arm64: dts: rockchip: rk3399: add aclk/hclk_vop init freq
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29 #include <trace/events/android_fs.h>
30
31 static void f2fs_read_end_io(struct bio *bio)
32 {
33         struct bio_vec *bvec;
34         int i;
35
36         if (f2fs_bio_encrypted(bio)) {
37                 if (bio->bi_error) {
38                         f2fs_release_crypto_ctx(bio->bi_private);
39                 } else {
40                         f2fs_end_io_crypto_work(bio->bi_private, bio);
41                         return;
42                 }
43         }
44
45         bio_for_each_segment_all(bvec, bio, i) {
46                 struct page *page = bvec->bv_page;
47
48                 if (!bio->bi_error) {
49                         SetPageUptodate(page);
50                 } else {
51                         ClearPageUptodate(page);
52                         SetPageError(page);
53                 }
54                 unlock_page(page);
55         }
56         bio_put(bio);
57 }
58
59 static void f2fs_write_end_io(struct bio *bio)
60 {
61         struct f2fs_sb_info *sbi = bio->bi_private;
62         struct bio_vec *bvec;
63         int i;
64
65         bio_for_each_segment_all(bvec, bio, i) {
66                 struct page *page = bvec->bv_page;
67
68                 f2fs_restore_and_release_control_page(&page);
69
70                 if (unlikely(bio->bi_error)) {
71                         set_page_dirty(page);
72                         set_bit(AS_EIO, &page->mapping->flags);
73                         f2fs_stop_checkpoint(sbi);
74                 }
75                 end_page_writeback(page);
76                 dec_page_count(sbi, F2FS_WRITEBACK);
77         }
78
79         if (!get_pages(sbi, F2FS_WRITEBACK) &&
80                         !list_empty(&sbi->cp_wait.task_list))
81                 wake_up(&sbi->cp_wait);
82
83         bio_put(bio);
84 }
85
86 /*
87  * Low-level block read/write IO operations.
88  */
89 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
90                                 int npages, bool is_read)
91 {
92         struct bio *bio;
93
94         bio = f2fs_bio_alloc(npages);
95
96         bio->bi_bdev = sbi->sb->s_bdev;
97         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
98         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
99         bio->bi_private = is_read ? NULL : sbi;
100
101         return bio;
102 }
103
104 static void __submit_merged_bio(struct f2fs_bio_info *io)
105 {
106         struct f2fs_io_info *fio = &io->fio;
107
108         if (!io->bio)
109                 return;
110
111         if (is_read_io(fio->rw))
112                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
113         else
114                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
115
116         submit_bio(fio->rw, io->bio);
117         io->bio = NULL;
118 }
119
120 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
121                                 enum page_type type, int rw)
122 {
123         enum page_type btype = PAGE_TYPE_OF_BIO(type);
124         struct f2fs_bio_info *io;
125
126         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
127
128         down_write(&io->io_rwsem);
129
130         /* change META to META_FLUSH in the checkpoint procedure */
131         if (type >= META_FLUSH) {
132                 io->fio.type = META_FLUSH;
133                 if (test_opt(sbi, NOBARRIER))
134                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
135                 else
136                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
137         }
138         __submit_merged_bio(io);
139         up_write(&io->io_rwsem);
140 }
141
142 /*
143  * Fill the locked page with data located in the block address.
144  * Return unlocked page.
145  */
146 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
147 {
148         struct bio *bio;
149         struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
150
151         trace_f2fs_submit_page_bio(page, fio);
152         f2fs_trace_ios(fio, 0);
153
154         /* Allocate a new bio */
155         bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
156
157         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
158                 bio_put(bio);
159                 return -EFAULT;
160         }
161
162         submit_bio(fio->rw, bio);
163         return 0;
164 }
165
166 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
167 {
168         struct f2fs_sb_info *sbi = fio->sbi;
169         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
170         struct f2fs_bio_info *io;
171         bool is_read = is_read_io(fio->rw);
172         struct page *bio_page;
173
174         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
175
176         verify_block_addr(sbi, fio->blk_addr);
177
178         down_write(&io->io_rwsem);
179
180         if (!is_read)
181                 inc_page_count(sbi, F2FS_WRITEBACK);
182
183         if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
184                                                 io->fio.rw != fio->rw))
185                 __submit_merged_bio(io);
186 alloc_new:
187         if (io->bio == NULL) {
188                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
189
190                 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
191                 io->fio = *fio;
192         }
193
194         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
195
196         if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
197                                                         PAGE_CACHE_SIZE) {
198                 __submit_merged_bio(io);
199                 goto alloc_new;
