
432            getOperationAction(Op, VT) == Legal;
433   }
434
435   /// getLoadExtAction - Return how this load with extension should be treated:
436   /// either it is legal, needs to be promoted to a larger size, needs to be
437   /// expanded to some other code sequence, or the target has a custom expander
438   /// for it.
439   LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
440     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
441            "Table isn't big enough!");
442     return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
443   }
444
445   /// isLoadExtLegal - Return true if the specified load with extension is legal
446   /// on this target.
447   bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
448     return VT.isSimple() &&
449       getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
450   }
451
452   /// getTruncStoreAction - Return how this store with truncation should be
453   /// treated: either it is legal, needs to be promoted to a larger size, needs
454   /// to be expanded to some other code sequence, or the target has a custom
455   /// expander for it.
456   LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
457     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
458            "Table isn't big enough!");
459     return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
460                                             [MemVT.SimpleTy];
461   }
462
463   /// isTruncStoreLegal - Return true if the specified store with truncation is
464   /// legal on this target.
465   bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
466     return isTypeLegal(ValVT) && MemVT.isSimple() &&
467       getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
468   }
469
470   /// getIndexedLoadAction - Return how the indexed load should be treated:
471   /// either it is legal, needs to be promoted to a larger size, needs to be
472   /// expanded to some other code sequence, or the target has a custom expander
473   /// for it.
474   LegalizeAction
475   getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
476     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
477            "Table isn't big enough!");
478     unsigned Ty = (unsigned)VT.SimpleTy;
479     return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
480   }
481
482   /// isIndexedLoadLegal - Return true if the specified indexed load is legal
483   /// on this target.
484   bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
485     return VT.isSimple() &&
486       (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
487        getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
488   }
489
490   /// getIndexedStoreAction - Return how the indexed store should be treated:
491   /// either it is legal, needs to be promoted to a larger size, needs to be
492   /// expanded to some other code sequence, or the target has a custom expander
493   /// for it.
494   LegalizeAction
495   getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
496     assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
497            "Table isn't big enough!");
498     unsigned Ty = (unsigned)VT.SimpleTy;
499     return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
500   }
501
502   /// isIndexedStoreLegal - Return true if the specified indexed load is legal
503   /// on this target.
504   bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
505     return VT.isSimple() &&
506       (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
507        getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
508   }
509
510   /// getCondCodeAction - Return how the condition code should be treated:
511   /// either it is legal, needs to be expanded to some other code sequence,
512   /// or the target has a custom expander for it.
513   LegalizeAction
514   getCondCodeAction(ISD::CondCode CC, MVT VT) const {
515     assert((unsigned)CC < array_lengthof(CondCodeActions) &&
516            (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
517            "Table isn't big enough!");
518     /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
519     /// value and the upper 27 bits index into the second dimension of the
520     /// array to select what 64bit value to use.
521     LegalizeAction Action = (LegalizeAction)
522       ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
523     assert(Action != Promote && "Can't promote condition code!");
524     return Action;
525   }
526
527   /// isCondCodeLegal - Return true if the specified condition code is legal
528   /// on this target.
529   bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
530     return
531       getCondCodeAction(CC, VT) == Legal ||
532       getCondCodeAction(CC, VT) == Custom;
533   }
534
535
536   /// getTypeToPromoteTo - If the action for this operation is to promote, this
537   /// method returns the ValueType to promote to.
538   MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
539     assert(getOperationAction(Op, VT) == Promote &&
540            "This operation isn't promoted!");
541
542     // See if this has an explicit type specified.
543     std::map<std::pair<unsigned, MVT::SimpleValueType>,
544              MVT::SimpleValueType>::const_iterator PTTI =
545       PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
546     if (PTTI != PromoteToType.end()) return PTTI->second;
547
548     assert((VT.isInteger() || VT.isFloatingPoint()) &&
549            "Cannot autopromote this type, add it with AddPromotedToType.");
550
551     MVT NVT = VT;
552     do {
553       NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
554       assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
555              "Didn't find type to promote to!");
556     } while (!isTypeLegal(NVT) ||
557               getOperationAction(Op, NVT) == Promote);
558     return NVT;
559   }
560
561   /// getValueType - Return the EVT corresponding to this LLVM type.
562   /// This is fixed by the LLVM operations except for the pointer size.  If
563   /// AllowUnknown is true, this will return MVT::Other for types with no EVT
564   /// counterpart (e.g. structs), otherwise it will assert.
565   EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
566     // Lower scalar pointers to native pointer types.
567     if (Ty->isPointerTy()) return PointerTy;
568
569     if (Ty->isVectorTy()) {
570       VectorType *VTy = cast<VectorType>(Ty);
571       Type *Elm = VTy->getElementType();
572       // Lower vectors of pointers to native pointer types.
573       if (Elm->isPointerTy()) 
574         Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
575       return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
576                        VTy->getNumElements());
577     }
578     return EVT::getEVT(Ty, AllowUnknown);
579   }
580
581   /// Return the MVT corresponding to this LLVM type. See getValueType.
582   MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
583     return getValueType(Ty, AllowUnknown).getSimpleVT();
584   }
585
586   /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
587   /// function arguments in the caller parameter area.  This is the actual
588   /// alignment, not its logarithm.
589   virtual unsigned getByValTypeAlignment(Type *Ty) const;
590
591   /// getRegisterType - Return the type of registers that this ValueType will
592   /// eventually require.
593   MVT getRegisterType(MVT VT) const {
594     assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
595     return RegisterTypeForVT[VT.SimpleTy];
596   }
597
598   /// getRegisterType - Return the type of registers that this ValueType will
599   /// eventually require.
600   MVT getRegisterType(LLVMContext &Context, EVT VT) const {
601     if (VT.isSimple()) {
602       assert((unsigned)VT.getSimpleVT().SimpleTy <
603                 array_lengthof(RegisterTypeForVT));
604       return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
605     }
606     if (VT.isVector()) {
607       EVT VT1;
608       MVT RegisterVT;
609       unsigned NumIntermediates;
610       (void)getVectorTypeBreakdown(Context, VT, VT1,
611                                    NumIntermediates, RegisterVT);
612       return RegisterVT;
613     }
614     if (VT.isInteger()) {
615       return getRegisterType(Context, getTypeToTransformTo(Context, VT));
616     }
617     llvm_unreachable("Unsupported extended type!");
618   }
619
620   /// getNumRegisters - Return the number of registers that this ValueType will
621   /// eventually require.  This is one for any types promoted to live in larger
622   /// registers, but may be more than one for types (like i64) that are split
623   /// into pieces.  For types like i140, which are first promoted then expanded,
624   /// it is the number of registers needed to hold all the bits of the original
625   /// type.  For an i140 on a 32 bit machine this means 5 registers.
626   unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
627     if (VT.isSimple()) {
628       assert((unsigned)VT.getSimpleVT().SimpleTy <
629                 array_lengthof(NumRegistersForVT));
630       return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
631     }
632     if (VT.isVector()) {
633       EVT VT1;
634       MVT VT2;
635       unsigned NumIntermediates;
636       return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
637     }
638     if (VT.isInteger()) {
639       unsigned BitWidth = VT.getSizeInBits();
640       unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
641       return (BitWidth + RegWidth - 1) / RegWidth;
642     }
643     llvm_unreachable("Unsupported extended type!");
644   }
645
646   /// ShouldShrinkFPConstant - If true, then instruction selection should
647   /// seek to shrink the FP constant of the specified type to a smaller type
648   /// in order to save space and / or reduce runtime.
649   virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
650
651   /// hasTargetDAGCombine - If true, the target has custom DAG combine
652   /// transformations that it can perform for the specified node.
653   bool hasTargetDAGCombine(ISD::NodeType NT) const {
654     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
655     return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
656   }
657
658   /// This function returns the maximum number of store operations permitted
659   /// to replace a call to llvm.memset. The value is set by the target at the
660   /// performance threshold for such a replacement. If OptSize is true,
661   /// return the limit for functions that have OptSize attribute.
662   /// @brief Get maximum # of store operations permitted for llvm.memset
663   unsigned getMaxStoresPerMemset(bool OptSize) const {
664     return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
665   }
666
667   /// This function returns the maximum number of store operations permitted
668   /// to replace a call to llvm.memcpy. The value is set by the target at the
669   /// performance threshold for such a replacement. If OptSize is true,
670   /// return the limit for functions that have OptSize attribute.
