[MCJIT] Add a FindGlobalVariableNamed utility
[oota-llvm.git] / include / llvm / CodeGen / MachineRegisterInfo.h
1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBundle.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Target/TargetSubtargetInfo.h"
24 #include <vector>
25
26 namespace llvm {
27 class PSetIterator;
28
29 /// MachineRegisterInfo - Keep track of information for virtual and physical
30 /// registers, including vreg register classes, use/def chains for registers,
31 /// etc.
32 class MachineRegisterInfo {
33 public:
34   class Delegate {
35     virtual void anchor();
36   public:
37     virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
38
39     virtual ~Delegate() {}
40   };
41
42 private:
43   const MachineFunction *MF;
44   Delegate *TheDelegate;
45
46   /// IsSSA - True when the machine function is in SSA form and virtual
47   /// registers have a single def.
48   bool IsSSA;
49
50   /// TracksLiveness - True while register liveness is being tracked accurately.
51   /// Basic block live-in lists, kill flags, and implicit defs may not be
52   /// accurate when after this flag is cleared.
53   bool TracksLiveness;
54
55   /// True if subregister liveness is tracked.
56   bool TracksSubRegLiveness;
57
58   /// VRegInfo - Information we keep for each virtual register.
59   ///
60   /// Each element in this list contains the register class of the vreg and the
61   /// start of the use/def list for the register.
62   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
63              VirtReg2IndexFunctor> VRegInfo;
64
65   /// RegAllocHints - This vector records register allocation hints for virtual
66   /// registers. For each virtual register, it keeps a register and hint type
67   /// pair making up the allocation hint. Hint type is target specific except
68   /// for the value 0 which means the second value of the pair is the preferred
69   /// register for allocation. For example, if the hint is <0, 1024>, it means
70   /// the allocator should prefer the physical register allocated to the virtual
71   /// register of the hint.
72   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
73
74   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
75   /// physical registers.
76   std::vector<MachineOperand *> PhysRegUseDefLists;
77
78   /// getRegUseDefListHead - Return the head pointer for the register use/def
79   /// list for the specified virtual or physical register.
80   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
81     if (TargetRegisterInfo::isVirtualRegister(RegNo))
82       return VRegInfo[RegNo].second;
83     return PhysRegUseDefLists[RegNo];
84   }
85
86   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
87     if (TargetRegisterInfo::isVirtualRegister(RegNo))
88       return VRegInfo[RegNo].second;
89     return PhysRegUseDefLists[RegNo];
90   }
91
92   /// Get the next element in the use-def chain.
93   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
94     assert(MO && MO->isReg() && "This is not a register operand!");
95     return MO->Contents.Reg.Next;
96   }
97
98   /// UsedRegUnits - This is a bit vector that is computed and set by the
99   /// register allocator, and must be kept up to date by passes that run after
100   /// register allocation (though most don't modify this).  This is used
101   /// so that the code generator knows which callee save registers to save and
102   /// for other target specific uses.
103   /// This vector has bits set for register units that are modified in the
104   /// current function. It doesn't include registers clobbered by function
105   /// calls with register mask operands.
106   BitVector UsedRegUnits;
107
108   /// UsedPhysRegMask - Additional used physregs including aliases.
109   /// This bit vector represents all the registers clobbered by function calls.
110   /// It can model things that UsedRegUnits can't, such as function calls that
111   /// clobber ymm7 but preserve the low half in xmm7.
112   BitVector UsedPhysRegMask;
113
114   /// ReservedRegs - This is a bit vector of reserved registers.  The target
115   /// may change its mind about which registers should be reserved.  This
116   /// vector is the frozen set of reserved registers when register allocation
117   /// started.
118   BitVector ReservedRegs;
119
120   /// Keep track of the physical registers that are live in to the function.
121   /// Live in values are typically arguments in registers.  LiveIn values are
122   /// allowed to have virtual registers associated with them, stored in the
123   /// second element.
124   std::vector<std::pair<unsigned, unsigned> > LiveIns;
125
126   MachineRegisterInfo(const MachineRegisterInfo&) = delete;
127   void operator=(const MachineRegisterInfo&) = delete;
128 public:
129   explicit MachineRegisterInfo(const MachineFunction *MF);
130
131   const TargetRegisterInfo *getTargetRegisterInfo() const {
132     return MF->getSubtarget().getRegisterInfo();
133   }
134
135   void resetDelegate(Delegate *delegate) {
136     // Ensure another delegate does not take over unless the current
137     // delegate first unattaches itself. If we ever need to multicast
138     // notifications, we will need to change to using a list.
