Record whether the weights on out-edges from a MBB are normalized.
[oota-llvm.git] / include / llvm / CodeGen / LiveVariables.h
1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariables analysis pass.  For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using a sparse implementation based on
18 // the machine code SSA form.  This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function.  It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block).  If a physical
24 // register is not register allocatable, it is not tracked.  This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
30 #define LLVM_CODEGEN_LIVEVARIABLES_H
31
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/IndexedMap.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/SparseBitVector.h"
37 #include "llvm/CodeGen/MachineFunctionPass.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40
41 namespace llvm {
42
43 class MachineBasicBlock;
44 class MachineRegisterInfo;
45
46 class LiveVariables : public MachineFunctionPass {
47 public:
48   static char ID; // Pass identification, replacement for typeid
49   LiveVariables() : MachineFunctionPass(ID) {
50     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
51   }
52
53   /// VarInfo - This represents the regions where a virtual register is live in
54   /// the program.  We represent this with three different pieces of
55   /// information: the set of blocks in which the instruction is live
56   /// throughout, the set of blocks in which the instruction is actually used,
57   /// and the set of non-phi instructions that are the last users of the value.
58   ///
59   /// In the common case where a value is defined and killed in the same block,
60   /// There is one killing instruction, and AliveBlocks is empty.
61   ///
62   /// Otherwise, the value is live out of the block.  If the value is live
63   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
64   /// where the liveness range ends are not included in AliveBlocks, instead
65   /// being captured by the Kills set.  In these blocks, the value is live into
66   /// the block (unless the value is defined and killed in the same block) and
67   /// lives until the specified instruction.  Note that there cannot ever be a
68   /// value whose Kills set contains two instructions from the same basic block.
69   ///
70   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
71   /// value in one of its predecessor blocks, it is not listed in the kills set,
72   /// but does include the predecessor block in the AliveBlocks set (unless that
73   /// block also defines the value).  This leads to the (perfectly sensical)
74   /// situation where a value is defined in a block, and the last use is a phi
75   /// node in the successor.  In this case, AliveBlocks is empty (the value is
76   /// not live across any  blocks) and Kills is empty (phi nodes are not
77   /// included). This is sensical because the value must be live to the end of
78   /// the block, but is not live in any successor blocks.
79   struct VarInfo {
80     /// AliveBlocks - Set of blocks in which this value is alive completely
81     /// through.  This is a bit set which uses the basic block number as an
82     /// index.
83     ///
84     SparseBitVector<> AliveBlocks;
85
86     /// Kills - List of MachineInstruction's which are the last use of this
87     /// virtual register (kill it) in their basic block.
88     ///
89     std::vector<MachineInstr*> Kills;
90
91     /// removeKill - Delete a kill corresponding to the specified
92     /// machine instruction. Returns true if there was a kill
93     /// corresponding to this instruction, false otherwise.
94     bool removeKill(MachineInstr *MI) {
95       std::vector<MachineInstr*>::iterator
96         I = std::find(Kills.begin(), Kills.end(), MI);
97       if (I == Kills.end())
98         return false;
99       Kills.erase(I);
100       return true;
101     }
102
103     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
104     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
105
106     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
107     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
108     /// MBB, it is not considered live in.
109     bool isLiveIn(const MachineBasicBlock &MBB,
110                   unsigned Reg,
111                   MachineRegisterInfo &MRI);
112
113     void dump() const;
114   };
115
116 private:
117   /// VirtRegInfo - This list is a mapping from virtual register number to
118   /// variable information.
119   ///
120   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
121
122   /// PHIJoins - list of virtual registers that are PHI joins. These registers
123   /// may have multiple definitions, and they require special handling when
124   /// building live intervals.
125   SparseBitVector<> PHIJoins;
126
127 private:   // Intermediate data structures
128   MachineFunction *MF;
129
130   MachineRegisterInfo* MRI;
131
132   const TargetRegisterInfo *TRI;
133
134   // PhysRegInfo - Keep track of which instruction was the last def of a
135   // physical register. This is a purely local property, because all physical
136   // register references are presumed dead across basic blocks.
137   std::vector<MachineInstr *> PhysRegDef;
138
139   // PhysRegInfo - Keep track of which instruction was the last use of a
140   // physical register. This is a purely local property, because all physical
141   // register references are presumed dead across basic blocks.
142   std::vector<MachineInstr *> PhysRegUse;
143
144   std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
145
146   // DistanceMap - Keep track the distance of a MI from the start of the
147   // current basic block.
148   DenseMap<MachineInstr*, unsigned> DistanceMap;
149
150   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
151   /// uses. Pay special attention to the sub-register uses which may come below
152   /// the last use of the whole register.