671   /// @brief Get maximum # of store operations permitted for llvm.memcpy
672   unsigned getMaxStoresPerMemcpy(bool OptSize) const {
673     return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
674   }
675
676   /// This function returns the maximum number of store operations permitted
677   /// to replace a call to llvm.memmove. The value is set by the target at the
678   /// performance threshold for such a replacement. If OptSize is true,
679   /// return the limit for functions that have OptSize attribute.
680   /// @brief Get maximum # of store operations permitted for llvm.memmove
681   unsigned getMaxStoresPerMemmove(bool OptSize) const {
682     return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
683   }
684
685   /// This function returns true if the target allows unaligned memory accesses.
686   /// of the specified type. If true, it also returns whether the unaligned
687   /// memory access is "fast" in the second argument by reference. This is used,
688   /// for example, in situations where an array copy/move/set is  converted to a
689   /// sequence of store operations. It's use helps to ensure that such
690   /// replacements don't generate code that causes an alignment error  (trap) on
691   /// the target machine.
692   /// @brief Determine if the target supports unaligned memory accesses.
693   virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
694     return false;
695   }
696
697   /// This function returns true if the target would benefit from code placement
698   /// optimization.
699   /// @brief Determine if the target should perform code placement optimization.
700   bool shouldOptimizeCodePlacement() const {
701     return BenefitFromCodePlacementOpt;
702   }
703
704   /// getOptimalMemOpType - Returns the target specific optimal type for load
705   /// and store operations as a result of memset, memcpy, and memmove
706   /// lowering. If DstAlign is zero that means it's safe to destination
707   /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
708   /// means there isn't a need to check it against alignment requirement,
709   /// probably because the source does not need to be loaded. If 'IsMemset' is
710   /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
711   /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
712   /// source is constant so it does not need to be loaded.
713   /// It returns EVT::Other if the type should be determined using generic
714   /// target-independent logic.
715   virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
716                                   unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
717                                   bool /*IsMemset*/,
718                                   bool /*ZeroMemset*/,
719                                   bool /*MemcpyStrSrc*/,
720                                   MachineFunction &/*MF*/) const {
721     return MVT::Other;
722   }
723
724   /// isSafeMemOpType - Returns true if it's safe to use load / store of the
725   /// specified type to expand memcpy / memset inline. This is mostly true
726   /// for all types except for some special cases. For example, on X86
727   /// targets without SSE2 f64 load / store are done with fldl / fstpl which
728   /// also does type conversion. Note the specified type doesn't have to be
729   /// legal as the hook is used before type legalization.
730   virtual bool isSafeMemOpType(MVT VT) const {
731     return true;
732   }
733
734   /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
735   /// to implement llvm.setjmp.
736   bool usesUnderscoreSetJmp() const {
737     return UseUnderscoreSetJmp;
738   }
739
740   /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
741   /// to implement llvm.longjmp.
742   bool usesUnderscoreLongJmp() const {
743     return UseUnderscoreLongJmp;
744   }
745
746   /// supportJumpTables - return whether the target can generate code for
747   /// jump tables.
748   bool supportJumpTables() const {
749     return SupportJumpTables;
750   }
751
752   /// getMinimumJumpTableEntries - return integer threshold on number of
753   /// blocks to use jump tables rather than if sequence.
754   int getMinimumJumpTableEntries() const {
755     return MinimumJumpTableEntries;
756   }
757
758   /// getStackPointerRegisterToSaveRestore - If a physical register, this
759   /// specifies the register that llvm.savestack/llvm.restorestack should save
760   /// and restore.
761   unsigned getStackPointerRegisterToSaveRestore() const {
762     return StackPointerRegisterToSaveRestore;
763   }
764
765   /// getExceptionPointerRegister - If a physical register, this returns
766   /// the register that receives the exception address on entry to a landing
767   /// pad.
768   unsigned getExceptionPointerRegister() const {
769     return ExceptionPointerRegister;
770   }
771
772   /// getExceptionSelectorRegister - If a physical register, this returns
773   /// the register that receives the exception typeid on entry to a landing
774   /// pad.
775   unsigned getExceptionSelectorRegister() const {
776     return ExceptionSelectorRegister;
777   }
778
779   /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
780   /// set, the default is 200)
781   unsigned getJumpBufSize() const {
782     return JumpBufSize;
783   }
784
785   /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
786   /// (if never set, the default is 0)
787   unsigned getJumpBufAlignment() const {
788     return JumpBufAlignment;
789   }
790
791   /// getMinStackArgumentAlignment - return the minimum stack alignment of an
792   /// argument.
793   unsigned getMinStackArgumentAlignment() const {
794     return MinStackArgumentAlignment;
795   }
796
797   /// getMinFunctionAlignment - return the minimum function alignment.
798   ///
799   unsigned getMinFunctionAlignment() const {
800     return MinFunctionAlignment;
801   }
802
803   /// getPrefFunctionAlignment - return the preferred function alignment.
804   ///
805   unsigned getPrefFunctionAlignment() const {
806     return PrefFunctionAlignment;
807   }
808
809   /// getPrefLoopAlignment - return the preferred loop alignment.
810   ///
811   unsigned getPrefLoopAlignment() const {
812     return PrefLoopAlignment;
813   }
814
815   /// getShouldFoldAtomicFences - return whether the combiner should fold
816   /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
817   ///
818   bool getShouldFoldAtomicFences() const {
819     return ShouldFoldAtomicFences;
820   }
821
822   /// getInsertFencesFor - return whether the DAG builder should automatically
823   /// insert fences and reduce ordering for atomics.
824   ///
825   bool getInsertFencesForAtomic() const {
826     return InsertFencesForAtomic;
827   }
828
829   /// getStackCookieLocation - Return true if the target stores stack
830   /// protector cookies at a fixed offset in some non-standard address
831   /// space, and populates the address space and offset as
832   /// appropriate.
833   virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
834                                       unsigned &/*Offset*/) const {
835     return false;
836   }
837
838   /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
839   /// used for loads / stores from the global.
840   virtual unsigned getMaximalGlobalOffset() const {
841     return 0;
842   }
843
844   //===--------------------------------------------------------------------===//
845   /// \name Helpers for TargetTransformInfo implementations
846   /// @{
847
848   /// Get the ISD node that corresponds to the Instruction class opcode.
849   int InstructionOpcodeToISD(unsigned Opcode) const;
850
851   /// Estimate the cost of type-legalization and the legalized type.
852   std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
853
854   /// @}
855
856   //===--------------------------------------------------------------------===//
857   // TargetLowering Configuration Methods - These methods should be invoked by
858   // the derived class constructor to configure this object for the target.
859   //
860
861 protected:
862   /// setBooleanContents - Specify how the target extends the result of a
863   /// boolean value from i1 to a wider type.  See getBooleanContents.
864   void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
865   /// setBooleanVectorContents - Specify how the target extends the result
866   /// of a vector boolean value from a vector of i1 to a wider type.  See
867   /// getBooleanContents.
868   void setBooleanVectorContents(BooleanContent Ty) {
869     BooleanVectorContents = Ty;
870   }
871
872   /// setSchedulingPreference - Specify the target scheduling preference.
873   void setSchedulingPreference(Sched::Preference Pref) {
874     SchedPreferenceInfo = Pref;
875   }
876
877   /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
878   /// use _setjmp to implement llvm.setjmp or the non _ version.
879   /// Defaults to false.
880   void setUseUnderscoreSetJmp(bool Val) {
881     UseUnderscoreSetJmp = Val;
882   }
883
884   /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
885   /// use _longjmp to implement llvm.longjmp or the non _ version.
886   /// Defaults to false.
887   void setUseUnderscoreLongJmp(bool Val) {
888     UseUnderscoreLongJmp = Val;
889   }
890
891   /// setSupportJumpTables - Indicate whether the target can generate code for
892   /// jump tables.
893   void setSupportJumpTables(bool Val) {
894     SupportJumpTables = Val;
895   }
896
897   /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
898   /// jump tables rather than if sequence.
899   void setMinimumJumpTableEntries(int Val) {
900     MinimumJumpTableEntries = Val;
901   }
902
903   /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
904   /// specifies the register that llvm.savestack/llvm.restorestack should save
905   /// and restore.
906   void setStackPointerRegisterToSaveRestore(unsigned R) {
907     StackPointerRegisterToSaveRestore = R;
908   }
909
910   /// setExceptionPointerRegister - If set to a physical register, this sets
911   /// the register that receives the exception address on entry to a landing
912   /// pad.
