Add a new optimization pass: Stack Coloring, that merges disjoint static allocations...
[oota-llvm.git] / include / llvm / CodeGen / ISDOpcodes.h
1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares codegen opcodes and related utilities.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_ISDOPCODES_H
15 #define LLVM_CODEGEN_ISDOPCODES_H
16
17 namespace llvm {
18
19 /// ISD namespace - This namespace contains an enum which represents all of the
20 /// SelectionDAG node types and value types.
21 ///
22 namespace ISD {
23
24   //===--------------------------------------------------------------------===//
25   /// ISD::NodeType enum - This enum defines the target-independent operators
26   /// for a SelectionDAG.
27   ///
28   /// Targets may also define target-dependent operator codes for SDNodes. For
29   /// example, on x86, these are the enum values in the X86ISD namespace.
30   /// Targets should aim to use target-independent operators to model their
31   /// instruction sets as much as possible, and only use target-dependent
32   /// operators when they have special requirements.
33   ///
34   /// Finally, during and after selection proper, SNodes may use special
35   /// operator codes that correspond directly with MachineInstr opcodes. These
36   /// are used to represent selected instructions. See the isMachineOpcode()
37   /// and getMachineOpcode() member functions of SDNode.
38   ///
39   enum NodeType {
40     /// DELETED_NODE - This is an illegal value that is used to catch
41     /// errors.  This opcode is not a legal opcode for any node.
42     DELETED_NODE,
43
44     /// EntryToken - This is the marker used to indicate the start of a region.
45     EntryToken,
46
47     /// TokenFactor - This node takes multiple tokens as input and produces a
48     /// single token result. This is used to represent the fact that the operand
49     /// operators are independent of each other.
50     TokenFactor,
51
52     /// AssertSext, AssertZext - These nodes record if a register contains a
53     /// value that has already been zero or sign extended from a narrower type.
54     /// These nodes take two operands.  The first is the node that has already
55     /// been extended, and the second is a value type node indicating the width
56     /// of the extension
57     AssertSext, AssertZext,
58
59     /// Various leaf nodes.
60     BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
61     Constant, ConstantFP,
62     GlobalAddress, GlobalTLSAddress, FrameIndex,
63     JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
64
65     /// The address of the GOT
66     GLOBAL_OFFSET_TABLE,
67
68     /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
69     /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
70     /// of the frame or return address to return.  An index of zero corresponds
71     /// to the current function's frame or return address, an index of one to
72     /// the parent's frame or return address, and so on.
73     FRAMEADDR, RETURNADDR,
74
75     /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
76     /// first (possible) on-stack argument. This is needed for correct stack
77     /// adjustment during unwind.
78     FRAME_TO_ARGS_OFFSET,
79
80     /// RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
81     /// address of the exception block on entry to an landing pad block.
82     EXCEPTIONADDR,
83
84     /// RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
85     /// address of the Language Specific Data Area for the enclosing function.
86     LSDAADDR,
87
88     /// RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node
89     /// represents the selection index of the exception thrown.
90     EHSELECTION,
91
92     /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
93     /// 'eh_return' gcc dwarf builtin, which is used to return from
94     /// exception. The general meaning is: adjust stack by OFFSET and pass
95     /// execution to HANDLER. Many platform-related details also :)
96     EH_RETURN,
97
98     /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
99     /// This corresponds to the eh.sjlj.setjmp intrinsic.
100     /// It takes an input chain and a pointer to the jump buffer as inputs
101     /// and returns an outchain.
102     EH_SJLJ_SETJMP,
103
104     /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
105     /// This corresponds to the eh.sjlj.longjmp intrinsic.
106     /// It takes an input chain and a pointer to the jump buffer as inputs
107     /// and returns an outchain.
108     EH_SJLJ_LONGJMP,
109
110     /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
111     /// simplification, or lowering of the constant. They are used for constants
112     /// which are known to fit in the immediate fields of their users, or for
113     /// carrying magic numbers which are not values which need to be
114     /// materialized in registers.
115     TargetConstant,
116     TargetConstantFP,
117
118     /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
119     /// anything else with this node, and this is valid in the target-specific
120     /// dag, turning into a GlobalAddress operand.
