Handle more cases in LiveRangeEdit::eliminateDeadDefs.
[oota-llvm.git] / include / llvm / CodeGen / MachineRegisterInfo.h
1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/CodeGen/MachineInstrBundle.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include <vector>
23
24 namespace llvm {
25
26 /// MachineRegisterInfo - Keep track of information for virtual and physical
27 /// registers, including vreg register classes, use/def chains for registers,
28 /// etc.
29 class MachineRegisterInfo {
30   const TargetMachine &TM;
31
32   /// IsSSA - True when the machine function is in SSA form and virtual
33   /// registers have a single def.
34   bool IsSSA;
35
36   /// TracksLiveness - True while register liveness is being tracked accurately.
37   /// Basic block live-in lists, kill flags, and implicit defs may not be
38   /// accurate when after this flag is cleared.
39   bool TracksLiveness;
40
41   /// VRegInfo - Information we keep for each virtual register.
42   ///
43   /// Each element in this list contains the register class of the vreg and the
44   /// start of the use/def list for the register.
45   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
46              VirtReg2IndexFunctor> VRegInfo;
47
48   /// RegAllocHints - This vector records register allocation hints for virtual
49   /// registers. For each virtual register, it keeps a register and hint type
50   /// pair making up the allocation hint. Hint type is target specific except
51   /// for the value 0 which means the second value of the pair is the preferred
52   /// register for allocation. For example, if the hint is <0, 1024>, it means
53   /// the allocator should prefer the physical register allocated to the virtual
54   /// register of the hint.
55   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
56
57   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
58   /// physical registers.
59   MachineOperand **PhysRegUseDefLists;
60
61   /// getRegUseDefListHead - Return the head pointer for the register use/def
62   /// list for the specified virtual or physical register.
63   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
64     if (TargetRegisterInfo::isVirtualRegister(RegNo))
65       return VRegInfo[RegNo].second;
66     return PhysRegUseDefLists[RegNo];
67   }
68
69   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
70     if (TargetRegisterInfo::isVirtualRegister(RegNo))
71       return VRegInfo[RegNo].second;
72     return PhysRegUseDefLists[RegNo];
73   }
74
75   /// Get the next element in the use-def chain.
76   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
77     assert(MO && MO->isReg() && "This is not a register operand!");
78     return MO->Contents.Reg.Next;
79   }
80
81   /// UsedRegUnits - This is a bit vector that is computed and set by the
82   /// register allocator, and must be kept up to date by passes that run after
83   /// register allocation (though most don't modify this).  This is used
84   /// so that the code generator knows which callee save registers to save and
85   /// for other target specific uses.
86   /// This vector has bits set for register units that are modified in the
87   /// current function. It doesn't include registers clobbered by function
88   /// calls with register mask operands.
89   BitVector UsedRegUnits;
90
91   /// UsedPhysRegMask - Additional used physregs including aliases.
92   /// This bit vector represents all the registers clobbered by function calls.
93   /// It can model things that UsedRegUnits can't, such as function calls that
94   /// clobber ymm7 but preserve the low half in xmm7.
95   BitVector UsedPhysRegMask;
96
97   /// ReservedRegs - This is a bit vector of reserved registers.  The target
98   /// may change its mind about which registers should be reserved.  This
99   /// vector is the frozen set of reserved registers when register allocation
100   /// started.
101   BitVector ReservedRegs;
102
103   /// Keep track of the physical registers that are live in to the function.
104   /// Live in values are typically arguments in registers.  LiveIn values are
105   /// allowed to have virtual registers associated with them, stored in the
106   /// second element.
107   std::vector<std::pair<unsigned, unsigned> > LiveIns;
108
109   MachineRegisterInfo(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
110   void operator=(const MachineRegisterInfo&) LLVM_DELETED_FUNCTION;
111 public:
112   explicit MachineRegisterInfo(const TargetMachine &TM);
113   ~MachineRegisterInfo();
114
115   const TargetRegisterInfo *getTargetRegisterInfo() const {
116     return TM.getRegisterInfo();
117   }
118
119   //===--------------------------------------------------------------------===//
120   // Function State
121   //===--------------------------------------------------------------------===//
122
123   // isSSA - Returns true when the machine function is in SSA form. Early
124   // passes require the machine function to be in SSA form where every virtual
125   // register has a single defining instruction.