913   void setExceptionPointerRegister(unsigned R) {
914     ExceptionPointerRegister = R;
915   }
916
917   /// setExceptionSelectorRegister - If set to a physical register, this sets
918   /// the register that receives the exception typeid on entry to a landing
919   /// pad.
920   void setExceptionSelectorRegister(unsigned R) {
921     ExceptionSelectorRegister = R;
922   }
923
924   /// SelectIsExpensive - Tells the code generator not to expand operations
925   /// into sequences that use the select operations if possible.
926   void setSelectIsExpensive(bool isExpensive = true) {
927     SelectIsExpensive = isExpensive;
928   }
929
930   /// JumpIsExpensive - Tells the code generator not to expand sequence of
931   /// operations into a separate sequences that increases the amount of
932   /// flow control.
933   void setJumpIsExpensive(bool isExpensive = true) {
934     JumpIsExpensive = isExpensive;
935   }
936
937   /// setIntDivIsCheap - Tells the code generator that integer divide is
938   /// expensive, and if possible, should be replaced by an alternate sequence
939   /// of instructions not containing an integer divide.
940   void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
941
942   /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
943   void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
944     BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
945   }
946
947   /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
948   /// srl/add/sra for a signed divide by power of two, and let the target handle
949   /// it.
950   void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
951
952   /// addRegisterClass - Add the specified register class as an available
953   /// regclass for the specified value type.  This indicates the selector can
954   /// handle values of that class natively.
955   void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
956     assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
957     AvailableRegClasses.push_back(std::make_pair(VT, RC));
958     RegClassForVT[VT.SimpleTy] = RC;
959   }
960
961   /// clearRegisterClasses - remove all register classes
962   void clearRegisterClasses() {
963     for (unsigned i = 0 ; i<array_lengthof(RegClassForVT); i++)
964       RegClassForVT[i] = 0;
965     AvailableRegClasses.clear();
966   }
967
968   /// findRepresentativeClass - Return the largest legal super-reg register class
969   /// of the register class for the specified type and its associated "cost".
970   virtual std::pair<const TargetRegisterClass*, uint8_t>
971   findRepresentativeClass(MVT VT) const;
972
973   /// computeRegisterProperties - Once all of the register classes are added,
974   /// this allows us to compute derived properties we expose.
975   void computeRegisterProperties();
976
977   /// setOperationAction - Indicate that the specified operation does not work
978   /// with the specified type and indicate what to do about it.
979   void setOperationAction(unsigned Op, MVT VT,
980                           LegalizeAction Action) {
981     assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
982     OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
983   }
984
985   /// setLoadExtAction - Indicate that the specified load with extension does
986   /// not work with the specified type and indicate what to do about it.
987   void setLoadExtAction(unsigned ExtType, MVT VT,
988                         LegalizeAction Action) {
989     assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
990            "Table isn't big enough!");
991     LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
992   }
993
994   /// setTruncStoreAction - Indicate that the specified truncating store does
995   /// not work with the specified type and indicate what to do about it.
996   void setTruncStoreAction(MVT ValVT, MVT MemVT,
997                            LegalizeAction Action) {
998     assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
999            "Table isn't big enough!");
1000     TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1001   }
1002
1003   /// setIndexedLoadAction - Indicate that the specified indexed load does or
1004   /// does not work with the specified type and indicate what to do abort
1005   /// it. NOTE: All indexed mode loads are initialized to Expand in
1006   /// TargetLowering.cpp
1007   void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1008                             LegalizeAction Action) {
1009     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1010            (unsigned)Action < 0xf && "Table isn't big enough!");
1011     // Load action are kept in the upper half.
1012     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1013     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1014   }
1015
1016   /// setIndexedStoreAction - Indicate that the specified indexed store does or
1017   /// does not work with the specified type and indicate what to do about
1018   /// it. NOTE: All indexed mode stores are initialized to Expand in
1019   /// TargetLowering.cpp
1020   void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1021                              LegalizeAction Action) {
1022     assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1023            (unsigned)Action < 0xf && "Table isn't big enough!");
1024     // Store action are kept in the lower half.
1025     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1026     IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1027   }
1028
1029   /// setCondCodeAction - Indicate that the specified condition code is or isn't
1030   /// supported on the target and indicate what to do about it.
1031   void setCondCodeAction(ISD::CondCode CC, MVT VT,
1032                          LegalizeAction Action) {
1033     assert(VT < MVT::LAST_VALUETYPE &&
1034            (unsigned)CC < array_lengthof(CondCodeActions) &&
1035            "Table isn't big enough!");
1036     /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1037     /// value and the upper 27 bits index into the second dimension of the
1038     /// array to select what 64bit value to use.
1039     CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1040       &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1041     CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1042       |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1043   }
1044
1045   /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1046   /// promotion code defaults to trying a larger integer/fp until it can find
1047   /// one that works.  If that default is insufficient, this method can be used
1048   /// by the target to override the default.
1049   void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1050     PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1051   }
1052
1053   /// setTargetDAGCombine - Targets should invoke this method for each target
1054   /// independent node that they want to provide a custom DAG combiner for by
1055   /// implementing the PerformDAGCombine virtual method.
1056   void setTargetDAGCombine(ISD::NodeType NT) {
1057     assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1058     TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1059   }
1060
1061   /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1062   /// bytes); default is 200
1063   void setJumpBufSize(unsigned Size) {
1064     JumpBufSize = Size;
1065   }
1066
1067   /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1068   /// alignment (in bytes); default is 0
1069   void setJumpBufAlignment(unsigned Align) {
1070     JumpBufAlignment = Align;
1071   }
1072
1073   /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1074   /// log2(bytes))
1075   void setMinFunctionAlignment(unsigned Align) {
1076     MinFunctionAlignment = Align;
1077   }
1078
1079   /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1080   /// This should be set if there is a performance benefit to
1081   /// higher-than-minimum alignment (in log2(bytes))
1082   void setPrefFunctionAlignment(unsigned Align) {
1083     PrefFunctionAlignment = Align;
1084   }
1085
1086   /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1087   /// alignment is zero, it means the target does not care about loop alignment.
1088   /// The alignment is specified in log2(bytes).
1089   void setPrefLoopAlignment(unsigned Align) {
1090     PrefLoopAlignment = Align;
1091   }
1092
1093   /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1094   /// argument (in log2(bytes)).
1095   void setMinStackArgumentAlignment(unsigned Align) {
1096     MinStackArgumentAlignment = Align;
1097   }
1098
1099   /// setShouldFoldAtomicFences - Set if the target's implementation of the
1100   /// atomic operation intrinsics includes locking. Default is false.
1101   void setShouldFoldAtomicFences(bool fold) {
1102     ShouldFoldAtomicFences = fold;
1103   }
1104
1105   /// setInsertFencesForAtomic - Set if the DAG builder should
1106   /// automatically insert fences and reduce the order of atomic memory
1107   /// operations to Monotonic.
1108   void setInsertFencesForAtomic(bool fence) {
1109     InsertFencesForAtomic = fence;
1110   }
1111
1112 public:
1113   //===--------------------------------------------------------------------===//
1114   // Addressing mode description hooks (used by LSR etc).
1115   //
1116
1117   /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1118   /// same BB as Load/Store instructions reading the address.  This allows as
1119   /// much computation as possible to be done in the address mode for that
1120   /// operand.  This hook lets targets also pass back when this should be done
1121   /// on intrinsics which load/store.
1122   virtual bool GetAddrModeArguments(IntrinsicInst *I,
1123                                     SmallVectorImpl<Value*> &Ops,
1124                                     Type *&AccessTy) const {
1125     return false;
1126   }
1127
1128   /// AddrMode - This represents an addressing mode of:
1129   ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1130   /// If BaseGV is null,  there is no BaseGV.
1131   /// If BaseOffs is zero, there is no base offset.
1132   /// If HasBaseReg is false, there is no base register.
1133   /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1134   /// no scale.
1135   ///
1136   struct AddrMode {
1137     GlobalValue *BaseGV;
1138     int64_t      BaseOffs;
1139     bool         HasBaseReg;
1140     int64_t      Scale;
1141     AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1142   };
1143
1144   /// isLegalAddressingMode - Return true if the addressing mode represented by
1145   /// AM is legal for this target, for a load/store of the specified type.
1146   /// The type may be VoidTy, in which case only return true if the addressing
1147   /// mode is legal for a load/store of any legal type.
1148   /// TODO: Handle pre/postinc as well.