121     TargetGlobalAddress,
122     TargetGlobalTLSAddress,
123     TargetFrameIndex,
124     TargetJumpTable,
125     TargetConstantPool,
126     TargetExternalSymbol,
127     TargetBlockAddress,
128
129     /// TargetIndex - Like a constant pool entry, but with completely
130     /// target-dependent semantics. Holds target flags, a 32-bit index, and a
131     /// 64-bit index. Targets can use this however they like.
132     TargetIndex,
133
134     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
135     /// This node represents a target intrinsic function with no side effects.
136     /// The first operand is the ID number of the intrinsic from the
137     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
138     /// node returns the result of the intrinsic.
139     INTRINSIC_WO_CHAIN,
140
141     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
142     /// This node represents a target intrinsic function with side effects that
143     /// returns a result.  The first operand is a chain pointer.  The second is
144     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
145     /// operands to the intrinsic follow.  The node has two results, the result
146     /// of the intrinsic and an output chain.
147     INTRINSIC_W_CHAIN,
148
149     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
150     /// This node represents a target intrinsic function with side effects that
151     /// does not return a result.  The first operand is a chain pointer.  The
152     /// second is the ID number of the intrinsic from the llvm::Intrinsic
153     /// namespace.  The operands to the intrinsic follow.
154     INTRINSIC_VOID,
155
156     /// CopyToReg - This node has three operands: a chain, a register number to
157     /// set to this value, and a value.
158     CopyToReg,
159
160     /// CopyFromReg - This node indicates that the input value is a virtual or
161     /// physical register that is defined outside of the scope of this
162     /// SelectionDAG.  The register is available from the RegisterSDNode object.
163     CopyFromReg,
164
165     /// UNDEF - An undefined node.
166     UNDEF,
167
168     /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
169     /// a Constant, which is required to be operand #1) half of the integer or
170     /// float value specified as operand #0.  This is only for use before
171     /// legalization, for values that will be broken into multiple registers.
172     EXTRACT_ELEMENT,
173
174     /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
175     /// Given two values of the same integer value type, this produces a value
176     /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
177     /// legalization.
178     BUILD_PAIR,
179
180     /// MERGE_VALUES - This node takes multiple discrete operands and returns
181     /// them all as its individual results.  This nodes has exactly the same
182     /// number of inputs and outputs. This node is useful for some pieces of the
183     /// code generator that want to think about a single node with multiple
184     /// results, not multiple nodes.
185     MERGE_VALUES,
186
187     /// Simple integer binary arithmetic operators.
188     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
189
190     /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
191     /// a signed/unsigned value of type i[2*N], and return the full value as
192     /// two results, each of type iN.
193     SMUL_LOHI, UMUL_LOHI,
194
195     /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
196     /// remainder result.
197     SDIVREM, UDIVREM,
198
199     /// CARRY_FALSE - This node is used when folding other nodes,
200     /// like ADDC/SUBC, which indicate the carry result is always false.
201     CARRY_FALSE,
202
203     /// Carry-setting nodes for multiple precision addition and subtraction.
204     /// These nodes take two operands of the same value type, and produce two
205     /// results.  The first result is the normal add or sub result, the second
206     /// result is the carry flag result.
207     ADDC, SUBC,
208
209     /// Carry-using nodes for multiple precision addition and subtraction. These
210     /// nodes take three operands: The first two are the normal lhs and rhs to
211     /// the add or sub, and the third is the input carry flag.  These nodes
212     /// produce two results; the normal result of the add or sub, and the output
213     /// carry flag.  These nodes both read and write a carry flag to allow them
214     /// to them to be chained together for add and sub of arbitrarily large
215     /// values.
216     ADDE, SUBE,
217
218     /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
219     /// These nodes take two operands: the normal LHS and RHS to the add. They
220     /// produce two results: the normal result of the add, and a boolean that
221     /// indicates if an overflow occurred (*not* a flag, because it may be store
222     /// to memory, etc.).  If the type of the boolean is not i1 then the high
223     /// bits conform to getBooleanContents.
224     /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
225     SADDO, UADDO,
226
227     /// Same for subtraction.
228     SSUBO, USUBO,
229
230     /// Same for multiplication.
231     SMULO, UMULO,
232
233     /// Simple binary floating point operators.
234     FADD, FSUB, FMUL, FMA, FDIV, FREM,
235
236     /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
237     /// DAG node does not require that X and Y have the same type, just that the
238     /// are both floating point.  X and the result must have the same type.
239     /// FCOPYSIGN(f32, f64) is allowed.
