Remove 'static' from inline functions defined in header files.
[oota-llvm.git] / include / llvm / Support / PatternMatch.h
1 //===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR.  The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand.  The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables.  For example,
15 // you can do something like this:
16 //
17 //  Value *Exp = ...
18 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
19 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 //    ... Pattern is matched and variables are bound ...
22 //  }
23 //
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #ifndef LLVM_SUPPORT_PATTERNMATCH_H
30 #define LLVM_SUPPORT_PATTERNMATCH_H
31
32 #include "llvm/Constants.h"
33 #include "llvm/Instructions.h"
34 #include "llvm/Operator.h"
35
36 namespace llvm {
37 namespace PatternMatch {
38
39 template<typename Val, typename Pattern>
40 bool match(Val *V, const Pattern &P) {
41   return const_cast<Pattern&>(P).match(V);
42 }
43
44   
45 template<typename SubPattern_t>
46 struct OneUse_match {
47   SubPattern_t SubPattern;
48   
49   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
50   
51   template<typename OpTy>
52   bool match(OpTy *V) {
53     return V->hasOneUse() && SubPattern.match(V);
54   }
55 };
56
57 template<typename T>
58 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
59   
60   
61 template<typename Class>
62 struct class_match {
63   template<typename ITy>
64   bool match(ITy *V) { return isa<Class>(V); }
65 };
66
67 /// m_Value() - Match an arbitrary value and ignore it.
68 inline class_match<Value> m_Value() { return class_match<Value>(); }
69 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
70 inline class_match<ConstantInt> m_ConstantInt() {
71   return class_match<ConstantInt>();
72 }
73 /// m_Undef() - Match an arbitrary undef constant.
74 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
75
76 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
77   
78 struct match_zero {
79   template<typename ITy>
80   bool match(ITy *V) {
81     if (const Constant *C = dyn_cast<Constant>(V))
82       return C->isNullValue();
83     return false;
84   }
85 };
86   
87 /// m_Zero() - Match an arbitrary zero/null constant.  This includes
88 /// zero_initializer for vectors and ConstantPointerNull for pointers.
89 inline match_zero m_Zero() { return match_zero(); }
90   
91   
92 struct apint_match {
93   const APInt *&Res;
94   apint_match(const APInt *&R) : Res(R) {}
95   template<typename ITy>
96   bool match(ITy *V) {
97     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
98       Res = &CI->getValue();
99       return true;
100     }
101     // FIXME: Remove this.
102     if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
103       if (ConstantInt *CI =
104           dyn_cast_or_null<ConstantInt>(CV->getSplatValue())) {
105         Res = &CI->getValue();
106         return true;
107       }
108     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(V))
109       if (ConstantInt *CI =
110           dyn_cast_or_null<ConstantInt>(CV->getSplatValue())) {
111         Res = &CI->getValue();
112         return true;
113       }
114     return false;
115   }
116 };
117   
118 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
119 /// specified pointer to the contained APInt.
120 inline apint_match m_APInt(const APInt *&Res) { return Res; }
121
122   
123 template<int64_t Val>
124 struct constantint_match {
125   template<typename ITy>
126   bool match(ITy *V) {
127     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
128       const APInt &CIV = CI->getValue();
129       if (Val >= 0)
130         return CIV == static_cast<uint64_t>(Val);
131       // If Val is negative, and CI is shorter than it, truncate to the right
132       // number of bits.  If it is larger, then we have to sign extend.  Just
133       // compare their negated values.
134       return -CIV == -Val;
135     }
136     return false;
137   }
138 };
139
140 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
141 template<int64_t Val>
142 inline constantint_match<Val> m_ConstantInt() {
143   return constantint_match<Val>();
144 }
145
146 /// cst_pred_ty - This helper class is used to match scalar and vector constants
147 /// that satisfy a specified predicate.
148 template<typename Predicate>
149 struct cst_pred_ty : public Predicate {
150   template<typename ITy>
151   bool match(ITy *V) {
152     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
153       return this->isValue(CI->getValue());
154     // FIXME: Remove this.