1149   virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1150
1151   /// isLegalICmpImmediate - Return true if the specified immediate is legal
1152   /// icmp immediate, that is the target has icmp instructions which can compare
1153   /// a register against the immediate without having to materialize the
1154   /// immediate into a register.
1155   virtual bool isLegalICmpImmediate(int64_t) const {
1156     return true;
1157   }
1158
1159   /// isLegalAddImmediate - Return true if the specified immediate is legal
1160   /// add immediate, that is the target has add instructions which can add
1161   /// a register with the immediate without having to materialize the
1162   /// immediate into a register.
1163   virtual bool isLegalAddImmediate(int64_t) const {
1164     return true;
1165   }
1166
1167   /// isTruncateFree - Return true if it's free to truncate a value of
1168   /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1169   /// register EAX to i16 by referencing its sub-register AX.
1170   virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1171     return false;
1172   }
1173
1174   virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1175     return false;
1176   }
1177
1178   /// isZExtFree - Return true if any actual instruction that defines a
1179   /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1180   /// register. This does not necessarily include registers defined in
1181   /// unknown ways, such as incoming arguments, or copies from unknown
1182   /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1183   /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1184   /// all instructions that define 32-bit values implicit zero-extend the
1185   /// result out to 64 bits.
1186   virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1187     return false;
1188   }
1189
1190   virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1191     return false;
1192   }
1193
1194   /// isZExtFree - Return true if zero-extending the specific node Val to type
1195   /// VT2 is free (either because it's implicitly zero-extended such as ARM
1196   /// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
1197   virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1198     return isZExtFree(Val.getValueType(), VT2);
1199   }
1200
1201   /// isFNegFree - Return true if an fneg operation is free to the point where
1202   /// it is never worthwhile to replace it with a bitwise operation.
1203   virtual bool isFNegFree(EVT) const {
1204     return false;
1205   }
1206
1207   /// isFAbsFree - Return true if an fneg operation is free to the point where
1208   /// it is never worthwhile to replace it with a bitwise operation.
1209   virtual bool isFAbsFree(EVT) const {
1210     return false;
1211   }
1212
1213   /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1214   /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1215   /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1216   /// is expanded to mul + add.
1217   virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1218     return false;
1219   }
1220
1221   /// isNarrowingProfitable - Return true if it's profitable to narrow
1222   /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1223   /// from i32 to i8 but not from i32 to i16.
1224   virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1225     return false;
1226   }
1227
1228   //===--------------------------------------------------------------------===//
1229   // Runtime Library hooks
1230   //
1231
1232   /// setLibcallName - Rename the default libcall routine name for the specified
1233   /// libcall.
1234   void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1235     LibcallRoutineNames[Call] = Name;
1236   }
1237
1238   /// getLibcallName - Get the libcall routine name for the specified libcall.
1239   ///
1240   const char *getLibcallName(RTLIB::Libcall Call) const {
1241     return LibcallRoutineNames[Call];
1242   }
1243
1244   /// setCmpLibcallCC - Override the default CondCode to be used to test the
1245   /// result of the comparison libcall against zero.
1246   void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1247     CmpLibcallCCs[Call] = CC;
1248   }
1249
1250   /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1251   /// the comparison libcall against zero.
1252   ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1253     return CmpLibcallCCs[Call];
1254   }
1255
1256   /// setLibcallCallingConv - Set the CallingConv that should be used for the
1257   /// specified libcall.
1258   void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1259     LibcallCallingConvs[Call] = CC;
1260   }
1261
1262   /// getLibcallCallingConv - Get the CallingConv that should be used for the
1263   /// specified libcall.
1264   CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1265     return LibcallCallingConvs[Call];
1266   }
1267
1268 private:
1269   const TargetMachine &TM;
1270   const DataLayout *TD;
1271   const TargetLoweringObjectFile &TLOF;
1272
1273   /// PointerTy - The type to use for pointers for the default address space,
1274   /// usually i32 or i64.
1275   ///
1276   MVT PointerTy;
1277
1278   /// IsLittleEndian - True if this is a little endian target.
1279   ///
1280   bool IsLittleEndian;
1281
1282   /// SelectIsExpensive - Tells the code generator not to expand operations
1283   /// into sequences that use the select operations if possible.
1284   bool SelectIsExpensive;
1285
1286   /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1287   /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1288   /// a real cost model is in place.  If we ever optimize for size, this will be
1289   /// set to true unconditionally.
1290   bool IntDivIsCheap;
1291
1292   /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1293   /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1294   /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1295   /// integer div/rem when the operands are positive and less than 256.
1296   DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1297
1298   /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1299   /// srl/add/sra for a signed divide by power of two, and let the target handle
1300   /// it.
1301   bool Pow2DivIsCheap;
1302
1303   /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1304   /// extra flow control instructions and should attempt to combine flow
1305   /// control instructions via predication.
1306   bool JumpIsExpensive;
1307
1308   /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1309   /// llvm.setjmp.  Defaults to false.
1310   bool UseUnderscoreSetJmp;
1311
1312   /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1313   /// llvm.longjmp.  Defaults to false.
1314   bool UseUnderscoreLongJmp;
1315
1316   /// SupportJumpTables - Whether the target can generate code for jumptables.
1317   /// If it's not true, then each jumptable must be lowered into if-then-else's.
1318   bool SupportJumpTables;
1319
1320   /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1321   int MinimumJumpTableEntries;
1322
1323   /// BooleanContents - Information about the contents of the high-bits in
1324   /// boolean values held in a type wider than i1.  See getBooleanContents.
1325   BooleanContent BooleanContents;
1326   /// BooleanVectorContents - Information about the contents of the high-bits
1327   /// in boolean vector values when the element type is wider than i1.  See
1328   /// getBooleanContents.
1329   BooleanContent BooleanVectorContents;
1330
1331   /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1332   /// total cycles or lowest register usage.
1333   Sched::Preference SchedPreferenceInfo;
1334
1335   /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1336   unsigned JumpBufSize;
1337
1338   /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1339   /// buffers
1340   unsigned JumpBufAlignment;
1341
1342   /// MinStackArgumentAlignment - The minimum alignment that any argument
1343   /// on the stack needs to have.
1344   ///
1345   unsigned MinStackArgumentAlignment;
1346
1347   /// MinFunctionAlignment - The minimum function alignment (used when
1348   /// optimizing for size, and to prevent explicitly provided alignment
1349   /// from leading to incorrect code).
1350   ///
1351   unsigned MinFunctionAlignment;
1352
1353   /// PrefFunctionAlignment - The preferred function alignment (used when
1354   /// alignment unspecified and optimizing for speed).
1355   ///
1356   unsigned PrefFunctionAlignment;
1357
1358   /// PrefLoopAlignment - The preferred loop alignment.
1359   ///
1360   unsigned PrefLoopAlignment;
1361
1362   /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1363   /// be folded into the enclosed atomic intrinsic instruction by the
1364   /// combiner.
1365   bool ShouldFoldAtomicFences;
1366
1367   /// InsertFencesForAtomic - Whether the DAG builder should automatically
1368   /// insert fences and reduce ordering for atomics.  (This will be set for
1369   /// for most architectures with weak memory ordering.)
1370   bool InsertFencesForAtomic;
1371
1372   /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1373   /// specifies the register that llvm.savestack/llvm.restorestack should save
1374   /// and restore.
1375   unsigned StackPointerRegisterToSaveRestore;
1376
1377   /// ExceptionPointerRegister - If set to a physical register, this specifies
1378   /// the register that receives the exception address on entry to a landing
1379   /// pad.
1380   unsigned ExceptionPointerRegister;
1381
1382   /// ExceptionSelectorRegister - If set to a physical register, this specifies
1383   /// the register that receives the exception typeid on entry to a landing
1384   /// pad.
1385   unsigned ExceptionSelectorRegister;
1386
1387   /// RegClassForVT - This indicates the default register class to use for
1388   /// each ValueType the target supports natively.
1389   const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1390   unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1391   MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1392
1393   /// RepRegClassForVT - This indicates the "representative" register class to
1394   /// use for each ValueType the target supports natively. This information is
1395   /// used by the scheduler to track register pressure. By default, the
1396   /// representative register class is the largest legal super-reg register
1397   /// class of the register class of the specified type. e.g. On x86, i8, i16,
1398   /// and i32's representative class would be GR32.
1399   const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1400
1401   /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1402   /// register class for each ValueType. The cost is used by the scheduler to
1403   /// approximate register pressure.
