1 //===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file exposes the class definitions of all of the subclasses of the
11 // Instruction class. This is meant to be an easy way to get access to all
12 // instruction subclasses.
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_INSTRUCTIONS_H
17 #define LLVM_INSTRUCTIONS_H
19 #include "llvm/InstrTypes.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Attributes.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/ADT/SmallVector.h"
34 //===----------------------------------------------------------------------===//
36 //===----------------------------------------------------------------------===//
38 /// AllocaInst - an instruction to allocate memory on the stack
40 class AllocaInst : public UnaryInstruction {
42 virtual AllocaInst *clone_impl() const;
44 explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
45 const Twine &Name = "", Instruction *InsertBefore = 0);
46 AllocaInst(const Type *Ty, Value *ArraySize,
47 const Twine &Name, BasicBlock *InsertAtEnd);
49 AllocaInst(const Type *Ty, const Twine &Name, Instruction *InsertBefore = 0);
50 AllocaInst(const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
52 AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
53 const Twine &Name = "", Instruction *InsertBefore = 0);
54 AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
55 const Twine &Name, BasicBlock *InsertAtEnd);
57 // Out of line virtual method, so the vtable, etc. has a home.
58 virtual ~AllocaInst();
60 /// isArrayAllocation - Return true if there is an allocation size parameter
61 /// to the allocation instruction that is not 1.
63 bool isArrayAllocation() const;
65 /// getArraySize - Get the number of elements allocated. For a simple
66 /// allocation of a single element, this will return a constant 1 value.
68 const Value *getArraySize() const { return getOperand(0); }
69 Value *getArraySize() { return getOperand(0); }
71 /// getType - Overload to return most specific pointer type
73 const PointerType *getType() const {
74 return reinterpret_cast<const PointerType*>(Instruction::getType());
77 /// getAllocatedType - Return the type that is being allocated by the
80 const Type *getAllocatedType() const;
82 /// getAlignment - Return the alignment of the memory that is being allocated
83 /// by the instruction.
85 unsigned getAlignment() const {
86 return (1u << getSubclassDataFromInstruction()) >> 1;
88 void setAlignment(unsigned Align);
90 /// isStaticAlloca - Return true if this alloca is in the entry block of the
91 /// function and is a constant size. If so, the code generator will fold it
92 /// into the prolog/epilog code, so it is basically free.
93 bool isStaticAlloca() const;
95 // Methods for support type inquiry through isa, cast, and dyn_cast:
96 static inline bool classof(const AllocaInst *) { return true; }
97 static inline bool classof(const Instruction *I) {
98 return (I->getOpcode() == Instruction::Alloca);
100 static inline bool classof(const Value *V) {
101 return isa<Instruction>(V) && classof(cast<Instruction>(V));
104 // Shadow Instruction::setInstructionSubclassData with a private forwarding
105 // method so that subclasses cannot accidentally use it.
106 void setInstructionSubclassData(unsigned short D) {
107 Instruction::setInstructionSubclassData(D);
112 //===----------------------------------------------------------------------===//
114 //===----------------------------------------------------------------------===//
116 /// LoadInst - an instruction for reading from memory. This uses the
117 /// SubclassData field in Value to store whether or not the load is volatile.
119 class LoadInst : public UnaryInstruction {
122 virtual LoadInst *clone_impl() const;
124 LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
125 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
126 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
127 Instruction *InsertBefore = 0);
128 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
129 unsigned Align, Instruction *InsertBefore = 0);
130 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
131 BasicBlock *InsertAtEnd);
132 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
133 unsigned Align, BasicBlock *InsertAtEnd);
135 LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
136 LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
137 explicit LoadInst(Value *Ptr, const char *NameStr = 0,
138 bool isVolatile = false, Instruction *InsertBefore = 0);
139 LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
140 BasicBlock *InsertAtEnd);
142 /// isVolatile - Return true if this is a load from a volatile memory
145 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
147 /// setVolatile - Specify whether this is a volatile load or not.
149 void setVolatile(bool V) {
150 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
154 /// getAlignment - Return the alignment of the access that is being performed
156 unsigned getAlignment() const {
157 return (1 << (getSubclassDataFromInstruction() >> 1)) >> 1;
160 void setAlignment(unsigned Align);
162 Value *getPointerOperand() { return getOperand(0); }
163 const Value *getPointerOperand() const { return getOperand(0); }
164 static unsigned getPointerOperandIndex() { return 0U; }
166 unsigned getPointerAddressSpace() const {
167 return cast<PointerType>(getPointerOperand()->getType())->getAddressSpace();
171 // Methods for support type inquiry through isa, cast, and dyn_cast:
172 static inline bool classof(const LoadInst *) { return true; }
173 static inline bool classof(const Instruction *I) {
174 return I->getOpcode() == Instruction::Load;
176 static inline bool classof(const Value *V) {
177 return isa<Instruction>(V) && classof(cast<Instruction>(V));
180 // Shadow Instruction::setInstructionSubclassData with a private forwarding
181 // method so that subclasses cannot accidentally use it.
182 void setInstructionSubclassData(unsigned short D) {
183 Instruction::setInstructionSubclassData(D);
188 //===----------------------------------------------------------------------===//
190 //===----------------------------------------------------------------------===//
192 /// StoreInst - an instruction for storing to memory
194 class StoreInst : public Instruction {
195 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
198 virtual StoreInst *clone_impl() const;
200 // allocate space for exactly two operands
201 void *operator new(size_t s) {
202 return User::operator new(s, 2);
204 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
205 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
206 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
207 Instruction *InsertBefore = 0);
208 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
209 unsigned Align, Instruction *InsertBefore = 0);
210 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
211 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
212 unsigned Align, BasicBlock *InsertAtEnd);
215 /// isVolatile - Return true if this is a load from a volatile memory
218 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
220 /// setVolatile - Specify whether this is a volatile load or not.
222 void setVolatile(bool V) {
223 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
227 /// Transparently provide more efficient getOperand methods.
228 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
230 /// getAlignment - Return the alignment of the access that is being performed
232 unsigned getAlignment() const {
233 return (1 << (getSubclassDataFromInstruction() >> 1)) >> 1;
236 void setAlignment(unsigned Align);
238 Value *getValueOperand() { return getOperand(0); }
239 const Value *getValueOperand() const { return getOperand(0); }
241 Value *getPointerOperand() { return getOperand(1); }
242 const Value *getPointerOperand() const { return getOperand(1); }
243 static unsigned getPointerOperandIndex() { return 1U; }
245 unsigned getPointerAddressSpace() const {
246 return cast<PointerType>(getPointerOperand()->getType())->getAddressSpace();
249 // Methods for support type inquiry through isa, cast, and dyn_cast:
250 static inline bool classof(const StoreInst *) { return true; }
251 static inline bool classof(const Instruction *I) {
252 return I->getOpcode() == Instruction::Store;
254 static inline bool classof(const Value *V) {
255 return isa<Instruction>(V) && classof(cast<Instruction>(V));
258 // Shadow Instruction::setInstructionSubclassData with a private forwarding
259 // method so that subclasses cannot accidentally use it.
260 void setInstructionSubclassData(unsigned short D) {
261 Instruction::setInstructionSubclassData(D);
266 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<2> {
269 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
271 //===----------------------------------------------------------------------===//
272 // GetElementPtrInst Class
273 //===----------------------------------------------------------------------===//
275 // checkType - Simple wrapper function to give a better assertion failure
276 // message on bad indexes for a gep instruction.
278 static inline const Type *checkType(const Type *Ty) {
279 assert(Ty && "Invalid GetElementPtrInst indices for type!");
283 /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
284 /// access elements of arrays and structs
286 class GetElementPtrInst : public Instruction {
287 GetElementPtrInst(const GetElementPtrInst &GEPI);
288 void init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
289 const Twine &NameStr);
290 void init(Value *Ptr, Value *Idx, const Twine &NameStr);
292 template<typename InputIterator>
293 void init(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd,
294 const Twine &NameStr,
295 // This argument ensures that we have an iterator we can
296 // do arithmetic on in constant time
297 std::random_access_iterator_tag) {
298 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
301 // This requires that the iterator points to contiguous memory.
302 init(Ptr, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
303 // we have to build an array here
306 init(Ptr, 0, NumIdx, NameStr);
310 /// getIndexedType - Returns the type of the element that would be loaded with
311 /// a load instruction with the specified parameters.
313 /// Null is returned if the indices are invalid for the specified
316 template<typename InputIterator>
317 static const Type *getIndexedType(const Type *Ptr,
318 InputIterator IdxBegin,
319 InputIterator IdxEnd,
320 // This argument ensures that we
321 // have an iterator we can do
322 // arithmetic on in constant time
323 std::random_access_iterator_tag) {
324 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
327 // This requires that the iterator points to contiguous memory.
328 return getIndexedType(Ptr, &*IdxBegin, NumIdx);
330 return getIndexedType(Ptr, (Value *const*)0, NumIdx);
333 /// Constructors - Create a getelementptr instruction with a base pointer an
334 /// list of indices. The first ctor can optionally insert before an existing
335 /// instruction, the second appends the new instruction to the specified
337 template<typename InputIterator>
338 inline GetElementPtrInst(Value *Ptr, InputIterator IdxBegin,
339 InputIterator IdxEnd,
341 const Twine &NameStr,
342 Instruction *InsertBefore);
343 template<typename InputIterator>
344 inline GetElementPtrInst(Value *Ptr,
345 InputIterator IdxBegin, InputIterator IdxEnd,
347 const Twine &NameStr, BasicBlock *InsertAtEnd);
349 /// Constructors - These two constructors are convenience methods because one
350 /// and two index getelementptr instructions are so common.
351 GetElementPtrInst(Value *Ptr, Value *Idx, const Twine &NameStr = "",
352 Instruction *InsertBefore = 0);
353 GetElementPtrInst(Value *Ptr, Value *Idx,
354 const Twine &NameStr, BasicBlock *InsertAtEnd);
356 virtual GetElementPtrInst *clone_impl() const;
358 template<typename InputIterator>
359 static GetElementPtrInst *Create(Value *Ptr, InputIterator IdxBegin,
360 InputIterator IdxEnd,
361 const Twine &NameStr = "",
362 Instruction *InsertBefore = 0) {
363 typename std::iterator_traits<InputIterator>::difference_type Values =
364 1 + std::distance(IdxBegin, IdxEnd);
366 GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertBefore);
368 template<typename InputIterator>
369 static GetElementPtrInst *Create(Value *Ptr,
370 InputIterator IdxBegin, InputIterator IdxEnd,
371 const Twine &NameStr,
372 BasicBlock *InsertAtEnd) {
373 typename std::iterator_traits<InputIterator>::difference_type Values =
374 1 + std::distance(IdxBegin, IdxEnd);
376 GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertAtEnd);
379 /// Constructors - These two creators are convenience methods because one
380 /// index getelementptr instructions are so common.
381 static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
382 const Twine &NameStr = "",
383 Instruction *InsertBefore = 0) {
384 return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertBefore);
386 static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
387 const Twine &NameStr,
388 BasicBlock *InsertAtEnd) {
389 return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertAtEnd);
392 /// Create an "inbounds" getelementptr. See the documentation for the
393 /// "inbounds" flag in LangRef.html for details.
394 template<typename InputIterator>
395 static GetElementPtrInst *CreateInBounds(Value *Ptr, InputIterator IdxBegin,
396 InputIterator IdxEnd,
397 const Twine &NameStr = "",
398 Instruction *InsertBefore = 0) {
399 GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
400 NameStr, InsertBefore);
401 GEP->setIsInBounds(true);
404 template<typename InputIterator>
405 static GetElementPtrInst *CreateInBounds(Value *Ptr,
406 InputIterator IdxBegin,
407 InputIterator IdxEnd,
408 const Twine &NameStr,
409 BasicBlock *InsertAtEnd) {
410 GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
411 NameStr, InsertAtEnd);
412 GEP->setIsInBounds(true);
415 static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
416 const Twine &NameStr = "",
417 Instruction *InsertBefore = 0) {
418 GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertBefore);
419 GEP->setIsInBounds(true);
422 static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
423 const Twine &NameStr,
424 BasicBlock *InsertAtEnd) {
425 GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertAtEnd);
426 GEP->setIsInBounds(true);
430 /// Transparently provide more efficient getOperand methods.
431 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
433 // getType - Overload to return most specific pointer type...