240     FCOPYSIGN,
241
242     /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
243     /// value as an integer 0/1 value.
244     FGETSIGN,
245
246     /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
247     /// specified, possibly variable, elements.  The number of elements is
248     /// required to be a power of two.  The types of the operands must all be
249     /// the same and must match the vector element type, except that integer
250     /// types are allowed to be larger than the element type, in which case
251     /// the operands are implicitly truncated.
252     BUILD_VECTOR,
253
254     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
255     /// at IDX replaced with VAL.  If the type of VAL is larger than the vector
256     /// element type then VAL is truncated before replacement.
257     INSERT_VECTOR_ELT,
258
259     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
260     /// identified by the (potentially variable) element number IDX.  If the
261     /// return type is an integer type larger than the element type of the
262     /// vector, the result is extended to the width of the return type.
263     EXTRACT_VECTOR_ELT,
264
265     /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
266     /// vector type with the same length and element type, this produces a
267     /// concatenated vector result value, with length equal to the sum of the
268     /// lengths of the input vectors.
269     CONCAT_VECTORS,
270
271     /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
272     /// with VECTOR2 inserted into VECTOR1 at the (potentially
273     /// variable) element number IDX, which must be a multiple of the
274     /// VECTOR2 vector length.  The elements of VECTOR1 starting at
275     /// IDX are overwritten with VECTOR2.  Elements IDX through
276     /// vector_length(VECTOR2) must be valid VECTOR1 indices.
277     INSERT_SUBVECTOR,
278
279     /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
280     /// vector value) starting with the element number IDX, which must be a
281     /// constant multiple of the result vector length.
282     EXTRACT_SUBVECTOR,
283
284     /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
285     /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
286     /// values that indicate which value (or undef) each result element will
287     /// get.  These constant ints are accessible through the
288     /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
289     /// 'vperm' instruction, except that the indices must be constants and are
290     /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
291     VECTOR_SHUFFLE,
292
293     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
294     /// scalar value into element 0 of the resultant vector type.  The top
295     /// elements 1 to N-1 of the N-element vector are undefined.  The type
296     /// of the operand must match the vector element type, except when they
297     /// are integer types.  In this case the operand is allowed to be wider
298     /// than the vector element type, and is implicitly truncated to it.
299     SCALAR_TO_VECTOR,
300
301     /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
302     /// producing an unsigned/signed value of type i[2*N], then return the top
303     /// part.
304     MULHU, MULHS,
305
306     /// Bitwise operators - logical and, logical or, logical xor.
307     AND, OR, XOR,
308
309     /// Shift and rotation operations.  After legalization, the type of the
310     /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
311     /// the shift amount can be any type, but care must be taken to ensure it is
312     /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
313     /// legalization, types like i1024 can occur and i8 doesn't have enough bits
314     /// to represent the shift amount.  By convention, DAGCombine and
315     /// SelectionDAGBuilder forces these shift amounts to i32 for simplicity.
316     SHL, SRA, SRL, ROTL, ROTR,
317
318     /// Byte Swap and Counting operators.
319     BSWAP, CTTZ, CTLZ, CTPOP,
320
321     /// Bit counting operators with an undefined result for zero inputs.
322     CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
323
324     /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
325     /// i1 then the high bits must conform to getBooleanContents.
326     SELECT,
327
328     /// Select with a vector condition (op #0) and two vector operands (ops #1
329     /// and #2), returning a vector result.  All vectors have the same length.
330     /// Much like the scalar select and setcc, each bit in the condition selects
331     /// whether the corresponding result element is taken from op #1 or op #2.
332     /// At first, the VSELECT condition is of vXi1 type. Later, targets may
333     /// change the condition type in order to match the VSELECT node using a
334     /// pattern. The condition follows the BooleanContent format of the target.
335     VSELECT,
336
337     /// Select with condition operator - This selects between a true value and
338     /// a false value (ops #2 and #3) based on the boolean result of comparing
339     /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
340     /// condition code in op #4, a CondCodeSDNode.
341     SELECT_CC,
342
343     /// SetCC operator - This evaluates to a true value iff the condition is
344     /// true.  If the result value type is not i1 then the high bits conform
345     /// to getBooleanContents.  The operands to this are the left and right
346     /// operands to compare (ops #0, and #1) and the condition code to compare
347     /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
348     /// then the result type must also be a vector type.