139     assert(TheDelegate == delegate &&
140            "Only the current delegate can perform reset!");
141     TheDelegate = nullptr;
142   }
143
144   void setDelegate(Delegate *delegate) {
145     assert(delegate && !TheDelegate &&
146            "Attempted to set delegate to null, or to change it without "
147            "first resetting it!");
148
149     TheDelegate = delegate;
150   }
151
152   //===--------------------------------------------------------------------===//
153   // Function State
154   //===--------------------------------------------------------------------===//
155
156   // isSSA - Returns true when the machine function is in SSA form. Early
157   // passes require the machine function to be in SSA form where every virtual
158   // register has a single defining instruction.
159   //
160   // The TwoAddressInstructionPass and PHIElimination passes take the machine
161   // function out of SSA form when they introduce multiple defs per virtual
162   // register.
163   bool isSSA() const { return IsSSA; }
164
165   // leaveSSA - Indicates that the machine function is no longer in SSA form.
166   void leaveSSA() { IsSSA = false; }
167
168   /// tracksLiveness - Returns true when tracking register liveness accurately.
169   ///
170   /// While this flag is true, register liveness information in basic block
171   /// live-in lists and machine instruction operands is accurate. This means it
172   /// can be used to change the code in ways that affect the values in
173   /// registers, for example by the register scavenger.
174   ///
175   /// When this flag is false, liveness is no longer reliable.
176   bool tracksLiveness() const { return TracksLiveness; }
177
178   /// invalidateLiveness - Indicates that register liveness is no longer being
179   /// tracked accurately.
180   ///
181   /// This should be called by late passes that invalidate the liveness
182   /// information.
183   void invalidateLiveness() { TracksLiveness = false; }
184
185   /// Returns true if liveness for register class @p RC should be tracked at
186   /// the subregister level.
187   bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const {
188     return subRegLivenessEnabled() && RC.HasDisjunctSubRegs;
189   }
190   bool shouldTrackSubRegLiveness(unsigned VReg) const {
191     assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Must pass a VReg");
192     return shouldTrackSubRegLiveness(*getRegClass(VReg));
193   }
194   bool subRegLivenessEnabled() const {
195     return TracksSubRegLiveness;
196   }
197
198   void enableSubRegLiveness(bool Enable = true) {
199     TracksSubRegLiveness = Enable;
200   }
201
202   //===--------------------------------------------------------------------===//
203   // Register Info
204   //===--------------------------------------------------------------------===//
205
206   // Strictly for use by MachineInstr.cpp.
207   void addRegOperandToUseList(MachineOperand *MO);
208
209   // Strictly for use by MachineInstr.cpp.
210   void removeRegOperandFromUseList(MachineOperand *MO);
211
212   // Strictly for use by MachineInstr.cpp.
213   void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
214
215   /// Verify the sanity of the use list for Reg.
216   void verifyUseList(unsigned Reg) const;
217
218   /// Verify the use list of all registers.
219   void verifyUseLists() const;
220
221   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
222   /// and uses of a register within the MachineFunction that corresponds to this
223   /// MachineRegisterInfo object.
224   template<bool Uses, bool Defs, bool SkipDebug,
225            bool ByOperand, bool ByInstr, bool ByBundle>
226   class defusechain_iterator;
227   template<bool Uses, bool Defs, bool SkipDebug,
228            bool ByOperand, bool ByInstr, bool ByBundle>
229   class defusechain_instr_iterator;
230
231   // Make it a friend so it can access getNextOperandForReg().
232   template<bool, bool, bool, bool, bool, bool>
233     friend class defusechain_iterator;
234   template<bool, bool, bool, bool, bool, bool>
235     friend class defusechain_instr_iterator;
236
237
238
239   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
240   /// register.
241   typedef defusechain_iterator<true,true,false,true,false,false>
242           reg_iterator;
243   reg_iterator reg_begin(unsigned RegNo) const {
244     return reg_iterator(getRegUseDefListHead(RegNo));
245   }
246   static reg_iterator reg_end() { return reg_iterator(nullptr); }
247
248   inline iterator_range<reg_iterator>  reg_operands(unsigned Reg) const {
249     return iterator_range<reg_iterator>(reg_begin(Reg), reg_end());
250   }
251
252   /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
253   /// of the specified register, stepping by MachineInstr.
254   typedef defusechain_instr_iterator<true,true,false,false,true,false>
255           reg_instr_iterator;
256   reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
257     return reg_instr_iterator(getRegUseDefListHead(RegNo));
258   }
259   static reg_instr_iterator reg_instr_end() {
260     return reg_instr_iterator(nullptr);
261   }
262
263   inline iterator_range<reg_instr_iterator>
264   reg_instructions(unsigned Reg) const {
265     return iterator_range<reg_instr_iterator>(reg_instr_begin(Reg),
266                                               reg_instr_end());
267   }
268
269   /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
270   /// of the specified register, stepping by bundle.