155     if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
156       if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()))
157         return this->isValue(CI->getValue());
158     if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(V))
159       if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()))
160         return this->isValue(CI->getValue());
161     return false;
162   }
163 };
164   
165 /// api_pred_ty - This helper class is used to match scalar and vector constants
166 /// that satisfy a specified predicate, and bind them to an APInt.
167 template<typename Predicate>
168 struct api_pred_ty : public Predicate {
169   const APInt *&Res;
170   api_pred_ty(const APInt *&R) : Res(R) {}
171   template<typename ITy>
172   bool match(ITy *V) {
173     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
174       if (this->isValue(CI->getValue())) {
175         Res = &CI->getValue();
176         return true;
177       }
178     
179     // FIXME: remove.
180     if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
181       if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()))
182         if (this->isValue(CI->getValue())) {
183           Res = &CI->getValue();
184           return true;
185         }
186     
187     if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(V))
188       if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()))
189         if (this->isValue(CI->getValue())) {
190           Res = &CI->getValue();
191           return true;
192         }
193
194     return false;
195   }
196 };
197   
198   
199 struct is_one {
200   bool isValue(const APInt &C) { return C == 1; }
201 };
202
203 /// m_One() - Match an integer 1 or a vector with all elements equal to 1.
204 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
205 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
206     
207 struct is_all_ones {
208   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
209 };
210   
211 /// m_AllOnes() - Match an integer or vector with all bits set to true.
212 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
213 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
214
215 struct is_sign_bit {
216   bool isValue(const APInt &C) { return C.isSignBit(); }
217 };
218
219 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
220 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
221 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
222
223 struct is_power2 {
224   bool isValue(const APInt &C) { return C.isPowerOf2(); }
225 };
226
227 /// m_Power2() - Match an integer or vector power of 2.
228 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
229 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
230
231 template<typename Class>
232 struct bind_ty {
233   Class *&VR;
234   bind_ty(Class *&V) : VR(V) {}
235
236   template<typename ITy>
237   bool match(ITy *V) {
238     if (Class *CV = dyn_cast<Class>(V)) {
239       VR = CV;
240       return true;
241     }
242     return false;
243   }
244 };
245
246 /// m_Value - Match a value, capturing it if we match.
247 inline bind_ty<Value> m_Value(Value *&V) { return V; }
248
249 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
250 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
251
252 /// m_Constant - Match a Constant, capturing the value if we match.
253 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
254
255 /// specificval_ty - Match a specified Value*.
256 struct specificval_ty {
257   const Value *Val;
258   specificval_ty(const Value *V) : Val(V) {}
259
260   template<typename ITy>
261   bool match(ITy *V) {
262     return V == Val;
263   }
264 };
265
266 /// m_Specific - Match if we have a specific specified value.
267 inline specificval_ty m_Specific(const Value *V) { return V; }
268
269 struct bind_const_intval_ty {
270   uint64_t &VR;
271   bind_const_intval_ty(uint64_t &V) : VR(V) {}
272   
273   template<typename ITy>
274   bool match(ITy *V) {
275     if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
276       if (CV->getBitWidth() <= 64) {
277         VR = CV->getZExtValue();
278         return true;
279       }
280     return false;
281   }
282 };
283
284 /// m_ConstantInt - Match a ConstantInt and bind to its value.  This does not
285 /// match ConstantInts wider than 64-bits.
286 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
287   
288 //===----------------------------------------------------------------------===//
289 // Matchers for specific binary operators.