349     SETCC,
350
351     /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
352     /// integer shift operations, just like ADD/SUB_PARTS.  The operation
353     /// ordering is:
354     ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
355     SHL_PARTS, SRA_PARTS, SRL_PARTS,
356
357     /// Conversion operators.  These are all single input single output
358     /// operations.  For all of these, the result type must be strictly
359     /// wider or narrower (depending on the operation) than the source
360     /// type.
361
362     /// SIGN_EXTEND - Used for integer types, replicating the sign bit
363     /// into new bits.
364     SIGN_EXTEND,
365
366     /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
367     ZERO_EXTEND,
368
369     /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
370     ANY_EXTEND,
371
372     /// TRUNCATE - Completely drop the high bits.
373     TRUNCATE,
374
375     /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
376     /// depends on the first letter) to floating point.
377     SINT_TO_FP,
378     UINT_TO_FP,
379
380     /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
381     /// sign extend a small value in a large integer register (e.g. sign
382     /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
383     /// with the 7th bit).  The size of the smaller type is indicated by the 1th
384     /// operand, a ValueType node.
385     SIGN_EXTEND_INREG,
386
387     /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
388     /// integer.
389     FP_TO_SINT,
390     FP_TO_UINT,
391
392     /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
393     /// down to the precision of the destination VT.  TRUNC is a flag, which is
394     /// always an integer that is zero or one.  If TRUNC is 0, this is a
395     /// normal rounding, if it is 1, this FP_ROUND is known to not change the
396     /// value of Y.
397     ///
398     /// The TRUNC = 1 case is used in cases where we know that the value will
399     /// not be modified by the node, because Y is not using any of the extra
400     /// precision of source type.  This allows certain transformations like
401     /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
402     /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
403     FP_ROUND,
404
405     /// FLT_ROUNDS_ - Returns current rounding mode:
406     /// -1 Undefined
407     ///  0 Round to 0
408     ///  1 Round to nearest
409     ///  2 Round to +inf
410     ///  3 Round to -inf
411     FLT_ROUNDS_,
412
413     /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
414     /// rounds it to a floating point value.  It then promotes it and returns it
415     /// in a register of the same size.  This operation effectively just
416     /// discards excess precision.  The type to round down to is specified by
417     /// the VT operand, a VTSDNode.
418     FP_ROUND_INREG,
419
420     /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
421     FP_EXTEND,
422
423     /// BITCAST - This operator converts between integer, vector and FP
424     /// values, as if the value was stored to memory with one type and loaded
425     /// from the same address with the other type (or equivalently for vector
426     /// format conversions, etc).  The source and result are required to have
427     /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
428     /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
429     /// getNode().
430     BITCAST,
431
432     /// CONVERT_RNDSAT - This operator is used to support various conversions
433     /// between various types (float, signed, unsigned and vectors of those
434     /// types) with rounding and saturation. NOTE: Avoid using this operator as
435     /// most target don't support it and the operator might be removed in the
436     /// future. It takes the following arguments:
437     ///   0) value
438     ///   1) dest type (type to convert to)
439     ///   2) src type (type to convert from)
440     ///   3) rounding imm
441     ///   4) saturation imm
442     ///   5) ISD::CvtCode indicating the type of conversion to do
443     CONVERT_RNDSAT,
444
445     /// FP16_TO_FP32, FP32_TO_FP16 - These operators are used to perform
446     /// promotions and truncation for half-precision (16 bit) floating
447     /// numbers. We need special nodes since FP16 is a storage-only type with
448     /// special semantics of operations.
449     FP16_TO_FP32, FP32_TO_FP16,
450
451     /// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
452     /// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
453     /// FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary
454     /// floating point operations. These are inspired by libm.
455     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
456     FLOG, FLOG2, FLOG10, FEXP, FEXP2,
457     FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
458
459     /// LOAD and STORE have token chains as their first operand, then the same
460     /// operands as an LLVM load/store instruction, then an offset node that
461     /// is added / subtracted from the base pointer to form the address (for
462     /// indexed memory ops).
463     LOAD, STORE,
464
465     /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
466     /// to a specified boundary.  This node always has two return values: a new
467     /// stack pointer value and a chain. The first operand is the token chain,
468     /// the second is the number of bytes to allocate, and the third is the
469     /// alignment boundary.  The size is guaranteed to be a multiple of the
470     /// stack alignment, and the alignment is guaranteed to be bigger than the
471     /// stack alignment (if required) or 0 to get standard stack alignment.