271   typedef defusechain_instr_iterator<true,true,false,false,false,true>
272           reg_bundle_iterator;
273   reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
274     return reg_bundle_iterator(getRegUseDefListHead(RegNo));
275   }
276   static reg_bundle_iterator reg_bundle_end() {
277     return reg_bundle_iterator(nullptr);
278   }
279
280   inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
281     return iterator_range<reg_bundle_iterator>(reg_bundle_begin(Reg),
282                                                reg_bundle_end());
283   }
284
285   /// reg_empty - Return true if there are no instructions using or defining the
286   /// specified register (it may be live-in).
287   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
288
289   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
290   /// of the specified register, skipping those marked as Debug.
291   typedef defusechain_iterator<true,true,true,true,false,false>
292           reg_nodbg_iterator;
293   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
294     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
295   }
296   static reg_nodbg_iterator reg_nodbg_end() {
297     return reg_nodbg_iterator(nullptr);
298   }
299
300   inline iterator_range<reg_nodbg_iterator>
301   reg_nodbg_operands(unsigned Reg) const {
302     return iterator_range<reg_nodbg_iterator>(reg_nodbg_begin(Reg),
303                                               reg_nodbg_end());
304   }
305
306   /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
307   /// all defs and uses of the specified register, stepping by MachineInstr,
308   /// skipping those marked as Debug.
309   typedef defusechain_instr_iterator<true,true,true,false,true,false>
310           reg_instr_nodbg_iterator;
311   reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
312     return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
313   }
314   static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
315     return reg_instr_nodbg_iterator(nullptr);
316   }
317
318   inline iterator_range<reg_instr_nodbg_iterator>
319   reg_nodbg_instructions(unsigned Reg) const {
320     return iterator_range<reg_instr_nodbg_iterator>(reg_instr_nodbg_begin(Reg),
321                                                     reg_instr_nodbg_end());
322   }
323
324   /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
325   /// all defs and uses of the specified register, stepping by bundle,
326   /// skipping those marked as Debug.
327   typedef defusechain_instr_iterator<true,true,true,false,false,true>
328           reg_bundle_nodbg_iterator;
329   reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
330     return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
331   }
332   static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
333     return reg_bundle_nodbg_iterator(nullptr);
334   }
335
336   inline iterator_range<reg_bundle_nodbg_iterator> 
337   reg_nodbg_bundles(unsigned Reg) const {
338     return iterator_range<reg_bundle_nodbg_iterator>(reg_bundle_nodbg_begin(Reg),
339                                                      reg_bundle_nodbg_end());
340   }
341
342   /// reg_nodbg_empty - Return true if the only instructions using or defining
343   /// Reg are Debug instructions.
344   bool reg_nodbg_empty(unsigned RegNo) const {
345     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
346   }
347
348   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
349   typedef defusechain_iterator<false,true,false,true,false,false>
350           def_iterator;
351   def_iterator def_begin(unsigned RegNo) const {
352     return def_iterator(getRegUseDefListHead(RegNo));
353   }
354   static def_iterator def_end() { return def_iterator(nullptr); }
355
356   inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
357     return iterator_range<def_iterator>(def_begin(Reg), def_end());
358   }
359
360   /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
361   /// specified register, stepping by MachineInst.
362   typedef defusechain_instr_iterator<false,true,false,false,true,false>
363           def_instr_iterator;
364   def_instr_iterator def_instr_begin(unsigned RegNo) const {
365     return def_instr_iterator(getRegUseDefListHead(RegNo));
366   }
367   static def_instr_iterator def_instr_end() {
368     return def_instr_iterator(nullptr);
369   }
370
371   inline iterator_range<def_instr_iterator>
372   def_instructions(unsigned Reg) const {
373     return iterator_range<def_instr_iterator>(def_instr_begin(Reg),
374                                               def_instr_end());
375   }
376
377   /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
378   /// specified register, stepping by bundle.
379   typedef defusechain_instr_iterator<false,true,false,false,false,true>
380           def_bundle_iterator;
381   def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
382     return def_bundle_iterator(getRegUseDefListHead(RegNo));
383   }
384   static def_bundle_iterator def_bundle_end() {
385     return def_bundle_iterator(nullptr);
386   }
387
388   inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
389     return iterator_range<def_bundle_iterator>(def_bundle_begin(Reg),
390                                                def_bundle_end());
391   }
392
393   /// def_empty - Return true if there are no instructions defining the
394   /// specified register (it may be live-in).
