1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Calculate a program structure tree built out of single entry single exit
12 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
13 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
14 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
16 // The algorithm to calculate these data structures however is completely
17 // different, as it takes advantage of existing information already available
18 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
19 // and in practice hopefully better performing algorithm. The runtime of the
20 // algorithms described in the papers above are both linear in graph size,
21 // O(V+E), whereas this algorithm is not, as the dominance frontier information
22 // itself is not, but in practice runtime seems to be in the order of magnitude
23 // of dominance tree calculation.
25 //===----------------------------------------------------------------------===//
27 #ifndef LLVM_ANALYSIS_REGIONINFO_H
28 #define LLVM_ANALYSIS_REGIONINFO_H
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/Analysis/DominanceFrontier.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/Support/Allocator.h"
44 /// @brief Marker class to iterate over the elements of a Region in flat mode.
46 /// The class is used to either iterate in Flat mode or by not using it to not
47 /// iterate in Flat mode. During a Flat mode iteration all Regions are entered
48 /// and the iteration returns every BasicBlock. If the Flat mode is not
49 /// selected for SubRegions just one RegionNode containing the subregion is
51 template <class GraphType>
54 /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
57 RegionNode(const RegionNode &) LLVM_DELETED_FUNCTION;
58 const RegionNode &operator=(const RegionNode &) LLVM_DELETED_FUNCTION;
61 /// This is the entry basic block that starts this region node. If this is a
62 /// BasicBlock RegionNode, then entry is just the basic block, that this
63 /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
65 /// In the BBtoRegionNode map of the parent of this node, BB will always map
66 /// to this node no matter which kind of node this one is.
68 /// The node can hold either a Region or a BasicBlock.
69 /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
71 PointerIntPair<BasicBlock*, 1, bool> entry;
73 /// @brief The parent Region of this RegionNode.
78 /// @brief Create a RegionNode.
80 /// @param Parent The parent of this RegionNode.
81 /// @param Entry The entry BasicBlock of the RegionNode. If this
82 /// RegionNode represents a BasicBlock, this is the
83 /// BasicBlock itself. If it represents a subregion, this
84 /// is the entry BasicBlock of the subregion.
85 /// @param isSubRegion If this RegionNode represents a SubRegion.
86 inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
87 : entry(Entry, isSubRegion), parent(Parent) {}
89 /// @brief Get the parent Region of this RegionNode.
91 /// The parent Region is the Region this RegionNode belongs to. If for
92 /// example a BasicBlock is element of two Regions, there exist two
93 /// RegionNodes for this BasicBlock. Each with the getParent() function
94 /// pointing to the Region this RegionNode belongs to.
96 /// @return Get the parent Region of this RegionNode.
97 inline Region* getParent() const { return parent; }
99 /// @brief Get the entry BasicBlock of this RegionNode.
101 /// If this RegionNode represents a BasicBlock this is just the BasicBlock
102 /// itself, otherwise we return the entry BasicBlock of the Subregion
104 /// @return The entry BasicBlock of this RegionNode.
105 inline BasicBlock* getEntry() const { return entry.getPointer(); }
107 /// @brief Get the content of this RegionNode.
109 /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
110 /// check the type of the content with the isSubRegion() function call.
112 /// @return The content of this RegionNode.
114 inline T* getNodeAs() const;
116 /// @brief Is this RegionNode a subregion?
118 /// @return True if it contains a subregion. False if it contains a
120 inline bool isSubRegion() const {
121 return entry.getInt();
125 /// Print a RegionNode.
126 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
129 inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
130 assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
135 inline Region* RegionNode::getNodeAs<Region>() const {
136 assert(isSubRegion() && "This is not a subregion RegionNode!");
137 return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
140 //===----------------------------------------------------------------------===//
141 /// @brief A single entry single exit Region.
143 /// A Region is a connected subgraph of a control flow graph that has exactly
144 /// two connections to the remaining graph. It can be used to analyze or
145 /// optimize parts of the control flow graph.
147 /// A <em> simple Region </em> is connected to the remaining graph by just two
148 /// edges. One edge entering the Region and another one leaving the Region.
150 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
151 /// transform into a simple Region. The transformation is done by adding
152 /// BasicBlocks that merge several entry or exit edges so that after the merge
153 /// just one entry and one exit edge exists.
155 /// The \e Entry of a Region is the first BasicBlock that is passed after
156 /// entering the Region. It is an element of the Region. The entry BasicBlock
157 /// dominates all BasicBlocks in the Region.