290 //
291
292 template<typename LHS_t, typename RHS_t, unsigned Opcode>
293 struct BinaryOp_match {
294   LHS_t L;
295   RHS_t R;
296
297   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
298
299   template<typename OpTy>
300   bool match(OpTy *V) {
301     if (V->getValueID() == Value::InstructionVal + Opcode) {
302       BinaryOperator *I = cast<BinaryOperator>(V);
303       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
304     }
305     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
306       return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
307              R.match(CE->getOperand(1));
308     return false;
309   }
310 };
311
312 template<typename LHS, typename RHS>
313 inline BinaryOp_match<LHS, RHS, Instruction::Add>
314 m_Add(const LHS &L, const RHS &R) {
315   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
316 }
317
318 template<typename LHS, typename RHS>
319 inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
320 m_FAdd(const LHS &L, const RHS &R) {
321   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
322 }
323
324 template<typename LHS, typename RHS>
325 inline BinaryOp_match<LHS, RHS, Instruction::Sub>
326 m_Sub(const LHS &L, const RHS &R) {
327   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
328 }
329
330 template<typename LHS, typename RHS>
331 inline BinaryOp_match<LHS, RHS, Instruction::FSub>
332 m_FSub(const LHS &L, const RHS &R) {
333   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
334 }
335
336 template<typename LHS, typename RHS>
337 inline BinaryOp_match<LHS, RHS, Instruction::Mul>
338 m_Mul(const LHS &L, const RHS &R) {
339   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
340 }
341
342 template<typename LHS, typename RHS>
343 inline BinaryOp_match<LHS, RHS, Instruction::FMul>
344 m_FMul(const LHS &L, const RHS &R) {
345   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
346 }
347
348 template<typename LHS, typename RHS>
349 inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
350 m_UDiv(const LHS &L, const RHS &R) {
351   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
352 }
353
354 template<typename LHS, typename RHS>
355 inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
356 m_SDiv(const LHS &L, const RHS &R) {
357   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
358 }
359
360 template<typename LHS, typename RHS>
361 inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
362 m_FDiv(const LHS &L, const RHS &R) {
363   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
364 }
365
366 template<typename LHS, typename RHS>
367 inline BinaryOp_match<LHS, RHS, Instruction::URem>
368 m_URem(const LHS &L, const RHS &R) {
369   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
370 }
371
372 template<typename LHS, typename RHS>
373 inline BinaryOp_match<LHS, RHS, Instruction::SRem>
374 m_SRem(const LHS &L, const RHS &R) {
375   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
376 }
377
378 template<typename LHS, typename RHS>
379 inline BinaryOp_match<LHS, RHS, Instruction::FRem>
380 m_FRem(const LHS &L, const RHS &R) {
381   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
382 }
383
384 template<typename LHS, typename RHS>
385 inline BinaryOp_match<LHS, RHS, Instruction::And>
386 m_And(const LHS &L, const RHS &R) {
387   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
388 }
389
390 template<typename LHS, typename RHS>
391 inline BinaryOp_match<LHS, RHS, Instruction::Or>
392 m_Or(const LHS &L, const RHS &R) {
393   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
394 }
395
396 template<typename LHS, typename RHS>
397 inline BinaryOp_match<LHS, RHS, Instruction::Xor>
398 m_Xor(const LHS &L, const RHS &R) {
399   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
400 }
401
402 template<typename LHS, typename RHS>
403 inline BinaryOp_match<LHS, RHS, Instruction::Shl>
404 m_Shl(const LHS &L, const RHS &R) {
405   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
406 }
407
408 template<typename LHS, typename RHS>
409 inline BinaryOp_match<LHS, RHS, Instruction::LShr>
410 m_LShr(const LHS &L, const RHS &R) {
411   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
412 }
413
414 template<typename LHS, typename RHS>
415 inline BinaryOp_match<LHS, RHS, Instruction::AShr>
416 m_AShr(const LHS &L, const RHS &R) {
417   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
418 }
419
420 //===----------------------------------------------------------------------===//
421 // Class that matches two different binary ops.
422 //
423 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
424 struct BinOp2_match {
425   LHS_t L;
426   RHS_t R;
427
428   BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
429
430   template<typename OpTy>
431   bool match(OpTy *V) {
432     if (V->getValueID() == Value::InstructionVal + Opc1 ||
433         V->getValueID() == Value::InstructionVal + Opc2) {
434       BinaryOperator *I = cast<BinaryOperator>(V);
435       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
436     }
437     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
438       return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
439              L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
440     return false;
441   }
442 };
443
444 /// m_Shr - Matches LShr or AShr.