395   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
396
397   /// hasOneDef - Return true if there is exactly one instruction defining the
398   /// specified register.
399   bool hasOneDef(unsigned RegNo) const {
400     def_iterator DI = def_begin(RegNo);
401     if (DI == def_end())
402       return false;
403     return ++DI == def_end();
404   }
405
406   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
407   typedef defusechain_iterator<true,false,false,true,false,false>
408           use_iterator;
409   use_iterator use_begin(unsigned RegNo) const {
410     return use_iterator(getRegUseDefListHead(RegNo));
411   }
412   static use_iterator use_end() { return use_iterator(nullptr); }
413
414   inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
415     return iterator_range<use_iterator>(use_begin(Reg), use_end());
416   }
417
418   /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
419   /// specified register, stepping by MachineInstr.
420   typedef defusechain_instr_iterator<true,false,false,false,true,false>
421           use_instr_iterator;
422   use_instr_iterator use_instr_begin(unsigned RegNo) const {
423     return use_instr_iterator(getRegUseDefListHead(RegNo));
424   }
425   static use_instr_iterator use_instr_end() {
426     return use_instr_iterator(nullptr);
427   }
428
429   inline iterator_range<use_instr_iterator>
430   use_instructions(unsigned Reg) const {
431     return iterator_range<use_instr_iterator>(use_instr_begin(Reg),
432                                               use_instr_end());
433   }
434
435   /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
436   /// specified register, stepping by bundle.
437   typedef defusechain_instr_iterator<true,false,false,false,false,true>
438           use_bundle_iterator;
439   use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
440     return use_bundle_iterator(getRegUseDefListHead(RegNo));
441   }
442   static use_bundle_iterator use_bundle_end() {
443     return use_bundle_iterator(nullptr);
444   }
445
446   inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
447     return iterator_range<use_bundle_iterator>(use_bundle_begin(Reg),
448                                                use_bundle_end());
449   }
450
451   /// use_empty - Return true if there are no instructions using the specified
452   /// register.
453   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
454
455   /// hasOneUse - Return true if there is exactly one instruction using the
456   /// specified register.
457   bool hasOneUse(unsigned RegNo) const {
458     use_iterator UI = use_begin(RegNo);
459     if (UI == use_end())
460       return false;
461     return ++UI == use_end();
462   }
463
464   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
465   /// specified register, skipping those marked as Debug.
466   typedef defusechain_iterator<true,false,true,true,false,false>
467           use_nodbg_iterator;
468   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
469     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
470   }
471   static use_nodbg_iterator use_nodbg_end() {
472     return use_nodbg_iterator(nullptr);
473   }
474
475   inline iterator_range<use_nodbg_iterator>
476   use_nodbg_operands(unsigned Reg) const {
477     return iterator_range<use_nodbg_iterator>(use_nodbg_begin(Reg),
478                                               use_nodbg_end());
479   }
480
481   /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
482   /// all uses of the specified register, stepping by MachineInstr, skipping
483   /// those marked as Debug.
484   typedef defusechain_instr_iterator<true,false,true,false,true,false>
485           use_instr_nodbg_iterator;
486   use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
487     return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
488   }
489   static use_instr_nodbg_iterator use_instr_nodbg_end() {
490     return use_instr_nodbg_iterator(nullptr);
491   }
492
493   inline iterator_range<use_instr_nodbg_iterator>
494   use_nodbg_instructions(unsigned Reg) const {
495     return iterator_range<use_instr_nodbg_iterator>(use_instr_nodbg_begin(Reg),
496                                                     use_instr_nodbg_end());
497   }
498
499   /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
500   /// all uses of the specified register, stepping by bundle, skipping
501   /// those marked as Debug.
502   typedef defusechain_instr_iterator<true,false,true,false,false,true>
503           use_bundle_nodbg_iterator;
504   use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
505     return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
506   }
507   static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
508     return use_bundle_nodbg_iterator(nullptr);
509   }
510
511   inline iterator_range<use_bundle_nodbg_iterator>
512   use_nodbg_bundles(unsigned Reg) const {
513     return iterator_range<use_bundle_nodbg_iterator>(use_bundle_nodbg_begin(Reg),
514                                                      use_bundle_nodbg_end());
515   }
516
517   /// use_nodbg_empty - Return true if there are no non-Debug instructions
518   /// using the specified register.
519   bool use_nodbg_empty(unsigned RegNo) const {
520     return use_nodbg_begin(RegNo) == use_nodbg_end();
521   }
522
523   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
524   /// instruction using the specified register.