159 /// The \e Exit of a Region is the first BasicBlock that is passed after
160 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
161 /// postdominates all BasicBlocks in the Region.
163 /// A <em> canonical Region </em> cannot be constructed by combining smaller
166 /// Region A is the \e parent of Region B, if B is completely contained in A.
168 /// Two canonical Regions either do not intersect at all or one is
169 /// the parent of the other.
171 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
172 /// Regions in the control flow graph and E is the \e parent relation of these
178 /// A simple control flow graph, that contains two regions.
188 /// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
189 /// 9 Region B: 2 -> 9 {2,4,5,6,7}
192 /// You can obtain more examples by either calling
194 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
196 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
198 /// on any LLVM file you are interested in.
200 /// The first call returns a textual representation of the program structure
201 /// tree, the second one creates a graphical representation using graphviz.
202 class Region : public RegionNode {
203 friend class RegionInfo;
204 Region(const Region &) LLVM_DELETED_FUNCTION;
205 const Region &operator=(const Region &) LLVM_DELETED_FUNCTION;
207 // Information necessary to manage this Region.
211 // The exit BasicBlock of this region.
212 // (The entry BasicBlock is part of RegionNode)
215 typedef std::vector<Region*> RegionSet;
217 // The subregions of this region.
220 typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
222 // Save the BasicBlock RegionNodes that are element of this Region.
223 mutable BBNodeMapT BBNodeMap;
225 /// verifyBBInRegion - Check if a BB is in this Region. This check also works
226 /// if the region is incorrectly built. (EXPENSIVE!)
227 void verifyBBInRegion(BasicBlock* BB) const;
229 /// verifyWalk - Walk over all the BBs of the region starting from BB and
230 /// verify that all reachable basic blocks are elements of the region.
232 void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
234 /// verifyRegionNest - Verify if the region and its children are valid
235 /// regions (EXPENSIVE!)
236 void verifyRegionNest() const;
239 /// @brief Create a new region.
241 /// @param Entry The entry basic block of the region.
242 /// @param Exit The exit basic block of the region.
243 /// @param RI The region info object that is managing this region.
244 /// @param DT The dominator tree of the current function.
245 /// @param Parent The surrounding region or NULL if this is a top level
247 Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
248 DominatorTree *DT, Region *Parent = 0);
250 /// Delete the Region and all its subregions.
253 /// @brief Get the entry BasicBlock of the Region.
254 /// @return The entry BasicBlock of the region.
255 BasicBlock *getEntry() const { return RegionNode::getEntry(); }
257 /// @brief Replace the entry basic block of the region with the new basic
260 /// @param BB The new entry basic block of the region.
261 void replaceEntry(BasicBlock *BB);
263 /// @brief Replace the exit basic block of the region with the new basic
266 /// @param BB The new exit basic block of the region.
267 void replaceExit(BasicBlock *BB);
269 /// @brief Recursively replace the entry basic block of the region.
271 /// This function replaces the entry basic block with a new basic block. It
272 /// also updates all child regions that have the same entry basic block as
275 /// @param NewEntry The new entry basic block.
276 void replaceEntryRecursive(BasicBlock *NewEntry);
278 /// @brief Recursively replace the exit basic block of the region.
280 /// This function replaces the exit basic block with a new basic block. It
281 /// also updates all child regions that have the same exit basic block as
284 /// @param NewExit The new exit basic block.
285 void replaceExitRecursive(BasicBlock *NewExit);
287 /// @brief Get the exit BasicBlock of the Region.
288 /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
290 BasicBlock *getExit() const { return exit; }
292 /// @brief Get the parent of the Region.
293 /// @return The parent of the Region or NULL if this is a top level
295 Region *getParent() const { return RegionNode::getParent(); }
297 /// @brief Get the RegionNode representing the current Region.
298 /// @return The RegionNode representing the current Region.
299 RegionNode* getNode() const {
300 return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
303 /// @brief Get the nesting level of this Region.
305 /// An toplevel Region has depth 0.
307 /// @return The depth of the region.
308 unsigned getDepth() const;
310 /// @brief Check if a Region is the TopLevel region.
312 /// The toplevel region represents the whole function.
313 bool isTopLevelRegion() const { return exit == NULL; }
315 /// @brief Return a new (non-canonical) region, that is obtained by joining
316 /// this region with its predecessors.