1404   uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1405
1406   /// TransformToType - For any value types we are promoting or expanding, this
1407   /// contains the value type that we are changing to.  For Expanded types, this
1408   /// contains one step of the expand (e.g. i64 -> i32), even if there are
1409   /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1410   /// by the system, this holds the same type (e.g. i32 -> i32).
1411   MVT TransformToType[MVT::LAST_VALUETYPE];
1412
1413   /// OpActions - For each operation and each value type, keep a LegalizeAction
1414   /// that indicates how instruction selection should deal with the operation.
1415   /// Most operations are Legal (aka, supported natively by the target), but
1416   /// operations that are not should be described.  Note that operations on
1417   /// non-legal value types are not described here.
1418   uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1419
1420   /// LoadExtActions - For each load extension type and each value type,
1421   /// keep a LegalizeAction that indicates how instruction selection should deal
1422   /// with a load of a specific value type and extension type.
1423   uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1424
1425   /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1426   /// indicates whether a truncating store of a specific value type and
1427   /// truncating type is legal.
1428   uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1429
1430   /// IndexedModeActions - For each indexed mode and each value type,
1431   /// keep a pair of LegalizeAction that indicates how instruction
1432   /// selection should deal with the load / store.  The first dimension is the
1433   /// value_type for the reference. The second dimension represents the various
1434   /// modes for load store.
1435   uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1436
1437   /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1438   /// LegalizeAction that indicates how instruction selection should
1439   /// deal with the condition code.
1440   /// Because each CC action takes up 2 bits, we need to have the array size
1441   /// be large enough to fit all of the value types. This can be done by
1442   /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1443   uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1444
1445   ValueTypeActionImpl ValueTypeActions;
1446
1447 public:
1448   LegalizeKind
1449   getTypeConversion(LLVMContext &Context, EVT VT) const {
1450     // If this is a simple type, use the ComputeRegisterProp mechanism.
1451     if (VT.isSimple()) {
1452       MVT SVT = VT.getSimpleVT();
1453       assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1454       MVT NVT = TransformToType[SVT.SimpleTy];
1455       LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1456
1457       assert(
1458         (LA == TypeLegal ||
1459          ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
1460          && "Promote may not follow Expand or Promote");
1461
1462       if (LA == TypeSplitVector)
1463         return LegalizeKind(LA, EVT::getVectorVT(Context,
1464                                                  SVT.getVectorElementType(),
1465                                                  SVT.getVectorNumElements()/2));
1466       if (LA == TypeScalarizeVector)
1467         return LegalizeKind(LA, SVT.getVectorElementType());
1468       return LegalizeKind(LA, NVT);
1469     }
1470
1471     // Handle Extended Scalar Types.
1472     if (!VT.isVector()) {
1473       assert(VT.isInteger() && "Float types must be simple");
1474       unsigned BitSize = VT.getSizeInBits();
1475       // First promote to a power-of-two size, then expand if necessary.
1476       if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1477         EVT NVT = VT.getRoundIntegerType(Context);
1478         assert(NVT != VT && "Unable to round integer VT");
1479         LegalizeKind NextStep = getTypeConversion(Context, NVT);
1480         // Avoid multi-step promotion.
1481         if (NextStep.first == TypePromoteInteger) return NextStep;
1482         // Return rounded integer type.
1483         return LegalizeKind(TypePromoteInteger, NVT);
1484       }
1485
1486       return LegalizeKind(TypeExpandInteger,
1487                           EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1488     }
1489
1490     // Handle vector types.
1491     unsigned NumElts = VT.getVectorNumElements();
1492     EVT EltVT = VT.getVectorElementType();
1493
1494     // Vectors with only one element are always scalarized.
1495     if (NumElts == 1)
1496       return LegalizeKind(TypeScalarizeVector, EltVT);
1497
1498     // Try to widen vector elements until a legal type is found.
1499     if (EltVT.isInteger()) {
1500       // Vectors with a number of elements that is not a power of two are always
1501       // widened, for example <3 x float> -> <4 x float>.
1502       if (!VT.isPow2VectorType()) {
1503         NumElts = (unsigned)NextPowerOf2(NumElts);
1504         EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1505         return LegalizeKind(TypeWidenVector, NVT);
1506       }
1507
1508       // Examine the element type.
1509       LegalizeKind LK = getTypeConversion(Context, EltVT);
1510
1511       // If type is to be expanded, split the vector.
1512       //  <4 x i140> -> <2 x i140>
1513       if (LK.first == TypeExpandInteger)
1514         return LegalizeKind(TypeSplitVector,
1515                             EVT::getVectorVT(Context, EltVT, NumElts / 2));
1516
1517       // Promote the integer element types until a legal vector type is found
1518       // or until the element integer type is too big. If a legal type was not
1519       // found, fallback to the usual mechanism of widening/splitting the
1520       // vector.
1521       while (1) {
1522         // Increase the bitwidth of the element to the next pow-of-two
1523         // (which is greater than 8 bits).
1524         EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1525                                  ).getRoundIntegerType(Context);
1526
1527         // Stop trying when getting a non-simple element type.
1528         // Note that vector elements may be greater than legal vector element
1529         // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1530         if (!EltVT.isSimple()) break;
1531
1532         // Build a new vector type and check if it is legal.
1533         MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1534         // Found a legal promoted vector type.
1535         if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1536           return LegalizeKind(TypePromoteInteger,
1537                               EVT::getVectorVT(Context, EltVT, NumElts));
1538       }
1539     }
1540
1541     // Try to widen the vector until a legal type is found.
1542     // If there is no wider legal type, split the vector.
1543     while (1) {
1544       // Round up to the next power of 2.
1545       NumElts = (unsigned)NextPowerOf2(NumElts);
1546
1547       // If there is no simple vector type with this many elements then there
1548       // cannot be a larger legal vector type.  Note that this assumes that
1549       // there are no skipped intermediate vector types in the simple types.
1550       if (!EltVT.isSimple()) break;
1551       MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1552       if (LargerVector == MVT()) break;
1553
1554       // If this type is legal then widen the vector.
1555       if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1556         return LegalizeKind(TypeWidenVector, LargerVector);
1557     }
1558
1559     // Widen odd vectors to next power of two.
1560     if (!VT.isPow2VectorType()) {
1561       EVT NVT = VT.getPow2VectorType(Context);
1562       return LegalizeKind(TypeWidenVector, NVT);
1563     }
1564
1565     // Vectors with illegal element types are expanded.
1566     EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1567     return LegalizeKind(TypeSplitVector, NVT);
1568   }
1569
1570 private:
1571   std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1572
1573   /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1574   /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1575   /// which sets a bit in this array.
1576   unsigned char
1577   TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1578
1579   /// PromoteToType - For operations that must be promoted to a specific type,
1580   /// this holds the destination type.  This map should be sparse, so don't hold
1581   /// it as an array.
1582   ///
1583   /// Targets add entries to this map with AddPromotedToType(..), clients access
1584   /// this with getTypeToPromoteTo(..).
1585   std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1586     PromoteToType;
1587
1588   /// LibcallRoutineNames - Stores the name each libcall.
1589   ///
1590   const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1591
1592   /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1593   /// of each of the comparison libcall against zero.
1594   ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1595
1596   /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1597   /// libcall.
1598   CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1599
1600 protected:
1601   /// When lowering \@llvm.memset this field specifies the maximum number of
1602   /// store operations that may be substituted for the call to memset. Targets
1603   /// must set this value based on the cost threshold for that target. Targets
1604   /// should assume that the memset will be done using as many of the largest
1605   /// store operations first, followed by smaller ones, if necessary, per
1606   /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1607   /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1608   /// store.  This only applies to setting a constant array of a constant size.
1609   /// @brief Specify maximum number of store instructions per memset call.
1610   unsigned MaxStoresPerMemset;
1611
1612   /// Maximum number of stores operations that may be substituted for the call
1613   /// to memset, used for functions with OptSize attribute.
1614   unsigned MaxStoresPerMemsetOptSize;
1615
1616   /// When lowering \@llvm.memcpy this field specifies the maximum number of
1617   /// store operations that may be substituted for a call to memcpy. Targets
1618   /// must set this value based on the cost threshold for that target. Targets
1619   /// should assume that the memcpy will be done using as many of the largest
1620   /// store operations first, followed by smaller ones, if necessary, per
1621   /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1622   /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1623   /// and one 1-byte store. This only applies to copying a constant array of
1624   /// constant size.
1625   /// @brief Specify maximum bytes of store instructions per memcpy call.