434 const PointerType *getType() const {
435 return reinterpret_cast<const PointerType*>(Instruction::getType());
438 /// getIndexedType - Returns the type of the element that would be loaded with
439 /// a load instruction with the specified parameters.
441 /// Null is returned if the indices are invalid for the specified
444 template<typename InputIterator>
445 static const Type *getIndexedType(const Type *Ptr,
446 InputIterator IdxBegin,
447 InputIterator IdxEnd) {
448 return getIndexedType(Ptr, IdxBegin, IdxEnd,
449 typename std::iterator_traits<InputIterator>::
450 iterator_category());
453 static const Type *getIndexedType(const Type *Ptr,
454 Value* const *Idx, unsigned NumIdx);
456 static const Type *getIndexedType(const Type *Ptr,
457 uint64_t const *Idx, unsigned NumIdx);
459 static const Type *getIndexedType(const Type *Ptr, Value *Idx);
461 inline op_iterator idx_begin() { return op_begin()+1; }
462 inline const_op_iterator idx_begin() const { return op_begin()+1; }
463 inline op_iterator idx_end() { return op_end(); }
464 inline const_op_iterator idx_end() const { return op_end(); }
466 Value *getPointerOperand() {
467 return getOperand(0);
469 const Value *getPointerOperand() const {
470 return getOperand(0);
472 static unsigned getPointerOperandIndex() {
473 return 0U; // get index for modifying correct operand
476 unsigned getPointerAddressSpace() const {
477 return cast<PointerType>(getType())->getAddressSpace();
480 /// getPointerOperandType - Method to return the pointer operand as a
482 const PointerType *getPointerOperandType() const {
483 return reinterpret_cast<const PointerType*>(getPointerOperand()->getType());
487 unsigned getNumIndices() const { // Note: always non-negative
488 return getNumOperands() - 1;
491 bool hasIndices() const {
492 return getNumOperands() > 1;
495 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
496 /// zeros. If so, the result pointer and the first operand have the same
497 /// value, just potentially different types.
498 bool hasAllZeroIndices() const;
500 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
501 /// constant integers. If so, the result pointer and the first operand have
502 /// a constant offset between them.
503 bool hasAllConstantIndices() const;
505 /// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
506 /// See LangRef.html for the meaning of inbounds on a getelementptr.
507 void setIsInBounds(bool b = true);
509 /// isInBounds - Determine whether the GEP has the inbounds flag.
510 bool isInBounds() const;
512 // Methods for support type inquiry through isa, cast, and dyn_cast:
513 static inline bool classof(const GetElementPtrInst *) { return true; }
514 static inline bool classof(const Instruction *I) {
515 return (I->getOpcode() == Instruction::GetElementPtr);
517 static inline bool classof(const Value *V) {
518 return isa<Instruction>(V) && classof(cast<Instruction>(V));
523 struct OperandTraits<GetElementPtrInst> : public VariadicOperandTraits<1> {
526 template<typename InputIterator>
527 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
528 InputIterator IdxBegin,
529 InputIterator IdxEnd,
531 const Twine &NameStr,
532 Instruction *InsertBefore)
533 : Instruction(PointerType::get(checkType(
534 getIndexedType(Ptr->getType(),
536 cast<PointerType>(Ptr->getType())
537 ->getAddressSpace()),
539 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
540 Values, InsertBefore) {
541 init(Ptr, IdxBegin, IdxEnd, NameStr,
542 typename std::iterator_traits<InputIterator>::iterator_category());
544 template<typename InputIterator>
545 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
546 InputIterator IdxBegin,
547 InputIterator IdxEnd,
549 const Twine &NameStr,
550 BasicBlock *InsertAtEnd)
551 : Instruction(PointerType::get(checkType(
552 getIndexedType(Ptr->getType(),
554 cast<PointerType>(Ptr->getType())
555 ->getAddressSpace()),
557 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
558 Values, InsertAtEnd) {
559 init(Ptr, IdxBegin, IdxEnd, NameStr,
560 typename std::iterator_traits<InputIterator>::iterator_category());
564 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
567 //===----------------------------------------------------------------------===//
569 //===----------------------------------------------------------------------===//
571 /// This instruction compares its operands according to the predicate given
572 /// to the constructor. It only operates on integers or pointers. The operands
573 /// must be identical types.
574 /// @brief Represent an integer comparison operator.
575 class ICmpInst: public CmpInst {
577 /// @brief Clone an indentical ICmpInst
578 virtual ICmpInst *clone_impl() const;
580 /// @brief Constructor with insert-before-instruction semantics.
582 Instruction *InsertBefore, ///< Where to insert
583 Predicate pred, ///< The predicate to use for the comparison
584 Value *LHS, ///< The left-hand-side of the expression
585 Value *RHS, ///< The right-hand-side of the expression
586 const Twine &NameStr = "" ///< Name of the instruction
587 ) : CmpInst(makeCmpResultType(LHS->getType()),
588 Instruction::ICmp, pred, LHS, RHS, NameStr,
590 assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
591 pred <= CmpInst::LAST_ICMP_PREDICATE &&
592 "Invalid ICmp predicate value");
593 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
594 "Both operands to ICmp instruction are not of the same type!");
595 // Check that the operands are the right type
596 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
597 getOperand(0)->getType()->isPointerTy()) &&
598 "Invalid operand types for ICmp instruction");
601 /// @brief Constructor with insert-at-end semantics.
603 BasicBlock &InsertAtEnd, ///< Block to insert into.
604 Predicate pred, ///< The predicate to use for the comparison
605 Value *LHS, ///< The left-hand-side of the expression
606 Value *RHS, ///< The right-hand-side of the expression
607 const Twine &NameStr = "" ///< Name of the instruction
608 ) : CmpInst(makeCmpResultType(LHS->getType()),
609 Instruction::ICmp, pred, LHS, RHS, NameStr,
611 assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
612 pred <= CmpInst::LAST_ICMP_PREDICATE &&
613 "Invalid ICmp predicate value");
614 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
615 "Both operands to ICmp instruction are not of the same type!");
616 // Check that the operands are the right type
617 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
618 getOperand(0)->getType()->isPointerTy()) &&
619 "Invalid operand types for ICmp instruction");
622 /// @brief Constructor with no-insertion semantics
624 Predicate pred, ///< The predicate to use for the comparison
625 Value *LHS, ///< The left-hand-side of the expression
626 Value *RHS, ///< The right-hand-side of the expression
627 const Twine &NameStr = "" ///< Name of the instruction
628 ) : CmpInst(makeCmpResultType(LHS->getType()),
629 Instruction::ICmp, pred, LHS, RHS, NameStr) {
630 assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
631 pred <= CmpInst::LAST_ICMP_PREDICATE &&
632 "Invalid ICmp predicate value");
633 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
634 "Both operands to ICmp instruction are not of the same type!");
635 // Check that the operands are the right type
636 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
637 getOperand(0)->getType()->isPointerTy()) &&
638 "Invalid operand types for ICmp instruction");
641 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
642 /// @returns the predicate that would be the result if the operand were
643 /// regarded as signed.
644 /// @brief Return the signed version of the predicate
645 Predicate getSignedPredicate() const {
646 return getSignedPredicate(getPredicate());
649 /// This is a static version that you can use without an instruction.
650 /// @brief Return the signed version of the predicate.
651 static Predicate getSignedPredicate(Predicate pred);
653 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
654 /// @returns the predicate that would be the result if the operand were
655 /// regarded as unsigned.
656 /// @brief Return the unsigned version of the predicate
657 Predicate getUnsignedPredicate() const {
658 return getUnsignedPredicate(getPredicate());
661 /// This is a static version that you can use without an instruction.
662 /// @brief Return the unsigned version of the predicate.
663 static Predicate getUnsignedPredicate(Predicate pred);
665 /// isEquality - Return true if this predicate is either EQ or NE. This also
666 /// tests for commutativity.
667 static bool isEquality(Predicate P) {
668 return P == ICMP_EQ || P == ICMP_NE;
671 /// isEquality - Return true if this predicate is either EQ or NE. This also
672 /// tests for commutativity.
673 bool isEquality() const {
674 return isEquality(getPredicate());
677 /// @returns true if the predicate of this ICmpInst is commutative
678 /// @brief Determine if this relation is commutative.
679 bool isCommutative() const { return isEquality(); }
681 /// isRelational - Return true if the predicate is relational (not EQ or NE).
683 bool isRelational() const {
684 return !isEquality();
687 /// isRelational - Return true if the predicate is relational (not EQ or NE).
689 static bool isRelational(Predicate P) {
690 return !isEquality(P);
693 /// Initialize a set of values that all satisfy the predicate with C.
694 /// @brief Make a ConstantRange for a relation with a constant value.
695 static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
697 /// Exchange the two operands to this instruction in such a way that it does
698 /// not modify the semantics of the instruction. The predicate value may be
699 /// changed to retain the same result if the predicate is order dependent
701 /// @brief Swap operands and adjust predicate.
702 void swapOperands() {
703 setPredicate(getSwappedPredicate());
704 Op<0>().swap(Op<1>());
707 // Methods for support type inquiry through isa, cast, and dyn_cast:
708 static inline bool classof(const ICmpInst *) { return true; }
709 static inline bool classof(const Instruction *I) {
710 return I->getOpcode() == Instruction::ICmp;
712 static inline bool classof(const Value *V) {
713 return isa<Instruction>(V) && classof(cast<Instruction>(V));
718 //===----------------------------------------------------------------------===//
720 //===----------------------------------------------------------------------===//
722 /// This instruction compares its operands according to the predicate given
723 /// to the constructor. It only operates on floating point values or packed
724 /// vectors of floating point values. The operands must be identical types.
725 /// @brief Represents a floating point comparison operator.
726 class FCmpInst: public CmpInst {
728 /// @brief Clone an indentical FCmpInst
729 virtual FCmpInst *clone_impl() const;
731 /// @brief Constructor with insert-before-instruction semantics.
733 Instruction *InsertBefore, ///< Where to insert
734 Predicate pred, ///< The predicate to use for the comparison
735 Value *LHS, ///< The left-hand-side of the expression
736 Value *RHS, ///< The right-hand-side of the expression
737 const Twine &NameStr = "" ///< Name of the instruction
738 ) : CmpInst(makeCmpResultType(LHS->getType()),
739 Instruction::FCmp, pred, LHS, RHS, NameStr,
741 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
742 "Invalid FCmp predicate value");
743 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
744 "Both operands to FCmp instruction are not of the same type!");
745 // Check that the operands are the right type
746 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
747 "Invalid operand types for FCmp instruction");
750 /// @brief Constructor with insert-at-end semantics.
752 BasicBlock &InsertAtEnd, ///< Block to insert into.
753 Predicate pred, ///< The predicate to use for the comparison
754 Value *LHS, ///< The left-hand-side of the expression
755 Value *RHS, ///< The right-hand-side of the expression
756 const Twine &NameStr = "" ///< Name of the instruction
757 ) : CmpInst(makeCmpResultType(LHS->getType()),
758 Instruction::FCmp, pred, LHS, RHS, NameStr,
760 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
761 "Invalid FCmp predicate value");
762 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
763 "Both operands to FCmp instruction are not of the same type!");
764 // Check that the operands are the right type
765 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
766 "Invalid operand types for FCmp instruction");
769 /// @brief Constructor with no-insertion semantics
771 Predicate pred, ///< The predicate to use for the comparison
772 Value *LHS, ///< The left-hand-side of the expression
773 Value *RHS, ///< The right-hand-side of the expression
774 const Twine &NameStr = "" ///< Name of the instruction
775 ) : CmpInst(makeCmpResultType(LHS->getType()),
776 Instruction::FCmp, pred, LHS, RHS, NameStr) {
777 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
778 "Invalid FCmp predicate value");
779 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
780 "Both operands to FCmp instruction are not of the same type!");
781 // Check that the operands are the right type
782 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
783 "Invalid operand types for FCmp instruction");
786 /// @returns true if the predicate of this instruction is EQ or NE.
787 /// @brief Determine if this is an equality predicate.
788 bool isEquality() const {
789 return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE ||
790 getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE;
793 /// @returns true if the predicate of this instruction is commutative.
794 /// @brief Determine if this is a commutative predicate.
795 bool isCommutative() const {
796 return isEquality() ||
797 getPredicate() == FCMP_FALSE ||
798 getPredicate() == FCMP_TRUE ||
799 getPredicate() == FCMP_ORD ||
800 getPredicate() == FCMP_UNO;
803 /// @returns true if the predicate is relational (not EQ or NE).