318 /// @return A region also starting at getEntry(), but reaching to the next
319 /// basic block that forms with getEntry() a (non-canonical) region.
320 /// NULL if such a basic block does not exist.
321 Region *getExpandedRegion() const;
323 /// @brief Return the first block of this region's single entry edge,
326 /// @return The BasicBlock starting this region's single entry edge,
328 BasicBlock *getEnteringBlock() const;
330 /// @brief Return the first block of this region's single exit edge,
333 /// @return The BasicBlock starting this region's single exit edge,
335 BasicBlock *getExitingBlock() const;
337 /// @brief Is this a simple region?
339 /// A region is simple if it has exactly one exit and one entry edge.
341 /// @return True if the Region is simple.
342 bool isSimple() const;
344 /// @brief Returns the name of the Region.
345 /// @return The Name of the Region.
346 std::string getNameStr() const;
348 /// @brief Return the RegionInfo object, that belongs to this Region.
349 RegionInfo *getRegionInfo() const {
353 /// PrintStyle - Print region in difference ways.
354 enum PrintStyle { PrintNone, PrintBB, PrintRN };
356 /// @brief Print the region.
358 /// @param OS The output stream the Region is printed to.
359 /// @param printTree Print also the tree of subregions.
360 /// @param level The indentation level used for printing.
361 void print(raw_ostream& OS, bool printTree = true, unsigned level = 0,
362 enum PrintStyle Style = PrintNone) const;
364 /// @brief Print the region to stderr.
367 /// @brief Check if the region contains a BasicBlock.
369 /// @param BB The BasicBlock that might be contained in this Region.
370 /// @return True if the block is contained in the region otherwise false.
371 bool contains(const BasicBlock *BB) const;
373 /// @brief Check if the region contains another region.
375 /// @param SubRegion The region that might be contained in this Region.
376 /// @return True if SubRegion is contained in the region otherwise false.
377 bool contains(const Region *SubRegion) const {
382 return contains(SubRegion->getEntry())
383 && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
386 /// @brief Check if the region contains an Instruction.
388 /// @param Inst The Instruction that might be contained in this region.
389 /// @return True if the Instruction is contained in the region otherwise false.
390 bool contains(const Instruction *Inst) const {
391 return contains(Inst->getParent());
394 /// @brief Check if the region contains a loop.
396 /// @param L The loop that might be contained in this region.
397 /// @return True if the loop is contained in the region otherwise false.
398 /// In case a NULL pointer is passed to this function the result
399 /// is false, except for the region that describes the whole function.
400 /// In that case true is returned.
401 bool contains(const Loop *L) const;
403 /// @brief Get the outermost loop in the region that contains a loop.
405 /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
406 /// and is itself contained in the region.
408 /// @param L The loop the lookup is started.
409 /// @return The outermost loop in the region, NULL if such a loop does not
410 /// exist or if the region describes the whole function.
411 Loop *outermostLoopInRegion(Loop *L) const;
413 /// @brief Get the outermost loop in the region that contains a basic block.
415 /// Find for a basic block BB the outermost loop L that contains BB and is
416 /// itself contained in the region.
418 /// @param LI A pointer to a LoopInfo analysis.
419 /// @param BB The basic block surrounded by the loop.
420 /// @return The outermost loop in the region, NULL if such a loop does not
421 /// exist or if the region describes the whole function.
422 Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
424 /// @brief Get the subregion that starts at a BasicBlock
426 /// @param BB The BasicBlock the subregion should start.
427 /// @return The Subregion if available, otherwise NULL.
428 Region* getSubRegionNode(BasicBlock *BB) const;
430 /// @brief Get the RegionNode for a BasicBlock
432 /// @param BB The BasicBlock at which the RegionNode should start.
433 /// @return If available, the RegionNode that represents the subregion
434 /// starting at BB. If no subregion starts at BB, the RegionNode
436 RegionNode* getNode(BasicBlock *BB) const;
438 /// @brief Get the BasicBlock RegionNode for a BasicBlock
440 /// @param BB The BasicBlock for which the RegionNode is requested.
441 /// @return The RegionNode representing the BB.
442 RegionNode* getBBNode(BasicBlock *BB) const;
444 /// @brief Add a new subregion to this Region.
446 /// @param SubRegion The new subregion that will be added.
447 /// @param moveChildren Move the children of this region, that are also
448 /// contained in SubRegion into SubRegion.