525   bool hasOneNonDBGUse(unsigned RegNo) const;
526
527   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
528   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
529   /// except that it also changes any definitions of the register as well.
530   ///
531   /// Note that it is usually necessary to first constrain ToReg's register
532   /// class to match the FromReg constraints using:
533   ///
534   ///   constrainRegClass(ToReg, getRegClass(FromReg))
535   ///
536   /// That function will return NULL if the virtual registers have incompatible
537   /// constraints.
538   ///
539   /// Note that if ToReg is a physical register the function will replace and
540   /// apply sub registers to ToReg in order to obtain a final/proper physical
541   /// register.
542   void replaceRegWith(unsigned FromReg, unsigned ToReg);
543   
544   /// getVRegDef - Return the machine instr that defines the specified virtual
545   /// register or null if none is found.  This assumes that the code is in SSA
546   /// form, so there should only be one definition.
547   MachineInstr *getVRegDef(unsigned Reg) const;
548
549   /// getUniqueVRegDef - Return the unique machine instr that defines the
550   /// specified virtual register or null if none is found.  If there are
551   /// multiple definitions or no definition, return null.
552   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
553
554   /// clearKillFlags - Iterate over all the uses of the given register and
555   /// clear the kill flag from the MachineOperand. This function is used by
556   /// optimization passes which extend register lifetimes and need only
557   /// preserve conservative kill flag information.
558   void clearKillFlags(unsigned Reg) const;
559
560 #ifndef NDEBUG
561   void dumpUses(unsigned RegNo) const;
562 #endif
563
564   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
565   /// throughout the function.  It is safe to move instructions that read such
566   /// a physreg.
567   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
568
569   /// Get an iterator over the pressure sets affected by the given physical or
570   /// virtual register. If RegUnit is physical, it must be a register unit (from
571   /// MCRegUnitIterator).
572   PSetIterator getPressureSets(unsigned RegUnit) const;
573
574   //===--------------------------------------------------------------------===//
575   // Virtual Register Info
576   //===--------------------------------------------------------------------===//
577
578   /// getRegClass - Return the register class of the specified virtual register.
579   ///
580   const TargetRegisterClass *getRegClass(unsigned Reg) const {
581     return VRegInfo[Reg].first;
582   }
583
584   /// setRegClass - Set the register class of the specified virtual register.
585   ///
586   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
587
588   /// constrainRegClass - Constrain the register class of the specified virtual
589   /// register to be a common subclass of RC and the current register class,
590   /// but only if the new class has at least MinNumRegs registers.  Return the
591   /// new register class, or NULL if no such class exists.
592   /// This should only be used when the constraint is known to be trivial, like
593   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
594   ///
595   const TargetRegisterClass *constrainRegClass(unsigned Reg,
596                                                const TargetRegisterClass *RC,
597                                                unsigned MinNumRegs = 0);
598
599   /// recomputeRegClass - Try to find a legal super-class of Reg's register
600   /// class that still satisfies the constraints from the instructions using
601   /// Reg.  Returns true if Reg was upgraded.
602   ///
603   /// This method can be used after constraints have been removed from a
604   /// virtual register, for example after removing instructions or splitting
605   /// the live range.
606   ///
607   bool recomputeRegClass(unsigned Reg);
608
609   /// createVirtualRegister - Create and return a new virtual register in the
610   /// function with the specified register class.
611   ///
612   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
613
614   /// getNumVirtRegs - Return the number of virtual registers created.
615   ///
616   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
617
618   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
619   void clearVirtRegs();
620
621   /// setRegAllocationHint - Specify a register allocation hint for the
622   /// specified virtual register.
623   void setRegAllocationHint(unsigned VReg, unsigned Type, unsigned PrefReg) {
624     assert(TargetRegisterInfo::isVirtualRegister(VReg));
625     RegAllocHints[VReg].first  = Type;
626     RegAllocHints[VReg].second = PrefReg;
627   }
628
629   /// getRegAllocationHint - Return the register allocation hint for the
630   /// specified virtual register.
631   std::pair<unsigned, unsigned>
632   getRegAllocationHint(unsigned VReg) const {
633     assert(TargetRegisterInfo::isVirtualRegister(VReg));
634     return RegAllocHints[VReg];
635   }
636
637   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
638   /// standard simple hint (Type == 0) is not set.
639   unsigned getSimpleHint(unsigned VReg) const {
640     assert(TargetRegisterInfo::isVirtualRegister(VReg));
641     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(VReg);
642     return Hint.first ? 0 : Hint.second;
643   }
644
645   /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
646   /// specified register as undefined which causes the DBG_VALUE to be
647   /// deleted during LiveDebugVariables analysis.