126   //
127   // The TwoAddressInstructionPass and PHIElimination passes take the machine
128   // function out of SSA form when they introduce multiple defs per virtual
129   // register.
130   bool isSSA() const { return IsSSA; }
131
132   // leaveSSA - Indicates that the machine function is no longer in SSA form.
133   void leaveSSA() { IsSSA = false; }
134
135   /// tracksLiveness - Returns true when tracking register liveness accurately.
136   ///
137   /// While this flag is true, register liveness information in basic block
138   /// live-in lists and machine instruction operands is accurate. This means it
139   /// can be used to change the code in ways that affect the values in
140   /// registers, for example by the register scavenger.
141   ///
142   /// When this flag is false, liveness is no longer reliable.
143   bool tracksLiveness() const { return TracksLiveness; }
144
145   /// invalidateLiveness - Indicates that register liveness is no longer being
146   /// tracked accurately.
147   ///
148   /// This should be called by late passes that invalidate the liveness
149   /// information.
150   void invalidateLiveness() { TracksLiveness = false; }
151
152   //===--------------------------------------------------------------------===//
153   // Register Info
154   //===--------------------------------------------------------------------===//
155
156   // Strictly for use by MachineInstr.cpp.
157   void addRegOperandToUseList(MachineOperand *MO);
158
159   // Strictly for use by MachineInstr.cpp.
160   void removeRegOperandFromUseList(MachineOperand *MO);
161
162   // Strictly for use by MachineInstr.cpp.
163   void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
164
165   /// Verify the sanity of the use list for Reg.
166   void verifyUseList(unsigned Reg) const;
167
168   /// Verify the use list of all registers.
169   void verifyUseLists() const;
170
171   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
172   /// and uses of a register within the MachineFunction that corresponds to this
173   /// MachineRegisterInfo object.
174   template<bool Uses, bool Defs, bool SkipDebug>
175   class defusechain_iterator;
176
177   // Make it a friend so it can access getNextOperandForReg().
178   template<bool, bool, bool> friend class defusechain_iterator;
179
180   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
181   /// register.
182   typedef defusechain_iterator<true,true,false> reg_iterator;
183   reg_iterator reg_begin(unsigned RegNo) const {
184     return reg_iterator(getRegUseDefListHead(RegNo));
185   }
186   static reg_iterator reg_end() { return reg_iterator(0); }
187
188   /// reg_empty - Return true if there are no instructions using or defining the
189   /// specified register (it may be live-in).
190   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
191
192   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
193   /// of the specified register, skipping those marked as Debug.
194   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
195   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
196     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
197   }
198   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
199
200   /// reg_nodbg_empty - Return true if the only instructions using or defining
201   /// Reg are Debug instructions.
202   bool reg_nodbg_empty(unsigned RegNo) const {
203     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
204   }
205
206   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
207   typedef defusechain_iterator<false,true,false> def_iterator;
208   def_iterator def_begin(unsigned RegNo) const {
209     return def_iterator(getRegUseDefListHead(RegNo));
210   }
211   static def_iterator def_end() { return def_iterator(0); }
212
213   /// def_empty - Return true if there are no instructions defining the
214   /// specified register (it may be live-in).
215   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
216
217   /// hasOneDef - Return true if there is exactly one instruction defining the
218   /// specified register.
219   bool hasOneDef(unsigned RegNo) const {
220     def_iterator DI = def_begin(RegNo);
221     if (DI == def_end())
222       return false;
223     return ++DI == def_end();
224   }
225
226   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
227   typedef defusechain_iterator<true,false,false> use_iterator;
228   use_iterator use_begin(unsigned RegNo) const {
229     return use_iterator(getRegUseDefListHead(RegNo));
230   }
231   static use_iterator use_end() { return use_iterator(0); }
232
233   /// use_empty - Return true if there are no instructions using the specified
234   /// register.
235   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
236
237   /// hasOneUse - Return true if there is exactly one instruction using the
238   /// specified register.
239   bool hasOneUse(unsigned RegNo) const {
240     use_iterator UI = use_begin(RegNo);
241     if (UI == use_end())
242       return false;
243     return ++UI == use_end();
244   }
245
246   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
247   /// specified register, skipping those marked as Debug.
