Fix a really bad typo in my last commit.
[oota-llvm.git] / include / llvm / ADT / ArrayRef.h
1 //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_ADT_ARRAYREF_H
11 #define LLVM_ADT_ARRAYREF_H
12
13 #include "llvm/ADT/None.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include <vector>
16
17 namespace llvm {
18
19   /// ArrayRef - Represent a constant reference to an array (0 or more elements
20   /// consecutively in memory), i.e. a start pointer and a length.  It allows
21   /// various APIs to take consecutive elements easily and conveniently.
22   ///
23   /// This class does not own the underlying data, it is expected to be used in
24   /// situations where the data resides in some other buffer, whose lifetime
25   /// extends past that of the ArrayRef. For this reason, it is not in general
26   /// safe to store an ArrayRef.
27   ///
28   /// This is intended to be trivially copyable, so it should be passed by
29   /// value.
30   template<typename T>
31   class ArrayRef {
32   public:
33     typedef const T *iterator;
34     typedef const T *const_iterator;
35     typedef size_t size_type;
36
37     typedef std::reverse_iterator<iterator> reverse_iterator;
38
39   private:
40     /// The start of the array, in an external buffer.
41     const T *Data;
42
43     /// The number of elements.
44     size_type Length;
45
46   public:
47     /// @name Constructors
48     /// @{
49
50     /// Construct an empty ArrayRef.
51     /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}
52
53     /// Construct an empty ArrayRef from None.
54     /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}
55
56     /// Construct an ArrayRef from a single element.
57     /*implicit*/ ArrayRef(const T &OneElt)
58       : Data(&OneElt), Length(1) {}
59
60     /// Construct an ArrayRef from a pointer and length.
61     /*implicit*/ ArrayRef(const T *data, size_t length)
62       : Data(data), Length(length) {}
63
64     /// Construct an ArrayRef from a range.
65     ArrayRef(const T *begin, const T *end)
66       : Data(begin), Length(end - begin) {}
67
68     /// Construct an ArrayRef from a SmallVector. This is templated in order to
69     /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
70     /// copy-construct an ArrayRef.
71     template<typename U>
72     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
73       : Data(Vec.data()), Length(Vec.size()) {
74     }
75
76     /// Construct an ArrayRef from a std::vector.
77     template<typename A>
78     /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
79       : Data(Vec.data()), Length(Vec.size()) {}
80
81     /// Construct an ArrayRef from a C array.
82     template <size_t N>
83     /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
84       : Data(Arr), Length(N) {}
85
86     /// Construct an ArrayRef from a std::initializer_list.
87     /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
88     : Data(Vec.begin() == Vec.end() ? (T*)0 : Vec.begin()),
89       Length(Vec.size()) {}
90
91     /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
92     /// ensure that only ArrayRefs of pointers can be converted.
93     template <typename U>
94     ArrayRef(const ArrayRef<U *> &A,
95              typename std::enable_if<
96                  std::is_convertible<U *const *, T const *>::value>::type* = 0)
97       : Data(A.data()), Length(A.size()) {}
98
99     /// @}
100     /// @name Simple Operations
101     /// @{
102
103     iterator begin() const { return Data; }
104     iterator end() const { return Data + Length; }
105
106     reverse_iterator rbegin() const { return reverse_iterator(end()); }
107     reverse_iterator rend() const { return reverse_iterator(begin()); }
108
109     /// empty - Check if the array is empty.
110     bool empty() const { return Length == 0; }
111
112     const T *data() const { return Data; }
113
114     /// size - Get the array size.
115     size_t size() const { return Length; }
116
117     /// front - Get the first element.
118     const T &front() const {
119       assert(!empty());
120       return Data[0];
121     }
122
123     /// back - Get the last element.
124     const T &back() const {
125       assert(!empty());
126       return Data[Length-1];
127     }
128
129     // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
130     template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
131       T *Buff = A.template Allocate<T>(Length);
132       std::copy(begin(), end(), Buff);
133       return ArrayRef<T>(Buff, Length);
134     }
135
136     /// equals - Check for element-wise equality.
137     bool equals(ArrayRef RHS) const {
138       if (Length != RHS.Length)
139         return false;
140       if (Length == 0)
141         return true;
142       return std::equal(begin(), end(), RHS.begin());
143     }
144
145     /// slice(n) - Chop off the first N elements of the array.
146     ArrayRef<T> slice(unsigned N) const {
147       assert(N <= size() && "Invalid specifier");
148       return ArrayRef<T>(data()+N, size()-N);
149     }
150
151     /// slice(n, m) - Chop off the first N elements of the array, and keep M
152     /// elements in the array.
153     ArrayRef<T> slice(unsigned N, unsigned M) const {
154       assert(N+M <= size() && "Invalid specifier");
155       return ArrayRef<T>(data()+N, M);
156     }
157
158     // \brief Drop the last \p N elements of the array.