445 template<typename LHS, typename RHS>
446 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
447 m_Shr(const LHS &L, const RHS &R) {
448   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
449 }
450
451 /// m_LogicalShift - Matches LShr or Shl.
452 template<typename LHS, typename RHS>
453 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
454 m_LogicalShift(const LHS &L, const RHS &R) {
455   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
456 }
457
458 /// m_IDiv - Matches UDiv and SDiv.
459 template<typename LHS, typename RHS>
460 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
461 m_IDiv(const LHS &L, const RHS &R) {
462   return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
463 }
464
465 //===----------------------------------------------------------------------===//
466 // Class that matches exact binary ops.
467 //
468 template<typename SubPattern_t>
469 struct Exact_match {
470   SubPattern_t SubPattern;
471
472   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
473
474   template<typename OpTy>
475   bool match(OpTy *V) {
476     if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
477       return PEO->isExact() && SubPattern.match(V);
478     return false;
479   }
480 };
481
482 template<typename T>
483 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
484
485 //===----------------------------------------------------------------------===//
486 // Matchers for CmpInst classes
487 //
488
489 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
490 struct CmpClass_match {
491   PredicateTy &Predicate;
492   LHS_t L;
493   RHS_t R;
494
495   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
496     : Predicate(Pred), L(LHS), R(RHS) {}
497
498   template<typename OpTy>
499   bool match(OpTy *V) {
500     if (Class *I = dyn_cast<Class>(V))
501       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
502         Predicate = I->getPredicate();
503         return true;
504       }
505     return false;
506   }
507 };
508
509 template<typename LHS, typename RHS>
510 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
511 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
512   return CmpClass_match<LHS, RHS,
513                         ICmpInst, ICmpInst::Predicate>(Pred, L, R);
514 }
515
516 template<typename LHS, typename RHS>
517 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
518 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
519   return CmpClass_match<LHS, RHS,
520                         FCmpInst, FCmpInst::Predicate>(Pred, L, R);
521 }
522
523 //===----------------------------------------------------------------------===//
524 // Matchers for SelectInst classes
525 //
526
527 template<typename Cond_t, typename LHS_t, typename RHS_t>
528 struct SelectClass_match {
529   Cond_t C;
530   LHS_t L;
531   RHS_t R;
532
533   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
534                     const RHS_t &RHS)
535     : C(Cond), L(LHS), R(RHS) {}
536
537   template<typename OpTy>
538   bool match(OpTy *V) {
539     if (SelectInst *I = dyn_cast<SelectInst>(V))
540       return C.match(I->getOperand(0)) &&
541              L.match(I->getOperand(1)) &&
542              R.match(I->getOperand(2));
543     return false;
544   }
545 };
546
547 template<typename Cond, typename LHS, typename RHS>
548 inline SelectClass_match<Cond, LHS, RHS>
549 m_Select(const Cond &C, const LHS &L, const RHS &R) {
550   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
551 }
552
553 /// m_SelectCst - This matches a select of two constants, e.g.:
554 ///    m_SelectCst<-1, 0>(m_Value(V))
555 template<int64_t L, int64_t R, typename Cond>
556 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
557 m_SelectCst(const Cond &C) {
558   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
559 }
560
561
562 //===----------------------------------------------------------------------===//