248   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
249   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
250     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
251   }
252   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
253
254   /// use_nodbg_empty - Return true if there are no non-Debug instructions
255   /// using the specified register.
256   bool use_nodbg_empty(unsigned RegNo) const {
257     return use_nodbg_begin(RegNo) == use_nodbg_end();
258   }
259
260   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
261   /// instruction using the specified register.
262   bool hasOneNonDBGUse(unsigned RegNo) const;
263
264   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
265   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
266   /// except that it also changes any definitions of the register as well.
267   ///
268   /// Note that it is usually necessary to first constrain ToReg's register
269   /// class to match the FromReg constraints using:
270   ///
271   ///   constrainRegClass(ToReg, getRegClass(FromReg))
272   ///
273   /// That function will return NULL if the virtual registers have incompatible
274   /// constraints.
275   void replaceRegWith(unsigned FromReg, unsigned ToReg);
276
277   /// getVRegDef - Return the machine instr that defines the specified virtual
278   /// register or null if none is found.  This assumes that the code is in SSA
279   /// form, so there should only be one definition.
280   MachineInstr *getVRegDef(unsigned Reg) const;
281
282   /// getUniqueVRegDef - Return the unique machine instr that defines the
283   /// specified virtual register or null if none is found.  If there are
284   /// multiple definitions or no definition, return null.
285   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
286
287   /// clearKillFlags - Iterate over all the uses of the given register and
288   /// clear the kill flag from the MachineOperand. This function is used by
289   /// optimization passes which extend register lifetimes and need only
290   /// preserve conservative kill flag information.
291   void clearKillFlags(unsigned Reg) const;
292
293 #ifndef NDEBUG
294   void dumpUses(unsigned RegNo) const;
295 #endif
296
297   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
298   /// throughout the function.  It is safe to move instructions that read such
299   /// a physreg.
300   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
301
302   //===--------------------------------------------------------------------===//
303   // Virtual Register Info
304   //===--------------------------------------------------------------------===//
305
306   /// getRegClass - Return the register class of the specified virtual register.
307   ///
308   const TargetRegisterClass *getRegClass(unsigned Reg) const {
309     return VRegInfo[Reg].first;
310   }
311
312   /// setRegClass - Set the register class of the specified virtual register.
313   ///
314   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
315
316   /// constrainRegClass - Constrain the register class of the specified virtual
317   /// register to be a common subclass of RC and the current register class,
318   /// but only if the new class has at least MinNumRegs registers.  Return the
319   /// new register class, or NULL if no such class exists.
320   /// This should only be used when the constraint is known to be trivial, like
321   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
322   ///
323   const TargetRegisterClass *constrainRegClass(unsigned Reg,
324                                                const TargetRegisterClass *RC,
325                                                unsigned MinNumRegs = 0);
326
327   /// recomputeRegClass - Try to find a legal super-class of Reg's register
328   /// class that still satisfies the constraints from the instructions using
329   /// Reg.  Returns true if Reg was upgraded.
330   ///
331   /// This method can be used after constraints have been removed from a
332   /// virtual register, for example after removing instructions or splitting
333   /// the live range.
334   ///
335   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
336
337   /// createVirtualRegister - Create and return a new virtual register in the
338   /// function with the specified register class.
339   ///
340   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
341
342   /// getNumVirtRegs - Return the number of virtual registers created.
343   ///
344   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
345
346   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
347   void clearVirtRegs();
348
349   /// setRegAllocationHint - Specify a register allocation hint for the
350   /// specified virtual register.
351   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
352     RegAllocHints[Reg].first  = Type;
353     RegAllocHints[Reg].second = PrefReg;
354   }
355
356   /// getRegAllocationHint - Return the register allocation hint for the
357   /// specified virtual register.
358   std::pair<unsigned, unsigned>
359   getRegAllocationHint(unsigned Reg) const {
360     return RegAllocHints[Reg];
361   }
362
363   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
364   /// standard simple hint (Type == 0) is not set.
365   unsigned getSimpleHint(unsigned Reg) const {
366     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
367     return Hint.first ? 0 : Hint.second;
368   }
369
370
371   //===--------------------------------------------------------------------===//
372   // Physical Register Use Info
373   //===--------------------------------------------------------------------===//
374
375   /// isPhysRegUsed - Return true if the specified register is used in this
376   /// function. Also check for clobbered aliases and registers clobbered by
377   /// function calls with register mask operands.