200         }
201
202         io->last_block_in_bio = fio->blk_addr;
203         f2fs_trace_ios(fio, 0);
204
205         up_write(&io->io_rwsem);
206         trace_f2fs_submit_page_mbio(fio->page, fio);
207 }
208
209 /*
210  * Lock ordering for the change of data block address:
211  * ->data_page
212  *  ->node_page
213  *    update block addresses in the node page
214  */
215 void set_data_blkaddr(struct dnode_of_data *dn)
216 {
217         struct f2fs_node *rn;
218         __le32 *addr_array;
219         struct page *node_page = dn->node_page;
220         unsigned int ofs_in_node = dn->ofs_in_node;
221
222         f2fs_wait_on_page_writeback(node_page, NODE);
223
224         rn = F2FS_NODE(node_page);
225
226         /* Get physical address of data block */
227         addr_array = blkaddr_in_node(rn);
228         addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
229         set_page_dirty(node_page);
230 }
231
232 int reserve_new_block(struct dnode_of_data *dn)
233 {
234         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
235
236         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
237                 return -EPERM;
238         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
239                 return -ENOSPC;
240
241         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
242
243         dn->data_blkaddr = NEW_ADDR;
244         set_data_blkaddr(dn);
245         mark_inode_dirty(dn->inode);
246         sync_inode_page(dn);
247         return 0;
248 }
249
250 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
251 {
252         bool need_put = dn->inode_page ? false : true;
253         int err;
254
255         err = get_dnode_of_data(dn, index, ALLOC_NODE);
256         if (err)
257                 return err;
258
259         if (dn->data_blkaddr == NULL_ADDR)
260                 err = reserve_new_block(dn);
261         if (err || need_put)
262                 f2fs_put_dnode(dn);
263         return err;
264 }
265
266 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
267 {
268         struct extent_info ei;
269         struct inode *inode = dn->inode;
270
271         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
272                 dn->data_blkaddr = ei.blk + index - ei.fofs;
273                 return 0;
274         }
275
276         return f2fs_reserve_block(dn, index);
277 }
278
279 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
280                                                 int rw, bool for_write)
281 {
282         struct address_space *mapping = inode->i_mapping;
283         struct dnode_of_data dn;
284         struct page *page;
285         struct extent_info ei;
286         int err;
287         struct f2fs_io_info fio = {
288                 .sbi = F2FS_I_SB(inode),
289                 .type = DATA,
290                 .rw = rw,
291                 .encrypted_page = NULL,
292         };
293
294         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
295                 return read_mapping_page(mapping, index, NULL);
296
297         page = f2fs_grab_cache_page(mapping, index, for_write);
298         if (!page)
299                 return ERR_PTR(-ENOMEM);
300
301         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
302                 dn.data_blkaddr = ei.blk + index - ei.fofs;
303                 goto got_it;
304         }
305
306         set_new_dnode(&dn, inode, NULL, NULL, 0);
307         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
308         if (err)
309                 goto put_err;
310         f2fs_put_dnode(&dn);
311
312         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
313                 err = -ENOENT;
314                 goto put_err;
315         }
316 got_it:
317         if (PageUptodate(page)) {
318                 unlock_page(page);
319                 return page;
320         }
321
322         /*
323          * A new dentry page is allocated but not able to be written, since its
324          * new inode page couldn't be allocated due to -ENOSPC.
325          * In such the case, its blkaddr can be remained as NEW_ADDR.
326          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
327          */
328         if (dn.data_blkaddr == NEW_ADDR) {
329                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
330                 SetPageUptodate(page);
331                 unlock_page(page);
332                 return page;
333         }
334
335         fio.blk_addr = dn.data_blkaddr;
336         fio.page = page;
337         err = f2fs_submit_page_bio(&fio);
338         if (err)
339                 goto put_err;
340         return page;
341
342 put_err:
343         f2fs_put_page(page, 1);
344         return ERR_PTR(err);
345 }
346
347 struct page *find_data_page(struct inode *inode, pgoff_t index)
348 {
349         struct address_space *mapping = inode->i_mapping;
350         struct page *page;
351
352         page = find_get_page(mapping, index);
353         if (page && PageUptodate(page))
354                 return page;
355         f2fs_put_page(page, 0);
356
357         page = get_read_data_page(inode, index, READ_SYNC, false);
358         if (IS_ERR(page))
359                 return page;
360
361         if (PageUptodate(page))
362                 return page;
363
364         wait_on_page_locked(page);
365         if (unlikely(!PageUptodate(page))) {
366                 f2fs_put_page(page, 0);
367                 return ERR_PTR(-EIO);
368         }
369         return page;
370 }
371
372 /*
373  * If it tries to access a hole, return an error.
374  * Because, the callers, functions in dir.c and GC, should be able to know
375  * whether this page exists or not.