648   void markUsesInDebugValueAsUndef(unsigned Reg) const;
649
650   //===--------------------------------------------------------------------===//
651   // Physical Register Use Info
652   //===--------------------------------------------------------------------===//
653
654   /// isPhysRegUsed - Return true if the specified register is used in this
655   /// function. Also check for clobbered aliases and registers clobbered by
656   /// function calls with register mask operands.
657   ///
658   /// This only works after register allocation. It is primarily used by
659   /// PrologEpilogInserter to determine which callee-saved registers need
660   /// spilling.
661   bool isPhysRegUsed(unsigned Reg) const {
662     if (UsedPhysRegMask.test(Reg))
663       return true;
664     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
665          Units.isValid(); ++Units)
666       if (UsedRegUnits.test(*Units))
667         return true;
668     return false;
669   }
670
671   /// Mark the specified register unit as used in this function.
672   /// This should only be called during and after register allocation.
673   void setRegUnitUsed(unsigned RegUnit) {
674     UsedRegUnits.set(RegUnit);
675   }
676
677   /// setPhysRegUsed - Mark the specified register used in this function.
678   /// This should only be called during and after register allocation.
679   void setPhysRegUsed(unsigned Reg) {
680     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
681          Units.isValid(); ++Units)
682       UsedRegUnits.set(*Units);
683   }
684
685   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
686   /// This corresponds to the bit mask attached to register mask operands.
687   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
688     UsedPhysRegMask.setBitsNotInMask(RegMask);
689   }
690
691   /// setPhysRegUnused - Mark the specified register unused in this function.
692   /// This should only be called during and after register allocation.
693   void setPhysRegUnused(unsigned Reg) {
694     UsedPhysRegMask.reset(Reg);
695     for (MCRegUnitIterator Units(Reg, getTargetRegisterInfo());
696          Units.isValid(); ++Units)
697       UsedRegUnits.reset(*Units);
698   }
699
700
701   //===--------------------------------------------------------------------===//
702   // Reserved Register Info
703   //===--------------------------------------------------------------------===//
704   //
705   // The set of reserved registers must be invariant during register
706   // allocation.  For example, the target cannot suddenly decide it needs a
707   // frame pointer when the register allocator has already used the frame
708   // pointer register for something else.
709   //
710   // These methods can be used by target hooks like hasFP() to avoid changing
711   // the reserved register set during register allocation.
712
713   /// freezeReservedRegs - Called by the register allocator to freeze the set
714   /// of reserved registers before allocation begins.
715   void freezeReservedRegs(const MachineFunction&);
716
717   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
718   /// to ensure the set of reserved registers stays constant.
719   bool reservedRegsFrozen() const {
720     return !ReservedRegs.empty();
721   }
722
723   /// canReserveReg - Returns true if PhysReg can be used as a reserved
724   /// register.  Any register can be reserved before freezeReservedRegs() is
725   /// called.
726   bool canReserveReg(unsigned PhysReg) const {
727     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
728   }
729
730   /// getReservedRegs - Returns a reference to the frozen set of reserved
731   /// registers. This method should always be preferred to calling
732   /// TRI::getReservedRegs() when possible.
733   const BitVector &getReservedRegs() const {
734     assert(reservedRegsFrozen() &&
735            "Reserved registers haven't been frozen yet. "
736            "Use TRI::getReservedRegs().");
737     return ReservedRegs;
738   }
739
740   /// isReserved - Returns true when PhysReg is a reserved register.
741   ///
742   /// Reserved registers may belong to an allocatable register class, but the
743   /// target has explicitly requested that they are not used.
744   ///
745   bool isReserved(unsigned PhysReg) const {
746     return getReservedRegs().test(PhysReg);
747   }
748
749   /// isAllocatable - Returns true when PhysReg belongs to an allocatable
750   /// register class and it hasn't been reserved.
751   ///
752   /// Allocatable registers may show up in the allocation order of some virtual
753   /// register, so a register allocator needs to track its liveness and
754   /// availability.
755   bool isAllocatable(unsigned PhysReg) const {
756     return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
757       !isReserved(PhysReg);
758   }
759
760   //===--------------------------------------------------------------------===//
761   // LiveIn Management
762   //===--------------------------------------------------------------------===//
763
764   /// addLiveIn - Add the specified register as a live-in.  Note that it
765   /// is an error to add the same register to the same set more than once.
766   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
767     LiveIns.push_back(std::make_pair(Reg, vreg));
768   }
769
770   // Iteration support for the live-ins set.  It's kept in sorted order
771   // by register number.