153   bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
154
155   /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
156   void HandleRegMask(const MachineOperand&);
157
158   void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
159   void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
160                         SmallVectorImpl<unsigned> &Defs);
161   void UpdatePhysRegDefs(MachineInstr *MI, SmallVectorImpl<unsigned> &Defs);
162
163   /// FindLastRefOrPartRef - Return the last reference or partial reference of
164   /// the specified register.
165   MachineInstr *FindLastRefOrPartRef(unsigned Reg);
166
167   /// FindLastPartialDef - Return the last partial def of the specified
168   /// register. Also returns the sub-registers that're defined by the
169   /// instruction.
170   MachineInstr *FindLastPartialDef(unsigned Reg,
171                                    SmallSet<unsigned,4> &PartDefRegs);
172
173   /// analyzePHINodes - Gather information about the PHI nodes in here. In
174   /// particular, we want to map the variable information of a virtual
175   /// register which is used in a PHI node. We map that to the BB the vreg
176   /// is coming from.
177   void analyzePHINodes(const MachineFunction& Fn);
178
179   void runOnInstr(MachineInstr *MI, SmallVectorImpl<unsigned> &Defs);
180
181   void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
182 public:
183
184   bool runOnMachineFunction(MachineFunction &MF) override;
185
186   /// RegisterDefIsDead - Return true if the specified instruction defines the
187   /// specified register, but that definition is dead.
188   bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
189
190   //===--------------------------------------------------------------------===//
191   //  API to update live variable information
192
193   /// replaceKillInstruction - Update register kill info by replacing a kill
194   /// instruction with a new one.
195   void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
196                               MachineInstr *NewMI);
197
198   /// addVirtualRegisterKilled - Add information about the fact that the
199   /// specified register is killed after being used by the specified
200   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
201   /// not found.
202   void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
203                                 bool AddIfNotFound = false) {
204     if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
205       getVarInfo(IncomingReg).Kills.push_back(MI); 
206   }
207
208   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
209   /// register from the live variable information. Returns true if the
210   /// variable was marked as killed by the specified instruction,
211   /// false otherwise.
212   bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
213     if (!getVarInfo(reg).removeKill(MI))
214       return false;
215
216     bool Removed = false;
217     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
218       MachineOperand &MO = MI->getOperand(i);
219       if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
220         MO.setIsKill(false);
221         Removed = true;
222         break;
223       }
224     }
225
226     assert(Removed && "Register is not used by this instruction!");
227     (void)Removed;
228     return true;
229   }
230
231   /// removeVirtualRegistersKilled - Remove all killed info for the specified
232   /// instruction.
233   void removeVirtualRegistersKilled(MachineInstr *MI);
234
235   /// addVirtualRegisterDead - Add information about the fact that the specified
236   /// register is dead after being used by the specified instruction. If
237   /// AddIfNotFound is true, add a implicit operand if it's not found.
238   void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
239                               bool AddIfNotFound = false) {
240     if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
241       getVarInfo(IncomingReg).Kills.push_back(MI);
242   }
243
244   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
245   /// register from the live variable information. Returns true if the
246   /// variable was marked dead at the specified instruction, false
247   /// otherwise.
248   bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
249     if (!getVarInfo(reg).removeKill(MI))
250       return false;
251
252     bool Removed = false;
253     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
254       MachineOperand &MO = MI->getOperand(i);
255       if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
256         MO.setIsDead(false);
257         Removed = true;
258         break;
259       }
260     }
261     assert(Removed && "Register is not defined by this instruction!");
262     (void)Removed;
263     return true;
264   }
265
266   void getAnalysisUsage(AnalysisUsage &AU) const override;
267
268   void releaseMemory() override {
269     VirtRegInfo.clear();
270   }
271
272   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
273   /// register.
274   VarInfo &getVarInfo(unsigned RegIdx);
275
276   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
277                                MachineBasicBlock *BB);
278   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
279                                MachineBasicBlock *BB,
280                                std::vector<MachineBasicBlock*> &WorkList);
281   void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
282   void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
283                         MachineInstr *MI);
284
285   bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
286     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
287   }
288
289   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
290   /// PHI nodes. This means that Reg is either killed by a successor block or
291   /// passed through one.
292   bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
293
294   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
295   /// variables that are live out of DomBB and live into SuccBB will be marked
296   /// as passing live through BB. This method assumes that the machine code is
297   /// still in SSA form.
298   void addNewBlock(MachineBasicBlock *BB,
299                    MachineBasicBlock *DomBB,
300                    MachineBasicBlock *SuccBB);
301
302   /// isPHIJoin - Return true if Reg is a phi join register.
303   bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
304
305   /// setPHIJoin - Mark Reg as a phi join register.
306   void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
307 };
308
309 } // End llvm namespace
310
311 #endif