804 /// @brief Determine if this a relational predicate.
805 bool isRelational() const { return !isEquality(); }
807 /// Exchange the two operands to this instruction in such a way that it does
808 /// not modify the semantics of the instruction. The predicate value may be
809 /// changed to retain the same result if the predicate is order dependent
811 /// @brief Swap operands and adjust predicate.
812 void swapOperands() {
813 setPredicate(getSwappedPredicate());
814 Op<0>().swap(Op<1>());
817 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
818 static inline bool classof(const FCmpInst *) { return true; }
819 static inline bool classof(const Instruction *I) {
820 return I->getOpcode() == Instruction::FCmp;
822 static inline bool classof(const Value *V) {
823 return isa<Instruction>(V) && classof(cast<Instruction>(V));
827 //===----------------------------------------------------------------------===//
828 /// CallInst - This class represents a function call, abstracting a target
829 /// machine's calling convention. This class uses low bit of the SubClassData
830 /// field to indicate whether or not this is a tail call. The rest of the bits
831 /// hold the calling convention of the call.
833 class CallInst : public Instruction {
834 AttrListPtr AttributeList; ///< parameter attributes for call
835 CallInst(const CallInst &CI);
836 void init(Value *Func, Value* const *Params, unsigned NumParams);
837 void init(Value *Func, Value *Actual1, Value *Actual2);
838 void init(Value *Func, Value *Actual);
839 void init(Value *Func);
841 template<typename InputIterator>
842 void init(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
843 const Twine &NameStr,
844 // This argument ensures that we have an iterator we can
845 // do arithmetic on in constant time
846 std::random_access_iterator_tag) {
847 unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
849 // This requires that the iterator points to contiguous memory.
850 init(Func, NumArgs ? &*ArgBegin : 0, NumArgs);
854 /// Construct a CallInst given a range of arguments. InputIterator
855 /// must be a random-access iterator pointing to contiguous storage
856 /// (e.g. a std::vector<>::iterator). Checks are made for
857 /// random-accessness but not for contiguous storage as that would
858 /// incur runtime overhead.
859 /// @brief Construct a CallInst from a range of arguments
860 template<typename InputIterator>
861 CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
862 const Twine &NameStr, Instruction *InsertBefore);
864 /// Construct a CallInst given a range of arguments. InputIterator
865 /// must be a random-access iterator pointing to contiguous storage
866 /// (e.g. a std::vector<>::iterator). Checks are made for
867 /// random-accessness but not for contiguous storage as that would
868 /// incur runtime overhead.
869 /// @brief Construct a CallInst from a range of arguments
870 template<typename InputIterator>
871 inline CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
872 const Twine &NameStr, BasicBlock *InsertAtEnd);
874 CallInst(Value *F, Value *Actual, const Twine &NameStr,
875 Instruction *InsertBefore);
876 CallInst(Value *F, Value *Actual, const Twine &NameStr,
877 BasicBlock *InsertAtEnd);
878 explicit CallInst(Value *F, const Twine &NameStr,
879 Instruction *InsertBefore);
880 CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
882 virtual CallInst *clone_impl() const;
884 template<typename InputIterator>
885 static CallInst *Create(Value *Func,
886 InputIterator ArgBegin, InputIterator ArgEnd,
887 const Twine &NameStr = "",
888 Instruction *InsertBefore = 0) {
889 return new((unsigned)(ArgEnd - ArgBegin + 1))
890 CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertBefore);
892 template<typename InputIterator>
893 static CallInst *Create(Value *Func,
894 InputIterator ArgBegin, InputIterator ArgEnd,
895 const Twine &NameStr, BasicBlock *InsertAtEnd) {
896 return new((unsigned)(ArgEnd - ArgBegin + 1))
897 CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertAtEnd);
899 static CallInst *Create(Value *F, Value *Actual,
900 const Twine &NameStr = "",
901 Instruction *InsertBefore = 0) {
902 return new(2) CallInst(F, Actual, NameStr, InsertBefore);
904 static CallInst *Create(Value *F, Value *Actual, const Twine &NameStr,
905 BasicBlock *InsertAtEnd) {
906 return new(2) CallInst(F, Actual, NameStr, InsertAtEnd);
908 static CallInst *Create(Value *F, const Twine &NameStr = "",
909 Instruction *InsertBefore = 0) {
910 return new(1) CallInst(F, NameStr, InsertBefore);
912 static CallInst *Create(Value *F, const Twine &NameStr,
913 BasicBlock *InsertAtEnd) {
914 return new(1) CallInst(F, NameStr, InsertAtEnd);
916 /// CreateMalloc - Generate the IR for a call to malloc:
917 /// 1. Compute the malloc call's argument as the specified type's size,
918 /// possibly multiplied by the array size if the array size is not
920 /// 2. Call malloc with that argument.
921 /// 3. Bitcast the result of the malloc call to the specified type.
922 static Instruction *CreateMalloc(Instruction *InsertBefore,
923 const Type *IntPtrTy, const Type *AllocTy,
924 Value *AllocSize, Value *ArraySize = 0,
925 const Twine &Name = "");
926 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
927 const Type *IntPtrTy, const Type *AllocTy,
928 Value *AllocSize, Value *ArraySize = 0,
929 Function* MallocF = 0,
930 const Twine &Name = "");
931 /// CreateFree - Generate the IR for a call to the builtin free function.
932 static void CreateFree(Value* Source, Instruction *InsertBefore);
933 static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
937 bool isTailCall() const { return getSubclassDataFromInstruction() & 1; }
938 void setTailCall(bool isTC = true) {
939 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
943 /// Provide fast operand accessors
944 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
946 enum { ArgOffset = 1 }; ///< temporary, do not use for new code!
947 unsigned getNumArgOperands() const { return getNumOperands() - 1; }
948 Value *getArgOperand(unsigned i) const { return getOperand(i + ArgOffset); }
949 void setArgOperand(unsigned i, Value *v) { setOperand(i + ArgOffset, v); }
951 /// Provide compile-time errors for accessing operand 0
952 /// @deprecated these will go away soon
953 /// @detail see below comments and update your code to high-level interfaces
954 /// - getOperand(0) ---> getCalledValue()
955 /// - setOperand(0, V) ---> setCalledFunction(V)
958 void getOperand(void*); // NO IMPL ---> use getCalledValue (or possibly getCalledFunction) instead
959 void setOperand(void*, Value*); // NO IMPL ---> use setCalledFunction instead
962 /// getCallingConv/setCallingConv - Get or set the calling convention of this
964 CallingConv::ID getCallingConv() const {
965 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 1);
967 void setCallingConv(CallingConv::ID CC) {
968 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
969 (static_cast<unsigned>(CC) << 1));
972 /// getAttributes - Return the parameter attributes for this call.
974 const AttrListPtr &getAttributes() const { return AttributeList; }
976 /// setAttributes - Set the parameter attributes for this call.
978 void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }
980 /// addAttribute - adds the attribute to the list of attributes.
981 void addAttribute(unsigned i, Attributes attr);
983 /// removeAttribute - removes the attribute from the list of attributes.
984 void removeAttribute(unsigned i, Attributes attr);
986 /// @brief Determine whether the call or the callee has the given attribute.
987 bool paramHasAttr(unsigned i, Attributes attr) const;
989 /// @brief Extract the alignment for a call or parameter (0=unknown).
990 unsigned getParamAlignment(unsigned i) const {
991 return AttributeList.getParamAlignment(i);
994 /// @brief Return true if the call should not be inlined.
995 bool isNoInline() const { return paramHasAttr(~0, Attribute::NoInline); }
996 void setIsNoInline(bool Value) {
997 if (Value) addAttribute(~0, Attribute::NoInline);
998 else removeAttribute(~0, Attribute::NoInline);
1001 /// @brief Determine if the call does not access memory.
1002 bool doesNotAccessMemory() const {
1003 return paramHasAttr(~0, Attribute::ReadNone);
1005 void setDoesNotAccessMemory(bool NotAccessMemory = true) {
1006 if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
1007 else removeAttribute(~0, Attribute::ReadNone);
1010 /// @brief Determine if the call does not access or only reads memory.
1011 bool onlyReadsMemory() const {
1012 return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
1014 void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
1015 if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
1016 else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
1019 /// @brief Determine if the call cannot return.
1020 bool doesNotReturn() const {
1021 return paramHasAttr(~0, Attribute::NoReturn);
1023 void setDoesNotReturn(bool DoesNotReturn = true) {
1024 if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
1025 else removeAttribute(~0, Attribute::NoReturn);
1028 /// @brief Determine if the call cannot unwind.
1029 bool doesNotThrow() const {
1030 return paramHasAttr(~0, Attribute::NoUnwind);
1032 void setDoesNotThrow(bool DoesNotThrow = true) {
1033 if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
1034 else removeAttribute(~0, Attribute::NoUnwind);
1037 /// @brief Determine if the call returns a structure through first
1038 /// pointer argument.
1039 bool hasStructRetAttr() const {
1040 // Be friendly and also check the callee.
1041 return paramHasAttr(1, Attribute::StructRet);
1044 /// @brief Determine if any call argument is an aggregate passed by value.
1045 bool hasByValArgument() const {
1046 return AttributeList.hasAttrSomewhere(Attribute::ByVal);
1049 /// getCalledFunction - Return the function called, or null if this is an
1050 /// indirect function invocation.
1052 Function *getCalledFunction() const {
1053 return dyn_cast<Function>(Op<ArgOffset -1>());
1056 /// getCalledValue - Get a pointer to the function that is invoked by this
1058 const Value *getCalledValue() const { return Op<ArgOffset -1>(); }
1059 Value *getCalledValue() { return Op<ArgOffset -1>(); }
1061 /// setCalledFunction - Set the function called.
1062 void setCalledFunction(Value* Fn) {
1063 Op<ArgOffset -1>() = Fn;
1066 // Methods for support type inquiry through isa, cast, and dyn_cast:
1067 static inline bool classof(const CallInst *) { return true; }
1068 static inline bool classof(const Instruction *I) {
1069 return I->getOpcode() == Instruction::Call;
1071 static inline bool classof(const Value *V) {
1072 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1075 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1076 // method so that subclasses cannot accidentally use it.
1077 void setInstructionSubclassData(unsigned short D) {
1078 Instruction::setInstructionSubclassData(D);
1083 struct OperandTraits<CallInst> : public VariadicOperandTraits<1> {
1086 template<typename InputIterator>
1087 CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
1088 const Twine &NameStr, BasicBlock *InsertAtEnd)
1089 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
1090 ->getElementType())->getReturnType(),
1092 OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
1093 unsigned(ArgEnd - ArgBegin + 1), InsertAtEnd) {
1094 init(Func, ArgBegin, ArgEnd, NameStr,
1095 typename std::iterator_traits<InputIterator>::iterator_category());
1098 template<typename InputIterator>
1099 CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
1100 const Twine &NameStr, Instruction *InsertBefore)
1101 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
1102 ->getElementType())->getReturnType(),
1104 OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
1105 (unsigned)(ArgEnd - ArgBegin + 1), InsertBefore) {
1106 init(Func, ArgBegin, ArgEnd, NameStr,
1107 typename std::iterator_traits<InputIterator>::iterator_category());
1110 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
1112 //===----------------------------------------------------------------------===//
1114 //===----------------------------------------------------------------------===//
1116 /// SelectInst - This class represents the LLVM 'select' instruction.
1118 class SelectInst : public Instruction {
1119 void init(Value *C, Value *S1, Value *S2) {
1120 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1126 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1127 Instruction *InsertBefore)
1128 : Instruction(S1->getType(), Instruction::Select,
1129 &Op<0>(), 3, InsertBefore) {
1133 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1134 BasicBlock *InsertAtEnd)
1135 : Instruction(S1->getType(), Instruction::Select,
1136 &Op<0>(), 3, InsertAtEnd) {
1141 virtual SelectInst *clone_impl() const;
1143 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1144 const Twine &NameStr = "",
1145 Instruction *InsertBefore = 0) {
1146 return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1148 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1149 const Twine &NameStr,
1150 BasicBlock *InsertAtEnd) {
1151 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1154 const Value *getCondition() const { return Op<0>(); }
1155 const Value *getTrueValue() const { return Op<1>(); }
1156 const Value *getFalseValue() const { return Op<2>(); }
1157 Value *getCondition() { return Op<0>(); }
1158 Value *getTrueValue() { return Op<1>(); }
1159 Value *getFalseValue() { return Op<2>(); }
1161 /// areInvalidOperands - Return a string if the specified operands are invalid
1162 /// for a select operation, otherwise return null.