159     ArrayRef<T> drop_back(unsigned N = 1) const {
160       assert(size() >= N && "Dropping more elements than exist");
161       return slice(0, size() - N);
162     }
163
164     /// @}
165     /// @name Operator Overloads
166     /// @{
167     const T &operator[](size_t Index) const {
168       assert(Index < Length && "Invalid index!");
169       return Data[Index];
170     }
171
172     /// @}
173     /// @name Expensive Operations
174     /// @{
175     std::vector<T> vec() const {
176       return std::vector<T>(Data, Data+Length);
177     }
178
179     /// @}
180     /// @name Conversion operators
181     /// @{
182     operator std::vector<T>() const {
183       return std::vector<T>(Data, Data+Length);
184     }
185
186     /// @}
187   };
188
189   /// MutableArrayRef - Represent a mutable reference to an array (0 or more
190   /// elements consecutively in memory), i.e. a start pointer and a length.  It
191   /// allows various APIs to take and modify consecutive elements easily and
192   /// conveniently.
193   ///
194   /// This class does not own the underlying data, it is expected to be used in
195   /// situations where the data resides in some other buffer, whose lifetime
196   /// extends past that of the MutableArrayRef. For this reason, it is not in
197   /// general safe to store a MutableArrayRef.
198   ///
199   /// This is intended to be trivially copyable, so it should be passed by
200   /// value.
201   template<typename T>
202   class MutableArrayRef : public ArrayRef<T> {
203   public:
204     typedef T *iterator;
205
206     typedef std::reverse_iterator<iterator> reverse_iterator;
207
208     /// Construct an empty MutableArrayRef.
209     /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
210
211     /// Construct an empty MutableArrayRef from None.
212     /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
213
214     /// Construct an MutableArrayRef from a single element.
215     /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
216
217     /// Construct an MutableArrayRef from a pointer and length.
218     /*implicit*/ MutableArrayRef(T *data, size_t length)
219       : ArrayRef<T>(data, length) {}
220
221     /// Construct an MutableArrayRef from a range.
222     MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
223
224     /// Construct an MutableArrayRef from a SmallVector.
225     /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
226     : ArrayRef<T>(Vec) {}
227
228     /// Construct a MutableArrayRef from a std::vector.
229     /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
230     : ArrayRef<T>(Vec) {}
231
232     /// Construct an MutableArrayRef from a C array.
233     template <size_t N>
234     /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N])
235       : ArrayRef<T>(Arr) {}
236
237     T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
238
239     iterator begin() const { return data(); }
240     iterator end() const { return data() + this->size(); }
241
242     reverse_iterator rbegin() const { return reverse_iterator(end()); }
243     reverse_iterator rend() const { return reverse_iterator(begin()); }
244
245     /// front - Get the first element.
246     T &front() const {
247       assert(!this->empty());
248       return data()[0];
249     }
250
251     /// back - Get the last element.
252     T &back() const {
253       assert(!this->empty());
254       return data()[this->size()-1];
255     }
256
257     /// slice(n) - Chop off the first N elements of the array.
258     MutableArrayRef<T> slice(unsigned N) const {
259       assert(N <= this->size() && "Invalid specifier");
260       return MutableArrayRef<T>(data()+N, this->size()-N);
261     }
262
263     /// slice(n, m) - Chop off the first N elements of the array, and keep M
264     /// elements in the array.
265     MutableArrayRef<T> slice(unsigned N, unsigned M) const {
266       assert(N+M <= this->size() && "Invalid specifier");
267       return MutableArrayRef<T>(data()+N, M);
268     }
269
270     /// @}
271     /// @name Operator Overloads
272     /// @{
273     T &operator[](size_t Index) const {
274       assert(Index < this->size() && "Invalid index!");
275       return data()[Index];
276     }
277   };
278
279   /// @name ArrayRef Convenience constructors
280   /// @{
281
282   /// Construct an ArrayRef from a single element.
283   template<typename T>
284   ArrayRef<T> makeArrayRef(const T &OneElt) {
285     return OneElt;
286   }
287
288   /// Construct an ArrayRef from a pointer and length.
289   template<typename T>
290   ArrayRef<T> makeArrayRef(const T *data, size_t length) {
291     return ArrayRef<T>(data, length);
292   }
293
294   /// Construct an ArrayRef from a range.
295   template<typename T>
296   ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
297     return ArrayRef<T>(begin, end);
298   }
299
300   /// Construct an ArrayRef from a SmallVector.
301   template <typename T>
302   ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
303     return Vec;
304   }
305
306   /// Construct an ArrayRef from a SmallVector.
307   template <typename T, unsigned N>
308   ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
309     return Vec;
310   }
311
312   /// Construct an ArrayRef from a std::vector.
313   template<typename T>
314   ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
315     return Vec;
316   }
317
318   /// Construct an ArrayRef from a C array.
319   template<typename T, size_t N>
320   ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
321     return ArrayRef<T>(Arr);
322   }
323
324   /// @}
325   /// @name ArrayRef Comparison Operators
326   /// @{
327
328   template<typename T>
329   inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
330     return LHS.equals(RHS);
331   }
332
333   template<typename T>
334   inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
335     return !(LHS == RHS);
336   }
337
338   /// @}
339
340   // ArrayRefs can be treated like a POD type.
341   template <typename T> struct isPodLike;
342   template <typename T> struct isPodLike<ArrayRef<T> > {
343     static const bool value = true;
344   };
345 }
346
347 #endif