1626   unsigned MaxStoresPerMemcpy;
1627
1628   /// Maximum number of store operations that may be substituted for a call
1629   /// to memcpy, used for functions with OptSize attribute.
1630   unsigned MaxStoresPerMemcpyOptSize;
1631
1632   /// When lowering \@llvm.memmove this field specifies the maximum number of
1633   /// store instructions that may be substituted for a call to memmove. Targets
1634   /// must set this value based on the cost threshold for that target. Targets
1635   /// should assume that the memmove will be done using as many of the largest
1636   /// store operations first, followed by smaller ones, if necessary, per
1637   /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1638   /// with 8-bit alignment would result in nine 1-byte stores.  This only
1639   /// applies to copying a constant array of constant size.
1640   /// @brief Specify maximum bytes of store instructions per memmove call.
1641   unsigned MaxStoresPerMemmove;
1642
1643   /// Maximum number of store instructions that may be substituted for a call
1644   /// to memmove, used for functions with OpSize attribute.
1645   unsigned MaxStoresPerMemmoveOptSize;
1646
1647   /// This field specifies whether the target can benefit from code placement
1648   /// optimization.
1649   bool BenefitFromCodePlacementOpt;
1650
1651   /// PredictableSelectIsExpensive - Tells the code generator that select is
1652   /// more expensive than a branch if the branch is usually predicted right.
1653   bool PredictableSelectIsExpensive;
1654
1655 protected:
1656   /// isLegalRC - Return true if the value types that can be represented by the
1657   /// specified register class are all legal.
1658   bool isLegalRC(const TargetRegisterClass *RC) const;
1659 };
1660
1661 //===----------------------------------------------------------------------===//
1662 /// TargetLowering - This class defines information used to lower LLVM code to
1663 /// legal SelectionDAG operators that the target instruction selector can accept
1664 /// natively.
1665 ///
1666 /// This class also defines callbacks that targets must implement to lower
1667 /// target-specific constructs to SelectionDAG operators.
1668 ///
1669 class TargetLowering : public TargetLoweringBase {
1670   TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
1671   void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
1672
1673 public:
1674   /// NOTE: The constructor takes ownership of TLOF.
1675   explicit TargetLowering(const TargetMachine &TM,
1676                           const TargetLoweringObjectFile *TLOF);
1677
1678   /// getPreIndexedAddressParts - returns true by value, base pointer and
1679   /// offset pointer and addressing mode by reference if the node's address
1680   /// can be legally represented as pre-indexed load / store address.
1681   virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1682                                          SDValue &/*Offset*/,
1683                                          ISD::MemIndexedMode &/*AM*/,
1684                                          SelectionDAG &/*DAG*/) const {
1685     return false;
1686   }
1687
1688   /// getPostIndexedAddressParts - returns true by value, base pointer and
1689   /// offset pointer and addressing mode by reference if this node can be
1690   /// combined with a load / store to form a post-indexed load / store.
1691   virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1692                                           SDValue &/*Base*/, SDValue &/*Offset*/,
1693                                           ISD::MemIndexedMode &/*AM*/,
1694                                           SelectionDAG &/*DAG*/) const {
1695     return false;
1696   }
1697
1698   /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1699   /// current function.  The returned value is a member of the
1700   /// MachineJumpTableInfo::JTEntryKind enum.
1701   virtual unsigned getJumpTableEncoding() const;
1702
1703   virtual const MCExpr *
1704   LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
1705                             const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
1706                             MCContext &/*Ctx*/) const {
1707     llvm_unreachable("Need to implement this hook if target has custom JTIs");
1708   }
1709
1710   /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1711   /// jumptable.
1712   virtual SDValue getPICJumpTableRelocBase(SDValue Table,
1713                                            SelectionDAG &DAG) const;
1714
1715   /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1716   /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1717   /// MCExpr.
1718   virtual const MCExpr *
1719   getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1720                                unsigned JTI, MCContext &Ctx) const;
1721
1722   /// isOffsetFoldingLegal - Return true if folding a constant offset
1723   /// with the given GlobalAddress is legal.  It is frequently not legal in
1724   /// PIC relocation models.
1725   virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
1726
1727   bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1728                             SDValue &Chain) const;
1729
1730   void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
1731                            SDValue &NewLHS, SDValue &NewRHS,
1732                            ISD::CondCode &CCCode, DebugLoc DL) const;
1733
1734   SDValue makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
1735                       const SDValue *Ops, unsigned NumOps,
1736                       bool isSigned, DebugLoc dl) const;
1737
1738   //===--------------------------------------------------------------------===//
1739   // TargetLowering Optimization Methods
1740   //
1741
1742   /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
1743   /// SDValues for returning information from TargetLowering to its clients
1744   /// that want to combine
1745   struct TargetLoweringOpt {
1746     SelectionDAG &DAG;
1747     bool LegalTys;
1748     bool LegalOps;
1749     SDValue Old;
1750     SDValue New;
1751
1752     explicit TargetLoweringOpt(SelectionDAG &InDAG,
1753                                bool LT, bool LO) :
1754       DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
1755
1756     bool LegalTypes() const { return LegalTys; }
1757     bool LegalOperations() const { return LegalOps; }
1758
1759     bool CombineTo(SDValue O, SDValue N) {
1760       Old = O;
1761       New = N;
1762       return true;
1763     }
1764
1765     /// ShrinkDemandedConstant - Check to see if the specified operand of the
1766     /// specified instruction is a constant integer.  If so, check to see if
1767     /// there are any bits set in the constant that are not demanded.  If so,
1768     /// shrink the constant and return true.
1769     bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
1770
1771     /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1772     /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1773     /// cast, but it could be generalized for targets with other types of
1774     /// implicit widening casts.
1775     bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
1776                           DebugLoc dl);
1777   };
1778
1779   /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1780   /// DemandedMask bits of the result of Op are ever used downstream.  If we can
1781   /// use this information to simplify Op, create a new simplified DAG node and
1782   /// return true, returning the original and new nodes in Old and New.
1783   /// Otherwise, analyze the expression and return a mask of KnownOne and
1784   /// KnownZero bits for the expression (used to simplify the caller).
1785   /// The KnownZero/One bits may only be accurate for those bits in the
1786   /// DemandedMask.
1787   bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
1788                             APInt &KnownZero, APInt &KnownOne,
1789                             TargetLoweringOpt &TLO, unsigned Depth = 0) const;
1790
1791   /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
1792   /// Mask are known to be either zero or one and return them in the
1793   /// KnownZero/KnownOne bitsets.
1794   virtual void computeMaskedBitsForTargetNode(const SDValue Op,
1795                                               APInt &KnownZero,
1796                                               APInt &KnownOne,
1797                                               const SelectionDAG &DAG,
1798                                               unsigned Depth = 0) const;
1799
1800   /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1801   /// targets that want to expose additional information about sign bits to the
1802   /// DAG Combiner.
1803   virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
1804                                                    unsigned Depth = 0) const;
1805
1806   struct DAGCombinerInfo {
1807     void *DC;  // The DAG Combiner object.
1808     CombineLevel Level;
1809     bool CalledByLegalizer;
1810   public:
1811     SelectionDAG &DAG;
1812
1813     DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
1814       : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
1815
1816     bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
1817     bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
1818     bool isAfterLegalizeVectorOps() const {
1819       return Level == AfterLegalizeDAG;
1820     }
1821     CombineLevel getDAGCombineLevel() { return Level; }
1822     bool isCalledByLegalizer() const { return CalledByLegalizer; }
1823
1824     void AddToWorklist(SDNode *N);
1825     void RemoveFromWorklist(SDNode *N);
1826     SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
1827                       bool AddTo = true);
1828     SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
1829     SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
1830
1831     void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
1832   };
1833
1834   /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1835   /// and cc. If it is unable to simplify it, return a null SDValue.
1836   SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1837                           ISD::CondCode Cond, bool foldBooleans,
1838                           DAGCombinerInfo &DCI, DebugLoc dl) const;
1839
1840   /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1841   /// node is a GlobalAddress + offset.
1842   virtual bool
1843   isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
1844
1845   /// PerformDAGCombine - This method will be invoked for all target nodes and
1846   /// for any target-independent nodes that the target has registered with
1847   /// invoke it for.
1848   ///
1849   /// The semantics are as follows:
1850   /// Return Value:
1851   ///   SDValue.Val == 0   - No change was made
1852   ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1853   ///   otherwise          - N should be replaced by the returned Operand.
1854   ///
1855   /// In addition, methods provided by DAGCombinerInfo may be used to perform
1856   /// more complex transformations.