1163 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1165 /// Transparently provide more efficient getOperand methods.
1166 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1168 OtherOps getOpcode() const {
1169 return static_cast<OtherOps>(Instruction::getOpcode());
1172 // Methods for support type inquiry through isa, cast, and dyn_cast:
1173 static inline bool classof(const SelectInst *) { return true; }
1174 static inline bool classof(const Instruction *I) {
1175 return I->getOpcode() == Instruction::Select;
1177 static inline bool classof(const Value *V) {
1178 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1183 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<3> {
1186 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1188 //===----------------------------------------------------------------------===//
1190 //===----------------------------------------------------------------------===//
1192 /// VAArgInst - This class represents the va_arg llvm instruction, which returns
1193 /// an argument of the specified type given a va_list and increments that list
1195 class VAArgInst : public UnaryInstruction {
1197 virtual VAArgInst *clone_impl() const;
1200 VAArgInst(Value *List, const Type *Ty, const Twine &NameStr = "",
1201 Instruction *InsertBefore = 0)
1202 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1205 VAArgInst(Value *List, const Type *Ty, const Twine &NameStr,
1206 BasicBlock *InsertAtEnd)
1207 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1211 // Methods for support type inquiry through isa, cast, and dyn_cast:
1212 static inline bool classof(const VAArgInst *) { return true; }
1213 static inline bool classof(const Instruction *I) {
1214 return I->getOpcode() == VAArg;
1216 static inline bool classof(const Value *V) {
1217 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1221 //===----------------------------------------------------------------------===//
1222 // ExtractElementInst Class
1223 //===----------------------------------------------------------------------===//
1225 /// ExtractElementInst - This instruction extracts a single (scalar)
1226 /// element from a VectorType value
1228 class ExtractElementInst : public Instruction {
1229 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1230 Instruction *InsertBefore = 0);
1231 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1232 BasicBlock *InsertAtEnd);
1234 virtual ExtractElementInst *clone_impl() const;
1237 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1238 const Twine &NameStr = "",
1239 Instruction *InsertBefore = 0) {
1240 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1242 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1243 const Twine &NameStr,
1244 BasicBlock *InsertAtEnd) {
1245 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1248 /// isValidOperands - Return true if an extractelement instruction can be
1249 /// formed with the specified operands.
1250 static bool isValidOperands(const Value *Vec, const Value *Idx);
1252 Value *getVectorOperand() { return Op<0>(); }
1253 Value *getIndexOperand() { return Op<1>(); }
1254 const Value *getVectorOperand() const { return Op<0>(); }
1255 const Value *getIndexOperand() const { return Op<1>(); }
1257 const VectorType *getVectorOperandType() const {
1258 return reinterpret_cast<const VectorType*>(getVectorOperand()->getType());
1262 /// Transparently provide more efficient getOperand methods.
1263 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1265 // Methods for support type inquiry through isa, cast, and dyn_cast:
1266 static inline bool classof(const ExtractElementInst *) { return true; }
1267 static inline bool classof(const Instruction *I) {
1268 return I->getOpcode() == Instruction::ExtractElement;
1270 static inline bool classof(const Value *V) {
1271 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1276 struct OperandTraits<ExtractElementInst> : public FixedNumOperandTraits<2> {
1279 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1281 //===----------------------------------------------------------------------===//
1282 // InsertElementInst Class
1283 //===----------------------------------------------------------------------===//
1285 /// InsertElementInst - This instruction inserts a single (scalar)
1286 /// element into a VectorType value
1288 class InsertElementInst : public Instruction {
1289 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1290 const Twine &NameStr = "",
1291 Instruction *InsertBefore = 0);
1292 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1293 const Twine &NameStr, BasicBlock *InsertAtEnd);
1295 virtual InsertElementInst *clone_impl() const;
1298 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1299 const Twine &NameStr = "",
1300 Instruction *InsertBefore = 0) {
1301 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1303 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1304 const Twine &NameStr,
1305 BasicBlock *InsertAtEnd) {
1306 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1309 /// isValidOperands - Return true if an insertelement instruction can be
1310 /// formed with the specified operands.
1311 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1314 /// getType - Overload to return most specific vector type.
1316 const VectorType *getType() const {
1317 return reinterpret_cast<const VectorType*>(Instruction::getType());
1320 /// Transparently provide more efficient getOperand methods.
1321 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1323 // Methods for support type inquiry through isa, cast, and dyn_cast:
1324 static inline bool classof(const InsertElementInst *) { return true; }
1325 static inline bool classof(const Instruction *I) {
1326 return I->getOpcode() == Instruction::InsertElement;
1328 static inline bool classof(const Value *V) {
1329 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1334 struct OperandTraits<InsertElementInst> : public FixedNumOperandTraits<3> {
1337 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1339 //===----------------------------------------------------------------------===//
1340 // ShuffleVectorInst Class
1341 //===----------------------------------------------------------------------===//
1343 /// ShuffleVectorInst - This instruction constructs a fixed permutation of two
1346 class ShuffleVectorInst : public Instruction {
1348 virtual ShuffleVectorInst *clone_impl() const;
1351 // allocate space for exactly three operands
1352 void *operator new(size_t s) {
1353 return User::operator new(s, 3);
1355 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1356 const Twine &NameStr = "",
1357 Instruction *InsertBefor = 0);
1358 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1359 const Twine &NameStr, BasicBlock *InsertAtEnd);
1361 /// isValidOperands - Return true if a shufflevector instruction can be
1362 /// formed with the specified operands.
1363 static bool isValidOperands(const Value *V1, const Value *V2,
1366 /// getType - Overload to return most specific vector type.
1368 const VectorType *getType() const {
1369 return reinterpret_cast<const VectorType*>(Instruction::getType());
1372 /// Transparently provide more efficient getOperand methods.
1373 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1375 /// getMaskValue - Return the index from the shuffle mask for the specified
1376 /// output result. This is either -1 if the element is undef or a number less
1377 /// than 2*numelements.
1378 int getMaskValue(unsigned i) const;
1380 // Methods for support type inquiry through isa, cast, and dyn_cast:
1381 static inline bool classof(const ShuffleVectorInst *) { return true; }
1382 static inline bool classof(const Instruction *I) {
1383 return I->getOpcode() == Instruction::ShuffleVector;
1385 static inline bool classof(const Value *V) {
1386 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1391 struct OperandTraits<ShuffleVectorInst> : public FixedNumOperandTraits<3> {
1394 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
1396 //===----------------------------------------------------------------------===//
1397 // ExtractValueInst Class
1398 //===----------------------------------------------------------------------===//
1400 /// ExtractValueInst - This instruction extracts a struct member or array
1401 /// element value from an aggregate value.
1403 class ExtractValueInst : public UnaryInstruction {
1404 SmallVector<unsigned, 4> Indices;
1406 ExtractValueInst(const ExtractValueInst &EVI);
1407 void init(const unsigned *Idx, unsigned NumIdx,
1408 const Twine &NameStr);
1409 void init(unsigned Idx, const Twine &NameStr);
1411 template<typename InputIterator>
1412 void init(InputIterator IdxBegin, InputIterator IdxEnd,
1413 const Twine &NameStr,
1414 // This argument ensures that we have an iterator we can
1415 // do arithmetic on in constant time
1416 std::random_access_iterator_tag) {
1417 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
1419 // There's no fundamental reason why we require at least one index
1420 // (other than weirdness with &*IdxBegin being invalid; see
1421 // getelementptr's init routine for example). But there's no
1422 // present need to support it.
1423 assert(NumIdx > 0 && "ExtractValueInst must have at least one index");
1425 // This requires that the iterator points to contiguous memory.
1426 init(&*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
1427 // we have to build an array here
1430 /// getIndexedType - Returns the type of the element that would be extracted
1431 /// with an extractvalue instruction with the specified parameters.
1433 /// Null is returned if the indices are invalid for the specified
1436 static const Type *getIndexedType(const Type *Agg,
1437 const unsigned *Idx, unsigned NumIdx);
1439 template<typename InputIterator>
1440 static const Type *getIndexedType(const Type *Ptr,
1441 InputIterator IdxBegin,
1442 InputIterator IdxEnd,
1443 // This argument ensures that we
1444 // have an iterator we can do
1445 // arithmetic on in constant time
1446 std::random_access_iterator_tag) {
1447 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
1450 // This requires that the iterator points to contiguous memory.
1451 return getIndexedType(Ptr, &*IdxBegin, NumIdx);
1453 return getIndexedType(Ptr, (const unsigned *)0, NumIdx);
1456 /// Constructors - Create a extractvalue instruction with a base aggregate
1457 /// value and a list of indices. The first ctor can optionally insert before
1458 /// an existing instruction, the second appends the new instruction to the
1459 /// specified BasicBlock.
1460 template<typename InputIterator>
1461 inline ExtractValueInst(Value *Agg, InputIterator IdxBegin,
1462 InputIterator IdxEnd,
1463 const Twine &NameStr,
1464 Instruction *InsertBefore);
1465 template<typename InputIterator>
1466 inline ExtractValueInst(Value *Agg,
1467 InputIterator IdxBegin, InputIterator IdxEnd,
1468 const Twine &NameStr, BasicBlock *InsertAtEnd);
1470 // allocate space for exactly one operand
1471 void *operator new(size_t s) {
1472 return User::operator new(s, 1);
1475 virtual ExtractValueInst *clone_impl() const;
1478 template<typename InputIterator>
1479 static ExtractValueInst *Create(Value *Agg, InputIterator IdxBegin,
1480 InputIterator IdxEnd,
1481 const Twine &NameStr = "",
1482 Instruction *InsertBefore = 0) {
1484 ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertBefore);
1486 template<typename InputIterator>
1487 static ExtractValueInst *Create(Value *Agg,
1488 InputIterator IdxBegin, InputIterator IdxEnd,
1489 const Twine &NameStr,
1490 BasicBlock *InsertAtEnd) {
1491 return new ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertAtEnd);
1494 /// Constructors - These two creators are convenience methods because one
1495 /// index extractvalue instructions are much more common than those with
1497 static ExtractValueInst *Create(Value *Agg, unsigned Idx,
1498 const Twine &NameStr = "",
1499 Instruction *InsertBefore = 0) {
1500 unsigned Idxs[1] = { Idx };
1501 return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertBefore);
1503 static ExtractValueInst *Create(Value *Agg, unsigned Idx,
1504 const Twine &NameStr,
1505 BasicBlock *InsertAtEnd) {
1506 unsigned Idxs[1] = { Idx };
1507 return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertAtEnd);
1510 /// getIndexedType - Returns the type of the element that would be extracted
1511 /// with an extractvalue instruction with the specified parameters.
1513 /// Null is returned if the indices are invalid for the specified
1516 template<typename InputIterator>
1517 static const Type *getIndexedType(const Type *Ptr,
1518 InputIterator IdxBegin,
1519 InputIterator IdxEnd) {
1520 return getIndexedType(Ptr, IdxBegin, IdxEnd,
1521 typename std::iterator_traits<InputIterator>::
1522 iterator_category());
1524 static const Type *getIndexedType(const Type *Ptr, unsigned Idx);
1526 typedef const unsigned* idx_iterator;
1527 inline idx_iterator idx_begin() const { return Indices.begin(); }
1528 inline idx_iterator idx_end() const { return Indices.end(); }
1530 Value *getAggregateOperand() {
1531 return getOperand(0);
1533 const Value *getAggregateOperand() const {
1534 return getOperand(0);
1536 static unsigned getAggregateOperandIndex() {
1537 return 0U; // get index for modifying correct operand
1540 unsigned getNumIndices() const { // Note: always non-negative
1541 return (unsigned)Indices.size();
1544 bool hasIndices() const {
1548 // Methods for support type inquiry through isa, cast, and dyn_cast:
1549 static inline bool classof(const ExtractValueInst *) { return true; }
1550 static inline bool classof(const Instruction *I) {
1551 return I->getOpcode() == Instruction::ExtractValue;
1553 static inline bool classof(const Value *V) {
1554 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1558 template<typename InputIterator>
1559 ExtractValueInst::ExtractValueInst(Value *Agg,
1560 InputIterator IdxBegin,
1561 InputIterator IdxEnd,
1562 const Twine &NameStr,
1563 Instruction *InsertBefore)
1564 : UnaryInstruction(checkType(getIndexedType(Agg->getType(),
1566 ExtractValue, Agg, InsertBefore) {
1567 init(IdxBegin, IdxEnd, NameStr,
1568 typename std::iterator_traits<InputIterator>::iterator_category());
1570 template<typename InputIterator>
1571 ExtractValueInst::ExtractValueInst(Value *Agg,
1572 InputIterator IdxBegin,
1573 InputIterator IdxEnd,
1574 const Twine &NameStr,
1575 BasicBlock *InsertAtEnd)
1576 : UnaryInstruction(checkType(getIndexedType(Agg->getType(),
1578 ExtractValue, Agg, InsertAtEnd) {
1579 init(IdxBegin, IdxEnd, NameStr,
1580 typename std::iterator_traits<InputIterator>::iterator_category());
1584 //===----------------------------------------------------------------------===//
1585 // InsertValueInst Class
1586 //===----------------------------------------------------------------------===//
1588 /// InsertValueInst - This instruction inserts a struct field of array element
1589 /// value into an aggregate value.
