1 //===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file exposes the class definitions of all of the subclasses of the
11 // Instruction class. This is meant to be an easy way to get access to all
12 // instruction subclasses.
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_INSTRUCTIONS_H
17 #define LLVM_INSTRUCTIONS_H
19 #include "llvm/InstrTypes.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Attributes.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/ADT/SmallVector.h"
34 //===----------------------------------------------------------------------===//
36 //===----------------------------------------------------------------------===//
38 /// AllocaInst - an instruction to allocate memory on the stack
40 class AllocaInst : public UnaryInstruction {
42 virtual AllocaInst *clone_impl() const;
44 explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
45 const Twine &Name = "", Instruction *InsertBefore = 0);
46 AllocaInst(const Type *Ty, Value *ArraySize,
47 const Twine &Name, BasicBlock *InsertAtEnd);
49 AllocaInst(const Type *Ty, const Twine &Name, Instruction *InsertBefore = 0);
50 AllocaInst(const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
52 AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
53 const Twine &Name = "", Instruction *InsertBefore = 0);
54 AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
55 const Twine &Name, BasicBlock *InsertAtEnd);
57 // Out of line virtual method, so the vtable, etc. has a home.
58 virtual ~AllocaInst();
60 /// isArrayAllocation - Return true if there is an allocation size parameter
61 /// to the allocation instruction that is not 1.
63 bool isArrayAllocation() const;
65 /// getArraySize - Get the number of elements allocated. For a simple
66 /// allocation of a single element, this will return a constant 1 value.
68 const Value *getArraySize() const { return getOperand(0); }
69 Value *getArraySize() { return getOperand(0); }
71 /// getType - Overload to return most specific pointer type
73 const PointerType *getType() const {
74 return reinterpret_cast<const PointerType*>(Instruction::getType());
77 /// getAllocatedType - Return the type that is being allocated by the
80 const Type *getAllocatedType() const;
82 /// getAlignment - Return the alignment of the memory that is being allocated
83 /// by the instruction.
85 unsigned getAlignment() const {
86 return (1u << getSubclassDataFromInstruction()) >> 1;
88 void setAlignment(unsigned Align);
90 /// isStaticAlloca - Return true if this alloca is in the entry block of the
91 /// function and is a constant size. If so, the code generator will fold it
92 /// into the prolog/epilog code, so it is basically free.
93 bool isStaticAlloca() const;
95 // Methods for support type inquiry through isa, cast, and dyn_cast:
96 static inline bool classof(const AllocaInst *) { return true; }
97 static inline bool classof(const Instruction *I) {
98 return (I->getOpcode() == Instruction::Alloca);
100 static inline bool classof(const Value *V) {
101 return isa<Instruction>(V) && classof(cast<Instruction>(V));
104 // Shadow Instruction::setInstructionSubclassData with a private forwarding
105 // method so that subclasses cannot accidentally use it.
106 void setInstructionSubclassData(unsigned short D) {
107 Instruction::setInstructionSubclassData(D);
112 //===----------------------------------------------------------------------===//
114 //===----------------------------------------------------------------------===//
116 /// LoadInst - an instruction for reading from memory. This uses the
117 /// SubclassData field in Value to store whether or not the load is volatile.
119 class LoadInst : public UnaryInstruction {
122 virtual LoadInst *clone_impl() const;
124 LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
125 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
126 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
127 Instruction *InsertBefore = 0);
128 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
129 unsigned Align, Instruction *InsertBefore = 0);
130 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
131 BasicBlock *InsertAtEnd);
132 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
133 unsigned Align, BasicBlock *InsertAtEnd);
135 LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
136 LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
137 explicit LoadInst(Value *Ptr, const char *NameStr = 0,
138 bool isVolatile = false, Instruction *InsertBefore = 0);
139 LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
140 BasicBlock *InsertAtEnd);
142 /// isVolatile - Return true if this is a load from a volatile memory
145 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
147 /// setVolatile - Specify whether this is a volatile load or not.
149 void setVolatile(bool V) {
150 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
154 /// getAlignment - Return the alignment of the access that is being performed
156 unsigned getAlignment() const {
157 return (1 << (getSubclassDataFromInstruction() >> 1)) >> 1;
160 void setAlignment(unsigned Align);
162 Value *getPointerOperand() { return getOperand(0); }
163 const Value *getPointerOperand() const { return getOperand(0); }
164 static unsigned getPointerOperandIndex() { return 0U; }
166 unsigned getPointerAddressSpace() const {
167 return cast<PointerType>(getPointerOperand()->getType())->getAddressSpace();
171 // Methods for support type inquiry through isa, cast, and dyn_cast:
172 static inline bool classof(const LoadInst *) { return true; }
173 static inline bool classof(const Instruction *I) {
174 return I->getOpcode() == Instruction::Load;
176 static inline bool classof(const Value *V) {
177 return isa<Instruction>(V) && classof(cast<Instruction>(V));
180 // Shadow Instruction::setInstructionSubclassData with a private forwarding
181 // method so that subclasses cannot accidentally use it.
182 void setInstructionSubclassData(unsigned short D) {
183 Instruction::setInstructionSubclassData(D);
188 //===----------------------------------------------------------------------===//
190 //===----------------------------------------------------------------------===//
192 /// StoreInst - an instruction for storing to memory
194 class StoreInst : public Instruction {
195 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
198 virtual StoreInst *clone_impl() const;
200 // allocate space for exactly two operands
201 void *operator new(size_t s) {
202 return User::operator new(s, 2);
204 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
205 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
206 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
207 Instruction *InsertBefore = 0);
208 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
209 unsigned Align, Instruction *InsertBefore = 0);
210 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
211 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
212 unsigned Align, BasicBlock *InsertAtEnd);
215 /// isVolatile - Return true if this is a load from a volatile memory
218 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
220 /// setVolatile - Specify whether this is a volatile load or not.
222 void setVolatile(bool V) {
223 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
227 /// Transparently provide more efficient getOperand methods.
228 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
230 /// getAlignment - Return the alignment of the access that is being performed
232 unsigned getAlignment() const {
233 return (1 << (getSubclassDataFromInstruction() >> 1)) >> 1;
236 void setAlignment(unsigned Align);
238 Value *getValueOperand() { return getOperand(0); }
239 const Value *getValueOperand() const { return getOperand(0); }
241 Value *getPointerOperand() { return getOperand(1); }
242 const Value *getPointerOperand() const { return getOperand(1); }
243 static unsigned getPointerOperandIndex() { return 1U; }
245 unsigned getPointerAddressSpace() const {
246 return cast<PointerType>(getPointerOperand()->getType())->getAddressSpace();
249 // Methods for support type inquiry through isa, cast, and dyn_cast:
250 static inline bool classof(const StoreInst *) { return true; }
251 static inline bool classof(const Instruction *I) {
252 return I->getOpcode() == Instruction::Store;
254 static inline bool classof(const Value *V) {
255 return isa<Instruction>(V) && classof(cast<Instruction>(V));
258 // Shadow Instruction::setInstructionSubclassData with a private forwarding
259 // method so that subclasses cannot accidentally use it.
260 void setInstructionSubclassData(unsigned short D) {
261 Instruction::setInstructionSubclassData(D);
266 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<2> {
269 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
271 //===----------------------------------------------------------------------===//
272 // GetElementPtrInst Class
273 //===----------------------------------------------------------------------===//
275 // checkType - Simple wrapper function to give a better assertion failure
276 // message on bad indexes for a gep instruction.
278 static inline const Type *checkType(const Type *Ty) {
279 assert(Ty && "Invalid GetElementPtrInst indices for type!");
283 /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
284 /// access elements of arrays and structs
286 class GetElementPtrInst : public Instruction {
287 GetElementPtrInst(const GetElementPtrInst &GEPI);
288 void init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
289 const Twine &NameStr);
290 void init(Value *Ptr, Value *Idx, const Twine &NameStr);
292 template<typename InputIterator>
293 void init(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd,
294 const Twine &NameStr,
295 // This argument ensures that we have an iterator we can
296 // do arithmetic on in constant time
297 std::random_access_iterator_tag) {
298 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
301 // This requires that the iterator points to contiguous memory.
302 init(Ptr, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
303 // we have to build an array here
306 init(Ptr, 0, NumIdx, NameStr);
310 /// getIndexedType - Returns the type of the element that would be loaded with
311 /// a load instruction with the specified parameters.
313 /// Null is returned if the indices are invalid for the specified
316 template<typename InputIterator>
317 static const Type *getIndexedType(const Type *Ptr,
318 InputIterator IdxBegin,
319 InputIterator IdxEnd,
320 // This argument ensures that we
321 // have an iterator we can do
322 // arithmetic on in constant time
323 std::random_access_iterator_tag) {
324 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
327 // This requires that the iterator points to contiguous memory.
328 return getIndexedType(Ptr, &*IdxBegin, NumIdx);
330 return getIndexedType(Ptr, (Value *const*)0, NumIdx);
333 /// Constructors - Create a getelementptr instruction with a base pointer an
334 /// list of indices. The first ctor can optionally insert before an existing
335 /// instruction, the second appends the new instruction to the specified
337 template<typename InputIterator>
338 inline GetElementPtrInst(Value *Ptr, InputIterator IdxBegin,
339 InputIterator IdxEnd,
341 const Twine &NameStr,
342 Instruction *InsertBefore);
343 template<typename InputIterator>
344 inline GetElementPtrInst(Value *Ptr,
345 InputIterator IdxBegin, InputIterator IdxEnd,
347 const Twine &NameStr, BasicBlock *InsertAtEnd);
349 /// Constructors - These two constructors are convenience methods because one
350 /// and two index getelementptr instructions are so common.
351 GetElementPtrInst(Value *Ptr, Value *Idx, const Twine &NameStr = "",
352 Instruction *InsertBefore = 0);
353 GetElementPtrInst(Value *Ptr, Value *Idx,
354 const Twine &NameStr, BasicBlock *InsertAtEnd);
356 virtual GetElementPtrInst *clone_impl() const;
358 template<typename InputIterator>
359 static GetElementPtrInst *Create(Value *Ptr, InputIterator IdxBegin,
360 InputIterator IdxEnd,
361 const Twine &NameStr = "",
362 Instruction *InsertBefore = 0) {
363 typename std::iterator_traits<InputIterator>::difference_type Values =
364 1 + std::distance(IdxBegin, IdxEnd);
366 GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertBefore);
368 template<typename InputIterator>
369 static GetElementPtrInst *Create(Value *Ptr,
370 InputIterator IdxBegin, InputIterator IdxEnd,
371 const Twine &NameStr,
372 BasicBlock *InsertAtEnd) {
373 typename std::iterator_traits<InputIterator>::difference_type Values =
374 1 + std::distance(IdxBegin, IdxEnd);
376 GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertAtEnd);
379 /// Constructors - These two creators are convenience methods because one
380 /// index getelementptr instructions are so common.
381 static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
382 const Twine &NameStr = "",
383 Instruction *InsertBefore = 0) {
384 return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertBefore);
386 static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
387 const Twine &NameStr,
388 BasicBlock *InsertAtEnd) {
389 return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertAtEnd);
392 /// Create an "inbounds" getelementptr. See the documentation for the
393 /// "inbounds" flag in LangRef.html for details.
394 template<typename InputIterator>
395 static GetElementPtrInst *CreateInBounds(Value *Ptr, InputIterator IdxBegin,
396 InputIterator IdxEnd,
397 const Twine &NameStr = "",
398 Instruction *InsertBefore = 0) {
399 GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
400 NameStr, InsertBefore);
401 GEP->setIsInBounds(true);
404 template<typename InputIterator>
405 static GetElementPtrInst *CreateInBounds(Value *Ptr,
406 InputIterator IdxBegin,
407 InputIterator IdxEnd,
408 const Twine &NameStr,
409 BasicBlock *InsertAtEnd) {
410 GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
411 NameStr, InsertAtEnd);
412 GEP->setIsInBounds(true);
415 static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
416 const Twine &NameStr = "",
417 Instruction *InsertBefore = 0) {
418 GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertBefore);
419 GEP->setIsInBounds(true);
422 static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
423 const Twine &NameStr,
424 BasicBlock *InsertAtEnd) {
425 GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertAtEnd);
426 GEP->setIsInBounds(true);
430 /// Transparently provide more efficient getOperand methods.
431 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
433 // getType - Overload to return most specific pointer type...
434 const PointerType *getType() const {
435 return reinterpret_cast<const PointerType*>(Instruction::getType());
438 /// getIndexedType - Returns the type of the element that would be loaded with
439 /// a load instruction with the specified parameters.