563 // Matchers for CastInst classes
564 //
565
566 template<typename Op_t, unsigned Opcode>
567 struct CastClass_match {
568   Op_t Op;
569
570   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
571
572   template<typename OpTy>
573   bool match(OpTy *V) {
574     if (Operator *O = dyn_cast<Operator>(V))
575       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
576     return false;
577   }
578 };
579
580 /// m_BitCast
581 template<typename OpTy>
582 inline CastClass_match<OpTy, Instruction::BitCast>
583 m_BitCast(const OpTy &Op) {
584   return CastClass_match<OpTy, Instruction::BitCast>(Op);
585 }
586   
587 /// m_PtrToInt
588 template<typename OpTy>
589 inline CastClass_match<OpTy, Instruction::PtrToInt>
590 m_PtrToInt(const OpTy &Op) {
591   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
592 }
593
594 /// m_Trunc
595 template<typename OpTy>
596 inline CastClass_match<OpTy, Instruction::Trunc>
597 m_Trunc(const OpTy &Op) {
598   return CastClass_match<OpTy, Instruction::Trunc>(Op);
599 }
600
601 /// m_SExt
602 template<typename OpTy>
603 inline CastClass_match<OpTy, Instruction::SExt>
604 m_SExt(const OpTy &Op) {
605   return CastClass_match<OpTy, Instruction::SExt>(Op);
606 }
607
608 /// m_ZExt
609 template<typename OpTy>
610 inline CastClass_match<OpTy, Instruction::ZExt>
611 m_ZExt(const OpTy &Op) {
612   return CastClass_match<OpTy, Instruction::ZExt>(Op);
613 }
614   
615
616 //===----------------------------------------------------------------------===//
617 // Matchers for unary operators
618 //
619
620 template<typename LHS_t>
621 struct not_match {
622   LHS_t L;
623
624   not_match(const LHS_t &LHS) : L(LHS) {}
625
626   template<typename OpTy>
627   bool match(OpTy *V) {
628     if (Operator *O = dyn_cast<Operator>(V))
629       if (O->getOpcode() == Instruction::Xor)
630         return matchIfNot(O->getOperand(0), O->getOperand(1));
631     return false;
632   }
633 private:
634   bool matchIfNot(Value *LHS, Value *RHS) {
635     return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
636             // FIXME: Remove CV.
637             isa<ConstantVector>(RHS)) &&
638            cast<Constant>(RHS)->isAllOnesValue() &&
639            L.match(LHS);
640   }
641 };
642
643 template<typename LHS>
644 inline not_match<LHS> m_Not(const LHS &L) { return L; }
645
646
647 template<typename LHS_t>
648 struct neg_match {
649   LHS_t L;
650
651   neg_match(const LHS_t &LHS) : L(LHS) {}
652
653   template<typename OpTy>
654   bool match(OpTy *V) {
655     if (Operator *O = dyn_cast<Operator>(V))
656       if (O->getOpcode() == Instruction::Sub)
657         return matchIfNeg(O->getOperand(0), O->getOperand(1));
658     return false;
659   }
660 private:
661   bool matchIfNeg(Value *LHS, Value *RHS) {
662     return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
663             isa<ConstantAggregateZero>(LHS)) &&
664            L.match(RHS);
665   }
666 };
667
668 /// m_Neg - Match an integer negate.
669 template<typename LHS>
670 inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
671
672
673 template<typename LHS_t>
674 struct fneg_match {
675   LHS_t L;
676
677   fneg_match(const LHS_t &LHS) : L(LHS) {}
678
679   template<typename OpTy>
680   bool match(OpTy *V) {
681     if (Operator *O = dyn_cast<Operator>(V))
682       if (O->getOpcode() == Instruction::FSub)
683         return matchIfFNeg(O->getOperand(0), O->getOperand(1));
684     return false;
685   }
686 private:
687   bool matchIfFNeg(Value *LHS, Value *RHS) {
688     if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
689       return C->isNegativeZeroValue() && L.match(RHS);
690     return false;
691   }
692 };
693
694 /// m_FNeg - Match a floating point negate.
695 template<typename LHS>
696 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
697
698
699 //===----------------------------------------------------------------------===//
700 // Matchers for control flow.