1857   ///
1858   virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1859
1860   /// isTypeDesirableForOp - Return true if the target has native support for
1861   /// the specified value type and it is 'desirable' to use the type for the
1862   /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1863   /// instruction encodings are longer and some i16 instructions are slow.
1864   virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1865     // By default, assume all legal types are desirable.
1866     return isTypeLegal(VT);
1867   }
1868
1869   /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
1870   /// to transform a floating point op of specified opcode to a equivalent op of
1871   /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
1872   virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1873                                                  EVT /*VT*/) const {
1874     return false;
1875   }
1876
1877   /// IsDesirableToPromoteOp - This method query the target whether it is
1878   /// beneficial for dag combiner to promote the specified node. If true, it
1879   /// should return the desired promotion type by reference.
1880   virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1881     return false;
1882   }
1883
1884   //===--------------------------------------------------------------------===//
1885   // Lowering methods - These methods must be implemented by targets so that
1886   // the SelectionDAGBuilder code knows how to lower these.
1887   //
1888
1889   /// LowerFormalArguments - This hook must be implemented to lower the
1890   /// incoming (formal) arguments, described by the Ins array, into the
1891   /// specified DAG. The implementation should fill in the InVals array
1892   /// with legal-type argument values, and return the resulting token
1893   /// chain value.
1894   ///
1895   virtual SDValue
1896     LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1897                          bool /*isVarArg*/,
1898                          const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1899                          DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1900                          SmallVectorImpl<SDValue> &/*InVals*/) const {
1901     llvm_unreachable("Not Implemented");
1902   }
1903
1904   struct ArgListEntry {
1905     SDValue Node;
1906     Type* Ty;
1907     bool isSExt  : 1;
1908     bool isZExt  : 1;
1909     bool isInReg : 1;
1910     bool isSRet  : 1;
1911     bool isNest  : 1;
1912     bool isByVal : 1;
1913     uint16_t Alignment;
1914
1915     ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1916       isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1917   };
1918   typedef std::vector<ArgListEntry> ArgListTy;
1919
1920   /// CallLoweringInfo - This structure contains all information that is
1921   /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1922   /// SelectionDAG builder needs to lower a call, and targets will see this
1923   /// struct in their LowerCall implementation.
1924   struct CallLoweringInfo {
1925     SDValue Chain;
1926     Type *RetTy;
1927     bool RetSExt           : 1;
1928     bool RetZExt           : 1;
1929     bool IsVarArg          : 1;
1930     bool IsInReg           : 1;
1931     bool DoesNotReturn     : 1;
1932     bool IsReturnValueUsed : 1;
1933
1934     // IsTailCall should be modified by implementations of
1935     // TargetLowering::LowerCall that perform tail call conversions.
1936     bool IsTailCall;
1937
1938     unsigned NumFixedArgs;
1939     CallingConv::ID CallConv;
1940     SDValue Callee;
1941     ArgListTy &Args;
1942     SelectionDAG &DAG;
1943     DebugLoc DL;
1944     ImmutableCallSite *CS;
1945     SmallVector<ISD::OutputArg, 32> Outs;
1946     SmallVector<SDValue, 32> OutVals;
1947     SmallVector<ISD::InputArg, 32> Ins;
1948
1949
1950     /// CallLoweringInfo - Constructs a call lowering context based on the
1951     /// ImmutableCallSite \p cs.
1952     CallLoweringInfo(SDValue chain, Type *retTy,
1953                      FunctionType *FTy, bool isTailCall, SDValue callee,
1954                      ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1955                      ImmutableCallSite &cs)
1956     : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1957       RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1958       IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1959       DoesNotReturn(cs.doesNotReturn()),
1960       IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1961       IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1962       CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1963       DL(dl), CS(&cs) {}
1964
1965     /// CallLoweringInfo - Constructs a call lowering context based on the
1966     /// provided call information.
1967     CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1968                      bool isVarArg, bool isInReg, unsigned numFixedArgs,
1969                      CallingConv::ID callConv, bool isTailCall,
1970                      bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1971                      ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1972     : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1973       IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1974       IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1975       NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1976       Args(args), DAG(dag), DL(dl), CS(NULL) {}
1977   };
1978
1979   /// LowerCallTo - This function lowers an abstract call to a function into an
1980   /// actual call.  This returns a pair of operands.  The first element is the
1981   /// return value for the function (if RetTy is not VoidTy).  The second
1982   /// element is the outgoing token chain. It calls LowerCall to do the actual
1983   /// lowering.
1984   std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1985
1986   /// LowerCall - This hook must be implemented to lower calls into the
1987   /// the specified DAG. The outgoing arguments to the call are described
1988   /// by the Outs array, and the values to be returned by the call are
1989   /// described by the Ins array. The implementation should fill in the
1990   /// InVals array with legal-type return values from the call, and return
1991   /// the resulting token chain value.
1992   virtual SDValue
1993     LowerCall(CallLoweringInfo &/*CLI*/,
1994               SmallVectorImpl<SDValue> &/*InVals*/) const {
1995     llvm_unreachable("Not Implemented");
1996   }
1997
1998   /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1999   virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2000
2001   /// CanLowerReturn - This hook should be implemented to check whether the
2002   /// return values described by the Outs array can fit into the return
2003   /// registers.  If false is returned, an sret-demotion is performed.
2004   ///
2005   virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2006                               MachineFunction &/*MF*/, bool /*isVarArg*/,
2007                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2008                LLVMContext &/*Context*/) const
2009   {
2010     // Return true by default to get preexisting behavior.
2011     return true;
2012   }
2013
2014   /// LowerReturn - This hook must be implemented to lower outgoing
2015   /// return values, described by the Outs array, into the specified
2016   /// DAG. The implementation should return the resulting token chain
2017   /// value.
2018   ///
2019   virtual SDValue
2020     LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2021                 bool /*isVarArg*/,
2022                 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2023                 const SmallVectorImpl<SDValue> &/*OutVals*/,
2024                 DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2025     llvm_unreachable("Not Implemented");
2026   }
2027
2028   /// isUsedByReturnOnly - Return true if result of the specified node is used
2029   /// by a return node only. It also compute and return the input chain for the
2030   /// tail call.
2031   /// This is used to determine whether it is possible
2032   /// to codegen a libcall as tail call at legalization time.
2033   virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
2034     return false;
2035   }
2036
2037   /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
2038   /// call instruction as a tail call. This is used by optimization passes to
2039   /// determine if it's profitable to duplicate return instructions to enable
2040   /// tailcall optimization.
2041   virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2042     return false;
2043   }
2044
2045   /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
2046   /// sign extend a zeroext/signext integer argument or return value.
2047   /// FIXME: Most C calling convention requires the return type to be promoted,
2048   /// but this is not true all the time, e.g. i1 on x86-64. It is also not
2049   /// necessary for non-C calling conventions. The frontend should handle this
2050   /// and include all of the necessary information.
2051   virtual MVT getTypeForExtArgOrReturn(MVT VT,
2052                                        ISD::NodeType /*ExtendKind*/) const {
2053     MVT MinVT = getRegisterType(MVT::i32);
2054     return VT.bitsLT(MinVT) ? MinVT : VT;
2055   }
2056
2057   /// LowerOperationWrapper - This callback is invoked by the type legalizer
2058   /// to legalize nodes with an illegal operand type but legal result types.
2059   /// It replaces the LowerOperation callback in the type Legalizer.
2060   /// The reason we can not do away with LowerOperation entirely is that
2061   /// LegalizeDAG isn't yet ready to use this callback.
2062   /// TODO: Consider merging with ReplaceNodeResults.
2063
2064   /// The target places new result values for the node in Results (their number
2065   /// and types must exactly match those of the original return values of
2066   /// the node), or leaves Results empty, which indicates that the node is not
2067   /// to be custom lowered after all.
2068   /// The default implementation calls LowerOperation.
2069   virtual void LowerOperationWrapper(SDNode *N,
2070                                      SmallVectorImpl<SDValue> &Results,
2071                                      SelectionDAG &DAG) const;
2072
2073   /// LowerOperation - This callback is invoked for operations that are
2074   /// unsupported by the target, which are registered to use 'custom' lowering,
2075   /// and whose defined values are all legal.
2076   /// If the target has no operations that require custom lowering, it need not
2077   /// implement this.  The default implementation of this aborts.