441 /// Null is returned if the indices are invalid for the specified
444 template<typename InputIterator>
445 static const Type *getIndexedType(const Type *Ptr,
446 InputIterator IdxBegin,
447 InputIterator IdxEnd) {
448 return getIndexedType(Ptr, IdxBegin, IdxEnd,
449 typename std::iterator_traits<InputIterator>::
450 iterator_category());
453 static const Type *getIndexedType(const Type *Ptr,
454 Value* const *Idx, unsigned NumIdx);
456 static const Type *getIndexedType(const Type *Ptr,
457 uint64_t const *Idx, unsigned NumIdx);
459 static const Type *getIndexedType(const Type *Ptr, Value *Idx);
461 inline op_iterator idx_begin() { return op_begin()+1; }
462 inline const_op_iterator idx_begin() const { return op_begin()+1; }
463 inline op_iterator idx_end() { return op_end(); }
464 inline const_op_iterator idx_end() const { return op_end(); }
466 Value *getPointerOperand() {
467 return getOperand(0);
469 const Value *getPointerOperand() const {
470 return getOperand(0);
472 static unsigned getPointerOperandIndex() {
473 return 0U; // get index for modifying correct operand
476 unsigned getPointerAddressSpace() const {
477 return cast<PointerType>(getType())->getAddressSpace();
480 /// getPointerOperandType - Method to return the pointer operand as a
482 const PointerType *getPointerOperandType() const {
483 return reinterpret_cast<const PointerType*>(getPointerOperand()->getType());
487 unsigned getNumIndices() const { // Note: always non-negative
488 return getNumOperands() - 1;
491 bool hasIndices() const {
492 return getNumOperands() > 1;
495 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
496 /// zeros. If so, the result pointer and the first operand have the same
497 /// value, just potentially different types.
498 bool hasAllZeroIndices() const;
500 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
501 /// constant integers. If so, the result pointer and the first operand have
502 /// a constant offset between them.
503 bool hasAllConstantIndices() const;
505 /// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
506 /// See LangRef.html for the meaning of inbounds on a getelementptr.
507 void setIsInBounds(bool b = true);
509 /// isInBounds - Determine whether the GEP has the inbounds flag.
510 bool isInBounds() const;
512 // Methods for support type inquiry through isa, cast, and dyn_cast:
513 static inline bool classof(const GetElementPtrInst *) { return true; }
514 static inline bool classof(const Instruction *I) {
515 return (I->getOpcode() == Instruction::GetElementPtr);
517 static inline bool classof(const Value *V) {
518 return isa<Instruction>(V) && classof(cast<Instruction>(V));
523 struct OperandTraits<GetElementPtrInst> : public VariadicOperandTraits<1> {
526 template<typename InputIterator>
527 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
528 InputIterator IdxBegin,
529 InputIterator IdxEnd,
531 const Twine &NameStr,
532 Instruction *InsertBefore)
533 : Instruction(PointerType::get(checkType(
534 getIndexedType(Ptr->getType(),
536 cast<PointerType>(Ptr->getType())
537 ->getAddressSpace()),
539 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
540 Values, InsertBefore) {
541 init(Ptr, IdxBegin, IdxEnd, NameStr,
542 typename std::iterator_traits<InputIterator>::iterator_category());
544 template<typename InputIterator>
545 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
546 InputIterator IdxBegin,
547 InputIterator IdxEnd,
549 const Twine &NameStr,
550 BasicBlock *InsertAtEnd)
551 : Instruction(PointerType::get(checkType(
552 getIndexedType(Ptr->getType(),
554 cast<PointerType>(Ptr->getType())
555 ->getAddressSpace()),
557 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
558 Values, InsertAtEnd) {
559 init(Ptr, IdxBegin, IdxEnd, NameStr,
560 typename std::iterator_traits<InputIterator>::iterator_category());
564 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
567 //===----------------------------------------------------------------------===//
569 //===----------------------------------------------------------------------===//
571 /// This instruction compares its operands according to the predicate given
572 /// to the constructor. It only operates on integers or pointers. The operands
573 /// must be identical types.
574 /// @brief Represent an integer comparison operator.
575 class ICmpInst: public CmpInst {
577 /// @brief Clone an indentical ICmpInst
578 virtual ICmpInst *clone_impl() const;
580 /// @brief Constructor with insert-before-instruction semantics.
582 Instruction *InsertBefore, ///< Where to insert
583 Predicate pred, ///< The predicate to use for the comparison
584 Value *LHS, ///< The left-hand-side of the expression
585 Value *RHS, ///< The right-hand-side of the expression
586 const Twine &NameStr = "" ///< Name of the instruction
587 ) : CmpInst(makeCmpResultType(LHS->getType()),
588 Instruction::ICmp, pred, LHS, RHS, NameStr,
590 assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
591 pred <= CmpInst::LAST_ICMP_PREDICATE &&
592 "Invalid ICmp predicate value");
593 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
594 "Both operands to ICmp instruction are not of the same type!");
595 // Check that the operands are the right type
596 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
597 getOperand(0)->getType()->isPointerTy()) &&
598 "Invalid operand types for ICmp instruction");
601 /// @brief Constructor with insert-at-end semantics.
603 BasicBlock &InsertAtEnd, ///< Block to insert into.
604 Predicate pred, ///< The predicate to use for the comparison
605 Value *LHS, ///< The left-hand-side of the expression
606 Value *RHS, ///< The right-hand-side of the expression
607 const Twine &NameStr = "" ///< Name of the instruction
608 ) : CmpInst(makeCmpResultType(LHS->getType()),
609 Instruction::ICmp, pred, LHS, RHS, NameStr,
611 assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
612 pred <= CmpInst::LAST_ICMP_PREDICATE &&
613 "Invalid ICmp predicate value");
614 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
615 "Both operands to ICmp instruction are not of the same type!");
616 // Check that the operands are the right type
617 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
618 getOperand(0)->getType()->isPointerTy()) &&
619 "Invalid operand types for ICmp instruction");
622 /// @brief Constructor with no-insertion semantics
624 Predicate pred, ///< The predicate to use for the comparison
625 Value *LHS, ///< The left-hand-side of the expression
626 Value *RHS, ///< The right-hand-side of the expression
627 const Twine &NameStr = "" ///< Name of the instruction
628 ) : CmpInst(makeCmpResultType(LHS->getType()),
629 Instruction::ICmp, pred, LHS, RHS, NameStr) {
630 assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
631 pred <= CmpInst::LAST_ICMP_PREDICATE &&
632 "Invalid ICmp predicate value");
633 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
634 "Both operands to ICmp instruction are not of the same type!");
635 // Check that the operands are the right type
636 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
637 getOperand(0)->getType()->isPointerTy()) &&
638 "Invalid operand types for ICmp instruction");
641 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
642 /// @returns the predicate that would be the result if the operand were
643 /// regarded as signed.
644 /// @brief Return the signed version of the predicate
645 Predicate getSignedPredicate() const {
646 return getSignedPredicate(getPredicate());
649 /// This is a static version that you can use without an instruction.
650 /// @brief Return the signed version of the predicate.
651 static Predicate getSignedPredicate(Predicate pred);
653 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
654 /// @returns the predicate that would be the result if the operand were
655 /// regarded as unsigned.
656 /// @brief Return the unsigned version of the predicate
657 Predicate getUnsignedPredicate() const {
658 return getUnsignedPredicate(getPredicate());
661 /// This is a static version that you can use without an instruction.
662 /// @brief Return the unsigned version of the predicate.
663 static Predicate getUnsignedPredicate(Predicate pred);
665 /// isEquality - Return true if this predicate is either EQ or NE. This also
666 /// tests for commutativity.
667 static bool isEquality(Predicate P) {
668 return P == ICMP_EQ || P == ICMP_NE;
671 /// isEquality - Return true if this predicate is either EQ or NE. This also
672 /// tests for commutativity.
673 bool isEquality() const {
674 return isEquality(getPredicate());
677 /// @returns true if the predicate of this ICmpInst is commutative
678 /// @brief Determine if this relation is commutative.
679 bool isCommutative() const { return isEquality(); }
681 /// isRelational - Return true if the predicate is relational (not EQ or NE).
683 bool isRelational() const {
684 return !isEquality();
687 /// isRelational - Return true if the predicate is relational (not EQ or NE).
689 static bool isRelational(Predicate P) {
690 return !isEquality(P);
693 /// Initialize a set of values that all satisfy the predicate with C.
694 /// @brief Make a ConstantRange for a relation with a constant value.
695 static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
697 /// Exchange the two operands to this instruction in such a way that it does
698 /// not modify the semantics of the instruction. The predicate value may be
699 /// changed to retain the same result if the predicate is order dependent
701 /// @brief Swap operands and adjust predicate.
702 void swapOperands() {
703 setPredicate(getSwappedPredicate());
704 Op<0>().swap(Op<1>());
707 // Methods for support type inquiry through isa, cast, and dyn_cast:
708 static inline bool classof(const ICmpInst *) { return true; }
709 static inline bool classof(const Instruction *I) {
710 return I->getOpcode() == Instruction::ICmp;
712 static inline bool classof(const Value *V) {
713 return isa<Instruction>(V) && classof(cast<Instruction>(V));
718 //===----------------------------------------------------------------------===//
720 //===----------------------------------------------------------------------===//
722 /// This instruction compares its operands according to the predicate given
723 /// to the constructor. It only operates on floating point values or packed
724 /// vectors of floating point values. The operands must be identical types.
725 /// @brief Represents a floating point comparison operator.
726 class FCmpInst: public CmpInst {
728 /// @brief Clone an indentical FCmpInst
729 virtual FCmpInst *clone_impl() const;
731 /// @brief Constructor with insert-before-instruction semantics.
733 Instruction *InsertBefore, ///< Where to insert
734 Predicate pred, ///< The predicate to use for the comparison
735 Value *LHS, ///< The left-hand-side of the expression
736 Value *RHS, ///< The right-hand-side of the expression
737 const Twine &NameStr = "" ///< Name of the instruction
738 ) : CmpInst(makeCmpResultType(LHS->getType()),
739 Instruction::FCmp, pred, LHS, RHS, NameStr,
741 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
742 "Invalid FCmp predicate value");
743 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
744 "Both operands to FCmp instruction are not of the same type!");
745 // Check that the operands are the right type
746 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
747 "Invalid operand types for FCmp instruction");
750 /// @brief Constructor with insert-at-end semantics.
752 BasicBlock &InsertAtEnd, ///< Block to insert into.
753 Predicate pred, ///< The predicate to use for the comparison
754 Value *LHS, ///< The left-hand-side of the expression
755 Value *RHS, ///< The right-hand-side of the expression
756 const Twine &NameStr = "" ///< Name of the instruction
757 ) : CmpInst(makeCmpResultType(LHS->getType()),
758 Instruction::FCmp, pred, LHS, RHS, NameStr,
760 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
761 "Invalid FCmp predicate value");
762 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
763 "Both operands to FCmp instruction are not of the same type!");
764 // Check that the operands are the right type
765 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
766 "Invalid operand types for FCmp instruction");
769 /// @brief Constructor with no-insertion semantics
771 Predicate pred, ///< The predicate to use for the comparison
772 Value *LHS, ///< The left-hand-side of the expression
773 Value *RHS, ///< The right-hand-side of the expression
774 const Twine &NameStr = "" ///< Name of the instruction
775 ) : CmpInst(makeCmpResultType(LHS->getType()),
776 Instruction::FCmp, pred, LHS, RHS, NameStr) {
777 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
778 "Invalid FCmp predicate value");
779 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
780 "Both operands to FCmp instruction are not of the same type!");
781 // Check that the operands are the right type
782 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
783 "Invalid operand types for FCmp instruction");
786 /// @returns true if the predicate of this instruction is EQ or NE.
787 /// @brief Determine if this is an equality predicate.
788 bool isEquality() const {
789 return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE ||
790 getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE;
793 /// @returns true if the predicate of this instruction is commutative.
794 /// @brief Determine if this is a commutative predicate.
795 bool isCommutative() const {
796 return isEquality() ||
797 getPredicate() == FCMP_FALSE ||
798 getPredicate() == FCMP_TRUE ||
799 getPredicate() == FCMP_ORD ||
800 getPredicate() == FCMP_UNO;
803 /// @returns true if the predicate is relational (not EQ or NE).
804 /// @brief Determine if this a relational predicate.
805 bool isRelational() const { return !isEquality(); }
807 /// Exchange the two operands to this instruction in such a way that it does
808 /// not modify the semantics of the instruction. The predicate value may be
809 /// changed to retain the same result if the predicate is order dependent
811 /// @brief Swap operands and adjust predicate.