472     DYNAMIC_STACKALLOC,
473
474     /// Control flow instructions.  These all have token chains.
475
476     /// BR - Unconditional branch.  The first operand is the chain
477     /// operand, the second is the MBB to branch to.
478     BR,
479
480     /// BRIND - Indirect branch.  The first operand is the chain, the second
481     /// is the value to branch to, which must be of the same type as the
482     /// target's pointer type.
483     BRIND,
484
485     /// BR_JT - Jumptable branch. The first operand is the chain, the second
486     /// is the jumptable index, the last one is the jumptable entry index.
487     BR_JT,
488
489     /// BRCOND - Conditional branch.  The first operand is the chain, the
490     /// second is the condition, the third is the block to branch to if the
491     /// condition is true.  If the type of the condition is not i1, then the
492     /// high bits must conform to getBooleanContents.
493     BRCOND,
494
495     /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
496     /// that the condition is represented as condition code, and two nodes to
497     /// compare, rather than as a combined SetCC node.  The operands in order
498     /// are chain, cc, lhs, rhs, block to branch to if condition is true.
499     BR_CC,
500
501     /// INLINEASM - Represents an inline asm block.  This node always has two
502     /// return values: a chain and a flag result.  The inputs are as follows:
503     ///   Operand #0  : Input chain.
504     ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
505     ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
506     ///   Operand #3  : HasSideEffect, IsAlignStack bits.
507     ///   After this, it is followed by a list of operands with this format:
508     ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
509     ///                     of operands that follow, etc.  See InlineAsm.h.
510     ///     ... however many operands ...
511     ///   Operand #last: Optional, an incoming flag.
512     ///
513     /// The variable width operands are required to represent target addressing
514     /// modes as a single "operand", even though they may have multiple
515     /// SDOperands.
516     INLINEASM,
517
518     /// EH_LABEL - Represents a label in mid basic block used to track
519     /// locations needed for debug and exception handling tables.  These nodes
520     /// take a chain as input and return a chain.
521     EH_LABEL,
522
523     /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
524     /// value, the same type as the pointer type for the system, and an output
525     /// chain.
526     STACKSAVE,
527
528     /// STACKRESTORE has two operands, an input chain and a pointer to restore
529     /// to it returns an output chain.
530     STACKRESTORE,
531
532     /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
533     /// of a call sequence, and carry arbitrary information that target might
534     /// want to know.  The first operand is a chain, the rest are specified by
535     /// the target and not touched by the DAG optimizers.
536     /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
537     CALLSEQ_START,  // Beginning of a call sequence
538     CALLSEQ_END,    // End of a call sequence
539
540     /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
541     /// and the alignment. It returns a pair of values: the vaarg value and a
542     /// new chain.
543     VAARG,
544
545     /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
546     /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
547     /// source.
548     VACOPY,
549
550     /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
551     /// pointer, and a SRCVALUE.
552     VAEND, VASTART,
553
554     /// SRCVALUE - This is a node type that holds a Value* that is used to
555     /// make reference to a value in the LLVM IR.
556     SRCVALUE,
557
558     /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
559     /// reference metadata in the IR.
560     MDNODE_SDNODE,
561
562     /// PCMARKER - This corresponds to the pcmarker intrinsic.
563     PCMARKER,
564
565     /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
566     /// The only operand is a chain and a value and a chain are produced.  The
567     /// value is the contents of the architecture specific cycle counter like
568     /// register (or other high accuracy low latency clock source)
569     READCYCLECOUNTER,
570
571     /// HANDLENODE node - Used as a handle for various purposes.
572     HANDLENODE,
573
574     /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
575     /// takes as input a token chain, the pointer to the trampoline, the pointer
576     /// to the nested function, the pointer to pass for the 'nest' parameter, a
577     /// SRCVALUE for the trampoline and another for the nested function
578     /// (allowing targets to access the original Function*).
579     /// It produces a token chain as output.
580     INIT_TRAMPOLINE,
581
582     /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
583     /// It takes a pointer to the trampoline and produces a (possibly) new
584     /// pointer to the same trampoline with platform-specific adjustments
585     /// applied.  The pointer it returns points to an executable block of code.
586     ADJUST_TRAMPOLINE,
587
588     /// TRAP - Trapping instruction
589     TRAP,
590
591     /// DEBUGTRAP - Trap intended to get the attention of a debugger.