449 void addSubRegion(Region *SubRegion, bool moveChildren = false);
451 /// @brief Remove a subregion from this Region.
453 /// The subregion is not deleted, as it will probably be inserted into another
455 /// @param SubRegion The SubRegion that will be removed.
456 Region *removeSubRegion(Region *SubRegion);
458 /// @brief Move all direct child nodes of this Region to another Region.
460 /// @param To The Region the child nodes will be transferred to.
461 void transferChildrenTo(Region *To);
463 /// @brief Verify if the region is a correct region.
465 /// Check if this is a correctly build Region. This is an expensive check, as
466 /// the complete CFG of the Region will be walked.
467 void verifyRegion() const;
469 /// @brief Clear the cache for BB RegionNodes.
471 /// After calling this function the BasicBlock RegionNodes will be stored at
472 /// different memory locations. RegionNodes obtained before this function is
473 /// called are therefore not comparable to RegionNodes abtained afterwords.
474 void clearNodeCache();
476 /// @name Subregion Iterators
478 /// These iterators iterator over all subregions of this Region.
480 typedef RegionSet::iterator iterator;
481 typedef RegionSet::const_iterator const_iterator;
483 iterator begin() { return children.begin(); }
484 iterator end() { return children.end(); }
486 const_iterator begin() const { return children.begin(); }
487 const_iterator end() const { return children.end(); }
490 /// @name BasicBlock Iterators
492 /// These iterators iterate over all BasicBlocks that are contained in this
493 /// Region. The iterator also iterates over BasicBlocks that are elements of
494 /// a subregion of this Region. It is therefore called a flat iterator.
496 template <bool IsConst>
497 class block_iterator_wrapper
498 : public df_iterator<typename conditional<IsConst,
500 BasicBlock>::type*> {
501 typedef df_iterator<typename conditional<IsConst,
506 typedef block_iterator_wrapper<IsConst> Self;
507 typedef typename super::pointer pointer;
509 // Construct the begin iterator.
510 block_iterator_wrapper(pointer Entry, pointer Exit) : super(df_begin(Entry))
512 // Mark the exit of the region as visited, so that the children of the
513 // exit and the exit itself, i.e. the block outside the region will never
515 super::Visited.insert(Exit);
518 // Construct the end iterator.
519 block_iterator_wrapper() : super(df_end<pointer>((BasicBlock *)0)) {}
521 /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
523 // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
524 // This was introduced for backwards compatibility, but should
525 // be removed as soon as all users are fixed.
526 BasicBlock *operator*() const {
527 return const_cast<BasicBlock*>(super::operator*());
531 typedef block_iterator_wrapper<false> block_iterator;
532 typedef block_iterator_wrapper<true> const_block_iterator;
534 block_iterator block_begin() {
535 return block_iterator(getEntry(), getExit());
538 block_iterator block_end() {
539 return block_iterator();
542 const_block_iterator block_begin() const {
543 return const_block_iterator(getEntry(), getExit());
545 const_block_iterator block_end() const {
546 return const_block_iterator();
550 /// @name Element Iterators
552 /// These iterators iterate over all BasicBlock and subregion RegionNodes that
553 /// are direct children of this Region. It does not iterate over any
554 /// RegionNodes that are also element of a subregion of this Region.
556 typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
557 GraphTraits<RegionNode*> > element_iterator;
559 typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
560 false, GraphTraits<const RegionNode*> >
561 const_element_iterator;
563 element_iterator element_begin();
564 element_iterator element_end();
566 const_element_iterator element_begin() const;
567 const_element_iterator element_end() const;
571 //===----------------------------------------------------------------------===//
572 /// @brief Analysis that detects all canonical Regions.
574 /// The RegionInfo pass detects all canonical regions in a function. The Regions
575 /// are connected using the parent relation. This builds a Program Structure
577 class RegionInfo : public FunctionPass {
578 typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
579 typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
580 typedef SmallPtrSet<Region*, 4> RegionSet;
582 RegionInfo(const RegionInfo &) LLVM_DELETED_FUNCTION;
583 const RegionInfo &operator=(const RegionInfo &) LLVM_DELETED_FUNCTION;
586 PostDominatorTree *PDT;
587 DominanceFrontier *DF;
589 /// The top level region.
590 Region *TopLevelRegion;
592 /// Map every BB to the smallest region, that contains BB.