812 void swapOperands() {
813 setPredicate(getSwappedPredicate());
814 Op<0>().swap(Op<1>());
817 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
818 static inline bool classof(const FCmpInst *) { return true; }
819 static inline bool classof(const Instruction *I) {
820 return I->getOpcode() == Instruction::FCmp;
822 static inline bool classof(const Value *V) {
823 return isa<Instruction>(V) && classof(cast<Instruction>(V));
827 //===----------------------------------------------------------------------===//
828 /// CallInst - This class represents a function call, abstracting a target
829 /// machine's calling convention. This class uses low bit of the SubClassData
830 /// field to indicate whether or not this is a tail call. The rest of the bits
831 /// hold the calling convention of the call.
833 class CallInst : public Instruction {
834 AttrListPtr AttributeList; ///< parameter attributes for call
835 CallInst(const CallInst &CI);
836 void init(Value *Func, Value* const *Params, unsigned NumParams);
837 void init(Value *Func, Value *Actual1, Value *Actual2);
838 void init(Value *Func, Value *Actual);
839 void init(Value *Func);
841 template<typename InputIterator>
842 void init(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
843 const Twine &NameStr,
844 // This argument ensures that we have an iterator we can
845 // do arithmetic on in constant time
846 std::random_access_iterator_tag) {
847 unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
849 // This requires that the iterator points to contiguous memory.
850 init(Func, NumArgs ? &*ArgBegin : 0, NumArgs);
854 /// Construct a CallInst given a range of arguments. InputIterator
855 /// must be a random-access iterator pointing to contiguous storage
856 /// (e.g. a std::vector<>::iterator). Checks are made for
857 /// random-accessness but not for contiguous storage as that would
858 /// incur runtime overhead.
859 /// @brief Construct a CallInst from a range of arguments
860 template<typename InputIterator>
861 CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
862 const Twine &NameStr, Instruction *InsertBefore);
864 /// Construct a CallInst given a range of arguments. InputIterator
865 /// must be a random-access iterator pointing to contiguous storage
866 /// (e.g. a std::vector<>::iterator). Checks are made for
867 /// random-accessness but not for contiguous storage as that would
868 /// incur runtime overhead.
869 /// @brief Construct a CallInst from a range of arguments
870 template<typename InputIterator>
871 inline CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
872 const Twine &NameStr, BasicBlock *InsertAtEnd);
874 CallInst(Value *F, Value *Actual, const Twine &NameStr,
875 Instruction *InsertBefore);
876 CallInst(Value *F, Value *Actual, const Twine &NameStr,
877 BasicBlock *InsertAtEnd);
878 explicit CallInst(Value *F, const Twine &NameStr,
879 Instruction *InsertBefore);
880 CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
882 virtual CallInst *clone_impl() const;
884 template<typename InputIterator>
885 static CallInst *Create(Value *Func,
886 InputIterator ArgBegin, InputIterator ArgEnd,
887 const Twine &NameStr = "",
888 Instruction *InsertBefore = 0) {
889 return new(unsigned(ArgEnd - ArgBegin + 1))
890 CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertBefore);
892 template<typename InputIterator>
893 static CallInst *Create(Value *Func,
894 InputIterator ArgBegin, InputIterator ArgEnd,
895 const Twine &NameStr, BasicBlock *InsertAtEnd) {
896 return new(unsigned(ArgEnd - ArgBegin + 1))
897 CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertAtEnd);
899 static CallInst *Create(Value *F, Value *Actual,
900 const Twine &NameStr = "",
901 Instruction *InsertBefore = 0) {
902 return new(2) CallInst(F, Actual, NameStr, InsertBefore);
904 static CallInst *Create(Value *F, Value *Actual, const Twine &NameStr,
905 BasicBlock *InsertAtEnd) {
906 return new(2) CallInst(F, Actual, NameStr, InsertAtEnd);
908 static CallInst *Create(Value *F, const Twine &NameStr = "",
909 Instruction *InsertBefore = 0) {
910 return new(1) CallInst(F, NameStr, InsertBefore);
912 static CallInst *Create(Value *F, const Twine &NameStr,
913 BasicBlock *InsertAtEnd) {
914 return new(1) CallInst(F, NameStr, InsertAtEnd);
916 /// CreateMalloc - Generate the IR for a call to malloc:
917 /// 1. Compute the malloc call's argument as the specified type's size,
918 /// possibly multiplied by the array size if the array size is not
920 /// 2. Call malloc with that argument.
921 /// 3. Bitcast the result of the malloc call to the specified type.
922 static Instruction *CreateMalloc(Instruction *InsertBefore,
923 const Type *IntPtrTy, const Type *AllocTy,
924 Value *AllocSize, Value *ArraySize = 0,
925 Function* MallocF = 0,
926 const Twine &Name = "");
927 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
928 const Type *IntPtrTy, const Type *AllocTy,
929 Value *AllocSize, Value *ArraySize = 0,
930 Function* MallocF = 0,
931 const Twine &Name = "");
932 /// CreateFree - Generate the IR for a call to the builtin free function.
933 static Instruction* CreateFree(Value* Source, Instruction *InsertBefore);
934 static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
938 bool isTailCall() const { return getSubclassDataFromInstruction() & 1; }
939 void setTailCall(bool isTC = true) {
940 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
944 /// @deprecated these "define hacks" will go away soon
945 /// @brief coerce out-of-tree code to abandon the low-level interfaces
946 /// @detail see below comments and update your code to high-level interfaces
947 /// in LLVM v2.8-only code
948 /// - getOperand(N+1) ---> getArgOperand(N)
949 /// - setOperand(N+1, V) ---> setArgOperand(N, V)
950 /// - getNumOperands() ---> getNumArgOperands()+1 // note the "+1"!
952 /// in backward compatible code please consult llvm/Support/CallSite.h,
953 /// you should create a callsite using the CallInst pointer and call its
956 # define public private
957 # define protected private
958 /// Provide fast operand accessors
959 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
964 enum { ArgOffset = 1 }; ///< temporary, do not use for new code!
965 unsigned getNumArgOperands() const { return getNumOperands() - 1; }
966 Value *getArgOperand(unsigned i) const { return getOperand(i + ArgOffset); }
967 void setArgOperand(unsigned i, Value *v) { setOperand(i + ArgOffset, v); }
969 /// Provide compile-time errors for accessing operand 0
970 /// @deprecated these will go away soon
971 /// @detail see below comments and update your code to high-level interfaces
972 /// - getOperand(0) ---> getCalledValue(), or possibly getCalledFunction
973 /// - setOperand(0, V) ---> setCalledFunction(V)
976 void getOperand(void*); // NO IMPL ---> use getCalledValue (or possibly
977 // getCalledFunction) instead
978 void setOperand(void*, Value*); // NO IMPL ---> use setCalledFunction instead
981 /// getCallingConv/setCallingConv - Get or set the calling convention of this
983 CallingConv::ID getCallingConv() const {
984 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 1);
986 void setCallingConv(CallingConv::ID CC) {
987 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
988 (static_cast<unsigned>(CC) << 1));
991 /// getAttributes - Return the parameter attributes for this call.
993 const AttrListPtr &getAttributes() const { return AttributeList; }
995 /// setAttributes - Set the parameter attributes for this call.
997 void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }
999 /// addAttribute - adds the attribute to the list of attributes.
1000 void addAttribute(unsigned i, Attributes attr);
1002 /// removeAttribute - removes the attribute from the list of attributes.
1003 void removeAttribute(unsigned i, Attributes attr);
1005 /// @brief Determine whether the call or the callee has the given attribute.
1006 bool paramHasAttr(unsigned i, Attributes attr) const;
1008 /// @brief Extract the alignment for a call or parameter (0=unknown).
1009 unsigned getParamAlignment(unsigned i) const {
1010 return AttributeList.getParamAlignment(i);
1013 /// @brief Return true if the call should not be inlined.
1014 bool isNoInline() const { return paramHasAttr(~0, Attribute::NoInline); }
1015 void setIsNoInline(bool Value = true) {
1016 if (Value) addAttribute(~0, Attribute::NoInline);
1017 else removeAttribute(~0, Attribute::NoInline);
1020 /// @brief Determine if the call does not access memory.
1021 bool doesNotAccessMemory() const {
1022 return paramHasAttr(~0, Attribute::ReadNone);
1024 void setDoesNotAccessMemory(bool NotAccessMemory = true) {
1025 if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
1026 else removeAttribute(~0, Attribute::ReadNone);
1029 /// @brief Determine if the call does not access or only reads memory.
1030 bool onlyReadsMemory() const {
1031 return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
1033 void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
1034 if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
1035 else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
1038 /// @brief Determine if the call cannot return.
1039 bool doesNotReturn() const { return paramHasAttr(~0, Attribute::NoReturn); }
1040 void setDoesNotReturn(bool DoesNotReturn = true) {
1041 if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
1042 else removeAttribute(~0, Attribute::NoReturn);
1045 /// @brief Determine if the call cannot unwind.
1046 bool doesNotThrow() const { return paramHasAttr(~0, Attribute::NoUnwind); }
1047 void setDoesNotThrow(bool DoesNotThrow = true) {
1048 if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
1049 else removeAttribute(~0, Attribute::NoUnwind);
1052 /// @brief Determine if the call returns a structure through first
1053 /// pointer argument.
1054 bool hasStructRetAttr() const {
1055 // Be friendly and also check the callee.
1056 return paramHasAttr(1, Attribute::StructRet);
1059 /// @brief Determine if any call argument is an aggregate passed by value.
1060 bool hasByValArgument() const {
1061 return AttributeList.hasAttrSomewhere(Attribute::ByVal);
1064 /// getCalledFunction - Return the function called, or null if this is an
1065 /// indirect function invocation.
1067 Function *getCalledFunction() const {
1068 return dyn_cast<Function>(Op<ArgOffset -1>());
1071 /// getCalledValue - Get a pointer to the function that is invoked by this
1073 const Value *getCalledValue() const { return Op<ArgOffset -1>(); }
1074 Value *getCalledValue() { return Op<ArgOffset -1>(); }
1076 /// setCalledFunction - Set the function called.
1077 void setCalledFunction(Value* Fn) {
1078 Op<ArgOffset -1>() = Fn;
1081 // Methods for support type inquiry through isa, cast, and dyn_cast:
1082 static inline bool classof(const CallInst *) { return true; }
1083 static inline bool classof(const Instruction *I) {
1084 return I->getOpcode() == Instruction::Call;
1086 static inline bool classof(const Value *V) {
1087 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1090 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1091 // method so that subclasses cannot accidentally use it.
1092 void setInstructionSubclassData(unsigned short D) {
1093 Instruction::setInstructionSubclassData(D);
1098 struct OperandTraits<CallInst> : public VariadicOperandTraits<1> {
1101 template<typename InputIterator>
1102 CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
1103 const Twine &NameStr, BasicBlock *InsertAtEnd)
1104 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
1105 ->getElementType())->getReturnType(),
1107 OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
1108 unsigned(ArgEnd - ArgBegin + 1), InsertAtEnd) {
1109 init(Func, ArgBegin, ArgEnd, NameStr,
1110 typename std::iterator_traits<InputIterator>::iterator_category());
1113 template<typename InputIterator>
1114 CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd,
1115 const Twine &NameStr, Instruction *InsertBefore)
1116 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
1117 ->getElementType())->getReturnType(),
1119 OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
1120 unsigned(ArgEnd - ArgBegin + 1), InsertBefore) {
1121 init(Func, ArgBegin, ArgEnd, NameStr,
1122 typename std::iterator_traits<InputIterator>::iterator_category());
1126 // Note: if you get compile errors about private methods then
1127 // please update your code to use the high-level operand
1128 // interfaces. See line 943 above.
1129 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
1131 //===----------------------------------------------------------------------===//
1133 //===----------------------------------------------------------------------===//
1135 /// SelectInst - This class represents the LLVM 'select' instruction.