376  */
377 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
378                                                         bool for_write)
379 {
380         struct address_space *mapping = inode->i_mapping;
381         struct page *page;
382 repeat:
383         page = get_read_data_page(inode, index, READ_SYNC, for_write);
384         if (IS_ERR(page))
385                 return page;
386
387         /* wait for read completion */
388         lock_page(page);
389         if (unlikely(!PageUptodate(page))) {
390                 f2fs_put_page(page, 1);
391                 return ERR_PTR(-EIO);
392         }
393         if (unlikely(page->mapping != mapping)) {
394                 f2fs_put_page(page, 1);
395                 goto repeat;
396         }
397         return page;
398 }
399
400 /*
401  * Caller ensures that this data page is never allocated.
402  * A new zero-filled data page is allocated in the page cache.
403  *
404  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
405  * f2fs_unlock_op().
406  * Note that, ipage is set only by make_empty_dir, and if any error occur,
407  * ipage should be released by this function.
408  */
409 struct page *get_new_data_page(struct inode *inode,
410                 struct page *ipage, pgoff_t index, bool new_i_size)
411 {
412         struct address_space *mapping = inode->i_mapping;
413         struct page *page;
414         struct dnode_of_data dn;
415         int err;
416 repeat:
417         page = f2fs_grab_cache_page(mapping, index, true);
418         if (!page) {
419                 /*
420                  * before exiting, we should make sure ipage will be released
421                  * if any error occur.
422                  */
423                 f2fs_put_page(ipage, 1);
424                 return ERR_PTR(-ENOMEM);
425         }
426
427         set_new_dnode(&dn, inode, ipage, NULL, 0);
428         err = f2fs_reserve_block(&dn, index);
429         if (err) {
430                 f2fs_put_page(page, 1);
431                 return ERR_PTR(err);
432         }
433         if (!ipage)
434                 f2fs_put_dnode(&dn);
435
436         if (PageUptodate(page))
437                 goto got_it;
438
439         if (dn.data_blkaddr == NEW_ADDR) {
440                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
441                 SetPageUptodate(page);
442         } else {
443                 f2fs_put_page(page, 1);
444
445                 page = get_read_data_page(inode, index, READ_SYNC, true);
446                 if (IS_ERR(page))
447                         goto repeat;
448
449                 /* wait for read completion */
450                 lock_page(page);
451         }
452 got_it:
453         if (new_i_size && i_size_read(inode) <
454                                 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
455                 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
456                 /* Only the directory inode sets new_i_size */
457                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
458         }
459         return page;
460 }
461
462 static int __allocate_data_block(struct dnode_of_data *dn)
463 {
464         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
465         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
466         struct f2fs_summary sum;
467         struct node_info ni;
468         int seg = CURSEG_WARM_DATA;
469         pgoff_t fofs;
470
471         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
472                 return -EPERM;
473
474         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
475         if (dn->data_blkaddr == NEW_ADDR)
476                 goto alloc;
477
478         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
479                 return -ENOSPC;
480
481 alloc:
482         get_node_info(sbi, dn->nid, &ni);
483         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
484
485         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
486                 seg = CURSEG_DIRECT_IO;
487
488         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
489                                                                 &sum, seg);
490         set_data_blkaddr(dn);
491
492         /* update i_size */
493         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
494                                                         dn->ofs_in_node;
495         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
496                 i_size_write(dn->inode,
497                                 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
498
499         /* direct IO doesn't use extent cache to maximize the performance */
500         f2fs_drop_largest_extent(dn->inode, fofs);
501
502         return 0;
503 }
504
505 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
506                                                         size_t count)
507 {
508         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
509         struct dnode_of_data dn;
510         u64 start = F2FS_BYTES_TO_BLK(offset);
511         u64 len = F2FS_BYTES_TO_BLK(count);
512         bool allocated;
513         u64 end_offset;
514
515         while (len) {
516                 f2fs_balance_fs(sbi);
517                 f2fs_lock_op(sbi);
518
519                 /* When reading holes, we need its node page */
520                 set_new_dnode(&dn, inode, NULL, NULL, 0);
521                 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
522                         goto out;
523
524                 allocated = false;
525                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
526
527                 while (dn.ofs_in_node < end_offset && len) {
528                         block_t blkaddr;
529
530                         if (unlikely(f2fs_cp_error(sbi)))
531                                 goto sync_out;
532
533                         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
534                         if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
535                                 if (__allocate_data_block(&dn))
536                                         goto sync_out;
537                                 allocated = true;
538                         }
539                         len--;
540                         start++;
541                         dn.ofs_in_node++;
542                 }
543
544                 if (allocated)
545                         sync_inode_page(&dn);
546
547                 f2fs_put_dnode(&dn);
548                 f2fs_unlock_op(sbi);
549         }
550         return;
551
552 sync_out:
553         if (allocated)
554                 sync_inode_page(&dn);
555         f2fs_put_dnode(&dn);
556 out:
557         f2fs_unlock_op(sbi);
558         return;
559 }
560
561 /*
562  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
563  * f2fs_map_blocks structure.