1591 class InsertValueInst : public Instruction {
1592 SmallVector<unsigned, 4> Indices;
1594 void *operator new(size_t, unsigned); // Do not implement
1595 InsertValueInst(const InsertValueInst &IVI);
1596 void init(Value *Agg, Value *Val, const unsigned *Idx, unsigned NumIdx,
1597 const Twine &NameStr);
1598 void init(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr);
1600 template<typename InputIterator>
1601 void init(Value *Agg, Value *Val,
1602 InputIterator IdxBegin, InputIterator IdxEnd,
1603 const Twine &NameStr,
1604 // This argument ensures that we have an iterator we can
1605 // do arithmetic on in constant time
1606 std::random_access_iterator_tag) {
1607 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
1609 // There's no fundamental reason why we require at least one index
1610 // (other than weirdness with &*IdxBegin being invalid; see
1611 // getelementptr's init routine for example). But there's no
1612 // present need to support it.
1613 assert(NumIdx > 0 && "InsertValueInst must have at least one index");
1615 // This requires that the iterator points to contiguous memory.
1616 init(Agg, Val, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
1617 // we have to build an array here
1620 /// Constructors - Create a insertvalue instruction with a base aggregate
1621 /// value, a value to insert, and a list of indices. The first ctor can
1622 /// optionally insert before an existing instruction, the second appends
1623 /// the new instruction to the specified BasicBlock.
1624 template<typename InputIterator>
1625 inline InsertValueInst(Value *Agg, Value *Val, InputIterator IdxBegin,
1626 InputIterator IdxEnd,
1627 const Twine &NameStr,
1628 Instruction *InsertBefore);
1629 template<typename InputIterator>
1630 inline InsertValueInst(Value *Agg, Value *Val,
1631 InputIterator IdxBegin, InputIterator IdxEnd,
1632 const Twine &NameStr, BasicBlock *InsertAtEnd);
1634 /// Constructors - These two constructors are convenience methods because one
1635 /// and two index insertvalue instructions are so common.
1636 InsertValueInst(Value *Agg, Value *Val,
1637 unsigned Idx, const Twine &NameStr = "",
1638 Instruction *InsertBefore = 0);
1639 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
1640 const Twine &NameStr, BasicBlock *InsertAtEnd);
1642 virtual InsertValueInst *clone_impl() const;
1644 // allocate space for exactly two operands
1645 void *operator new(size_t s) {
1646 return User::operator new(s, 2);
1649 template<typename InputIterator>
1650 static InsertValueInst *Create(Value *Agg, Value *Val, InputIterator IdxBegin,
1651 InputIterator IdxEnd,
1652 const Twine &NameStr = "",
1653 Instruction *InsertBefore = 0) {
1654 return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
1655 NameStr, InsertBefore);
1657 template<typename InputIterator>
1658 static InsertValueInst *Create(Value *Agg, Value *Val,
1659 InputIterator IdxBegin, InputIterator IdxEnd,
1660 const Twine &NameStr,
1661 BasicBlock *InsertAtEnd) {
1662 return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
1663 NameStr, InsertAtEnd);
1666 /// Constructors - These two creators are convenience methods because one
1667 /// index insertvalue instructions are much more common than those with
1669 static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
1670 const Twine &NameStr = "",
1671 Instruction *InsertBefore = 0) {
1672 return new InsertValueInst(Agg, Val, Idx, NameStr, InsertBefore);
1674 static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
1675 const Twine &NameStr,
1676 BasicBlock *InsertAtEnd) {
1677 return new InsertValueInst(Agg, Val, Idx, NameStr, InsertAtEnd);
1680 /// Transparently provide more efficient getOperand methods.
1681 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1683 typedef const unsigned* idx_iterator;
1684 inline idx_iterator idx_begin() const { return Indices.begin(); }
1685 inline idx_iterator idx_end() const { return Indices.end(); }
1687 Value *getAggregateOperand() {
1688 return getOperand(0);
1690 const Value *getAggregateOperand() const {
1691 return getOperand(0);
1693 static unsigned getAggregateOperandIndex() {
1694 return 0U; // get index for modifying correct operand
1697 Value *getInsertedValueOperand() {
1698 return getOperand(1);
1700 const Value *getInsertedValueOperand() const {
1701 return getOperand(1);
1703 static unsigned getInsertedValueOperandIndex() {
1704 return 1U; // get index for modifying correct operand
1707 unsigned getNumIndices() const { // Note: always non-negative
1708 return (unsigned)Indices.size();
1711 bool hasIndices() const {
1715 // Methods for support type inquiry through isa, cast, and dyn_cast:
1716 static inline bool classof(const InsertValueInst *) { return true; }
1717 static inline bool classof(const Instruction *I) {
1718 return I->getOpcode() == Instruction::InsertValue;
1720 static inline bool classof(const Value *V) {
1721 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1726 struct OperandTraits<InsertValueInst> : public FixedNumOperandTraits<2> {
1729 template<typename InputIterator>
1730 InsertValueInst::InsertValueInst(Value *Agg,
1732 InputIterator IdxBegin,
1733 InputIterator IdxEnd,
1734 const Twine &NameStr,
1735 Instruction *InsertBefore)
1736 : Instruction(Agg->getType(), InsertValue,
1737 OperandTraits<InsertValueInst>::op_begin(this),
1739 init(Agg, Val, IdxBegin, IdxEnd, NameStr,
1740 typename std::iterator_traits<InputIterator>::iterator_category());
1742 template<typename InputIterator>
1743 InsertValueInst::InsertValueInst(Value *Agg,
1745 InputIterator IdxBegin,
1746 InputIterator IdxEnd,
1747 const Twine &NameStr,
1748 BasicBlock *InsertAtEnd)
1749 : Instruction(Agg->getType(), InsertValue,
1750 OperandTraits<InsertValueInst>::op_begin(this),
1752 init(Agg, Val, IdxBegin, IdxEnd, NameStr,
1753 typename std::iterator_traits<InputIterator>::iterator_category());
1756 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
1758 //===----------------------------------------------------------------------===//
1760 //===----------------------------------------------------------------------===//
1762 // PHINode - The PHINode class is used to represent the magical mystical PHI
1763 // node, that can not exist in nature, but can be synthesized in a computer
1764 // scientist's overactive imagination.
1766 class PHINode : public Instruction {
1767 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
1768 /// ReservedSpace - The number of operands actually allocated. NumOperands is
1769 /// the number actually in use.
1770 unsigned ReservedSpace;
1771 PHINode(const PHINode &PN);
1772 // allocate space for exactly zero operands
1773 void *operator new(size_t s) {
1774 return User::operator new(s, 0);
1776 explicit PHINode(const Type *Ty, const Twine &NameStr = "",
1777 Instruction *InsertBefore = 0)
1778 : Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore),
1783 PHINode(const Type *Ty, const Twine &NameStr, BasicBlock *InsertAtEnd)
1784 : Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd),
1789 virtual PHINode *clone_impl() const;
1791 static PHINode *Create(const Type *Ty, const Twine &NameStr = "",
1792 Instruction *InsertBefore = 0) {
1793 return new PHINode(Ty, NameStr, InsertBefore);
1795 static PHINode *Create(const Type *Ty, const Twine &NameStr,
1796 BasicBlock *InsertAtEnd) {
1797 return new PHINode(Ty, NameStr, InsertAtEnd);
1801 /// reserveOperandSpace - This method can be used to avoid repeated
1802 /// reallocation of PHI operand lists by reserving space for the correct
1803 /// number of operands before adding them. Unlike normal vector reserves,
1804 /// this method can also be used to trim the operand space.
1805 void reserveOperandSpace(unsigned NumValues) {
1806 resizeOperands(NumValues*2);
1809 /// Provide fast operand accessors
1810 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1812 /// getNumIncomingValues - Return the number of incoming edges
1814 unsigned getNumIncomingValues() const { return getNumOperands()/2; }
1816 /// getIncomingValue - Return incoming value number x
1818 Value *getIncomingValue(unsigned i) const {
1819 assert(i*2 < getNumOperands() && "Invalid value number!");
1820 return getOperand(i*2);
1822 void setIncomingValue(unsigned i, Value *V) {
1823 assert(i*2 < getNumOperands() && "Invalid value number!");
1826 static unsigned getOperandNumForIncomingValue(unsigned i) {
1829 static unsigned getIncomingValueNumForOperand(unsigned i) {
1830 assert(i % 2 == 0 && "Invalid incoming-value operand index!");
1834 /// getIncomingBlock - Return incoming basic block number @p i.
1836 BasicBlock *getIncomingBlock(unsigned i) const {
1837 return cast<BasicBlock>(getOperand(i*2+1));
1840 /// getIncomingBlock - Return incoming basic block corresponding
1841 /// to an operand of the PHI.
1843 BasicBlock *getIncomingBlock(const Use &U) const {
1844 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
1845 return cast<BasicBlock>((&U + 1)->get());
1848 /// getIncomingBlock - Return incoming basic block corresponding
1849 /// to value use iterator.
1851 template <typename U>
1852 BasicBlock *getIncomingBlock(value_use_iterator<U> I) const {
1853 return getIncomingBlock(I.getUse());
1857 void setIncomingBlock(unsigned i, BasicBlock *BB) {
1858 setOperand(i*2+1, (Value*)BB);
1860 static unsigned getOperandNumForIncomingBlock(unsigned i) {
1863 static unsigned getIncomingBlockNumForOperand(unsigned i) {
1864 assert(i % 2 == 1 && "Invalid incoming-block operand index!");
1868 /// addIncoming - Add an incoming value to the end of the PHI list
1870 void addIncoming(Value *V, BasicBlock *BB) {
1871 assert(V && "PHI node got a null value!");
1872 assert(BB && "PHI node got a null basic block!");
1873 assert(getType() == V->getType() &&
1874 "All operands to PHI node must be the same type as the PHI node!");
1875 unsigned OpNo = NumOperands;
1876 if (OpNo+2 > ReservedSpace)
1877 resizeOperands(0); // Get more space!
1878 // Initialize some new operands.
1879 NumOperands = OpNo+2;
1880 OperandList[OpNo] = V;
1881 OperandList[OpNo+1] = (Value*)BB;
1884 /// removeIncomingValue - Remove an incoming value. This is useful if a
1885 /// predecessor basic block is deleted. The value removed is returned.
1887 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
1888 /// is true), the PHI node is destroyed and any uses of it are replaced with
1889 /// dummy values. The only time there should be zero incoming values to a PHI
1890 /// node is when the block is dead, so this strategy is sound.
1892 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
1894 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
1895 int Idx = getBasicBlockIndex(BB);
1896 assert(Idx >= 0 && "Invalid basic block argument to remove!");
1897 return removeIncomingValue(Idx, DeletePHIIfEmpty);
1900 /// getBasicBlockIndex - Return the first index of the specified basic
1901 /// block in the value list for this PHI. Returns -1 if no instance.
1903 int getBasicBlockIndex(const BasicBlock *BB) const {
1904 Use *OL = OperandList;
1905 for (unsigned i = 0, e = getNumOperands(); i != e; i += 2)
1906 if (OL[i+1].get() == (const Value*)BB) return i/2;
1910 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
1911 return getIncomingValue(getBasicBlockIndex(BB));
1914 /// hasConstantValue - If the specified PHI node always merges together the
1915 /// same value, return the value, otherwise return null.