1137 class SelectInst : public Instruction {
1138 void init(Value *C, Value *S1, Value *S2) {
1139 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1145 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1146 Instruction *InsertBefore)
1147 : Instruction(S1->getType(), Instruction::Select,
1148 &Op<0>(), 3, InsertBefore) {
1152 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1153 BasicBlock *InsertAtEnd)
1154 : Instruction(S1->getType(), Instruction::Select,
1155 &Op<0>(), 3, InsertAtEnd) {
1160 virtual SelectInst *clone_impl() const;
1162 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1163 const Twine &NameStr = "",
1164 Instruction *InsertBefore = 0) {
1165 return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1167 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1168 const Twine &NameStr,
1169 BasicBlock *InsertAtEnd) {
1170 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1173 const Value *getCondition() const { return Op<0>(); }
1174 const Value *getTrueValue() const { return Op<1>(); }
1175 const Value *getFalseValue() const { return Op<2>(); }
1176 Value *getCondition() { return Op<0>(); }
1177 Value *getTrueValue() { return Op<1>(); }
1178 Value *getFalseValue() { return Op<2>(); }
1180 /// areInvalidOperands - Return a string if the specified operands are invalid
1181 /// for a select operation, otherwise return null.
1182 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1184 /// Transparently provide more efficient getOperand methods.
1185 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1187 OtherOps getOpcode() const {
1188 return static_cast<OtherOps>(Instruction::getOpcode());
1191 // Methods for support type inquiry through isa, cast, and dyn_cast:
1192 static inline bool classof(const SelectInst *) { return true; }
1193 static inline bool classof(const Instruction *I) {
1194 return I->getOpcode() == Instruction::Select;
1196 static inline bool classof(const Value *V) {
1197 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1202 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<3> {
1205 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1207 //===----------------------------------------------------------------------===//
1209 //===----------------------------------------------------------------------===//
1211 /// VAArgInst - This class represents the va_arg llvm instruction, which returns
1212 /// an argument of the specified type given a va_list and increments that list
1214 class VAArgInst : public UnaryInstruction {
1216 virtual VAArgInst *clone_impl() const;
1219 VAArgInst(Value *List, const Type *Ty, const Twine &NameStr = "",
1220 Instruction *InsertBefore = 0)
1221 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1224 VAArgInst(Value *List, const Type *Ty, const Twine &NameStr,
1225 BasicBlock *InsertAtEnd)
1226 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1230 // Methods for support type inquiry through isa, cast, and dyn_cast:
1231 static inline bool classof(const VAArgInst *) { return true; }
1232 static inline bool classof(const Instruction *I) {
1233 return I->getOpcode() == VAArg;
1235 static inline bool classof(const Value *V) {
1236 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1240 //===----------------------------------------------------------------------===//
1241 // ExtractElementInst Class
1242 //===----------------------------------------------------------------------===//
1244 /// ExtractElementInst - This instruction extracts a single (scalar)
1245 /// element from a VectorType value
1247 class ExtractElementInst : public Instruction {
1248 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1249 Instruction *InsertBefore = 0);
1250 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1251 BasicBlock *InsertAtEnd);
1253 virtual ExtractElementInst *clone_impl() const;
1256 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1257 const Twine &NameStr = "",
1258 Instruction *InsertBefore = 0) {
1259 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1261 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1262 const Twine &NameStr,
1263 BasicBlock *InsertAtEnd) {
1264 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1267 /// isValidOperands - Return true if an extractelement instruction can be
1268 /// formed with the specified operands.
1269 static bool isValidOperands(const Value *Vec, const Value *Idx);
1271 Value *getVectorOperand() { return Op<0>(); }
1272 Value *getIndexOperand() { return Op<1>(); }
1273 const Value *getVectorOperand() const { return Op<0>(); }
1274 const Value *getIndexOperand() const { return Op<1>(); }
1276 const VectorType *getVectorOperandType() const {
1277 return reinterpret_cast<const VectorType*>(getVectorOperand()->getType());
1281 /// Transparently provide more efficient getOperand methods.
1282 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1284 // Methods for support type inquiry through isa, cast, and dyn_cast:
1285 static inline bool classof(const ExtractElementInst *) { return true; }
1286 static inline bool classof(const Instruction *I) {
1287 return I->getOpcode() == Instruction::ExtractElement;
1289 static inline bool classof(const Value *V) {
1290 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1295 struct OperandTraits<ExtractElementInst> : public FixedNumOperandTraits<2> {
1298 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1300 //===----------------------------------------------------------------------===//
1301 // InsertElementInst Class
1302 //===----------------------------------------------------------------------===//
1304 /// InsertElementInst - This instruction inserts a single (scalar)
1305 /// element into a VectorType value
1307 class InsertElementInst : public Instruction {
1308 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1309 const Twine &NameStr = "",
1310 Instruction *InsertBefore = 0);
1311 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1312 const Twine &NameStr, BasicBlock *InsertAtEnd);
1314 virtual InsertElementInst *clone_impl() const;
1317 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1318 const Twine &NameStr = "",
1319 Instruction *InsertBefore = 0) {
1320 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1322 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1323 const Twine &NameStr,
1324 BasicBlock *InsertAtEnd) {
1325 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1328 /// isValidOperands - Return true if an insertelement instruction can be
1329 /// formed with the specified operands.
1330 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1333 /// getType - Overload to return most specific vector type.
1335 const VectorType *getType() const {
1336 return reinterpret_cast<const VectorType*>(Instruction::getType());
1339 /// Transparently provide more efficient getOperand methods.
1340 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1342 // Methods for support type inquiry through isa, cast, and dyn_cast:
1343 static inline bool classof(const InsertElementInst *) { return true; }
1344 static inline bool classof(const Instruction *I) {
1345 return I->getOpcode() == Instruction::InsertElement;
1347 static inline bool classof(const Value *V) {
1348 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1353 struct OperandTraits<InsertElementInst> : public FixedNumOperandTraits<3> {
1356 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1358 //===----------------------------------------------------------------------===//
1359 // ShuffleVectorInst Class
1360 //===----------------------------------------------------------------------===//
1362 /// ShuffleVectorInst - This instruction constructs a fixed permutation of two
1365 class ShuffleVectorInst : public Instruction {
1367 virtual ShuffleVectorInst *clone_impl() const;
1370 // allocate space for exactly three operands
1371 void *operator new(size_t s) {
1372 return User::operator new(s, 3);
1374 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1375 const Twine &NameStr = "",
1376 Instruction *InsertBefor = 0);
1377 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1378 const Twine &NameStr, BasicBlock *InsertAtEnd);
1380 /// isValidOperands - Return true if a shufflevector instruction can be
1381 /// formed with the specified operands.
1382 static bool isValidOperands(const Value *V1, const Value *V2,
1385 /// getType - Overload to return most specific vector type.
1387 const VectorType *getType() const {
1388 return reinterpret_cast<const VectorType*>(Instruction::getType());
1391 /// Transparently provide more efficient getOperand methods.
1392 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1394 /// getMaskValue - Return the index from the shuffle mask for the specified
1395 /// output result. This is either -1 if the element is undef or a number less
1396 /// than 2*numelements.
1397 int getMaskValue(unsigned i) const;
1399 // Methods for support type inquiry through isa, cast, and dyn_cast:
1400 static inline bool classof(const ShuffleVectorInst *) { return true; }
1401 static inline bool classof(const Instruction *I) {
1402 return I->getOpcode() == Instruction::ShuffleVector;
1404 static inline bool classof(const Value *V) {
1405 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1410 struct OperandTraits<ShuffleVectorInst> : public FixedNumOperandTraits<3> {
1413 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
1415 //===----------------------------------------------------------------------===//
1416 // ExtractValueInst Class
1417 //===----------------------------------------------------------------------===//
1419 /// ExtractValueInst - This instruction extracts a struct member or array
1420 /// element value from an aggregate value.
1422 class ExtractValueInst : public UnaryInstruction {
1423 SmallVector<unsigned, 4> Indices;
1425 ExtractValueInst(const ExtractValueInst &EVI);
1426 void init(const unsigned *Idx, unsigned NumIdx,
1427 const Twine &NameStr);
1428 void init(unsigned Idx, const Twine &NameStr);
1430 template<typename InputIterator>
1431 void init(InputIterator IdxBegin, InputIterator IdxEnd,
1432 const Twine &NameStr,
1433 // This argument ensures that we have an iterator we can
1434 // do arithmetic on in constant time
1435 std::random_access_iterator_tag) {
1436 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
1438 // There's no fundamental reason why we require at least one index
1439 // (other than weirdness with &*IdxBegin being invalid; see
1440 // getelementptr's init routine for example). But there's no
1441 // present need to support it.
1442 assert(NumIdx > 0 && "ExtractValueInst must have at least one index");
1444 // This requires that the iterator points to contiguous memory.
1445 init(&*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
1446 // we have to build an array here
1449 /// getIndexedType - Returns the type of the element that would be extracted
1450 /// with an extractvalue instruction with the specified parameters.
1452 /// Null is returned if the indices are invalid for the specified
1455 static const Type *getIndexedType(const Type *Agg,
1456 const unsigned *Idx, unsigned NumIdx);
1458 template<typename InputIterator>
1459 static const Type *getIndexedType(const Type *Ptr,
1460 InputIterator IdxBegin,
1461 InputIterator IdxEnd,
1462 // This argument ensures that we
1463 // have an iterator we can do
1464 // arithmetic on in constant time
1465 std::random_access_iterator_tag) {
1466 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
1469 // This requires that the iterator points to contiguous memory.
1470 return getIndexedType(Ptr, &*IdxBegin, NumIdx);
1472 return getIndexedType(Ptr, (const unsigned *)0, NumIdx);
1475 /// Constructors - Create a extractvalue instruction with a base aggregate
1476 /// value and a list of indices. The first ctor can optionally insert before
1477 /// an existing instruction, the second appends the new instruction to the
1478 /// specified BasicBlock.
1479 template<typename InputIterator>
1480 inline ExtractValueInst(Value *Agg, InputIterator IdxBegin,
1481 InputIterator IdxEnd,
1482 const Twine &NameStr,
1483 Instruction *InsertBefore);
1484 template<typename InputIterator>
1485 inline ExtractValueInst(Value *Agg,
1486 InputIterator IdxBegin, InputIterator IdxEnd,
1487 const Twine &NameStr, BasicBlock *InsertAtEnd);
1489 // allocate space for exactly one operand
1490 void *operator new(size_t s) {
1491 return User::operator new(s, 1);
1494 virtual ExtractValueInst *clone_impl() const;
1497 template<typename InputIterator>
1498 static ExtractValueInst *Create(Value *Agg, InputIterator IdxBegin,
1499 InputIterator IdxEnd,
1500 const Twine &NameStr = "",
1501 Instruction *InsertBefore = 0) {
1503 ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertBefore);
1505 template<typename InputIterator>
1506 static ExtractValueInst *Create(Value *Agg,
1507 InputIterator IdxBegin, InputIterator IdxEnd,
1508 const Twine &NameStr,
1509 BasicBlock *InsertAtEnd) {
1510 return new ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertAtEnd);
1513 /// Constructors - These two creators are convenience methods because one
1514 /// index extractvalue instructions are much more common than those with
1516 static ExtractValueInst *Create(Value *Agg, unsigned Idx,
1517 const Twine &NameStr = "",
1518 Instruction *InsertBefore = 0) {
1519 unsigned Idxs[1] = { Idx };
1520 return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertBefore);
1522 static ExtractValueInst *Create(Value *Agg, unsigned Idx,
1523 const Twine &NameStr,
1524 BasicBlock *InsertAtEnd) {
1525 unsigned Idxs[1] = { Idx };
1526 return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertAtEnd);
1529 /// getIndexedType - Returns the type of the element that would be extracted
1530 /// with an extractvalue instruction with the specified parameters.