378   ///
379   /// This only works after register allocation. It is primarily used by
380   /// PrologEpilogInserter to determine which callee-saved registers need
381   /// spilling.
382   bool isPhysRegUsed(unsigned Reg) const {
383     if (UsedPhysRegMask.test(Reg))
384       return true;
385     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
386          Units.isValid(); ++Units)
387       if (UsedRegUnits.test(*Units))
388         return true;
389     return false;
390   }
391
392   /// Mark the specified register unit as used in this function.
393   /// This should only be called during and after register allocation.
394   void setRegUnitUsed(unsigned RegUnit) {
395     UsedRegUnits.set(RegUnit);
396   }
397
398   /// setPhysRegUsed - Mark the specified register used in this function.
399   /// This should only be called during and after register allocation.
400   void setPhysRegUsed(unsigned Reg) {
401     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
402          Units.isValid(); ++Units)
403       UsedRegUnits.set(*Units);
404   }
405
406   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
407   /// This corresponds to the bit mask attached to register mask operands.
408   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
409     UsedPhysRegMask.setBitsNotInMask(RegMask);
410   }
411
412   /// setPhysRegUnused - Mark the specified register unused in this function.
413   /// This should only be called during and after register allocation.
414   void setPhysRegUnused(unsigned Reg) {
415     UsedPhysRegMask.reset(Reg);
416     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
417          Units.isValid(); ++Units)
418       UsedRegUnits.reset(*Units);
419   }
420
421
422   //===--------------------------------------------------------------------===//
423   // Reserved Register Info
424   //===--------------------------------------------------------------------===//
425   //
426   // The set of reserved registers must be invariant during register
427   // allocation.  For example, the target cannot suddenly decide it needs a
428   // frame pointer when the register allocator has already used the frame
429   // pointer register for something else.
430   //
431   // These methods can be used by target hooks like hasFP() to avoid changing
432   // the reserved register set during register allocation.
433
434   /// freezeReservedRegs - Called by the register allocator to freeze the set
435   /// of reserved registers before allocation begins.
436   void freezeReservedRegs(const MachineFunction&);
437
438   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
439   /// to ensure the set of reserved registers stays constant.
440   bool reservedRegsFrozen() const {
441     return !ReservedRegs.empty();
442   }
443
444   /// canReserveReg - Returns true if PhysReg can be used as a reserved
445   /// register.  Any register can be reserved before freezeReservedRegs() is
446   /// called.
447   bool canReserveReg(unsigned PhysReg) const {
448     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
449   }
450
451   /// getReservedRegs - Returns a reference to the frozen set of reserved
452   /// registers. This method should always be preferred to calling
453   /// TRI::getReservedRegs() when possible.
454   const BitVector &getReservedRegs() const {
455     assert(reservedRegsFrozen() &&
456            "Reserved registers haven't been frozen yet. "
457            "Use TRI::getReservedRegs().");
458     return ReservedRegs;
459   }
460
461   /// isReserved - Returns true when PhysReg is a reserved register.
462   ///
463   /// Reserved registers may belong to an allocatable register class, but the
464   /// target has explicitly requested that they are not used.
465   ///
466   bool isReserved(unsigned PhysReg) const {
467     return getReservedRegs().test(PhysReg);
468   }
469
470   /// isAllocatable - Returns true when PhysReg belongs to an allocatable
471   /// register class and it hasn't been reserved.
472   ///
473   /// Allocatable registers may show up in the allocation order of some virtual
474   /// register, so a register allocator needs to track its liveness and
475   /// availability.
476   bool isAllocatable(unsigned PhysReg) const {
477     return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
478       !isReserved(PhysReg);
479   }
480
481   //===--------------------------------------------------------------------===//
482   // LiveIn Management
483   //===--------------------------------------------------------------------===//
484
485   /// addLiveIn - Add the specified register as a live-in.  Note that it
486   /// is an error to add the same register to the same set more than once.
487   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
488     LiveIns.push_back(std::make_pair(Reg, vreg));
489   }
490
491   // Iteration support for the live-ins set.  It's kept in sorted order
492   // by register number.