564  * If original data blocks are allocated, then give them to blockdev.
565  * Otherwise,
566  *     a. preallocate requested block addresses
567  *     b. do not use extent cache for better performance
568  *     c. give the block addresses to blockdev
569  */
570 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
571                                                 int create, int flag)
572 {
573         unsigned int maxblocks = map->m_len;
574         struct dnode_of_data dn;
575         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
576         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
577         pgoff_t pgofs, end_offset;
578         int err = 0, ofs = 1;
579         struct extent_info ei;
580         bool allocated = false;
581
582         map->m_len = 0;
583         map->m_flags = 0;
584
585         /* it only supports block size == page size */
586         pgofs = (pgoff_t)map->m_lblk;
587
588         if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
589                 map->m_pblk = ei.blk + pgofs - ei.fofs;
590                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
591                 map->m_flags = F2FS_MAP_MAPPED;
592                 goto out;
593         }
594
595         if (create)
596                 f2fs_lock_op(F2FS_I_SB(inode));
597
598         /* When reading holes, we need its node page */
599         set_new_dnode(&dn, inode, NULL, NULL, 0);
600         err = get_dnode_of_data(&dn, pgofs, mode);
601         if (err) {
602                 if (err == -ENOENT)
603                         err = 0;
604                 goto unlock_out;
605         }
606
607         if (dn.data_blkaddr == NEW_ADDR || dn.data_blkaddr == NULL_ADDR) {
608                 if (create) {
609                         if (unlikely(f2fs_cp_error(sbi))) {
610                                 err = -EIO;
611                                 goto put_out;
612                         }
613                         err = __allocate_data_block(&dn);
614                         if (err)
615                                 goto put_out;
616                         allocated = true;
617                         map->m_flags = F2FS_MAP_NEW;
618                 } else {
619                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
620                                                 dn.data_blkaddr != NEW_ADDR) {
621                                 if (flag == F2FS_GET_BLOCK_BMAP)
622                                         err = -ENOENT;
623                                 goto put_out;
624                         }
625
626                         /*
627                          * preallocated unwritten block should be mapped
628                          * for fiemap.
629                          */
630                         if (dn.data_blkaddr == NEW_ADDR)
631                                 map->m_flags = F2FS_MAP_UNWRITTEN;
632                 }
633         }
634
635         map->m_flags |= F2FS_MAP_MAPPED;
636         map->m_pblk = dn.data_blkaddr;
637         map->m_len = 1;
638
639         end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
640         dn.ofs_in_node++;
641         pgofs++;
642
643 get_next:
644         if (dn.ofs_in_node >= end_offset) {
645                 if (allocated)
646                         sync_inode_page(&dn);
647                 allocated = false;
648                 f2fs_put_dnode(&dn);
649
650                 set_new_dnode(&dn, inode, NULL, NULL, 0);
651                 err = get_dnode_of_data(&dn, pgofs, mode);
652                 if (err) {
653                         if (err == -ENOENT)
654                                 err = 0;
655                         goto unlock_out;
656                 }
657
658                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
659         }
660
661         if (maxblocks > map->m_len) {
662                 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
663
664                 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
665                         if (create) {
666                                 if (unlikely(f2fs_cp_error(sbi))) {
667                                         err = -EIO;
668                                         goto sync_out;
669                                 }
670                                 err = __allocate_data_block(&dn);
671                                 if (err)
672                                         goto sync_out;
673                                 allocated = true;
674                                 map->m_flags |= F2FS_MAP_NEW;
675                                 blkaddr = dn.data_blkaddr;
676                         } else {
677                                 /*
678                                  * we only merge preallocated unwritten blocks
679                                  * for fiemap.