1917 /// If the PHI has undef operands, but all the rest of the operands are
1918 /// some unique value, return that value if it can be proved that the
1919 /// value dominates the PHI. If DT is null, use a conservative check,
1920 /// otherwise use DT to test for dominance.
1922 Value *hasConstantValue(DominatorTree *DT = 0) const;
1924 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1925 static inline bool classof(const PHINode *) { return true; }
1926 static inline bool classof(const Instruction *I) {
1927 return I->getOpcode() == Instruction::PHI;
1929 static inline bool classof(const Value *V) {
1930 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1933 void resizeOperands(unsigned NumOperands);
1937 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
1940 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
1943 //===----------------------------------------------------------------------===//
1945 //===----------------------------------------------------------------------===//
1947 //===---------------------------------------------------------------------------
1948 /// ReturnInst - Return a value (possibly void), from a function. Execution
1949 /// does not continue in this function any longer.
1951 class ReturnInst : public TerminatorInst {
1952 ReturnInst(const ReturnInst &RI);
1955 // ReturnInst constructors:
1956 // ReturnInst() - 'ret void' instruction
1957 // ReturnInst( null) - 'ret void' instruction
1958 // ReturnInst(Value* X) - 'ret X' instruction
1959 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
1960 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
1961 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
1962 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
1964 // NOTE: If the Value* passed is of type void then the constructor behaves as
1965 // if it was passed NULL.
1966 explicit ReturnInst(LLVMContext &C, Value *retVal = 0,
1967 Instruction *InsertBefore = 0);
1968 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
1969 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
1971 virtual ReturnInst *clone_impl() const;
1973 static ReturnInst* Create(LLVMContext &C, Value *retVal = 0,
1974 Instruction *InsertBefore = 0) {
1975 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
1977 static ReturnInst* Create(LLVMContext &C, Value *retVal,
1978 BasicBlock *InsertAtEnd) {
1979 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
1981 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
1982 return new(0) ReturnInst(C, InsertAtEnd);
1984 virtual ~ReturnInst();
1986 /// Provide fast operand accessors
1987 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1989 /// Convenience accessor
1990 Value *getReturnValue(unsigned n = 0) const {
1991 return n < getNumOperands()
1996 unsigned getNumSuccessors() const { return 0; }
1998 // Methods for support type inquiry through isa, cast, and dyn_cast:
1999 static inline bool classof(const ReturnInst *) { return true; }
2000 static inline bool classof(const Instruction *I) {
2001 return (I->getOpcode() == Instruction::Ret);
2003 static inline bool classof(const Value *V) {
2004 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2007 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2008 virtual unsigned getNumSuccessorsV() const;
2009 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2013 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<> {
2016 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
2018 //===----------------------------------------------------------------------===//
2020 //===----------------------------------------------------------------------===//
2022 //===---------------------------------------------------------------------------
2023 /// BranchInst - Conditional or Unconditional Branch instruction.
2025 class BranchInst : public TerminatorInst {
2026 /// Ops list - Branches are strange. The operands are ordered:
2027 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2028 /// they don't have to check for cond/uncond branchness. These are mostly
2029 /// accessed relative from op_end().
2030 BranchInst(const BranchInst &BI);
2032 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2033 // BranchInst(BB *B) - 'br B'
2034 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2035 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2036 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2037 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2038 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2039 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0);
2040 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2041 Instruction *InsertBefore = 0);
2042 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2043 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2044 BasicBlock *InsertAtEnd);
2046 virtual BranchInst *clone_impl() const;
2048 static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) {
2049 return new(1, true) BranchInst(IfTrue, InsertBefore);
2051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
2052 Value *Cond, Instruction *InsertBefore = 0) {
2053 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
2055 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
2056 return new(1, true) BranchInst(IfTrue, InsertAtEnd);
2058 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
2059 Value *Cond, BasicBlock *InsertAtEnd) {
2060 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
2065 /// Transparently provide more efficient getOperand methods.
2066 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2068 bool isUnconditional() const { return getNumOperands() == 1; }
2069 bool isConditional() const { return getNumOperands() == 3; }
2071 Value *getCondition() const {
2072 assert(isConditional() && "Cannot get condition of an uncond branch!");
2076 void setCondition(Value *V) {
2077 assert(isConditional() && "Cannot set condition of unconditional branch!");
2081 // setUnconditionalDest - Change the current branch to an unconditional branch
2082 // targeting the specified block.
2083 // FIXME: Eliminate this ugly method.
2084 void setUnconditionalDest(BasicBlock *Dest) {
2085 Op<-1>() = (Value*)Dest;
2086 if (isConditional()) { // Convert this to an uncond branch.
2090 OperandList = op_begin();
2094 unsigned getNumSuccessors() const { return 1+isConditional(); }
2096 BasicBlock *getSuccessor(unsigned i) const {
2097 assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
2098 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
2101 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2102 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
2103 *(&Op<-1>() - idx) = (Value*)NewSucc;
2106 // Methods for support type inquiry through isa, cast, and dyn_cast:
2107 static inline bool classof(const BranchInst *) { return true; }
2108 static inline bool classof(const Instruction *I) {
2109 return (I->getOpcode() == Instruction::Br);
2111 static inline bool classof(const Value *V) {
2112 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2115 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2116 virtual unsigned getNumSuccessorsV() const;
2117 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2121 struct OperandTraits<BranchInst> : public VariadicOperandTraits<1> {};
2123 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
2125 //===----------------------------------------------------------------------===//
2127 //===----------------------------------------------------------------------===//
2129 //===---------------------------------------------------------------------------
2130 /// SwitchInst - Multiway switch
2132 class SwitchInst : public TerminatorInst {
2133 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2134 unsigned ReservedSpace;
2135 // Operand[0] = Value to switch on
2136 // Operand[1] = Default basic block destination
2137 // Operand[2n ] = Value to match
2138 // Operand[2n+1] = BasicBlock to go to on match
2139 SwitchInst(const SwitchInst &SI);
2140 void init(Value *Value, BasicBlock *Default, unsigned NumCases);
2141 void resizeOperands(unsigned No);
2142 // allocate space for exactly zero operands
2143 void *operator new(size_t s) {
2144 return User::operator new(s, 0);
2146 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2147 /// switch on and a default destination. The number of additional cases can
2148 /// be specified here to make memory allocation more efficient. This
2149 /// constructor can also autoinsert before another instruction.
2150 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2151 Instruction *InsertBefore);
2153 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2154 /// switch on and a default destination. The number of additional cases can
2155 /// be specified here to make memory allocation more efficient. This
2156 /// constructor also autoinserts at the end of the specified BasicBlock.
2157 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2158 BasicBlock *InsertAtEnd);
2160 virtual SwitchInst *clone_impl() const;
2162 static SwitchInst *Create(Value *Value, BasicBlock *Default,
2163 unsigned NumCases, Instruction *InsertBefore = 0) {
2164 return new SwitchInst(Value, Default, NumCases, InsertBefore);
2166 static SwitchInst *Create(Value *Value, BasicBlock *Default,
2167 unsigned NumCases, BasicBlock *InsertAtEnd) {
2168 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
2172 /// Provide fast operand accessors
2173 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2175 // Accessor Methods for Switch stmt
2176 Value *getCondition() const { return getOperand(0); }
2177 void setCondition(Value *V) { setOperand(0, V); }
2179 BasicBlock *getDefaultDest() const {
2180 return cast<BasicBlock>(getOperand(1));
2183 /// getNumCases - return the number of 'cases' in this switch instruction.
2184 /// Note that case #0 is always the default case.
2185 unsigned getNumCases() const {
2186 return getNumOperands()/2;
2189 /// getCaseValue - Return the specified case value. Note that case #0, the
2190 /// default destination, does not have a case value.
2191 ConstantInt *getCaseValue(unsigned i) {
2192 assert(i && i < getNumCases() && "Illegal case value to get!");
2193 return getSuccessorValue(i);
2196 /// getCaseValue - Return the specified case value. Note that case #0, the
2197 /// default destination, does not have a case value.
2198 const ConstantInt *getCaseValue(unsigned i) const {
2199 assert(i && i < getNumCases() && "Illegal case value to get!");
2200 return getSuccessorValue(i);
2203 /// findCaseValue - Search all of the case values for the specified constant.
2204 /// If it is explicitly handled, return the case number of it, otherwise
2205 /// return 0 to indicate that it is handled by the default handler.
2206 unsigned findCaseValue(const ConstantInt *C) const {
2207 for (unsigned i = 1, e = getNumCases(); i != e; ++i)
2208 if (getCaseValue(i) == C)
2213 /// findCaseDest - Finds the unique case value for a given successor. Returns
2214 /// null if the successor is not found, not unique, or is the default case.
2215 ConstantInt *findCaseDest(BasicBlock *BB) {
2216 if (BB == getDefaultDest()) return NULL;
2218 ConstantInt *CI = NULL;
2219 for (unsigned i = 1, e = getNumCases(); i != e; ++i) {
2220 if (getSuccessor(i) == BB) {
2221 if (CI) return NULL; // Multiple cases lead to BB.
2222 else CI = getCaseValue(i);
2228 /// addCase - Add an entry to the switch instruction...
2230 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
2232 /// removeCase - This method removes the specified successor from the switch
2233 /// instruction. Note that this cannot be used to remove the default
2234 /// destination (successor #0).
2236 void removeCase(unsigned idx);
2238 unsigned getNumSuccessors() const { return getNumOperands()/2; }
2239 BasicBlock *getSuccessor(unsigned idx) const {
2240 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
2241 return cast<BasicBlock>(getOperand(idx*2+1));
2243 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2244 assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
2245 setOperand(idx*2+1, (Value*)NewSucc);
2248 // getSuccessorValue - Return the value associated with the specified
2250 ConstantInt *getSuccessorValue(unsigned idx) const {
2251 assert(idx < getNumSuccessors() && "Successor # out of range!");
2252 return reinterpret_cast<ConstantInt*>(getOperand(idx*2));
2255 // Methods for support type inquiry through isa, cast, and dyn_cast:
2256 static inline bool classof(const SwitchInst *) { return true; }
2257 static inline bool classof(const Instruction *I) {
2258 return I->getOpcode() == Instruction::Switch;
2260 static inline bool classof(const Value *V) {
2261 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2264 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2265 virtual unsigned getNumSuccessorsV() const;
2266 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2270 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
2273 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
2276 //===----------------------------------------------------------------------===//
2277 // IndirectBrInst Class
2278 //===----------------------------------------------------------------------===//
2280 //===---------------------------------------------------------------------------
2281 /// IndirectBrInst - Indirect Branch Instruction.
2283 class IndirectBrInst : public TerminatorInst {
2284 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2285 unsigned ReservedSpace;
2286 // Operand[0] = Value to switch on
2287 // Operand[1] = Default basic block destination
2288 // Operand[2n ] = Value to match
2289 // Operand[2n+1] = BasicBlock to go to on match
2290 IndirectBrInst(const IndirectBrInst &IBI);
2291 void init(Value *Address, unsigned NumDests);
2292 void resizeOperands(unsigned No);
2293 // allocate space for exactly zero operands
2294 void *operator new(size_t s) {
2295 return User::operator new(s, 0);
2297 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
2298 /// Address to jump to. The number of expected destinations can be specified
2299 /// here to make memory allocation more efficient. This constructor can also
2300 /// autoinsert before another instruction.
2301 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
2303 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
2304 /// Address to jump to. The number of expected destinations can be specified
2305 /// here to make memory allocation more efficient. This constructor also
2306 /// autoinserts at the end of the specified BasicBlock.
2307 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
2309 virtual IndirectBrInst *clone_impl() const;
2311 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
2312 Instruction *InsertBefore = 0) {
2313 return new IndirectBrInst(Address, NumDests, InsertBefore);
2315 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
2316 BasicBlock *InsertAtEnd) {
2317 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
2321 /// Provide fast operand accessors.
2322 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2324 // Accessor Methods for IndirectBrInst instruction.
2325 Value *getAddress() { return getOperand(0); }
2326 const Value *getAddress() const { return getOperand(0); }
2327 void setAddress(Value *V) { setOperand(0, V); }
2330 /// getNumDestinations - return the number of possible destinations in this
2331 /// indirectbr instruction.
2332 unsigned getNumDestinations() const { return getNumOperands()-1; }
2334 /// getDestination - Return the specified destination.
2335 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
2336 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
2338 /// addDestination - Add a destination.
