1 //===---- LiveRangeEdit.h - Basic tools for split and spill -----*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
13 // The parent register is never changed. Instead, a number of new virtual
14 // registers are created and added to the newRegs vector.
16 //===----------------------------------------------------------------------===//
18 #ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
19 #define LLVM_CODEGEN_LIVERANGEEDIT_H
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/Target/TargetMachine.h"
30 class MachineLoopInfo;
31 class MachineRegisterInfo;
36 /// Callback methods for LiveRangeEdit owners.
38 virtual void anchor();
40 /// Called immediately before erasing a dead machine instruction.
41 virtual void LRE_WillEraseInstruction(MachineInstr *MI) {}
43 /// Called when a virtual register is no longer used. Return false to defer
44 /// its deletion from LiveIntervals.
45 virtual bool LRE_CanEraseVirtReg(unsigned) { return true; }
47 /// Called before shrinking the live range of a virtual register.
48 virtual void LRE_WillShrinkVirtReg(unsigned) {}
50 /// Called after cloning a virtual register.
51 /// This is used for new registers representing connected components of Old.
52 virtual void LRE_DidCloneVirtReg(unsigned New, unsigned Old) {}
54 virtual ~Delegate() {}
59 SmallVectorImpl<LiveInterval*> &NewRegs;
60 MachineRegisterInfo &MRI;
63 const TargetInstrInfo &TII;
64 Delegate *const TheDelegate;
66 /// FirstNew - Index of the first register added to NewRegs.
67 const unsigned FirstNew;
69 /// ScannedRemattable - true when remattable values have been identified.
70 bool ScannedRemattable;
72 /// Remattable - Values defined by remattable instructions as identified by
73 /// tii.isTriviallyReMaterializable().
74 SmallPtrSet<const VNInfo*,4> Remattable;
76 /// Rematted - Values that were actually rematted, and so need to have their
77 /// live range trimmed or entirely removed.
78 SmallPtrSet<const VNInfo*,4> Rematted;
80 /// scanRemattable - Identify the Parent values that may rematerialize.
81 void scanRemattable(AliasAnalysis *aa);
83 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
84 /// OrigIdx are also available with the same value at UseIdx.
85 bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
88 /// foldAsLoad - If LI has a single use and a single def that can be folded as
89 /// a load, eliminate the register by folding the def into the use.
90 bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr*> &Dead);
93 /// Create a LiveRangeEdit for breaking down parent into smaller pieces.
94 /// @param parent The register being spilled or split.
95 /// @param newRegs List to receive any new registers created. This needn't be
96 /// empty initially, any existing registers are ignored.
97 /// @param MF The MachineFunction the live range edit is taking place in.
98 /// @param lis The collection of all live intervals in this function.
99 /// @param vrm Map of virtual registers to physical registers for this
100 /// function. If NULL, no virtual register map updates will
101 /// be done. This could be the case if called before Regalloc.
102 LiveRangeEdit(LiveInterval *parent,
103 SmallVectorImpl<LiveInterval*> &newRegs,
107 Delegate *delegate = 0)
108 : Parent(parent), NewRegs(newRegs),
109 MRI(MF.getRegInfo()), LIS(lis), VRM(vrm),
110 TII(*MF.getTarget().getInstrInfo()),
111 TheDelegate(delegate),
112 FirstNew(newRegs.size()),
113 ScannedRemattable(false) {}
115 LiveInterval &getParent() const {
116 assert(Parent && "No parent LiveInterval");
119 unsigned getReg() const { return getParent().reg; }
121 /// Iterator for accessing the new registers added by this edit.
122 typedef SmallVectorImpl<LiveInterval*>::const_iterator iterator;
123 iterator begin() const { return NewRegs.begin()+FirstNew; }
124 iterator end() const { return NewRegs.end(); }
125 unsigned size() const { return NewRegs.size()-FirstNew; }
126 bool empty() const { return size() == 0; }
127 LiveInterval *get(unsigned idx) const { return NewRegs[idx+FirstNew]; }
129 ArrayRef<LiveInterval*> regs() const {
130 return makeArrayRef(NewRegs).slice(FirstNew);
133 /// createFrom - Create a new virtual register based on OldReg.
134 LiveInterval &createFrom(unsigned OldReg);
136 /// create - Create a new register with the same class and original slot as
138 LiveInterval &create() {
139 return createFrom(getReg());
142 /// anyRematerializable - Return true if any parent values may be
143 /// rematerializable.
144 /// This function must be called before any rematerialization is attempted.
145 bool anyRematerializable(AliasAnalysis*);
147 /// checkRematerializable - Manually add VNI to the list of rematerializable
148 /// values if DefMI may be rematerializable.
149 bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI,
152 /// Remat - Information needed to rematerialize at a specific location.
154 VNInfo *ParentVNI; // parent_'s value at the remat location.
155 MachineInstr *OrigMI; // Instruction defining ParentVNI.
156 explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI), OrigMI(0) {}
159 /// canRematerializeAt - Determine if ParentVNI can be rematerialized at
160 /// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
161 /// When cheapAsAMove is set, only cheap remats are allowed.
162 bool canRematerializeAt(Remat &RM,
166 /// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
167 /// instruction into MBB before MI. The new instruction is mapped, but
168 /// liveness is not updated.
169 /// Return the SlotIndex of the new instruction.
170 SlotIndex rematerializeAt(MachineBasicBlock &MBB,
171 MachineBasicBlock::iterator MI,
174 const TargetRegisterInfo&,
177 /// markRematerialized - explicitly mark a value as rematerialized after doing
179 void markRematerialized(const VNInfo *ParentVNI) {
180 Rematted.insert(ParentVNI);
183 /// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
184 bool didRematerialize(const VNInfo *ParentVNI) const {
185 return Rematted.count(ParentVNI);
188 /// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
189 /// to erase it from LIS.
190 void eraseVirtReg(unsigned Reg);
192 /// eliminateDeadDefs - Try to delete machine instructions that are now dead
193 /// (allDefsAreDead returns true). This may cause live intervals to be trimmed
194 /// and further dead efs to be eliminated.
195 /// RegsBeingSpilled lists registers currently being spilled by the register
196 /// allocator. These registers should not be split into new intervals
197 /// as currently those new intervals are not guaranteed to spill.
198 void eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
199 ArrayRef<unsigned> RegsBeingSpilled
200 = ArrayRef<unsigned>());
202 /// calculateRegClassAndHint - Recompute register class and hint for each new
204 void calculateRegClassAndHint(MachineFunction&,
205 const MachineLoopInfo&);