592     DEBUGTRAP,
593
594     /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
595     /// is the chain.  The other operands are the address to prefetch,
596     /// read / write specifier, locality specifier and instruction / data cache
597     /// specifier.
598     PREFETCH,
599
600     /// OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
601     ///                       store-store, device)
602     /// This corresponds to the memory.barrier intrinsic.
603     /// it takes an input chain, 4 operands to specify the type of barrier, an
604     /// operand specifying if the barrier applies to device and uncached memory
605     /// and produces an output chain.
606     MEMBARRIER,
607
608     /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
609     /// This corresponds to the fence instruction. It takes an input chain, and
610     /// two integer constants: an AtomicOrdering and a SynchronizationScope.
611     ATOMIC_FENCE,
612
613     /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
614     /// This corresponds to "load atomic" instruction.
615     ATOMIC_LOAD,
616
617     /// OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr, val)
618     /// This corresponds to "store atomic" instruction.
619     ATOMIC_STORE,
620
621     /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
622     /// This corresponds to the cmpxchg instruction.
623     ATOMIC_CMP_SWAP,
624
625     /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
626     /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
627     /// These correspond to the atomicrmw instruction.
628     ATOMIC_SWAP,
629     ATOMIC_LOAD_ADD,
630     ATOMIC_LOAD_SUB,
631     ATOMIC_LOAD_AND,
632     ATOMIC_LOAD_OR,
633     ATOMIC_LOAD_XOR,
634     ATOMIC_LOAD_NAND,
635     ATOMIC_LOAD_MIN,
636     ATOMIC_LOAD_MAX,
637     ATOMIC_LOAD_UMIN,
638     ATOMIC_LOAD_UMAX,
639
640     /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
641     /// is the chain and the second operand is the alloca pointer.
642     LIFETIME_START, LIFETIME_END,
643
644     /// BUILTIN_OP_END - This must be the last enum value in this list.
645     /// The target-specific pre-isel opcode values start here.
646     BUILTIN_OP_END
647   };
648
649   /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
650   /// which do not reference a specific memory location should be less than
651   /// this value. Those that do must not be less than this value, and can
652   /// be used with SelectionDAG::getMemIntrinsicNode.
653   static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+150;
654
655   //===--------------------------------------------------------------------===//
656   /// MemIndexedMode enum - This enum defines the load / store indexed
657   /// addressing modes.
658   ///
659   /// UNINDEXED    "Normal" load / store. The effective address is already
660   ///              computed and is available in the base pointer. The offset
661   ///              operand is always undefined. In addition to producing a
662   ///              chain, an unindexed load produces one value (result of the
663   ///              load); an unindexed store does not produce a value.
664   ///
665   /// PRE_INC      Similar to the unindexed mode where the effective address is
666   /// PRE_DEC      the value of the base pointer add / subtract the offset.
667   ///              It considers the computation as being folded into the load /
668   ///              store operation (i.e. the load / store does the address
669   ///              computation as well as performing the memory transaction).
670   ///              The base operand is always undefined. In addition to
671   ///              producing a chain, pre-indexed load produces two values
672   ///              (result of the load and the result of the address
673   ///              computation); a pre-indexed store produces one value (result
674   ///              of the address computation).
675   ///
676   /// POST_INC     The effective address is the value of the base pointer. The
677   /// POST_DEC     value of the offset operand is then added to / subtracted
678   ///              from the base after memory transaction. In addition to
679   ///              producing a chain, post-indexed load produces two values
680   ///              (the result of the load and the result of the base +/- offset
681   ///              computation); a post-indexed store produces one value (the
682   ///              the result of the base +/- offset computation).
683   enum MemIndexedMode {
684     UNINDEXED = 0,
685     PRE_INC,
686     PRE_DEC,
687     POST_INC,
688     POST_DEC,
689     LAST_INDEXED_MODE
690   };
691
692   //===--------------------------------------------------------------------===//
693   /// LoadExtType enum - This enum defines the three variants of LOADEXT
694   /// (load with extension).
695   ///
696   /// SEXTLOAD loads the integer operand and sign extends it to a larger
697   ///          integer result type.
698   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
699   ///          integer result type.
700   /// EXTLOAD  is used for two things: floating point extending loads and
701   ///          integer extending loads [the top bits are undefined].