772   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
773   livein_iterator;
774   livein_iterator livein_begin() const { return LiveIns.begin(); }
775   livein_iterator livein_end()   const { return LiveIns.end(); }
776   bool            livein_empty() const { return LiveIns.empty(); }
777
778   bool isLiveIn(unsigned Reg) const;
779
780   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
781   /// corresponding live-in physical register.
782   unsigned getLiveInPhysReg(unsigned VReg) const;
783
784   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
785   /// corresponding live-in physical register.
786   unsigned getLiveInVirtReg(unsigned PReg) const;
787
788   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
789   /// into the given entry block.
790   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
791                         const TargetRegisterInfo &TRI,
792                         const TargetInstrInfo &TII);
793
794   /// Returns a mask covering all bits that can appear in lane masks of
795   /// subregisters of the virtual register @p Reg.
796   unsigned getMaxLaneMaskForVReg(unsigned Reg) const;
797
798   /// defusechain_iterator - This class provides iterator support for machine
799   /// operands in the function that use or define a specific register.  If
800   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
801   /// returns defs.  If neither are true then you are silly and it always
802   /// returns end().  If SkipDebug is true it skips uses marked Debug
803   /// when incrementing.
804   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
805            bool ByOperand, bool ByInstr, bool ByBundle>
806   class defusechain_iterator
807     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
808     MachineOperand *Op;
809     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
810       // If the first node isn't one we're interested in, advance to one that
811       // we are interested in.
812       if (op) {
813         if ((!ReturnUses && op->isUse()) ||
814             (!ReturnDefs && op->isDef()) ||
815             (SkipDebug && op->isDebug()))
816           advance();
817       }
818     }
819     friend class MachineRegisterInfo;
820
821     void advance() {
822       assert(Op && "Cannot increment end iterator!");
823       Op = getNextOperandForReg(Op);
824
825       // All defs come before the uses, so stop def_iterator early.
826       if (!ReturnUses) {
827         if (Op) {
828           if (Op->isUse())
829             Op = nullptr;
830           else
831             assert(!Op->isDebug() && "Can't have debug defs");
832         }
833       } else {
834         // If this is an operand we don't care about, skip it.
835         while (Op && ((!ReturnDefs && Op->isDef()) ||
836                       (SkipDebug && Op->isDebug())))
837           Op = getNextOperandForReg(Op);
838       }
839     }
840   public:
841     typedef std::iterator<std::forward_iterator_tag,
842                           MachineInstr, ptrdiff_t>::reference reference;
843     typedef std::iterator<std::forward_iterator_tag,
844                           MachineInstr, ptrdiff_t>::pointer pointer;
845
846     defusechain_iterator() : Op(nullptr) {}
847
848     bool operator==(const defusechain_iterator &x) const {
849       return Op == x.Op;
850     }
851     bool operator!=(const defusechain_iterator &x) const {
852       return !operator==(x);
853     }
854
855     /// atEnd - return true if this iterator is equal to reg_end() on the value.
856     bool atEnd() const { return Op == nullptr; }
857
858     // Iterator traversal: forward iteration only
859     defusechain_iterator &operator++() {          // Preincrement
860       assert(Op && "Cannot increment end iterator!");
861       if (ByOperand)
862         advance();
863       else if (ByInstr) {
864         MachineInstr *P = Op->getParent();
865         do {
866           advance();
867         } while (Op && Op->getParent() == P);
868       } else if (ByBundle) {
869         MachineInstr *P = getBundleStart(Op->getParent());
870         do {
871           advance();
872         } while (Op && getBundleStart(Op->getParent()) == P);
873       }
874
875       return *this;
876     }
877     defusechain_iterator operator++(int) {        // Postincrement
878       defusechain_iterator tmp = *this; ++*this; return tmp;
879     }
880
881     /// getOperandNo - Return the operand # of this MachineOperand in its
882     /// MachineInstr.
883     unsigned getOperandNo() const {
884       assert(Op && "Cannot dereference end iterator!");
885       return Op - &Op->getParent()->getOperand(0);
886     }
887
888     // Retrieve a reference to the current operand.
889     MachineOperand &operator*() const {
890       assert(Op && "Cannot dereference end iterator!");
891       return *Op;
892     }
893
894     MachineOperand *operator->() const {
895       assert(Op && "Cannot dereference end iterator!");
896       return Op;
897     }
898   };
899
900   /// defusechain_iterator - This class provides iterator support for machine
901   /// operands in the function that use or define a specific register.  If
902   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
903   /// returns defs.  If neither are true then you are silly and it always
904   /// returns end().  If SkipDebug is true it skips uses marked Debug
905   /// when incrementing.