2078   virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2079
2080   /// ReplaceNodeResults - This callback is invoked when a node result type is
2081   /// illegal for the target, and the operation was registered to use 'custom'
2082   /// lowering for that result type.  The target places new result values for
2083   /// the node in Results (their number and types must exactly match those of
2084   /// the original return values of the node), or leaves Results empty, which
2085   /// indicates that the node is not to be custom lowered after all.
2086   ///
2087   /// If the target has no operations that require custom lowering, it need not
2088   /// implement this.  The default implementation aborts.
2089   virtual void ReplaceNodeResults(SDNode * /*N*/,
2090                                   SmallVectorImpl<SDValue> &/*Results*/,
2091                                   SelectionDAG &/*DAG*/) const {
2092     llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2093   }
2094
2095   /// getTargetNodeName() - This method returns the name of a target specific
2096   /// DAG node.
2097   virtual const char *getTargetNodeName(unsigned Opcode) const;
2098
2099   /// createFastISel - This method returns a target specific FastISel object,
2100   /// or null if the target does not support "fast" ISel.
2101   virtual FastISel *createFastISel(FunctionLoweringInfo &,
2102                                    const TargetLibraryInfo *) const {
2103     return 0;
2104   }
2105
2106   //===--------------------------------------------------------------------===//
2107   // Inline Asm Support hooks
2108   //
2109
2110   /// ExpandInlineAsm - This hook allows the target to expand an inline asm
2111   /// call to be explicit llvm code if it wants to.  This is useful for
2112   /// turning simple inline asms into LLVM intrinsics, which gives the
2113   /// compiler more information about the behavior of the code.
2114   virtual bool ExpandInlineAsm(CallInst *) const {
2115     return false;
2116   }
2117
2118   enum ConstraintType {
2119     C_Register,            // Constraint represents specific register(s).
2120     C_RegisterClass,       // Constraint represents any of register(s) in class.
2121     C_Memory,              // Memory constraint.
2122     C_Other,               // Something else.
2123     C_Unknown              // Unsupported constraint.
2124   };
2125
2126   enum ConstraintWeight {
2127     // Generic weights.
2128     CW_Invalid  = -1,     // No match.
2129     CW_Okay     = 0,      // Acceptable.
2130     CW_Good     = 1,      // Good weight.
2131     CW_Better   = 2,      // Better weight.
2132     CW_Best     = 3,      // Best weight.
2133
2134     // Well-known weights.
2135     CW_SpecificReg  = CW_Okay,    // Specific register operands.
2136     CW_Register     = CW_Good,    // Register operands.
2137     CW_Memory       = CW_Better,  // Memory operands.
2138     CW_Constant     = CW_Best,    // Constant operand.
2139     CW_Default      = CW_Okay     // Default or don't know type.
2140   };
2141
2142   /// AsmOperandInfo - This contains information for each constraint that we are
2143   /// lowering.
2144   struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2145     /// ConstraintCode - This contains the actual string for the code, like "m".
2146     /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
2147     /// most closely matches the operand.
2148     std::string ConstraintCode;
2149
2150     /// ConstraintType - Information about the constraint code, e.g. Register,
2151     /// RegisterClass, Memory, Other, Unknown.
2152     TargetLowering::ConstraintType ConstraintType;
2153
2154     /// CallOperandval - If this is the result output operand or a
2155     /// clobber, this is null, otherwise it is the incoming operand to the
2156     /// CallInst.  This gets modified as the asm is processed.
2157     Value *CallOperandVal;
2158
2159     /// ConstraintVT - The ValueType for the operand value.
2160     MVT ConstraintVT;
2161
2162     /// isMatchingInputConstraint - Return true of this is an input operand that
2163     /// is a matching constraint like "4".
2164     bool isMatchingInputConstraint() const;
2165
2166     /// getMatchedOperand - If this is an input matching constraint, this method
2167     /// returns the output operand it matches.
2168     unsigned getMatchedOperand() const;
2169
2170     /// Copy constructor for copying from an AsmOperandInfo.
2171     AsmOperandInfo(const AsmOperandInfo &info)
2172       : InlineAsm::ConstraintInfo(info),
2173         ConstraintCode(info.ConstraintCode),
2174         ConstraintType(info.ConstraintType),
2175         CallOperandVal(info.CallOperandVal),
2176         ConstraintVT(info.ConstraintVT) {
2177     }
2178
2179     /// Copy constructor for copying from a ConstraintInfo.
2180     AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
2181       : InlineAsm::ConstraintInfo(info),
2182         ConstraintType(TargetLowering::C_Unknown),
2183         CallOperandVal(0), ConstraintVT(MVT::Other) {
2184     }
2185   };
2186
2187   typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2188
2189   /// ParseConstraints - Split up the constraint string from the inline
2190   /// assembly value into the specific constraints and their prefixes,
2191   /// and also tie in the associated operand values.
2192   /// If this returns an empty vector, and if the constraint string itself
2193   /// isn't empty, there was an error parsing.
2194   virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
2195
2196   /// Examine constraint type and operand type and determine a weight value.
2197   /// The operand object must already have been set up with the operand type.
2198   virtual ConstraintWeight getMultipleConstraintMatchWeight(
2199       AsmOperandInfo &info, int maIndex) const;
2200
2201   /// Examine constraint string and operand type and determine a weight value.
2202   /// The operand object must already have been set up with the operand type.
2203   virtual ConstraintWeight getSingleConstraintMatchWeight(
2204       AsmOperandInfo &info, const char *constraint) const;
2205
2206   /// ComputeConstraintToUse - Determines the constraint code and constraint
2207   /// type to use for the specific AsmOperandInfo, setting
2208   /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
2209   /// being passed in is available, it can be passed in as Op, otherwise an
2210   /// empty SDValue can be passed.
2211   virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2212                                       SDValue Op,
2213                                       SelectionDAG *DAG = 0) const;
2214
2215   /// getConstraintType - Given a constraint, return the type of constraint it
2216   /// is for this target.
2217   virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2218
2219   /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
2220   /// {edx}), return the register number and the register class for the
2221   /// register.
2222   ///
2223   /// Given a register class constraint, like 'r', if this corresponds directly
2224   /// to an LLVM register class, return a register of 0 and the register class
2225   /// pointer.
2226   ///
2227   /// This should only be used for C_Register constraints.  On error,
2228   /// this returns a register number of 0 and a null register class pointer..
2229   virtual std::pair<unsigned, const TargetRegisterClass*>
2230     getRegForInlineAsmConstraint(const std::string &Constraint,
2231                                  EVT VT) const;
2232
2233   /// LowerXConstraint - try to replace an X constraint, which matches anything,
2234   /// with another that has more specific requirements based on the type of the
2235   /// corresponding operand.  This returns null if there is no replacement to
2236   /// make.
2237   virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2238
2239   /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2240   /// vector.  If it is invalid, don't add anything to Ops.
2241   virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2242                                             std::vector<SDValue> &Ops,
2243                                             SelectionDAG &DAG) const;
2244
2245   //===--------------------------------------------------------------------===//
2246   // Div utility functions
2247   //
2248   SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
2249                          SelectionDAG &DAG) const;
2250   SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2251                       std::vector<SDNode*> *Created) const;
2252   SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2253                       std::vector<SDNode*> *Created) const;
2254
2255   //===--------------------------------------------------------------------===//
2256   // Instruction Emitting Hooks
2257   //
2258
2259   // EmitInstrWithCustomInserter - This method should be implemented by targets
2260   // that mark instructions with the 'usesCustomInserter' flag.  These
2261   // instructions are special in various ways, which require special support to
2262   // insert.  The specified MachineInstr is created but not inserted into any
2263   // basic blocks, and this method is called to expand it into a sequence of
2264   // instructions, potentially also creating new basic blocks and control flow.
2265   virtual MachineBasicBlock *
2266     EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2267
2268   /// AdjustInstrPostInstrSelection - This method should be implemented by
2269   /// targets that mark instructions with the 'hasPostISelHook' flag. These
2270   /// instructions must be adjusted after instruction selection by target hooks.
2271   /// e.g. To fill in optional defs for ARM 's' setting instructions.
2272   virtual void
2273   AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2274 };
2275
2276 /// GetReturnInfo - Given an LLVM IR type and return type attributes,
2277 /// compute the return value EVTs and flags, and optionally also
2278 /// the offsets, if the return value is being lowered to memory.
2279 void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2280                    SmallVectorImpl<ISD::OutputArg> &Outs,
2281                    const TargetLowering &TLI);
2282
2283 } // end llvm namespace
2284
2285 #endif