702   enum LoadExtType {
703     NON_EXTLOAD = 0,
704     EXTLOAD,
705     SEXTLOAD,
706     ZEXTLOAD,
707     LAST_LOADEXT_TYPE
708   };
709
710   //===--------------------------------------------------------------------===//
711   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
712   /// below work out, when considering SETFALSE (something that never exists
713   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
714   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
715   /// to.  If the "N" column is 1, the result of the comparison is undefined if
716   /// the input is a NAN.
717   ///
718   /// All of these (except for the 'always folded ops') should be handled for
719   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
720   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
721   ///
722   /// Note that these are laid out in a specific order to allow bit-twiddling
723   /// to transform conditions.
724   enum CondCode {
725     // Opcode          N U L G E       Intuitive operation
726     SETFALSE,      //    0 0 0 0       Always false (always folded)
727     SETOEQ,        //    0 0 0 1       True if ordered and equal
728     SETOGT,        //    0 0 1 0       True if ordered and greater than
729     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
730     SETOLT,        //    0 1 0 0       True if ordered and less than
731     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
732     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
733     SETO,          //    0 1 1 1       True if ordered (no nans)
734     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
735     SETUEQ,        //    1 0 0 1       True if unordered or equal
736     SETUGT,        //    1 0 1 0       True if unordered or greater than
737     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
738     SETULT,        //    1 1 0 0       True if unordered or less than
739     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
740     SETUNE,        //    1 1 1 0       True if unordered or not equal
741     SETTRUE,       //    1 1 1 1       Always true (always folded)
742     // Don't care operations: undefined if the input is a nan.
743     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
744     SETEQ,         //  1 X 0 0 1       True if equal
745     SETGT,         //  1 X 0 1 0       True if greater than
746     SETGE,         //  1 X 0 1 1       True if greater than or equal
747     SETLT,         //  1 X 1 0 0       True if less than
748     SETLE,         //  1 X 1 0 1       True if less than or equal
749     SETNE,         //  1 X 1 1 0       True if not equal
750     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
751
752     SETCC_INVALID       // Marker value.
753   };
754
755   /// isSignedIntSetCC - Return true if this is a setcc instruction that
756   /// performs a signed comparison when used with integer operands.
757   inline bool isSignedIntSetCC(CondCode Code) {
758     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
759   }
760
761   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
762   /// performs an unsigned comparison when used with integer operands.
763   inline bool isUnsignedIntSetCC(CondCode Code) {
764     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
765   }
766
767   /// isTrueWhenEqual - Return true if the specified condition returns true if
768   /// the two operands to the condition are equal.  Note that if one of the two
769   /// operands is a NaN, this value is meaningless.
770   inline bool isTrueWhenEqual(CondCode Cond) {
771     return ((int)Cond & 1) != 0;
772   }
773
774   /// getUnorderedFlavor - This function returns 0 if the condition is always
775   /// false if an operand is a NaN, 1 if the condition is always true if the
776   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
777   /// NaN.
778   inline unsigned getUnorderedFlavor(CondCode Cond) {
779     return ((int)Cond >> 3) & 3;
780   }
781
782   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
783   /// 'op' is a valid SetCC operation.
784   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
785
786   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
787   /// when given the operation for (X op Y).
788   CondCode getSetCCSwappedOperands(CondCode Operation);
789
790   /// getSetCCOrOperation - Return the result of a logical OR between different
791   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
792   /// function returns SETCC_INVALID if it is not possible to represent the
793   /// resultant comparison.
794   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
795
796   /// getSetCCAndOperation - Return the result of a logical AND between
797   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
798   /// function returns SETCC_INVALID if it is not possible to represent the
799   /// resultant comparison.
800   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
801
802   //===--------------------------------------------------------------------===//
803   /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
804   /// supports.
805   enum CvtCode {
806     CVT_FF,     /// Float from Float
807     CVT_FS,     /// Float from Signed
808     CVT_FU,     /// Float from Unsigned
809     CVT_SF,     /// Signed from Float
810     CVT_UF,     /// Unsigned from Float
811     CVT_SS,     /// Signed from Signed
812     CVT_SU,     /// Signed from Unsigned
813     CVT_US,     /// Unsigned from Signed
814     CVT_UU,     /// Unsigned from Unsigned
815     CVT_INVALID /// Marker - Invalid opcode
816   };
817
818 } // end llvm::ISD namespace
819
820 } // end llvm namespace
821
822 #endif