680                                  */
681                                 if (flag != F2FS_GET_BLOCK_FIEMAP ||
682                                                 blkaddr != NEW_ADDR)
683                                         goto sync_out;
684                         }
685                 }
686
687                 /* Give more consecutive addresses for the readahead */
688                 if ((map->m_pblk != NEW_ADDR &&
689                                 blkaddr == (map->m_pblk + ofs)) ||
690                                 (map->m_pblk == NEW_ADDR &&
691                                 blkaddr == NEW_ADDR)) {
692                         ofs++;
693                         dn.ofs_in_node++;
694                         pgofs++;
695                         map->m_len++;
696                         goto get_next;
697                 }
698         }
699 sync_out:
700         if (allocated)
701                 sync_inode_page(&dn);
702 put_out:
703         f2fs_put_dnode(&dn);
704 unlock_out:
705         if (create)
706                 f2fs_unlock_op(F2FS_I_SB(inode));
707 out:
708         trace_f2fs_map_blocks(inode, map, err);
709         return err;
710 }
711
712 static int __get_data_block(struct inode *inode, sector_t iblock,
713                         struct buffer_head *bh, int create, int flag)
714 {
715         struct f2fs_map_blocks map;
716         int ret;
717
718         map.m_lblk = iblock;
719         map.m_len = bh->b_size >> inode->i_blkbits;
720
721         ret = f2fs_map_blocks(inode, &map, create, flag);
722         if (!ret) {
723                 map_bh(bh, inode->i_sb, map.m_pblk);
724                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
725                 bh->b_size = map.m_len << inode->i_blkbits;
726         }
727         return ret;
728 }
729
730 static int get_data_block(struct inode *inode, sector_t iblock,
731                         struct buffer_head *bh_result, int create, int flag)
732 {
733         return __get_data_block(inode, iblock, bh_result, create, flag);
734 }
735
736 static int get_data_block_dio(struct inode *inode, sector_t iblock,
737                         struct buffer_head *bh_result, int create)
738 {
739         return __get_data_block(inode, iblock, bh_result, create,
740                                                 F2FS_GET_BLOCK_DIO);
741 }
742
743 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
744                         struct buffer_head *bh_result, int create)
745 {
746         return __get_data_block(inode, iblock, bh_result, create,
747                                                 F2FS_GET_BLOCK_BMAP);
748 }
749
750 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
751 {
752         return (offset >> inode->i_blkbits);
753 }
754
755 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
756 {
757         return (blk << inode->i_blkbits);
758 }
759
760 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
761                 u64 start, u64 len)
762 {
763         struct buffer_head map_bh;
764         sector_t start_blk, last_blk;
765         loff_t isize = i_size_read(inode);
766         u64 logical = 0, phys = 0, size = 0;
767         u32 flags = 0;
768         bool past_eof = false, whole_file = false;
769         int ret = 0;
770
771         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
772         if (ret)
773                 return ret;
774
775         if (f2fs_has_inline_data(inode)) {
776                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
777                 if (ret != -EAGAIN)
778                         return ret;
779         }
780
781         mutex_lock(&inode->i_mutex);
782
783         if (len >= isize) {
784                 whole_file = true;
785                 len = isize;
786         }
787
788         if (logical_to_blk(inode, len) == 0)
789                 len = blk_to_logical(inode, 1);
790
791         start_blk = logical_to_blk(inode, start);
792         last_blk = logical_to_blk(inode, start + len - 1);
793 next:
794         memset(&map_bh, 0, sizeof(struct buffer_head));
795         map_bh.b_size = len;
796
797         ret = get_data_block(inode, start_blk, &map_bh, 0,
798                                         F2FS_GET_BLOCK_FIEMAP);
799         if (ret)
800                 goto out;
801
802         /* HOLE */
803         if (!buffer_mapped(&map_bh)) {
804                 start_blk++;
805
806                 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
807                         past_eof = 1;
808
809                 if (past_eof && size) {
810                         flags |= FIEMAP_EXTENT_LAST;
811                         ret = fiemap_fill_next_extent(fieinfo, logical,
812                                         phys, size, flags);
813                 } else if (size) {
814                         ret = fiemap_fill_next_extent(fieinfo, logical,
815                                         phys, size, flags);
816                         size = 0;
817                 }
818
819                 /* if we have holes up to/past EOF then we're done */
820                 if (start_blk > last_blk || past_eof || ret)
821                         goto out;
822         } else {
823                 if (start_blk > last_blk && !whole_file) {
824                         ret = fiemap_fill_next_extent(fieinfo, logical,
825                                         phys, size, flags);
826                         goto out;
827                 }
828
829                 /*
830                  * if size != 0 then we know we already have an extent
831                  * to add, so add it.
832                  */
833                 if (size) {
834                         ret = fiemap_fill_next_extent(fieinfo, logical,
835                                         phys, size, flags);
836                         if (ret)
837                                 goto out;
838                 }
839
840                 logical = blk_to_logical(inode, start_blk);
841                 phys = blk_to_logical(inode, map_bh.b_blocknr);
842                 size = map_bh.b_size;
843                 flags = 0;
844                 if (buffer_unwritten(&map_bh))
845                         flags = FIEMAP_EXTENT_UNWRITTEN;
846
847                 start_blk += logical_to_blk(inode, size);
848
849                 /*
850                  * If we are past the EOF, then we need to make sure as
851                  * soon as we find a hole that the last extent we found
852                  * is marked with FIEMAP_EXTENT_LAST
853                  */
854                 if (!past_eof && logical + size >= isize)
855                         past_eof = true;
856         }
857         cond_resched();
858         if (fatal_signal_pending(current))
859                 ret = -EINTR;
860         else
861                 goto next;
862 out:
863         if (ret == 1)
864                 ret = 0;
865
866         mutex_unlock(&inode->i_mutex);
867         return ret;
868 }
869
870 /*
871  * This function was originally taken from fs/mpage.c, and customized for f2fs.