593 BBtoRegionMap BBtoRegion;
595 // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
596 // entry, because it was inherited from exit. In the other case there is an
597 // edge going from entry to BB without passing exit.
598 bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
599 BasicBlock* exit) const;
601 // isRegion - Check if entry and exit surround a valid region, based on
602 // dominance tree and dominance frontier.
603 bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
605 // insertShortCut - Saves a shortcut pointing from entry to exit.
606 // This function may extend this shortcut if possible.
607 void insertShortCut(BasicBlock* entry, BasicBlock* exit,
608 BBtoBBMap* ShortCut) const;
610 // getNextPostDom - Returns the next BB that postdominates N, while skipping
611 // all post dominators that cannot finish a canonical region.
612 DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
614 // isTrivialRegion - A region is trivial, if it contains only one BB.
615 bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
617 // createRegion - Creates a single entry single exit region.
618 Region *createRegion(BasicBlock *entry, BasicBlock *exit);
620 // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
621 void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
623 // scanForRegions - Detects regions in F.
624 void scanForRegions(Function &F, BBtoBBMap *ShortCut);
626 // getTopMostParent - Get the top most parent with the same entry block.
627 Region *getTopMostParent(Region *region);
629 // buildRegionsTree - build the region hierarchy after all region detected.
630 void buildRegionsTree(DomTreeNode *N, Region *region);
632 // Calculate - detecte all regions in function and build the region tree.
633 void Calculate(Function& F);
635 void releaseMemory();
637 // updateStatistics - Update statistic about created regions.
638 void updateStatistics(Region *R);
640 // isSimple - Check if a region is a simple region with exactly one entry
641 // edge and exactly one exit edge.
642 bool isSimple(Region* R) const;
646 explicit RegionInfo();
650 /// @name FunctionPass interface
652 virtual bool runOnFunction(Function &F);
653 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
654 virtual void print(raw_ostream &OS, const Module *) const;
655 virtual void verifyAnalysis() const;
658 /// @brief Get the smallest region that contains a BasicBlock.
660 /// @param BB The basic block.
661 /// @return The smallest region, that contains BB or NULL, if there is no
662 /// region containing BB.
663 Region *getRegionFor(BasicBlock *BB) const;
665 /// @brief Set the smallest region that surrounds a basic block.
667 /// @param BB The basic block surrounded by a region.
668 /// @param R The smallest region that surrounds BB.
669 void setRegionFor(BasicBlock *BB, Region *R);
671 /// @brief A shortcut for getRegionFor().
673 /// @param BB The basic block.
674 /// @return The smallest region, that contains BB or NULL, if there is no
675 /// region containing BB.
676 Region *operator[](BasicBlock *BB) const;
678 /// @brief Return the exit of the maximal refined region, that starts at a
681 /// @param BB The BasicBlock the refined region starts.
682 BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
684 /// @brief Find the smallest region that contains two regions.
686 /// @param A The first region.
687 /// @param B The second region.
688 /// @return The smallest region containing A and B.
689 Region *getCommonRegion(Region* A, Region *B) const;
691 /// @brief Find the smallest region that contains two basic blocks.
693 /// @param A The first basic block.
694 /// @param B The second basic block.
695 /// @return The smallest region that contains A and B.
696 Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
697 return getCommonRegion(getRegionFor(A), getRegionFor(B));
700 /// @brief Find the smallest region that contains a set of regions.
702 /// @param Regions A vector of regions.
703 /// @return The smallest region that contains all regions in Regions.
704 Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
706 /// @brief Find the smallest region that contains a set of basic blocks.
708 /// @param BBs A vector of basic blocks.
709 /// @return The smallest region that contains all basic blocks in BBS.
710 Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
712 Region *getTopLevelRegion() const {
713 return TopLevelRegion;
716 /// @brief Update RegionInfo after a basic block was split.
718 /// @param NewBB The basic block that was created before OldBB.
719 /// @param OldBB The old basic block.
720 void splitBlock(BasicBlock* NewBB, BasicBlock *OldBB);
722 /// @brief Clear the Node Cache for all Regions.
724 /// @see Region::clearNodeCache()
725 void clearNodeCache() {
727 TopLevelRegion->clearNodeCache();
731 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
732 if (Node.isSubRegion())
733 return OS << Node.getNodeAs<Region>()->getNameStr();
735 return OS << Node.getNodeAs<BasicBlock>()->getName();
737 } // End llvm namespace