493   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
494   livein_iterator;
495   livein_iterator livein_begin() const { return LiveIns.begin(); }
496   livein_iterator livein_end()   const { return LiveIns.end(); }
497   bool            livein_empty() const { return LiveIns.empty(); }
498
499   bool isLiveIn(unsigned Reg) const;
500
501   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
502   /// corresponding live-in physical register.
503   unsigned getLiveInPhysReg(unsigned VReg) const;
504
505   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
506   /// corresponding live-in physical register.
507   unsigned getLiveInVirtReg(unsigned PReg) const;
508
509   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
510   /// into the given entry block.
511   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
512                         const TargetRegisterInfo &TRI,
513                         const TargetInstrInfo &TII);
514
515   /// defusechain_iterator - This class provides iterator support for machine
516   /// operands in the function that use or define a specific register.  If
517   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
518   /// returns defs.  If neither are true then you are silly and it always
519   /// returns end().  If SkipDebug is true it skips uses marked Debug
520   /// when incrementing.
521   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
522   class defusechain_iterator
523     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
524     MachineOperand *Op;
525     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
526       // If the first node isn't one we're interested in, advance to one that
527       // we are interested in.
528       if (op) {
529         if ((!ReturnUses && op->isUse()) ||
530             (!ReturnDefs && op->isDef()) ||
531             (SkipDebug && op->isDebug()))
532           ++*this;
533       }
534     }
535     friend class MachineRegisterInfo;
536   public:
537     typedef std::iterator<std::forward_iterator_tag,
538                           MachineInstr, ptrdiff_t>::reference reference;
539     typedef std::iterator<std::forward_iterator_tag,
540                           MachineInstr, ptrdiff_t>::pointer pointer;
541
542     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
543     defusechain_iterator() : Op(0) {}
544
545     bool operator==(const defusechain_iterator &x) const {
546       return Op == x.Op;
547     }
548     bool operator!=(const defusechain_iterator &x) const {
549       return !operator==(x);
550     }
551
552     /// atEnd - return true if this iterator is equal to reg_end() on the value.
553     bool atEnd() const { return Op == 0; }
554
555     // Iterator traversal: forward iteration only
556     defusechain_iterator &operator++() {          // Preincrement
557       assert(Op && "Cannot increment end iterator!");
558       Op = getNextOperandForReg(Op);
559
560       // All defs come before the uses, so stop def_iterator early.
561       if (!ReturnUses) {
562         if (Op) {
563           if (Op->isUse())
564             Op = 0;
565           else
566             assert(!Op->isDebug() && "Can't have debug defs");
567         }
568       } else {
569         // If this is an operand we don't care about, skip it.
570         while (Op && ((!ReturnDefs && Op->isDef()) ||
571                       (SkipDebug && Op->isDebug())))
572           Op = getNextOperandForReg(Op);
573       }
574
575       return *this;
576     }
577     defusechain_iterator operator++(int) {        // Postincrement
578       defusechain_iterator tmp = *this; ++*this; return tmp;
579     }
580
581     /// skipInstruction - move forward until reaching a different instruction.
582     /// Return the skipped instruction that is no longer pointed to, or NULL if
583     /// already pointing to end().
584     MachineInstr *skipInstruction() {
585       if (!Op) return 0;
586       MachineInstr *MI = Op->getParent();
587       do ++*this;
588       while (Op && Op->getParent() == MI);
589       return MI;
590     }
591
592     MachineInstr *skipBundle() {
593       if (!Op) return 0;
594       MachineInstr *MI = getBundleStart(Op->getParent());
595       do ++*this;
596       while (Op && getBundleStart(Op->getParent()) == MI);
597       return MI;
598     }
599
600     MachineOperand &getOperand() const {
601       assert(Op && "Cannot dereference end iterator!");
602       return *Op;
603     }
604
605     /// getOperandNo - Return the operand # of this MachineOperand in its
606     /// MachineInstr.
607     unsigned getOperandNo() const {
608       assert(Op && "Cannot dereference end iterator!");
609       return Op - &Op->getParent()->getOperand(0);
610     }
611
612     // Retrieve a reference to the current operand.
613     MachineInstr &operator*() const {
614       assert(Op && "Cannot dereference end iterator!");
615       return *Op->getParent();
616     }
617
618     MachineInstr *operator->() const {
619       assert(Op && "Cannot dereference end iterator!");
620       return Op->getParent();
621     }
622   };
623
624 };
625
626 } // End llvm namespace
627
628 #endif