872  * Major change was from block_size == page_size in f2fs by default.
873  */
874 static int f2fs_mpage_readpages(struct address_space *mapping,
875                         struct list_head *pages, struct page *page,
876                         unsigned nr_pages)
877 {
878         struct bio *bio = NULL;
879         unsigned page_idx;
880         sector_t last_block_in_bio = 0;
881         struct inode *inode = mapping->host;
882         const unsigned blkbits = inode->i_blkbits;
883         const unsigned blocksize = 1 << blkbits;
884         sector_t block_in_file;
885         sector_t last_block;
886         sector_t last_block_in_file;
887         sector_t block_nr;
888         struct block_device *bdev = inode->i_sb->s_bdev;
889         struct f2fs_map_blocks map;
890
891         map.m_pblk = 0;
892         map.m_lblk = 0;
893         map.m_len = 0;
894         map.m_flags = 0;
895
896         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
897
898                 prefetchw(&page->flags);
899                 if (pages) {
900                         page = list_entry(pages->prev, struct page, lru);
901                         list_del(&page->lru);
902                         if (add_to_page_cache_lru(page, mapping,
903                                                   page->index, GFP_KERNEL))
904                                 goto next_page;
905                 }
906
907                 block_in_file = (sector_t)page->index;
908                 last_block = block_in_file + nr_pages;
909                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
910                                                                 blkbits;
911                 if (last_block > last_block_in_file)
912                         last_block = last_block_in_file;
913
914                 /*
915                  * Map blocks using the previous result first.
916                  */
917                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
918                                 block_in_file > map.m_lblk &&
919                                 block_in_file < (map.m_lblk + map.m_len))
920                         goto got_it;
921
922                 /*
923                  * Then do more f2fs_map_blocks() calls until we are
924                  * done with this page.
925                  */
926                 map.m_flags = 0;
927
928                 if (block_in_file < last_block) {
929                         map.m_lblk = block_in_file;
930                         map.m_len = last_block - block_in_file;
931
932                         if (f2fs_map_blocks(inode, &map, 0,
933                                                         F2FS_GET_BLOCK_READ))
934                                 goto set_error_page;
935                 }
936 got_it:
937                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
938                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
939                         SetPageMappedToDisk(page);
940
941                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
942                                 SetPageUptodate(page);
943                                 goto confused;
944                         }
945                 } else {
946                         zero_user_segment(page, 0, PAGE_CACHE_SIZE);
947                         SetPageUptodate(page);
948                         unlock_page(page);
949                         goto next_page;
950                 }
951
952                 /*
953                  * This page will go to BIO.  Do we need to send this
954                  * BIO off first?
955                  */
956                 if (bio && (last_block_in_bio != block_nr - 1)) {
957 submit_and_realloc:
958                         submit_bio(READ, bio);
959                         bio = NULL;
960                 }
961                 if (bio == NULL) {
962                         struct f2fs_crypto_ctx *ctx = NULL;
963
964                         if (f2fs_encrypted_inode(inode) &&
965                                         S_ISREG(inode->i_mode)) {
966
967                                 ctx = f2fs_get_crypto_ctx(inode);
968                                 if (IS_ERR(ctx))
969                                         goto set_error_page;
970
971                                 /* wait the page to be moved by cleaning */
972                                 f2fs_wait_on_encrypted_page_writeback(
973                                                 F2FS_I_SB(inode), block_nr);
974                         }
975
976                         bio = bio_alloc(GFP_KERNEL,
977                                 min_t(int, nr_pages, BIO_MAX_PAGES));
978                         if (!bio) {
979                                 if (ctx)
980                                         f2fs_release_crypto_ctx(ctx);
981                                 goto set_error_page;
982                         }
983                         bio->bi_bdev = bdev;
984                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
985                         bio->bi_end_io = f2fs_read_end_io;
986                         bio->bi_private = ctx;
987                 }
988
989                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
990                         goto submit_and_realloc;
991