2340 void addDestination(BasicBlock *Dest);
2342 /// removeDestination - This method removes the specified successor from the
2343 /// indirectbr instruction.
2344 void removeDestination(unsigned i);
2346 unsigned getNumSuccessors() const { return getNumOperands()-1; }
2347 BasicBlock *getSuccessor(unsigned i) const {
2348 return cast<BasicBlock>(getOperand(i+1));
2350 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
2351 setOperand(i+1, (Value*)NewSucc);
2354 // Methods for support type inquiry through isa, cast, and dyn_cast:
2355 static inline bool classof(const IndirectBrInst *) { return true; }
2356 static inline bool classof(const Instruction *I) {
2357 return I->getOpcode() == Instruction::IndirectBr;
2359 static inline bool classof(const Value *V) {
2360 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2363 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2364 virtual unsigned getNumSuccessorsV() const;
2365 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2369 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
2372 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
2375 //===----------------------------------------------------------------------===//
2377 //===----------------------------------------------------------------------===//
2379 /// InvokeInst - Invoke instruction. The SubclassData field is used to hold the
2380 /// calling convention of the call.
2382 class InvokeInst : public TerminatorInst {
2383 AttrListPtr AttributeList;
2384 InvokeInst(const InvokeInst &BI);
2385 void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
2386 Value* const *Args, unsigned NumArgs);
2388 template<typename InputIterator>
2389 void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2390 InputIterator ArgBegin, InputIterator ArgEnd,
2391 const Twine &NameStr,
2392 // This argument ensures that we have an iterator we can
2393 // do arithmetic on in constant time
2394 std::random_access_iterator_tag) {
2395 unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
2397 // This requires that the iterator points to contiguous memory.
2398 init(Func, IfNormal, IfException, NumArgs ? &*ArgBegin : 0, NumArgs);
2402 /// Construct an InvokeInst given a range of arguments.
2403 /// InputIterator must be a random-access iterator pointing to
2404 /// contiguous storage (e.g. a std::vector<>::iterator). Checks are
2405 /// made for random-accessness but not for contiguous storage as
2406 /// that would incur runtime overhead.
2408 /// @brief Construct an InvokeInst from a range of arguments
2409 template<typename InputIterator>
2410 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2411 InputIterator ArgBegin, InputIterator ArgEnd,
2413 const Twine &NameStr, Instruction *InsertBefore);
2415 /// Construct an InvokeInst given a range of arguments.
2416 /// InputIterator must be a random-access iterator pointing to
2417 /// contiguous storage (e.g. a std::vector<>::iterator). Checks are
2418 /// made for random-accessness but not for contiguous storage as
2419 /// that would incur runtime overhead.
2421 /// @brief Construct an InvokeInst from a range of arguments
2422 template<typename InputIterator>
2423 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2424 InputIterator ArgBegin, InputIterator ArgEnd,
2426 const Twine &NameStr, BasicBlock *InsertAtEnd);
2428 virtual InvokeInst *clone_impl() const;
2430 template<typename InputIterator>
2431 static InvokeInst *Create(Value *Func,
2432 BasicBlock *IfNormal, BasicBlock *IfException,
2433 InputIterator ArgBegin, InputIterator ArgEnd,
2434 const Twine &NameStr = "",
2435 Instruction *InsertBefore = 0) {
2436 unsigned Values(ArgEnd - ArgBegin + 3);
2437 return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
2438 Values, NameStr, InsertBefore);
2440 template<typename InputIterator>
2441 static InvokeInst *Create(Value *Func,
2442 BasicBlock *IfNormal, BasicBlock *IfException,
2443 InputIterator ArgBegin, InputIterator ArgEnd,
2444 const Twine &NameStr,
2445 BasicBlock *InsertAtEnd) {
2446 unsigned Values(ArgEnd - ArgBegin + 3);
2447 return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
2448 Values, NameStr, InsertAtEnd);
2451 /// Provide fast operand accessors
2452 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2454 unsigned getNumArgOperands() const { return getNumOperands() - 3; }
2455 Value *getArgOperand(unsigned i) const { return getOperand(i); }
2456 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
2458 /// getCallingConv/setCallingConv - Get or set the calling convention of this
2460 CallingConv::ID getCallingConv() const {
2461 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction());
2463 void setCallingConv(CallingConv::ID CC) {
2464 setInstructionSubclassData(static_cast<unsigned>(CC));
2467 /// getAttributes - Return the parameter attributes for this invoke.
2469 const AttrListPtr &getAttributes() const { return AttributeList; }
2471 /// setAttributes - Set the parameter attributes for this invoke.
2473 void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }
2475 /// addAttribute - adds the attribute to the list of attributes.
2476 void addAttribute(unsigned i, Attributes attr);
2478 /// removeAttribute - removes the attribute from the list of attributes.
2479 void removeAttribute(unsigned i, Attributes attr);
2481 /// @brief Determine whether the call or the callee has the given attribute.
2482 bool paramHasAttr(unsigned i, Attributes attr) const;
2484 /// @brief Extract the alignment for a call or parameter (0=unknown).
2485 unsigned getParamAlignment(unsigned i) const {
2486 return AttributeList.getParamAlignment(i);
2489 /// @brief Return true if the call should not be inlined.
2490 bool isNoInline() const { return paramHasAttr(~0, Attribute::NoInline); }
2491 void setIsNoInline(bool Value) {
2492 if (Value) addAttribute(~0, Attribute::NoInline);
2493 else removeAttribute(~0, Attribute::NoInline);
2496 /// @brief Determine if the call does not access memory.
2497 bool doesNotAccessMemory() const {
2498 return paramHasAttr(~0, Attribute::ReadNone);
2500 void setDoesNotAccessMemory(bool NotAccessMemory = true) {
2501 if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
2502 else removeAttribute(~0, Attribute::ReadNone);
2505 /// @brief Determine if the call does not access or only reads memory.
2506 bool onlyReadsMemory() const {
2507 return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
2509 void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
2510 if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
2511 else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
2514 /// @brief Determine if the call cannot return.
2515 bool doesNotReturn() const {
2516 return paramHasAttr(~0, Attribute::NoReturn);
2518 void setDoesNotReturn(bool DoesNotReturn = true) {
2519 if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
2520 else removeAttribute(~0, Attribute::NoReturn);
2523 /// @brief Determine if the call cannot unwind.
2524 bool doesNotThrow() const {
2525 return paramHasAttr(~0, Attribute::NoUnwind);
2527 void setDoesNotThrow(bool DoesNotThrow = true) {
2528 if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
2529 else removeAttribute(~0, Attribute::NoUnwind);
2532 /// @brief Determine if the call returns a structure through first
2533 /// pointer argument.
2534 bool hasStructRetAttr() const {
2535 // Be friendly and also check the callee.
2536 return paramHasAttr(1, Attribute::StructRet);
2539 /// @brief Determine if any call argument is an aggregate passed by value.
2540 bool hasByValArgument() const {
2541 return AttributeList.hasAttrSomewhere(Attribute::ByVal);
2544 /// getCalledFunction - Return the function called, or null if this is an
2545 /// indirect function invocation.
2547 Function *getCalledFunction() const {
2548 return dyn_cast<Function>(Op<-3>());
2551 /// getCalledValue - Get a pointer to the function that is invoked by this
2553 const Value *getCalledValue() const { return Op<-3>(); }
2554 Value *getCalledValue() { return Op<-3>(); }
2556 /// setCalledFunction - Set the function called.
2557 void setCalledFunction(Value* Fn) {
2561 // get*Dest - Return the destination basic blocks...
2562 BasicBlock *getNormalDest() const {
2563 return cast<BasicBlock>(Op<-2>());
2565 BasicBlock *getUnwindDest() const {
2566 return cast<BasicBlock>(Op<-1>());
2568 void setNormalDest(BasicBlock *B) {
2569 Op<-2>() = reinterpret_cast<Value*>(B);
2571 void setUnwindDest(BasicBlock *B) {
2572 Op<-1>() = reinterpret_cast<Value*>(B);
2575 BasicBlock *getSuccessor(unsigned i) const {
2576 assert(i < 2 && "Successor # out of range for invoke!");
2577 return i == 0 ? getNormalDest() : getUnwindDest();
2580 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2581 assert(idx < 2 && "Successor # out of range for invoke!");
2582 *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
2585 unsigned getNumSuccessors() const { return 2; }
2587 // Methods for support type inquiry through isa, cast, and dyn_cast:
2588 static inline bool classof(const InvokeInst *) { return true; }
2589 static inline bool classof(const Instruction *I) {
2590 return (I->getOpcode() == Instruction::Invoke);
2592 static inline bool classof(const Value *V) {
2593 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2597 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2598 virtual unsigned getNumSuccessorsV() const;
2599 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2601 // Shadow Instruction::setInstructionSubclassData with a private forwarding
2602 // method so that subclasses cannot accidentally use it.
2603 void setInstructionSubclassData(unsigned short D) {
2604 Instruction::setInstructionSubclassData(D);
2609 struct OperandTraits<InvokeInst> : public VariadicOperandTraits<3> {
2612 template<typename InputIterator>
2613 InvokeInst::InvokeInst(Value *Func,
2614 BasicBlock *IfNormal, BasicBlock *IfException,
2615 InputIterator ArgBegin, InputIterator ArgEnd,
2617 const Twine &NameStr, Instruction *InsertBefore)
2618 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
2619 ->getElementType())->getReturnType(),
2620 Instruction::Invoke,
2621 OperandTraits<InvokeInst>::op_end(this) - Values,
2622 Values, InsertBefore) {
2623 init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
2624 typename std::iterator_traits<InputIterator>::iterator_category());
2626 template<typename InputIterator>
2627 InvokeInst::InvokeInst(Value *Func,
2628 BasicBlock *IfNormal, BasicBlock *IfException,
2629 InputIterator ArgBegin, InputIterator ArgEnd,
2631 const Twine &NameStr, BasicBlock *InsertAtEnd)
2632 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
2633 ->getElementType())->getReturnType(),
2634 Instruction::Invoke,
2635 OperandTraits<InvokeInst>::op_end(this) - Values,
2636 Values, InsertAtEnd) {
2637 init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
2638 typename std::iterator_traits<InputIterator>::iterator_category());
2641 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
2643 //===----------------------------------------------------------------------===//
2645 //===----------------------------------------------------------------------===//
2647 //===---------------------------------------------------------------------------
2648 /// UnwindInst - Immediately exit the current function, unwinding the stack
2649 /// until an invoke instruction is found.
2651 class UnwindInst : public TerminatorInst {
2652 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2654 virtual UnwindInst *clone_impl() const;
2656 // allocate space for exactly zero operands
2657 void *operator new(size_t s) {
2658 return User::operator new(s, 0);
2660 explicit UnwindInst(LLVMContext &C, Instruction *InsertBefore = 0);
2661 explicit UnwindInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2663 unsigned getNumSuccessors() const { return 0; }
2665 // Methods for support type inquiry through isa, cast, and dyn_cast:
2666 static inline bool classof(const UnwindInst *) { return true; }
2667 static inline bool classof(const Instruction *I) {
2668 return I->getOpcode() == Instruction::Unwind;
2670 static inline bool classof(const Value *V) {
2671 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2674 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2675 virtual unsigned getNumSuccessorsV() const;
2676 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2679 //===----------------------------------------------------------------------===//
2680 // UnreachableInst Class
2681 //===----------------------------------------------------------------------===//
2683 //===---------------------------------------------------------------------------
2684 /// UnreachableInst - This function has undefined behavior. In particular, the
2685 /// presence of this instruction indicates some higher level knowledge that the
2686 /// end of the block cannot be reached.
2688 class UnreachableInst : public TerminatorInst {
2689 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2691 virtual UnreachableInst *clone_impl() const;
2694 // allocate space for exactly zero operands
2695 void *operator new(size_t s) {
2696 return User::operator new(s, 0);
2698 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = 0);
2699 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2701 unsigned getNumSuccessors() const { return 0; }
2703 // Methods for support type inquiry through isa, cast, and dyn_cast:
2704 static inline bool classof(const UnreachableInst *) { return true; }
2705 static inline bool classof(const Instruction *I) {
2706 return I->getOpcode() == Instruction::Unreachable;
2708 static inline bool classof(const Value *V) {
2709 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2712 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2713 virtual unsigned getNumSuccessorsV() const;
2714 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2717 //===----------------------------------------------------------------------===//
2719 //===----------------------------------------------------------------------===//
2721 /// @brief This class represents a truncation of integer types.