906   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
907            bool ByOperand, bool ByInstr, bool ByBundle>
908   class defusechain_instr_iterator
909     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
910     MachineOperand *Op;
911     explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
912       // If the first node isn't one we're interested in, advance to one that
913       // we are interested in.
914       if (op) {
915         if ((!ReturnUses && op->isUse()) ||
916             (!ReturnDefs && op->isDef()) ||
917             (SkipDebug && op->isDebug()))
918           advance();
919       }
920     }
921     friend class MachineRegisterInfo;
922
923     void advance() {
924       assert(Op && "Cannot increment end iterator!");
925       Op = getNextOperandForReg(Op);
926
927       // All defs come before the uses, so stop def_iterator early.
928       if (!ReturnUses) {
929         if (Op) {
930           if (Op->isUse())
931             Op = nullptr;
932           else
933             assert(!Op->isDebug() && "Can't have debug defs");
934         }
935       } else {
936         // If this is an operand we don't care about, skip it.
937         while (Op && ((!ReturnDefs && Op->isDef()) ||
938                       (SkipDebug && Op->isDebug())))
939           Op = getNextOperandForReg(Op);
940       }
941     }
942   public:
943     typedef std::iterator<std::forward_iterator_tag,
944                           MachineInstr, ptrdiff_t>::reference reference;
945     typedef std::iterator<std::forward_iterator_tag,
946                           MachineInstr, ptrdiff_t>::pointer pointer;
947
948     defusechain_instr_iterator() : Op(nullptr) {}
949
950     bool operator==(const defusechain_instr_iterator &x) const {
951       return Op == x.Op;
952     }
953     bool operator!=(const defusechain_instr_iterator &x) const {
954       return !operator==(x);
955     }
956
957     /// atEnd - return true if this iterator is equal to reg_end() on the value.
958     bool atEnd() const { return Op == nullptr; }
959
960     // Iterator traversal: forward iteration only
961     defusechain_instr_iterator &operator++() {          // Preincrement
962       assert(Op && "Cannot increment end iterator!");
963       if (ByOperand)
964         advance();
965       else if (ByInstr) {
966         MachineInstr *P = Op->getParent();
967         do {
968           advance();
969         } while (Op && Op->getParent() == P);
970       } else if (ByBundle) {
971         MachineInstr *P = getBundleStart(Op->getParent());
972         do {
973           advance();
974         } while (Op && getBundleStart(Op->getParent()) == P);
975       }
976
977       return *this;
978     }
979     defusechain_instr_iterator operator++(int) {        // Postincrement
980       defusechain_instr_iterator tmp = *this; ++*this; return tmp;
981     }
982
983     // Retrieve a reference to the current operand.
984     MachineInstr &operator*() const {
985       assert(Op && "Cannot dereference end iterator!");
986       if (ByBundle) return *(getBundleStart(Op->getParent()));
987       return *Op->getParent();
988     }
989
990     MachineInstr *operator->() const {
991       assert(Op && "Cannot dereference end iterator!");
992       if (ByBundle) return getBundleStart(Op->getParent());
993       return Op->getParent();
994     }
995   };
996 };
997
998 /// Iterate over the pressure sets affected by the given physical or virtual
999 /// register. If Reg is physical, it must be a register unit (from
1000 /// MCRegUnitIterator).
1001 class PSetIterator {
1002   const int *PSet;
1003   unsigned Weight;
1004 public:
1005   PSetIterator(): PSet(nullptr), Weight(0) {}
1006   PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
1007     const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1008     if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
1009       const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
1010       PSet = TRI->getRegClassPressureSets(RC);
1011       Weight = TRI->getRegClassWeight(RC).RegWeight;
1012     }
1013     else {
1014       PSet = TRI->getRegUnitPressureSets(RegUnit);
1015       Weight = TRI->getRegUnitWeight(RegUnit);
1016     }
1017     if (*PSet == -1)
1018       PSet = nullptr;
1019   }
1020   bool isValid() const { return PSet; }
1021
1022   unsigned getWeight() const { return Weight; }
1023
1024   unsigned operator*() const { return *PSet; }
1025
1026   void operator++() {
1027     assert(isValid() && "Invalid PSetIterator.");
1028     ++PSet;
1029     if (*PSet == -1)
1030       PSet = nullptr;
1031   }
1032 };
1033
1034 inline PSetIterator MachineRegisterInfo::
1035 getPressureSets(unsigned RegUnit) const {
1036   return PSetIterator(RegUnit, this);
1037 }
1038
1039 } // namespace llvm
1040
1041 #endif