992                 last_block_in_bio = block_nr;
993                 goto next_page;
994 set_error_page:
995                 SetPageError(page);
996                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
997                 unlock_page(page);
998                 goto next_page;
999 confused:
1000                 if (bio) {
1001                         submit_bio(READ, bio);
1002                         bio = NULL;
1003                 }
1004                 unlock_page(page);
1005 next_page:
1006                 if (pages)
1007                         page_cache_release(page);
1008         }
1009         BUG_ON(pages && !list_empty(pages));
1010         if (bio)
1011                 submit_bio(READ, bio);
1012         return 0;
1013 }
1014
1015 static int f2fs_read_data_page(struct file *file, struct page *page)
1016 {
1017         struct inode *inode = page->mapping->host;
1018         int ret = -EAGAIN;
1019
1020         trace_f2fs_readpage(page, DATA);
1021
1022         /* If the file has inline data, try to read it directly */
1023         if (f2fs_has_inline_data(inode))
1024                 ret = f2fs_read_inline_data(inode, page);
1025         if (ret == -EAGAIN)
1026                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1027         return ret;
1028 }
1029
1030 static int f2fs_read_data_pages(struct file *file,
1031                         struct address_space *mapping,
1032                         struct list_head *pages, unsigned nr_pages)
1033 {
1034         struct inode *inode = file->f_mapping->host;
1035         struct page *page = list_entry(pages->prev, struct page, lru);
1036
1037         trace_f2fs_readpages(inode, page, nr_pages);
1038
1039         /* If the file has inline data, skip readpages */
1040         if (f2fs_has_inline_data(inode))
1041                 return 0;
1042
1043         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1044 }
1045
1046 int do_write_data_page(struct f2fs_io_info *fio)
1047 {
1048         struct page *page = fio->page;
1049         struct inode *inode = page->mapping->host;
1050         struct dnode_of_data dn;
1051         int err = 0;
1052
1053         set_new_dnode(&dn, inode, NULL, NULL, 0);
1054         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1055         if (err)
1056                 return err;
1057
1058         fio->blk_addr = dn.data_blkaddr;
1059
1060         /* This page is already truncated */
1061         if (fio->blk_addr == NULL_ADDR) {
1062                 ClearPageUptodate(page);
1063                 goto out_writepage;
1064         }
1065
1066         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1067
1068                 /* wait for GCed encrypted page writeback */
1069                 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1070                                                         fio->blk_addr);
1071
1072                 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1073                 if (IS_ERR(fio->encrypted_page)) {
1074                         err = PTR_ERR(fio->encrypted_page);
1075                         goto out_writepage;
1076                 }
1077         }
1078
1079         set_page_writeback(page);
1080
1081         /*
1082          * If current allocation needs SSR,
1083          * it had better in-place writes for updated data.
1084          */
1085         if (unlikely(fio->blk_addr != NEW_ADDR &&
1086                         !is_cold_data(page) &&
1087                         need_inplace_update(inode))) {
1088                 rewrite_data_page(fio);
1089                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1090                 trace_f2fs_do_write_data_page(page, IPU);
1091         } else {
1092                 write_data_page(&dn, fio);
1093                 set_data_blkaddr(&dn);
1094                 f2fs_update_extent_cache(&dn);
1095                 trace_f2fs_do_write_data_page(page, OPU);
1096                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1097                 if (page->index == 0)
1098                         set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1099         }
1100 out_writepage:
1101         f2fs_put_dnode(&dn);
1102         return err;
1103 }
1104
1105 static int f2fs_write_data_page(struct page *page,
1106                                         struct writeback_control *wbc)
1107 {
1108         struct inode *inode = page->mapping->host;
1109         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110         loff_t i_size = i_size_read(inode);
1111         const pgoff_t end_index = ((unsigned long long) i_size)
1112                                                         >> PAGE_CACHE_SHIFT;
1113         unsigned offset = 0;
1114         bool need_balance_fs = false;
1115         int err = 0;
1116         struct f2fs_io_info fio = {
1117                 .sbi = sbi,
1118                 .type = DATA,
1119                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1120                 .page = page,
1121                 .encrypted_page = NULL,
1122         };
1123
1124         trace_f2fs_writepage(page, DATA);
1125
1126         if (page->index < end_index)
1127                 goto write;
1128
1129         /*
1130          * If the offset is out-of-range of file size,
1131          * this page does not have to be written to disk.