2722 class TruncInst : public CastInst {
2724 /// @brief Clone an identical TruncInst
2725 virtual TruncInst *clone_impl() const;
2728 /// @brief Constructor with insert-before-instruction semantics
2730 Value *S, ///< The value to be truncated
2731 const Type *Ty, ///< The (smaller) type to truncate to
2732 const Twine &NameStr = "", ///< A name for the new instruction
2733 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2736 /// @brief Constructor with insert-at-end-of-block semantics
2738 Value *S, ///< The value to be truncated
2739 const Type *Ty, ///< The (smaller) type to truncate to
2740 const Twine &NameStr, ///< A name for the new instruction
2741 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2744 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2745 static inline bool classof(const TruncInst *) { return true; }
2746 static inline bool classof(const Instruction *I) {
2747 return I->getOpcode() == Trunc;
2749 static inline bool classof(const Value *V) {
2750 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2754 //===----------------------------------------------------------------------===//
2756 //===----------------------------------------------------------------------===//
2758 /// @brief This class represents zero extension of integer types.
2759 class ZExtInst : public CastInst {
2761 /// @brief Clone an identical ZExtInst
2762 virtual ZExtInst *clone_impl() const;
2765 /// @brief Constructor with insert-before-instruction semantics
2767 Value *S, ///< The value to be zero extended
2768 const Type *Ty, ///< The type to zero extend to
2769 const Twine &NameStr = "", ///< A name for the new instruction
2770 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2773 /// @brief Constructor with insert-at-end semantics.
2775 Value *S, ///< The value to be zero extended
2776 const Type *Ty, ///< The type to zero extend to
2777 const Twine &NameStr, ///< A name for the new instruction
2778 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2781 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2782 static inline bool classof(const ZExtInst *) { return true; }
2783 static inline bool classof(const Instruction *I) {
2784 return I->getOpcode() == ZExt;
2786 static inline bool classof(const Value *V) {
2787 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2791 //===----------------------------------------------------------------------===//
2793 //===----------------------------------------------------------------------===//
2795 /// @brief This class represents a sign extension of integer types.
2796 class SExtInst : public CastInst {
2798 /// @brief Clone an identical SExtInst
2799 virtual SExtInst *clone_impl() const;
2802 /// @brief Constructor with insert-before-instruction semantics
2804 Value *S, ///< The value to be sign extended
2805 const Type *Ty, ///< The type to sign extend to
2806 const Twine &NameStr = "", ///< A name for the new instruction
2807 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2810 /// @brief Constructor with insert-at-end-of-block semantics
2812 Value *S, ///< The value to be sign extended
2813 const Type *Ty, ///< The type to sign extend to
2814 const Twine &NameStr, ///< A name for the new instruction
2815 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2818 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2819 static inline bool classof(const SExtInst *) { return true; }
2820 static inline bool classof(const Instruction *I) {
2821 return I->getOpcode() == SExt;
2823 static inline bool classof(const Value *V) {
2824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2828 //===----------------------------------------------------------------------===//
2829 // FPTruncInst Class
2830 //===----------------------------------------------------------------------===//
2832 /// @brief This class represents a truncation of floating point types.
2833 class FPTruncInst : public CastInst {
2835 /// @brief Clone an identical FPTruncInst
2836 virtual FPTruncInst *clone_impl() const;
2839 /// @brief Constructor with insert-before-instruction semantics
2841 Value *S, ///< The value to be truncated
2842 const Type *Ty, ///< The type to truncate to
2843 const Twine &NameStr = "", ///< A name for the new instruction
2844 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2847 /// @brief Constructor with insert-before-instruction semantics
2849 Value *S, ///< The value to be truncated
2850 const Type *Ty, ///< The type to truncate to
2851 const Twine &NameStr, ///< A name for the new instruction
2852 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2855 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2856 static inline bool classof(const FPTruncInst *) { return true; }
2857 static inline bool classof(const Instruction *I) {
2858 return I->getOpcode() == FPTrunc;
2860 static inline bool classof(const Value *V) {
2861 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2865 //===----------------------------------------------------------------------===//
2867 //===----------------------------------------------------------------------===//
2869 /// @brief This class represents an extension of floating point types.
2870 class FPExtInst : public CastInst {
2872 /// @brief Clone an identical FPExtInst
2873 virtual FPExtInst *clone_impl() const;
2876 /// @brief Constructor with insert-before-instruction semantics
2878 Value *S, ///< The value to be extended
2879 const Type *Ty, ///< The type to extend to
2880 const Twine &NameStr = "", ///< A name for the new instruction
2881 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2884 /// @brief Constructor with insert-at-end-of-block semantics
2886 Value *S, ///< The value to be extended
2887 const Type *Ty, ///< The type to extend to
2888 const Twine &NameStr, ///< A name for the new instruction
2889 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2892 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2893 static inline bool classof(const FPExtInst *) { return true; }
2894 static inline bool classof(const Instruction *I) {
2895 return I->getOpcode() == FPExt;
2897 static inline bool classof(const Value *V) {
2898 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2902 //===----------------------------------------------------------------------===//
2904 //===----------------------------------------------------------------------===//
2906 /// @brief This class represents a cast unsigned integer to floating point.
2907 class UIToFPInst : public CastInst {
2909 /// @brief Clone an identical UIToFPInst
2910 virtual UIToFPInst *clone_impl() const;
2913 /// @brief Constructor with insert-before-instruction semantics
2915 Value *S, ///< The value to be converted
2916 const Type *Ty, ///< The type to convert to
2917 const Twine &NameStr = "", ///< A name for the new instruction
2918 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2921 /// @brief Constructor with insert-at-end-of-block semantics
2923 Value *S, ///< The value to be converted
2924 const Type *Ty, ///< The type to convert to
2925 const Twine &NameStr, ///< A name for the new instruction
2926 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2929 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2930 static inline bool classof(const UIToFPInst *) { return true; }
2931 static inline bool classof(const Instruction *I) {
2932 return I->getOpcode() == UIToFP;
2934 static inline bool classof(const Value *V) {
2935 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2939 //===----------------------------------------------------------------------===//
2941 //===----------------------------------------------------------------------===//
2943 /// @brief This class represents a cast from signed integer to floating point.
2944 class SIToFPInst : public CastInst {
2946 /// @brief Clone an identical SIToFPInst
2947 virtual SIToFPInst *clone_impl() const;
2950 /// @brief Constructor with insert-before-instruction semantics
2952 Value *S, ///< The value to be converted
2953 const Type *Ty, ///< The type to convert to
2954 const Twine &NameStr = "", ///< A name for the new instruction
2955 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2958 /// @brief Constructor with insert-at-end-of-block semantics
2960 Value *S, ///< The value to be converted
2961 const Type *Ty, ///< The type to convert to
2962 const Twine &NameStr, ///< A name for the new instruction
2963 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2966 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2967 static inline bool classof(const SIToFPInst *) { return true; }
2968 static inline bool classof(const Instruction *I) {
2969 return I->getOpcode() == SIToFP;
2971 static inline bool classof(const Value *V) {
2972 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2976 //===----------------------------------------------------------------------===//
2978 //===----------------------------------------------------------------------===//
2980 /// @brief This class represents a cast from floating point to unsigned integer
2981 class FPToUIInst : public CastInst {
2983 /// @brief Clone an identical FPToUIInst
2984 virtual FPToUIInst *clone_impl() const;
2987 /// @brief Constructor with insert-before-instruction semantics
2989 Value *S, ///< The value to be converted
2990 const Type *Ty, ///< The type to convert to
2991 const Twine &NameStr = "", ///< A name for the new instruction
2992 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2995 /// @brief Constructor with insert-at-end-of-block semantics
2997 Value *S, ///< The value to be converted
2998 const Type *Ty, ///< The type to convert to
2999 const Twine &NameStr, ///< A name for the new instruction
3000 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
3003 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
3004 static inline bool classof(const FPToUIInst *) { return true; }
3005 static inline bool classof(const Instruction *I) {
3006 return I->getOpcode() == FPToUI;
3008 static inline bool classof(const Value *V) {
3009 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3013 //===----------------------------------------------------------------------===//
3015 //===----------------------------------------------------------------------===//
3017 /// @brief This class represents a cast from floating point to signed integer.
3018 class FPToSIInst : public CastInst {
3020 /// @brief Clone an identical FPToSIInst
3021 virtual FPToSIInst *clone_impl() const;
3024 /// @brief Constructor with insert-before-instruction semantics
3026 Value *S, ///< The value to be converted
3027 const Type *Ty, ///< The type to convert to
3028 const Twine &NameStr = "", ///< A name for the new instruction
3029 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3032 /// @brief Constructor with insert-at-end-of-block semantics
3034 Value *S, ///< The value to be converted
3035 const Type *Ty, ///< The type to convert to
3036 const Twine &NameStr, ///< A name for the new instruction
3037 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3040 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
3041 static inline bool classof(const FPToSIInst *) { return true; }
3042 static inline bool classof(const Instruction *I) {
3043 return I->getOpcode() == FPToSI;
3045 static inline bool classof(const Value *V) {
3046 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3050 //===----------------------------------------------------------------------===//
3051 // IntToPtrInst Class
3052 //===----------------------------------------------------------------------===//
3054 /// @brief This class represents a cast from an integer to a pointer.
3055 class IntToPtrInst : public CastInst {
3057 /// @brief Constructor with insert-before-instruction semantics
3059 Value *S, ///< The value to be converted
3060 const Type *Ty, ///< The type to convert to
3061 const Twine &NameStr = "", ///< A name for the new instruction
3062 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3065 /// @brief Constructor with insert-at-end-of-block semantics
3067 Value *S, ///< The value to be converted
3068 const Type *Ty, ///< The type to convert to
3069 const Twine &NameStr, ///< A name for the new instruction
3070 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3073 /// @brief Clone an identical IntToPtrInst
3074 virtual IntToPtrInst *clone_impl() const;
3076 // Methods for support type inquiry through isa, cast, and dyn_cast:
3077 static inline bool classof(const IntToPtrInst *) { return true; }
3078 static inline bool classof(const Instruction *I) {
3079 return I->getOpcode() == IntToPtr;
3081 static inline bool classof(const Value *V) {
3082 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3086 //===----------------------------------------------------------------------===//
3087 // PtrToIntInst Class
3088 //===----------------------------------------------------------------------===//
3090 /// @brief This class represents a cast from a pointer to an integer
3091 class PtrToIntInst : public CastInst {
3093 /// @brief Clone an identical PtrToIntInst
3094 virtual PtrToIntInst *clone_impl() const;
3097 /// @brief Constructor with insert-before-instruction semantics
3099 Value *S, ///< The value to be converted
3100 const Type *Ty, ///< The type to convert to
3101 const Twine &NameStr = "", ///< A name for the new instruction
3102 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3105 /// @brief Constructor with insert-at-end-of-block semantics
3107 Value *S, ///< The value to be converted
3108 const Type *Ty, ///< The type to convert to
3109 const Twine &NameStr, ///< A name for the new instruction
3110 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3113 // Methods for support type inquiry through isa, cast, and dyn_cast:
3114 static inline bool classof(const PtrToIntInst *) { return true; }
3115 static inline bool classof(const Instruction *I) {
3116 return I->getOpcode() == PtrToInt;
3118 static inline bool classof(const Value *V) {
3119 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3123 //===----------------------------------------------------------------------===//
3124 // BitCastInst Class
3125 //===----------------------------------------------------------------------===//
3127 /// @brief This class represents a no-op cast from one type to another.
3128 class BitCastInst : public CastInst {
3130 /// @brief Clone an identical BitCastInst
3131 virtual BitCastInst *clone_impl() const;
3134 /// @brief Constructor with insert-before-instruction semantics
3136 Value *S, ///< The value to be casted
3137 const Type *Ty, ///< The type to casted to
3138 const Twine &NameStr = "", ///< A name for the new instruction
3139 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3142 /// @brief Constructor with insert-at-end-of-block semantics
3144 Value *S, ///< The value to be casted
3145 const Type *Ty, ///< The type to casted to
3146 const Twine &NameStr, ///< A name for the new instruction
3147 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3150 // Methods for support type inquiry through isa, cast, and dyn_cast:
3151 static inline bool classof(const BitCastInst *) { return true; }
3152 static inline bool classof(const Instruction *I) {
3153 return I->getOpcode() == BitCast;
3155 static inline bool classof(const Value *V) {
3156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160 } // End llvm namespace