1532 /// Null is returned if the indices are invalid for the specified
1535 template<typename InputIterator>
1536 static const Type *getIndexedType(const Type *Ptr,
1537 InputIterator IdxBegin,
1538 InputIterator IdxEnd) {
1539 return getIndexedType(Ptr, IdxBegin, IdxEnd,
1540 typename std::iterator_traits<InputIterator>::
1541 iterator_category());
1543 static const Type *getIndexedType(const Type *Ptr, unsigned Idx);
1545 typedef const unsigned* idx_iterator;
1546 inline idx_iterator idx_begin() const { return Indices.begin(); }
1547 inline idx_iterator idx_end() const { return Indices.end(); }
1549 Value *getAggregateOperand() {
1550 return getOperand(0);
1552 const Value *getAggregateOperand() const {
1553 return getOperand(0);
1555 static unsigned getAggregateOperandIndex() {
1556 return 0U; // get index for modifying correct operand
1559 unsigned getNumIndices() const { // Note: always non-negative
1560 return (unsigned)Indices.size();
1563 bool hasIndices() const {
1567 // Methods for support type inquiry through isa, cast, and dyn_cast:
1568 static inline bool classof(const ExtractValueInst *) { return true; }
1569 static inline bool classof(const Instruction *I) {
1570 return I->getOpcode() == Instruction::ExtractValue;
1572 static inline bool classof(const Value *V) {
1573 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1577 template<typename InputIterator>
1578 ExtractValueInst::ExtractValueInst(Value *Agg,
1579 InputIterator IdxBegin,
1580 InputIterator IdxEnd,
1581 const Twine &NameStr,
1582 Instruction *InsertBefore)
1583 : UnaryInstruction(checkType(getIndexedType(Agg->getType(),
1585 ExtractValue, Agg, InsertBefore) {
1586 init(IdxBegin, IdxEnd, NameStr,
1587 typename std::iterator_traits<InputIterator>::iterator_category());
1589 template<typename InputIterator>
1590 ExtractValueInst::ExtractValueInst(Value *Agg,
1591 InputIterator IdxBegin,
1592 InputIterator IdxEnd,
1593 const Twine &NameStr,
1594 BasicBlock *InsertAtEnd)
1595 : UnaryInstruction(checkType(getIndexedType(Agg->getType(),
1597 ExtractValue, Agg, InsertAtEnd) {
1598 init(IdxBegin, IdxEnd, NameStr,
1599 typename std::iterator_traits<InputIterator>::iterator_category());
1603 //===----------------------------------------------------------------------===//
1604 // InsertValueInst Class
1605 //===----------------------------------------------------------------------===//
1607 /// InsertValueInst - This instruction inserts a struct field of array element
1608 /// value into an aggregate value.
1610 class InsertValueInst : public Instruction {
1611 SmallVector<unsigned, 4> Indices;
1613 void *operator new(size_t, unsigned); // Do not implement
1614 InsertValueInst(const InsertValueInst &IVI);
1615 void init(Value *Agg, Value *Val, const unsigned *Idx, unsigned NumIdx,
1616 const Twine &NameStr);
1617 void init(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr);
1619 template<typename InputIterator>
1620 void init(Value *Agg, Value *Val,
1621 InputIterator IdxBegin, InputIterator IdxEnd,
1622 const Twine &NameStr,
1623 // This argument ensures that we have an iterator we can
1624 // do arithmetic on in constant time
1625 std::random_access_iterator_tag) {
1626 unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
1628 // There's no fundamental reason why we require at least one index
1629 // (other than weirdness with &*IdxBegin being invalid; see
1630 // getelementptr's init routine for example). But there's no
1631 // present need to support it.
1632 assert(NumIdx > 0 && "InsertValueInst must have at least one index");
1634 // This requires that the iterator points to contiguous memory.
1635 init(Agg, Val, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
1636 // we have to build an array here
1639 /// Constructors - Create a insertvalue instruction with a base aggregate
1640 /// value, a value to insert, and a list of indices. The first ctor can
1641 /// optionally insert before an existing instruction, the second appends
1642 /// the new instruction to the specified BasicBlock.
1643 template<typename InputIterator>
1644 inline InsertValueInst(Value *Agg, Value *Val, InputIterator IdxBegin,
1645 InputIterator IdxEnd,
1646 const Twine &NameStr,
1647 Instruction *InsertBefore);
1648 template<typename InputIterator>
1649 inline InsertValueInst(Value *Agg, Value *Val,
1650 InputIterator IdxBegin, InputIterator IdxEnd,
1651 const Twine &NameStr, BasicBlock *InsertAtEnd);
1653 /// Constructors - These two constructors are convenience methods because one
1654 /// and two index insertvalue instructions are so common.
1655 InsertValueInst(Value *Agg, Value *Val,
1656 unsigned Idx, const Twine &NameStr = "",
1657 Instruction *InsertBefore = 0);
1658 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
1659 const Twine &NameStr, BasicBlock *InsertAtEnd);
1661 virtual InsertValueInst *clone_impl() const;
1663 // allocate space for exactly two operands
1664 void *operator new(size_t s) {
1665 return User::operator new(s, 2);
1668 template<typename InputIterator>
1669 static InsertValueInst *Create(Value *Agg, Value *Val, InputIterator IdxBegin,
1670 InputIterator IdxEnd,
1671 const Twine &NameStr = "",
1672 Instruction *InsertBefore = 0) {
1673 return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
1674 NameStr, InsertBefore);
1676 template<typename InputIterator>
1677 static InsertValueInst *Create(Value *Agg, Value *Val,
1678 InputIterator IdxBegin, InputIterator IdxEnd,
1679 const Twine &NameStr,
1680 BasicBlock *InsertAtEnd) {
1681 return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
1682 NameStr, InsertAtEnd);
1685 /// Constructors - These two creators are convenience methods because one
1686 /// index insertvalue instructions are much more common than those with
1688 static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
1689 const Twine &NameStr = "",
1690 Instruction *InsertBefore = 0) {
1691 return new InsertValueInst(Agg, Val, Idx, NameStr, InsertBefore);
1693 static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
1694 const Twine &NameStr,
1695 BasicBlock *InsertAtEnd) {
1696 return new InsertValueInst(Agg, Val, Idx, NameStr, InsertAtEnd);
1699 /// Transparently provide more efficient getOperand methods.
1700 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1702 typedef const unsigned* idx_iterator;
1703 inline idx_iterator idx_begin() const { return Indices.begin(); }
1704 inline idx_iterator idx_end() const { return Indices.end(); }
1706 Value *getAggregateOperand() {
1707 return getOperand(0);
1709 const Value *getAggregateOperand() const {
1710 return getOperand(0);
1712 static unsigned getAggregateOperandIndex() {
1713 return 0U; // get index for modifying correct operand
1716 Value *getInsertedValueOperand() {
1717 return getOperand(1);
1719 const Value *getInsertedValueOperand() const {
1720 return getOperand(1);
1722 static unsigned getInsertedValueOperandIndex() {
1723 return 1U; // get index for modifying correct operand
1726 unsigned getNumIndices() const { // Note: always non-negative
1727 return (unsigned)Indices.size();
1730 bool hasIndices() const {
1734 // Methods for support type inquiry through isa, cast, and dyn_cast:
1735 static inline bool classof(const InsertValueInst *) { return true; }
1736 static inline bool classof(const Instruction *I) {
1737 return I->getOpcode() == Instruction::InsertValue;
1739 static inline bool classof(const Value *V) {
1740 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1745 struct OperandTraits<InsertValueInst> : public FixedNumOperandTraits<2> {
1748 template<typename InputIterator>
1749 InsertValueInst::InsertValueInst(Value *Agg,
1751 InputIterator IdxBegin,
1752 InputIterator IdxEnd,
1753 const Twine &NameStr,
1754 Instruction *InsertBefore)
1755 : Instruction(Agg->getType(), InsertValue,
1756 OperandTraits<InsertValueInst>::op_begin(this),
1758 init(Agg, Val, IdxBegin, IdxEnd, NameStr,
1759 typename std::iterator_traits<InputIterator>::iterator_category());
1761 template<typename InputIterator>
1762 InsertValueInst::InsertValueInst(Value *Agg,
1764 InputIterator IdxBegin,
1765 InputIterator IdxEnd,
1766 const Twine &NameStr,
1767 BasicBlock *InsertAtEnd)
1768 : Instruction(Agg->getType(), InsertValue,
1769 OperandTraits<InsertValueInst>::op_begin(this),
1771 init(Agg, Val, IdxBegin, IdxEnd, NameStr,
1772 typename std::iterator_traits<InputIterator>::iterator_category());
1775 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
1777 //===----------------------------------------------------------------------===//
1779 //===----------------------------------------------------------------------===//
1781 // PHINode - The PHINode class is used to represent the magical mystical PHI
1782 // node, that can not exist in nature, but can be synthesized in a computer
1783 // scientist's overactive imagination.
1785 class PHINode : public Instruction {
1786 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
1787 /// ReservedSpace - The number of operands actually allocated. NumOperands is
1788 /// the number actually in use.
1789 unsigned ReservedSpace;
1790 PHINode(const PHINode &PN);
1791 // allocate space for exactly zero operands
1792 void *operator new(size_t s) {
1793 return User::operator new(s, 0);
1795 explicit PHINode(const Type *Ty, const Twine &NameStr = "",
1796 Instruction *InsertBefore = 0)
1797 : Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore),
1802 PHINode(const Type *Ty, const Twine &NameStr, BasicBlock *InsertAtEnd)
1803 : Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd),
1808 virtual PHINode *clone_impl() const;
1810 static PHINode *Create(const Type *Ty, const Twine &NameStr = "",
1811 Instruction *InsertBefore = 0) {
1812 return new PHINode(Ty, NameStr, InsertBefore);
1814 static PHINode *Create(const Type *Ty, const Twine &NameStr,
1815 BasicBlock *InsertAtEnd) {
1816 return new PHINode(Ty, NameStr, InsertAtEnd);
1820 /// reserveOperandSpace - This method can be used to avoid repeated
1821 /// reallocation of PHI operand lists by reserving space for the correct
1822 /// number of operands before adding them. Unlike normal vector reserves,
1823 /// this method can also be used to trim the operand space.
1824 void reserveOperandSpace(unsigned NumValues) {
1825 resizeOperands(NumValues*2);
1828 /// Provide fast operand accessors
1829 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1831 /// getNumIncomingValues - Return the number of incoming edges
1833 unsigned getNumIncomingValues() const { return getNumOperands()/2; }
1835 /// getIncomingValue - Return incoming value number x
1837 Value *getIncomingValue(unsigned i) const {
1838 assert(i*2 < getNumOperands() && "Invalid value number!");
1839 return getOperand(i*2);
1841 void setIncomingValue(unsigned i, Value *V) {
1842 assert(i*2 < getNumOperands() && "Invalid value number!");
1845 static unsigned getOperandNumForIncomingValue(unsigned i) {
1848 static unsigned getIncomingValueNumForOperand(unsigned i) {
1849 assert(i % 2 == 0 && "Invalid incoming-value operand index!");
1853 /// getIncomingBlock - Return incoming basic block number @p i.
1855 BasicBlock *getIncomingBlock(unsigned i) const {
1856 return cast<BasicBlock>(getOperand(i*2+1));
1859 /// getIncomingBlock - Return incoming basic block corresponding
1860 /// to an operand of the PHI.
1862 BasicBlock *getIncomingBlock(const Use &U) const {
1863 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
1864 return cast<BasicBlock>((&U + 1)->get());
1867 /// getIncomingBlock - Return incoming basic block corresponding
1868 /// to value use iterator.
1870 template <typename U>
1871 BasicBlock *getIncomingBlock(value_use_iterator<U> I) const {
1872 return getIncomingBlock(I.getUse());
1876 void setIncomingBlock(unsigned i, BasicBlock *BB) {
1877 setOperand(i*2+1, (Value*)BB);
1879 static unsigned getOperandNumForIncomingBlock(unsigned i) {
1882 static unsigned getIncomingBlockNumForOperand(unsigned i) {
1883 assert(i % 2 == 1 && "Invalid incoming-block operand index!");
1887 /// addIncoming - Add an incoming value to the end of the PHI list
1889 void addIncoming(Value *V, BasicBlock *BB) {
1890 assert(V && "PHI node got a null value!");
1891 assert(BB && "PHI node got a null basic block!");
1892 assert(getType() == V->getType() &&
1893 "All operands to PHI node must be the same type as the PHI node!");
1894 unsigned OpNo = NumOperands;
1895 if (OpNo+2 > ReservedSpace)
1896 resizeOperands(0); // Get more space!
1897 // Initialize some new operands.
1898 NumOperands = OpNo+2;
1899 OperandList[OpNo] = V;
1900 OperandList[OpNo+1] = (Value*)BB;
1903 /// removeIncomingValue - Remove an incoming value. This is useful if a
1904 /// predecessor basic block is deleted. The value removed is returned.
1906 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
1907 /// is true), the PHI node is destroyed and any uses of it are replaced with
1908 /// dummy values. The only time there should be zero incoming values to a PHI
1909 /// node is when the block is dead, so this strategy is sound.
1911 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
1913 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
1914 int Idx = getBasicBlockIndex(BB);
1915 assert(Idx >= 0 && "Invalid basic block argument to remove!");
1916 return removeIncomingValue(Idx, DeletePHIIfEmpty);
1919 /// getBasicBlockIndex - Return the first index of the specified basic
1920 /// block in the value list for this PHI. Returns -1 if no instance.
1922 int getBasicBlockIndex(const BasicBlock *BB) const {
1923 Use *OL = OperandList;
1924 for (unsigned i = 0, e = getNumOperands(); i != e; i += 2)
1925 if (OL[i+1].get() == (const Value*)BB) return i/2;
1929 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
1930 return getIncomingValue(getBasicBlockIndex(BB));
1933 /// hasConstantValue - If the specified PHI node always merges together the
1934 /// same value, return the value, otherwise return null.