701 //
702
703 template<typename Cond_t>
704 struct brc_match {
705   Cond_t Cond;
706   BasicBlock *&T, *&F;
707   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
708     : Cond(C), T(t), F(f) {
709   }
710
711   template<typename OpTy>
712   bool match(OpTy *V) {
713     if (BranchInst *BI = dyn_cast<BranchInst>(V))
714       if (BI->isConditional() && Cond.match(BI->getCondition())) {
715         T = BI->getSuccessor(0);
716         F = BI->getSuccessor(1);
717         return true;
718       }
719     return false;
720   }
721 };
722
723 template<typename Cond_t>
724 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
725   return brc_match<Cond_t>(C, T, F);
726 }
727
728
729 //===----------------------------------------------------------------------===//
730 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
731 //
732
733 template<typename LHS_t, typename RHS_t, typename Pred_t>
734 struct MaxMin_match {
735   LHS_t L;
736   RHS_t R;
737
738   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
739     : L(LHS), R(RHS) {}
740
741   template<typename OpTy>
742   bool match(OpTy *V) {
743     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
744     SelectInst *SI = dyn_cast<SelectInst>(V);
745     if (!SI)
746       return false;
747     ICmpInst *Cmp = dyn_cast<ICmpInst>(SI->getCondition());
748     if (!Cmp)
749       return false;
750     // At this point we have a select conditioned on a comparison.  Check that
751     // it is the values returned by the select that are being compared.
752     Value *TrueVal = SI->getTrueValue();
753     Value *FalseVal = SI->getFalseValue();
754     Value *LHS = Cmp->getOperand(0);
755     Value *RHS = Cmp->getOperand(1);
756     if ((TrueVal != LHS || FalseVal != RHS) &&
757         (TrueVal != RHS || FalseVal != LHS))
758       return false;
759     ICmpInst::Predicate Pred = LHS == TrueVal ?
760       Cmp->getPredicate() : Cmp->getSwappedPredicate();
761     // Does "(x pred y) ? x : y" represent the desired max/min operation?
762     if (!Pred_t::match(Pred))
763       return false;
764     // It does!  Bind the operands.
765     return L.match(LHS) && R.match(RHS);
766   }
767 };
768
769 /// smax_pred_ty - Helper class for identifying signed max predicates.
770 struct smax_pred_ty {
771   static bool match(ICmpInst::Predicate Pred) {
772     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
773   }
774 };
775
776 /// smin_pred_ty - Helper class for identifying signed min predicates.
777 struct smin_pred_ty {
778   static bool match(ICmpInst::Predicate Pred) {
779     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
780   }
781 };
782
783 /// umax_pred_ty - Helper class for identifying unsigned max predicates.
784 struct umax_pred_ty {
785   static bool match(ICmpInst::Predicate Pred) {
786     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
787   }
788 };
789
790 /// umin_pred_ty - Helper class for identifying unsigned min predicates.
791 struct umin_pred_ty {
792   static bool match(ICmpInst::Predicate Pred) {
793     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
794   }
795 };
796
797 template<typename LHS, typename RHS>
798 inline MaxMin_match<LHS, RHS, smax_pred_ty>
799 m_SMax(const LHS &L, const RHS &R) {
800   return MaxMin_match<LHS, RHS, smax_pred_ty>(L, R);
801 }
802
803 template<typename LHS, typename RHS>
804 inline MaxMin_match<LHS, RHS, smin_pred_ty>
805 m_SMin(const LHS &L, const RHS &R) {
806   return MaxMin_match<LHS, RHS, smin_pred_ty>(L, R);
807 }
808
809 template<typename LHS, typename RHS>
810 inline MaxMin_match<LHS, RHS, umax_pred_ty>
811 m_UMax(const LHS &L, const RHS &R) {
812   return MaxMin_match<LHS, RHS, umax_pred_ty>(L, R);
813 }
814
815 template<typename LHS, typename RHS>
816 inline MaxMin_match<LHS, RHS, umin_pred_ty>
817 m_UMin(const LHS &L, const RHS &R) {
818   return MaxMin_match<LHS, RHS, umin_pred_ty>(L, R);
819 }
820
821 } // end namespace PatternMatch
822 } // end namespace llvm
823
824 #endif