1936 /// If the PHI has undef operands, but all the rest of the operands are
1937 /// some unique value, return that value if it can be proved that the
1938 /// value dominates the PHI. If DT is null, use a conservative check,
1939 /// otherwise use DT to test for dominance.
1941 Value *hasConstantValue(DominatorTree *DT = 0) const;
1943 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1944 static inline bool classof(const PHINode *) { return true; }
1945 static inline bool classof(const Instruction *I) {
1946 return I->getOpcode() == Instruction::PHI;
1948 static inline bool classof(const Value *V) {
1949 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1952 void resizeOperands(unsigned NumOperands);
1956 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
1959 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
1962 //===----------------------------------------------------------------------===//
1964 //===----------------------------------------------------------------------===//
1966 //===---------------------------------------------------------------------------
1967 /// ReturnInst - Return a value (possibly void), from a function. Execution
1968 /// does not continue in this function any longer.
1970 class ReturnInst : public TerminatorInst {
1971 ReturnInst(const ReturnInst &RI);
1974 // ReturnInst constructors:
1975 // ReturnInst() - 'ret void' instruction
1976 // ReturnInst( null) - 'ret void' instruction
1977 // ReturnInst(Value* X) - 'ret X' instruction
1978 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
1979 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
1980 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
1981 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
1983 // NOTE: If the Value* passed is of type void then the constructor behaves as
1984 // if it was passed NULL.
1985 explicit ReturnInst(LLVMContext &C, Value *retVal = 0,
1986 Instruction *InsertBefore = 0);
1987 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
1988 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
1990 virtual ReturnInst *clone_impl() const;
1992 static ReturnInst* Create(LLVMContext &C, Value *retVal = 0,
1993 Instruction *InsertBefore = 0) {
1994 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
1996 static ReturnInst* Create(LLVMContext &C, Value *retVal,
1997 BasicBlock *InsertAtEnd) {
1998 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2000 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2001 return new(0) ReturnInst(C, InsertAtEnd);
2003 virtual ~ReturnInst();
2005 /// Provide fast operand accessors
2006 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2008 /// Convenience accessor
2009 Value *getReturnValue(unsigned n = 0) const {
2010 return n < getNumOperands()
2015 unsigned getNumSuccessors() const { return 0; }
2017 // Methods for support type inquiry through isa, cast, and dyn_cast:
2018 static inline bool classof(const ReturnInst *) { return true; }
2019 static inline bool classof(const Instruction *I) {
2020 return (I->getOpcode() == Instruction::Ret);
2022 static inline bool classof(const Value *V) {
2023 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2026 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2027 virtual unsigned getNumSuccessorsV() const;
2028 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2032 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<> {
2035 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
2037 //===----------------------------------------------------------------------===//
2039 //===----------------------------------------------------------------------===//
2041 //===---------------------------------------------------------------------------
2042 /// BranchInst - Conditional or Unconditional Branch instruction.
2044 class BranchInst : public TerminatorInst {
2045 /// Ops list - Branches are strange. The operands are ordered:
2046 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2047 /// they don't have to check for cond/uncond branchness. These are mostly
2048 /// accessed relative from op_end().
2049 BranchInst(const BranchInst &BI);
2051 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2052 // BranchInst(BB *B) - 'br B'
2053 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2054 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2055 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2056 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2057 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2058 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0);
2059 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2060 Instruction *InsertBefore = 0);
2061 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2062 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2063 BasicBlock *InsertAtEnd);
2065 virtual BranchInst *clone_impl() const;
2067 static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) {
2068 return new(1, true) BranchInst(IfTrue, InsertBefore);
2070 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
2071 Value *Cond, Instruction *InsertBefore = 0) {
2072 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
2074 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
2075 return new(1, true) BranchInst(IfTrue, InsertAtEnd);
2077 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
2078 Value *Cond, BasicBlock *InsertAtEnd) {
2079 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
2084 /// Transparently provide more efficient getOperand methods.
2085 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2087 bool isUnconditional() const { return getNumOperands() == 1; }
2088 bool isConditional() const { return getNumOperands() == 3; }
2090 Value *getCondition() const {
2091 assert(isConditional() && "Cannot get condition of an uncond branch!");
2095 void setCondition(Value *V) {
2096 assert(isConditional() && "Cannot set condition of unconditional branch!");
2100 // setUnconditionalDest - Change the current branch to an unconditional branch
2101 // targeting the specified block.
2102 // FIXME: Eliminate this ugly method.
2103 void setUnconditionalDest(BasicBlock *Dest) {
2104 Op<-1>() = (Value*)Dest;
2105 if (isConditional()) { // Convert this to an uncond branch.
2109 OperandList = op_begin();
2113 unsigned getNumSuccessors() const { return 1+isConditional(); }
2115 BasicBlock *getSuccessor(unsigned i) const {
2116 assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
2117 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
2120 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2121 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
2122 *(&Op<-1>() - idx) = (Value*)NewSucc;
2125 // Methods for support type inquiry through isa, cast, and dyn_cast:
2126 static inline bool classof(const BranchInst *) { return true; }
2127 static inline bool classof(const Instruction *I) {
2128 return (I->getOpcode() == Instruction::Br);
2130 static inline bool classof(const Value *V) {
2131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2134 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2135 virtual unsigned getNumSuccessorsV() const;
2136 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2140 struct OperandTraits<BranchInst> : public VariadicOperandTraits<1> {};
2142 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
2144 //===----------------------------------------------------------------------===//
2146 //===----------------------------------------------------------------------===//
2148 //===---------------------------------------------------------------------------
2149 /// SwitchInst - Multiway switch
2151 class SwitchInst : public TerminatorInst {
2152 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2153 unsigned ReservedSpace;
2154 // Operand[0] = Value to switch on
2155 // Operand[1] = Default basic block destination
2156 // Operand[2n ] = Value to match
2157 // Operand[2n+1] = BasicBlock to go to on match
2158 SwitchInst(const SwitchInst &SI);
2159 void init(Value *Value, BasicBlock *Default, unsigned NumCases);
2160 void resizeOperands(unsigned No);
2161 // allocate space for exactly zero operands
2162 void *operator new(size_t s) {
2163 return User::operator new(s, 0);
2165 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2166 /// switch on and a default destination. The number of additional cases can
2167 /// be specified here to make memory allocation more efficient. This
2168 /// constructor can also autoinsert before another instruction.
2169 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2170 Instruction *InsertBefore);
2172 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2173 /// switch on and a default destination. The number of additional cases can
2174 /// be specified here to make memory allocation more efficient. This
2175 /// constructor also autoinserts at the end of the specified BasicBlock.
2176 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2177 BasicBlock *InsertAtEnd);
2179 virtual SwitchInst *clone_impl() const;
2181 static SwitchInst *Create(Value *Value, BasicBlock *Default,
2182 unsigned NumCases, Instruction *InsertBefore = 0) {
2183 return new SwitchInst(Value, Default, NumCases, InsertBefore);
2185 static SwitchInst *Create(Value *Value, BasicBlock *Default,
2186 unsigned NumCases, BasicBlock *InsertAtEnd) {
2187 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
2191 /// Provide fast operand accessors
2192 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2194 // Accessor Methods for Switch stmt
2195 Value *getCondition() const { return getOperand(0); }
2196 void setCondition(Value *V) { setOperand(0, V); }
2198 BasicBlock *getDefaultDest() const {
2199 return cast<BasicBlock>(getOperand(1));
2202 /// getNumCases - return the number of 'cases' in this switch instruction.
2203 /// Note that case #0 is always the default case.
2204 unsigned getNumCases() const {
2205 return getNumOperands()/2;
2208 /// getCaseValue - Return the specified case value. Note that case #0, the
2209 /// default destination, does not have a case value.
2210 ConstantInt *getCaseValue(unsigned i) {
2211 assert(i && i < getNumCases() && "Illegal case value to get!");
2212 return getSuccessorValue(i);
2215 /// getCaseValue - Return the specified case value. Note that case #0, the
2216 /// default destination, does not have a case value.
2217 const ConstantInt *getCaseValue(unsigned i) const {
2218 assert(i && i < getNumCases() && "Illegal case value to get!");
2219 return getSuccessorValue(i);
2222 /// findCaseValue - Search all of the case values for the specified constant.
2223 /// If it is explicitly handled, return the case number of it, otherwise
2224 /// return 0 to indicate that it is handled by the default handler.
2225 unsigned findCaseValue(const ConstantInt *C) const {
2226 for (unsigned i = 1, e = getNumCases(); i != e; ++i)
2227 if (getCaseValue(i) == C)
2232 /// findCaseDest - Finds the unique case value for a given successor. Returns
2233 /// null if the successor is not found, not unique, or is the default case.
2234 ConstantInt *findCaseDest(BasicBlock *BB) {
2235 if (BB == getDefaultDest()) return NULL;
2237 ConstantInt *CI = NULL;
2238 for (unsigned i = 1, e = getNumCases(); i != e; ++i) {
2239 if (getSuccessor(i) == BB) {
2240 if (CI) return NULL; // Multiple cases lead to BB.
2241 else CI = getCaseValue(i);
2247 /// addCase - Add an entry to the switch instruction...
2249 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
2251 /// removeCase - This method removes the specified successor from the switch
2252 /// instruction. Note that this cannot be used to remove the default
2253 /// destination (successor #0).
2255 void removeCase(unsigned idx);
2257 unsigned getNumSuccessors() const { return getNumOperands()/2; }
2258 BasicBlock *getSuccessor(unsigned idx) const {
2259 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
2260 return cast<BasicBlock>(getOperand(idx*2+1));
2262 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2263 assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
2264 setOperand(idx*2+1, (Value*)NewSucc);
2267 // getSuccessorValue - Return the value associated with the specified
2269 ConstantInt *getSuccessorValue(unsigned idx) const {
2270 assert(idx < getNumSuccessors() && "Successor # out of range!");
2271 return reinterpret_cast<ConstantInt*>(getOperand(idx*2));
2274 // Methods for support type inquiry through isa, cast, and dyn_cast:
2275 static inline bool classof(const SwitchInst *) { return true; }
2276 static inline bool classof(const Instruction *I) {
2277 return I->getOpcode() == Instruction::Switch;
2279 static inline bool classof(const Value *V) {
2280 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2283 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2284 virtual unsigned getNumSuccessorsV() const;
2285 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2289 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
2292 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
2295 //===----------------------------------------------------------------------===//
2296 // IndirectBrInst Class
2297 //===----------------------------------------------------------------------===//
2299 //===---------------------------------------------------------------------------
2300 /// IndirectBrInst - Indirect Branch Instruction.
2302 class IndirectBrInst : public TerminatorInst {
2303 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2304 unsigned ReservedSpace;
2305 // Operand[0] = Value to switch on
2306 // Operand[1] = Default basic block destination
2307 // Operand[2n ] = Value to match
2308 // Operand[2n+1] = BasicBlock to go to on match
2309 IndirectBrInst(const IndirectBrInst &IBI);
2310 void init(Value *Address, unsigned NumDests);
2311 void resizeOperands(unsigned No);
2312 // allocate space for exactly zero operands
2313 void *operator new(size_t s) {
2314 return User::operator new(s, 0);
2316 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
2317 /// Address to jump to. The number of expected destinations can be specified
2318 /// here to make memory allocation more efficient. This constructor can also
2319 /// autoinsert before another instruction.
2320 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
2322 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
2323 /// Address to jump to. The number of expected destinations can be specified
2324 /// here to make memory allocation more efficient. This constructor also
2325 /// autoinserts at the end of the specified BasicBlock.
2326 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
2328 virtual IndirectBrInst *clone_impl() const;
2330 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
2331 Instruction *InsertBefore = 0) {
2332 return new IndirectBrInst(Address, NumDests, InsertBefore);
2334 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
2335 BasicBlock *InsertAtEnd) {
2336 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
2340 /// Provide fast operand accessors.
2341 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2343 // Accessor Methods for IndirectBrInst instruction.
2344 Value *getAddress() { return getOperand(0); }
2345 const Value *getAddress() const { return getOperand(0); }
2346 void setAddress(Value *V) { setOperand(0, V); }
2349 /// getNumDestinations - return the number of possible destinations in this
2350 /// indirectbr instruction.
2351 unsigned getNumDestinations() const { return getNumOperands()-1; }
2353 /// getDestination - Return the specified destination.
2354 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
2355 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
2357 /// addDestination - Add a destination.
2359 void addDestination(BasicBlock *Dest);
2361 /// removeDestination - This method removes the specified successor from the
2362 /// indirectbr instruction.
2363 void removeDestination(unsigned i);
2365 unsigned getNumSuccessors() const { return getNumOperands()-1; }
2366 BasicBlock *getSuccessor(unsigned i) const {
2367 return cast<BasicBlock>(getOperand(i+1));
2369 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
2370 setOperand(i+1, (Value*)NewSucc);
2373 // Methods for support type inquiry through isa, cast, and dyn_cast:
2374 static inline bool classof(const IndirectBrInst *) { return true; }
2375 static inline bool classof(const Instruction *I) {
2376 return I->getOpcode() == Instruction::IndirectBr;
2378 static inline bool classof(const Value *V) {
2379 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2382 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2383 virtual unsigned getNumSuccessorsV() const;
2384 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2388 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
2391 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
2394 //===----------------------------------------------------------------------===//
2396 //===----------------------------------------------------------------------===//
2398 /// InvokeInst - Invoke instruction. The SubclassData field is used to hold the
2399 /// calling convention of the call.
2401 class InvokeInst : public TerminatorInst {
2402 AttrListPtr AttributeList;
2403 InvokeInst(const InvokeInst &BI);
2404 void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
2405 Value* const *Args, unsigned NumArgs);
2407 template<typename InputIterator>
2408 void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2409 InputIterator ArgBegin, InputIterator ArgEnd,
2410 const Twine &NameStr,
2411 // This argument ensures that we have an iterator we can
2412 // do arithmetic on in constant time
2413 std::random_access_iterator_tag) {
2414 unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
2416 // This requires that the iterator points to contiguous memory.
2417 init(Func, IfNormal, IfException, NumArgs ? &*ArgBegin : 0, NumArgs);
2421 /// Construct an InvokeInst given a range of arguments.
2422 /// InputIterator must be a random-access iterator pointing to
2423 /// contiguous storage (e.g. a std::vector<>::iterator). Checks are
2424 /// made for random-accessness but not for contiguous storage as
2425 /// that would incur runtime overhead.
2427 /// @brief Construct an InvokeInst from a range of arguments
2428 template<typename InputIterator>
2429 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2430 InputIterator ArgBegin, InputIterator ArgEnd,
2432 const Twine &NameStr, Instruction *InsertBefore);
2434 /// Construct an InvokeInst given a range of arguments.
2435 /// InputIterator must be a random-access iterator pointing to
2436 /// contiguous storage (e.g. a std::vector<>::iterator). Checks are
2437 /// made for random-accessness but not for contiguous storage as
2438 /// that would incur runtime overhead.
2440 /// @brief Construct an InvokeInst from a range of arguments
2441 template<typename InputIterator>
2442 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2443 InputIterator ArgBegin, InputIterator ArgEnd,
2445 const Twine &NameStr, BasicBlock *InsertAtEnd);
2447 virtual InvokeInst *clone_impl() const;
2449 template<typename InputIterator>
2450 static InvokeInst *Create(Value *Func,
2451 BasicBlock *IfNormal, BasicBlock *IfException,
2452 InputIterator ArgBegin, InputIterator ArgEnd,
2453 const Twine &NameStr = "",
2454 Instruction *InsertBefore = 0) {
2455 unsigned Values(ArgEnd - ArgBegin + 3);
2456 return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
2457 Values, NameStr, InsertBefore);
2459 template<typename InputIterator>
2460 static InvokeInst *Create(Value *Func,
2461 BasicBlock *IfNormal, BasicBlock *IfException,
2462 InputIterator ArgBegin, InputIterator ArgEnd,
2463 const Twine &NameStr,
2464 BasicBlock *InsertAtEnd) {
2465 unsigned Values(ArgEnd - ArgBegin + 3);
2466 return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
2467 Values, NameStr, InsertAtEnd);
2470 /// Provide fast operand accessors
2471 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2473 unsigned getNumArgOperands() const { return getNumOperands() - 3; }
2474 Value *getArgOperand(unsigned i) const { return getOperand(i); }
2475 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
2477 /// getCallingConv/setCallingConv - Get or set the calling convention of this
2479 CallingConv::ID getCallingConv() const {
2480 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction());
2482 void setCallingConv(CallingConv::ID CC) {
2483 setInstructionSubclassData(static_cast<unsigned>(CC));
2486 /// getAttributes - Return the parameter attributes for this invoke.
2488 const AttrListPtr &getAttributes() const { return AttributeList; }
2490 /// setAttributes - Set the parameter attributes for this invoke.
2492 void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }
2494 /// addAttribute - adds the attribute to the list of attributes.
2495 void addAttribute(unsigned i, Attributes attr);
2497 /// removeAttribute - removes the attribute from the list of attributes.
2498 void removeAttribute(unsigned i, Attributes attr);
2500 /// @brief Determine whether the call or the callee has the given attribute.
2501 bool paramHasAttr(unsigned i, Attributes attr) const;
2503 /// @brief Extract the alignment for a call or parameter (0=unknown).
2504 unsigned getParamAlignment(unsigned i) const {
2505 return AttributeList.getParamAlignment(i);
2508 /// @brief Return true if the call should not be inlined.
2509 bool isNoInline() const { return paramHasAttr(~0, Attribute::NoInline); }
2510 void setIsNoInline(bool Value = true) {
2511 if (Value) addAttribute(~0, Attribute::NoInline);
2512 else removeAttribute(~0, Attribute::NoInline);
2515 /// @brief Determine if the call does not access memory.
2516 bool doesNotAccessMemory() const {
2517 return paramHasAttr(~0, Attribute::ReadNone);
2519 void setDoesNotAccessMemory(bool NotAccessMemory = true) {
2520 if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
2521 else removeAttribute(~0, Attribute::ReadNone);
2524 /// @brief Determine if the call does not access or only reads memory.
2525 bool onlyReadsMemory() const {
2526 return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
2528 void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
2529 if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
2530 else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
2533 /// @brief Determine if the call cannot return.
2534 bool doesNotReturn() const { return paramHasAttr(~0, Attribute::NoReturn); }
2535 void setDoesNotReturn(bool DoesNotReturn = true) {
2536 if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
2537 else removeAttribute(~0, Attribute::NoReturn);
2540 /// @brief Determine if the call cannot unwind.
2541 bool doesNotThrow() const { return paramHasAttr(~0, Attribute::NoUnwind); }
2542 void setDoesNotThrow(bool DoesNotThrow = true) {
2543 if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
2544 else removeAttribute(~0, Attribute::NoUnwind);
2547 /// @brief Determine if the call returns a structure through first
2548 /// pointer argument.
2549 bool hasStructRetAttr() const {
2550 // Be friendly and also check the callee.
2551 return paramHasAttr(1, Attribute::StructRet);
2554 /// @brief Determine if any call argument is an aggregate passed by value.
2555 bool hasByValArgument() const {
2556 return AttributeList.hasAttrSomewhere(Attribute::ByVal);
2559 /// getCalledFunction - Return the function called, or null if this is an
2560 /// indirect function invocation.
2562 Function *getCalledFunction() const {
2563 return dyn_cast<Function>(Op<-3>());
2566 /// getCalledValue - Get a pointer to the function that is invoked by this
2568 const Value *getCalledValue() const { return Op<-3>(); }
2569 Value *getCalledValue() { return Op<-3>(); }
2571 /// setCalledFunction - Set the function called.
2572 void setCalledFunction(Value* Fn) {
2576 // get*Dest - Return the destination basic blocks...
2577 BasicBlock *getNormalDest() const {
2578 return cast<BasicBlock>(Op<-2>());
2580 BasicBlock *getUnwindDest() const {
2581 return cast<BasicBlock>(Op<-1>());
2583 void setNormalDest(BasicBlock *B) {
2584 Op<-2>() = reinterpret_cast<Value*>(B);
2586 void setUnwindDest(BasicBlock *B) {
2587 Op<-1>() = reinterpret_cast<Value*>(B);
2590 BasicBlock *getSuccessor(unsigned i) const {
2591 assert(i < 2 && "Successor # out of range for invoke!");
2592 return i == 0 ? getNormalDest() : getUnwindDest();
2595 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2596 assert(idx < 2 && "Successor # out of range for invoke!");
2597 *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
2600 unsigned getNumSuccessors() const { return 2; }
2602 // Methods for support type inquiry through isa, cast, and dyn_cast:
2603 static inline bool classof(const InvokeInst *) { return true; }
2604 static inline bool classof(const Instruction *I) {
2605 return (I->getOpcode() == Instruction::Invoke);
2607 static inline bool classof(const Value *V) {
2608 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2612 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2613 virtual unsigned getNumSuccessorsV() const;
2614 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2616 // Shadow Instruction::setInstructionSubclassData with a private forwarding
2617 // method so that subclasses cannot accidentally use it.
2618 void setInstructionSubclassData(unsigned short D) {
2619 Instruction::setInstructionSubclassData(D);
2624 struct OperandTraits<InvokeInst> : public VariadicOperandTraits<3> {
2627 template<typename InputIterator>
2628 InvokeInst::InvokeInst(Value *Func,
2629 BasicBlock *IfNormal, BasicBlock *IfException,
2630 InputIterator ArgBegin, InputIterator ArgEnd,
2632 const Twine &NameStr, Instruction *InsertBefore)
2633 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
2634 ->getElementType())->getReturnType(),
2635 Instruction::Invoke,
2636 OperandTraits<InvokeInst>::op_end(this) - Values,
2637 Values, InsertBefore) {
2638 init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
2639 typename std::iterator_traits<InputIterator>::iterator_category());
2641 template<typename InputIterator>
2642 InvokeInst::InvokeInst(Value *Func,
2643 BasicBlock *IfNormal, BasicBlock *IfException,
2644 InputIterator ArgBegin, InputIterator ArgEnd,
2646 const Twine &NameStr, BasicBlock *InsertAtEnd)
2647 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
2648 ->getElementType())->getReturnType(),
2649 Instruction::Invoke,
2650 OperandTraits<InvokeInst>::op_end(this) - Values,
2651 Values, InsertAtEnd) {
2652 init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
2653 typename std::iterator_traits<InputIterator>::iterator_category());
2656 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
2658 //===----------------------------------------------------------------------===//
2660 //===----------------------------------------------------------------------===//
2662 //===---------------------------------------------------------------------------
2663 /// UnwindInst - Immediately exit the current function, unwinding the stack
2664 /// until an invoke instruction is found.
2666 class UnwindInst : public TerminatorInst {
2667 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2669 virtual UnwindInst *clone_impl() const;
2671 // allocate space for exactly zero operands
2672 void *operator new(size_t s) {
2673 return User::operator new(s, 0);
2675 explicit UnwindInst(LLVMContext &C, Instruction *InsertBefore = 0);
2676 explicit UnwindInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2678 unsigned getNumSuccessors() const { return 0; }
2680 // Methods for support type inquiry through isa, cast, and dyn_cast:
2681 static inline bool classof(const UnwindInst *) { return true; }
2682 static inline bool classof(const Instruction *I) {
2683 return I->getOpcode() == Instruction::Unwind;
2685 static inline bool classof(const Value *V) {
2686 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2689 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2690 virtual unsigned getNumSuccessorsV() const;
2691 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2694 //===----------------------------------------------------------------------===//
2695 // UnreachableInst Class
2696 //===----------------------------------------------------------------------===//
2698 //===---------------------------------------------------------------------------
2699 /// UnreachableInst - This function has undefined behavior. In particular, the
2700 /// presence of this instruction indicates some higher level knowledge that the
2701 /// end of the block cannot be reached.
2703 class UnreachableInst : public TerminatorInst {
2704 void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
2706 virtual UnreachableInst *clone_impl() const;
2709 // allocate space for exactly zero operands
2710 void *operator new(size_t s) {
2711 return User::operator new(s, 0);
2713 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = 0);
2714 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2716 unsigned getNumSuccessors() const { return 0; }
2718 // Methods for support type inquiry through isa, cast, and dyn_cast:
2719 static inline bool classof(const UnreachableInst *) { return true; }
2720 static inline bool classof(const Instruction *I) {
2721 return I->getOpcode() == Instruction::Unreachable;
2723 static inline bool classof(const Value *V) {
2724 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2727 virtual BasicBlock *getSuccessorV(unsigned idx) const;
2728 virtual unsigned getNumSuccessorsV() const;
2729 virtual void setSuccessorV(unsigned idx, BasicBlock *B);
2732 //===----------------------------------------------------------------------===//
2734 //===----------------------------------------------------------------------===//
2736 /// @brief This class represents a truncation of integer types.
2737 class TruncInst : public CastInst {
2739 /// @brief Clone an identical TruncInst
2740 virtual TruncInst *clone_impl() const;
2743 /// @brief Constructor with insert-before-instruction semantics
2745 Value *S, ///< The value to be truncated
2746 const Type *Ty, ///< The (smaller) type to truncate to
2747 const Twine &NameStr = "", ///< A name for the new instruction
2748 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2751 /// @brief Constructor with insert-at-end-of-block semantics
2753 Value *S, ///< The value to be truncated
2754 const Type *Ty, ///< The (smaller) type to truncate to
2755 const Twine &NameStr, ///< A name for the new instruction
2756 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2759 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2760 static inline bool classof(const TruncInst *) { return true; }
2761 static inline bool classof(const Instruction *I) {
2762 return I->getOpcode() == Trunc;
2764 static inline bool classof(const Value *V) {
2765 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2769 //===----------------------------------------------------------------------===//
2771 //===----------------------------------------------------------------------===//
2773 /// @brief This class represents zero extension of integer types.
2774 class ZExtInst : public CastInst {
2776 /// @brief Clone an identical ZExtInst
2777 virtual ZExtInst *clone_impl() const;
2780 /// @brief Constructor with insert-before-instruction semantics
2782 Value *S, ///< The value to be zero extended
2783 const Type *Ty, ///< The type to zero extend to
2784 const Twine &NameStr = "", ///< A name for the new instruction
2785 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2788 /// @brief Constructor with insert-at-end semantics.
2790 Value *S, ///< The value to be zero extended
2791 const Type *Ty, ///< The type to zero extend to
2792 const Twine &NameStr, ///< A name for the new instruction
2793 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2796 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2797 static inline bool classof(const ZExtInst *) { return true; }
2798 static inline bool classof(const Instruction *I) {
2799 return I->getOpcode() == ZExt;
2801 static inline bool classof(const Value *V) {
2802 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2806 //===----------------------------------------------------------------------===//
2808 //===----------------------------------------------------------------------===//
2810 /// @brief This class represents a sign extension of integer types.
2811 class SExtInst : public CastInst {
2813 /// @brief Clone an identical SExtInst
2814 virtual SExtInst *clone_impl() const;
2817 /// @brief Constructor with insert-before-instruction semantics
2819 Value *S, ///< The value to be sign extended
2820 const Type *Ty, ///< The type to sign extend to
2821 const Twine &NameStr = "", ///< A name for the new instruction
2822 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2825 /// @brief Constructor with insert-at-end-of-block semantics
2827 Value *S, ///< The value to be sign extended
2828 const Type *Ty, ///< The type to sign extend to
2829 const Twine &NameStr, ///< A name for the new instruction
2830 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2833 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2834 static inline bool classof(const SExtInst *) { return true; }
2835 static inline bool classof(const Instruction *I) {
2836 return I->getOpcode() == SExt;
2838 static inline bool classof(const Value *V) {
2839 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2843 //===----------------------------------------------------------------------===//
2844 // FPTruncInst Class
2845 //===----------------------------------------------------------------------===//
2847 /// @brief This class represents a truncation of floating point types.
2848 class FPTruncInst : public CastInst {
2850 /// @brief Clone an identical FPTruncInst
2851 virtual FPTruncInst *clone_impl() const;
2854 /// @brief Constructor with insert-before-instruction semantics
2856 Value *S, ///< The value to be truncated
2857 const Type *Ty, ///< The type to truncate to
2858 const Twine &NameStr = "", ///< A name for the new instruction
2859 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2862 /// @brief Constructor with insert-before-instruction semantics
2864 Value *S, ///< The value to be truncated
2865 const Type *Ty, ///< The type to truncate to
2866 const Twine &NameStr, ///< A name for the new instruction
2867 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2870 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2871 static inline bool classof(const FPTruncInst *) { return true; }
2872 static inline bool classof(const Instruction *I) {
2873 return I->getOpcode() == FPTrunc;
2875 static inline bool classof(const Value *V) {
2876 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2880 //===----------------------------------------------------------------------===//
2882 //===----------------------------------------------------------------------===//
2884 /// @brief This class represents an extension of floating point types.
2885 class FPExtInst : public CastInst {
2887 /// @brief Clone an identical FPExtInst
2888 virtual FPExtInst *clone_impl() const;
2891 /// @brief Constructor with insert-before-instruction semantics
2893 Value *S, ///< The value to be extended
2894 const Type *Ty, ///< The type to extend to
2895 const Twine &NameStr = "", ///< A name for the new instruction
2896 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2899 /// @brief Constructor with insert-at-end-of-block semantics
2901 Value *S, ///< The value to be extended
2902 const Type *Ty, ///< The type to extend to
2903 const Twine &NameStr, ///< A name for the new instruction
2904 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2907 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2908 static inline bool classof(const FPExtInst *) { return true; }
2909 static inline bool classof(const Instruction *I) {
2910 return I->getOpcode() == FPExt;
2912 static inline bool classof(const Value *V) {
2913 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2917 //===----------------------------------------------------------------------===//
2919 //===----------------------------------------------------------------------===//
2921 /// @brief This class represents a cast unsigned integer to floating point.
2922 class UIToFPInst : public CastInst {
2924 /// @brief Clone an identical UIToFPInst
2925 virtual UIToFPInst *clone_impl() const;
2928 /// @brief Constructor with insert-before-instruction semantics
2930 Value *S, ///< The value to be converted
2931 const Type *Ty, ///< The type to convert to
2932 const Twine &NameStr = "", ///< A name for the new instruction
2933 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2936 /// @brief Constructor with insert-at-end-of-block semantics
2938 Value *S, ///< The value to be converted
2939 const Type *Ty, ///< The type to convert to
2940 const Twine &NameStr, ///< A name for the new instruction
2941 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2944 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2945 static inline bool classof(const UIToFPInst *) { return true; }
2946 static inline bool classof(const Instruction *I) {
2947 return I->getOpcode() == UIToFP;
2949 static inline bool classof(const Value *V) {
2950 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2954 //===----------------------------------------------------------------------===//
2956 //===----------------------------------------------------------------------===//
2958 /// @brief This class represents a cast from signed integer to floating point.
2959 class SIToFPInst : public CastInst {
2961 /// @brief Clone an identical SIToFPInst
2962 virtual SIToFPInst *clone_impl() const;
2965 /// @brief Constructor with insert-before-instruction semantics
2967 Value *S, ///< The value to be converted
2968 const Type *Ty, ///< The type to convert to
2969 const Twine &NameStr = "", ///< A name for the new instruction
2970 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
2973 /// @brief Constructor with insert-at-end-of-block semantics
2975 Value *S, ///< The value to be converted
2976 const Type *Ty, ///< The type to convert to
2977 const Twine &NameStr, ///< A name for the new instruction
2978 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
2981 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
2982 static inline bool classof(const SIToFPInst *) { return true; }
2983 static inline bool classof(const Instruction *I) {
2984 return I->getOpcode() == SIToFP;
2986 static inline bool classof(const Value *V) {
2987 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2991 //===----------------------------------------------------------------------===//
2993 //===----------------------------------------------------------------------===//
2995 /// @brief This class represents a cast from floating point to unsigned integer
2996 class FPToUIInst : public CastInst {
2998 /// @brief Clone an identical FPToUIInst
2999 virtual FPToUIInst *clone_impl() const;
3002 /// @brief Constructor with insert-before-instruction semantics
3004 Value *S, ///< The value to be converted
3005 const Type *Ty, ///< The type to convert to
3006 const Twine &NameStr = "", ///< A name for the new instruction
3007 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3010 /// @brief Constructor with insert-at-end-of-block semantics
3012 Value *S, ///< The value to be converted
3013 const Type *Ty, ///< The type to convert to
3014 const Twine &NameStr, ///< A name for the new instruction
3015 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
3018 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
3019 static inline bool classof(const FPToUIInst *) { return true; }
3020 static inline bool classof(const Instruction *I) {
3021 return I->getOpcode() == FPToUI;
3023 static inline bool classof(const Value *V) {
3024 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3028 //===----------------------------------------------------------------------===//
3030 //===----------------------------------------------------------------------===//
3032 /// @brief This class represents a cast from floating point to signed integer.
3033 class FPToSIInst : public CastInst {
3035 /// @brief Clone an identical FPToSIInst
3036 virtual FPToSIInst *clone_impl() const;
3039 /// @brief Constructor with insert-before-instruction semantics
3041 Value *S, ///< The value to be converted
3042 const Type *Ty, ///< The type to convert to
3043 const Twine &NameStr = "", ///< A name for the new instruction
3044 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3047 /// @brief Constructor with insert-at-end-of-block semantics
3049 Value *S, ///< The value to be converted
3050 const Type *Ty, ///< The type to convert to
3051 const Twine &NameStr, ///< A name for the new instruction
3052 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3055 /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
3056 static inline bool classof(const FPToSIInst *) { return true; }
3057 static inline bool classof(const Instruction *I) {
3058 return I->getOpcode() == FPToSI;
3060 static inline bool classof(const Value *V) {
3061 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3065 //===----------------------------------------------------------------------===//
3066 // IntToPtrInst Class
3067 //===----------------------------------------------------------------------===//
3069 /// @brief This class represents a cast from an integer to a pointer.
3070 class IntToPtrInst : public CastInst {
3072 /// @brief Constructor with insert-before-instruction semantics
3074 Value *S, ///< The value to be converted
3075 const Type *Ty, ///< The type to convert to
3076 const Twine &NameStr = "", ///< A name for the new instruction
3077 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3080 /// @brief Constructor with insert-at-end-of-block semantics
3082 Value *S, ///< The value to be converted
3083 const Type *Ty, ///< The type to convert to
3084 const Twine &NameStr, ///< A name for the new instruction
3085 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3088 /// @brief Clone an identical IntToPtrInst
3089 virtual IntToPtrInst *clone_impl() const;
3091 // Methods for support type inquiry through isa, cast, and dyn_cast:
3092 static inline bool classof(const IntToPtrInst *) { return true; }
3093 static inline bool classof(const Instruction *I) {
3094 return I->getOpcode() == IntToPtr;
3096 static inline bool classof(const Value *V) {
3097 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3101 //===----------------------------------------------------------------------===//
3102 // PtrToIntInst Class
3103 //===----------------------------------------------------------------------===//
3105 /// @brief This class represents a cast from a pointer to an integer
3106 class PtrToIntInst : public CastInst {
3108 /// @brief Clone an identical PtrToIntInst
3109 virtual PtrToIntInst *clone_impl() const;
3112 /// @brief Constructor with insert-before-instruction semantics
3114 Value *S, ///< The value to be converted
3115 const Type *Ty, ///< The type to convert to
3116 const Twine &NameStr = "", ///< A name for the new instruction
3117 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3120 /// @brief Constructor with insert-at-end-of-block semantics
3122 Value *S, ///< The value to be converted
3123 const Type *Ty, ///< The type to convert to
3124 const Twine &NameStr, ///< A name for the new instruction
3125 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3128 // Methods for support type inquiry through isa, cast, and dyn_cast:
3129 static inline bool classof(const PtrToIntInst *) { return true; }
3130 static inline bool classof(const Instruction *I) {
3131 return I->getOpcode() == PtrToInt;
3133 static inline bool classof(const Value *V) {
3134 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3138 //===----------------------------------------------------------------------===//
3139 // BitCastInst Class
3140 //===----------------------------------------------------------------------===//
3142 /// @brief This class represents a no-op cast from one type to another.
3143 class BitCastInst : public CastInst {
3145 /// @brief Clone an identical BitCastInst
3146 virtual BitCastInst *clone_impl() const;
3149 /// @brief Constructor with insert-before-instruction semantics
3151 Value *S, ///< The value to be casted
3152 const Type *Ty, ///< The type to casted to
3153 const Twine &NameStr = "", ///< A name for the new instruction
3154 Instruction *InsertBefore = 0 ///< Where to insert the new instruction
3157 /// @brief Constructor with insert-at-end-of-block semantics
3159 Value *S, ///< The value to be casted
3160 const Type *Ty, ///< The type to casted to
3161 const Twine &NameStr, ///< A name for the new instruction
3162 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3165 // Methods for support type inquiry through isa, cast, and dyn_cast:
3166 static inline bool classof(const BitCastInst *) { return true; }
3167 static inline bool classof(const Instruction *I) {
3168 return I->getOpcode() == BitCast;
3170 static inline bool classof(const Value *V) {
3171 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3175 } // End llvm namespace