1132          */
1133         offset = i_size & (PAGE_CACHE_SIZE - 1);
1134         if ((page->index >= end_index + 1) || !offset)
1135                 goto out;
1136
1137         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1138 write:
1139         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1140                 goto redirty_out;
1141         if (f2fs_is_drop_cache(inode))
1142                 goto out;
1143         if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1144                         available_free_memory(sbi, BASE_CHECK))
1145                 goto redirty_out;
1146
1147         /* Dentry blocks are controlled by checkpoint */
1148         if (S_ISDIR(inode->i_mode)) {
1149                 if (unlikely(f2fs_cp_error(sbi)))
1150                         goto redirty_out;
1151                 err = do_write_data_page(&fio);
1152                 goto done;
1153         }
1154
1155         /* we should bypass data pages to proceed the kworkder jobs */
1156         if (unlikely(f2fs_cp_error(sbi))) {
1157                 SetPageError(page);
1158                 goto out;
1159         }
1160
1161         if (!wbc->for_reclaim)
1162                 need_balance_fs = true;
1163         else if (has_not_enough_free_secs(sbi, 0))
1164                 goto redirty_out;
1165
1166         err = -EAGAIN;
1167         f2fs_lock_op(sbi);
1168         if (f2fs_has_inline_data(inode))
1169                 err = f2fs_write_inline_data(inode, page);
1170         if (err == -EAGAIN)
1171                 err = do_write_data_page(&fio);
1172         f2fs_unlock_op(sbi);
1173 done:
1174         if (err && err != -ENOENT)
1175                 goto redirty_out;
1176
1177         clear_cold_data(page);
1178 out:
1179         inode_dec_dirty_pages(inode);
1180         if (err)
1181                 ClearPageUptodate(page);
1182         unlock_page(page);
1183         if (need_balance_fs)
1184                 f2fs_balance_fs(sbi);
1185         if (wbc->for_reclaim)
1186                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1187         return 0;
1188
1189 redirty_out:
1190         redirty_page_for_writepage(wbc, page);
1191         return AOP_WRITEPAGE_ACTIVATE;
1192 }
1193
1194 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1195                         void *data)
1196 {
1197         struct address_space *mapping = data;
1198         int ret = mapping->a_ops->writepage(page, wbc);
1199         mapping_set_error(mapping, ret);
1200         return ret;
1201 }
1202
1203 /*
1204  * This function was copied from write_cche_pages from mm/page-writeback.c.
1205  * The major change is making write step of cold data page separately from
1206  * warm/hot data page.
1207  */
1208 static int f2fs_write_cache_pages(struct address_space *mapping,
1209                         struct writeback_control *wbc, writepage_t writepage,
1210                         void *data)
1211 {
1212         int ret = 0;
1213         int done = 0;
1214         struct pagevec pvec;
1215         int nr_pages;
1216         pgoff_t uninitialized_var(writeback_index);
1217         pgoff_t index;
1218         pgoff_t end;            /* Inclusive */
1219         pgoff_t done_index;
1220         int cycled;
1221         int range_whole = 0;
1222         int tag;
1223         int step = 0;
1224
1225         pagevec_init(&pvec, 0);
1226 next:
1227         if (wbc->range_cyclic) {
1228                 writeback_index = mapping->writeback_index; /* prev offset */
1229                 index = writeback_index;
1230                 if (index == 0)
1231                         cycled = 1;
1232                 else
1233                         cycled = 0;
1234                 end = -1;
1235         } else {
1236                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1237                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1238                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1239                         range_whole = 1;
1240                 cycled = 1; /* ignore range_cyclic tests */
1241         }
1242         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1243                 tag = PAGECACHE_TAG_TOWRITE;
1244         else
1245                 tag = PAGECACHE_TAG_DIRTY;
1246 retry:
1247         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1248                 tag_pages_for_writeback(mapping, index, end);
1249         done_index = index;
1250         while (!done && (index <= end)) {
1251                 int i;
1252
1253                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1254                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1255                 if (nr_pages == 0)
1256                         break;
1257
1258                 for (i = 0; i < nr_pages; i++) {
1259                         struct page *page = pvec.pages[i];
1260
1261                         if (page->index > end) {
1262                                 done = 1;
1263                                 break;
1264                         }
1265
1266                         done_index = page->index;
1267
1268                         lock_page(page);
1269
1270                         if (unlikely(page->mapping != mapping)) {
1271 continue_unlock:
1272                                 unlock_page(page);
1273                                 continue;
1274                         }
1275
1276                         if (!PageDirty(page)) {
1277                                 /* someone wrote it for us */
1278                                 goto continue_unlock;
1279                         }
1280
1281                         if (step == is_cold_data(page))
1282                                 goto continue_unlock;
1283
1284                         if (PageWriteback(page)) {
1285                                 if (wbc->sync_mode != WB_SYNC_NONE)
1286                                         f2fs_wait_on_page_writeback(page, DATA);
1287                                 else
1288                                         goto continue_unlock;
1289                         }
1290
1291                         BUG_ON(PageWriteback(page));
1292                         if (!clear_page_dirty_for_io(page))
1293                                 goto continue_unlock;
1294
1295                         ret = (*writepage)(page, wbc, data);
1296                         if (unlikely(ret)) {
1297                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1298                                         unlock_page(page);
1299                                         ret = 0;
1300                                 } else {
1301                                         done_index = page->index + 1;
1302                                         done = 1;
1303                                         break;
1304                                 }
1305                         }
1306
1307                         if (--wbc->nr_to_write <= 0 &&
1308                             wbc->sync_mode == WB_SYNC_NONE) {
1309                                 done = 1;
1310                                 break;
1311                         }
1312                 }
1313                 pagevec_release(&pvec);
1314                 cond_resched();
1315         }
1316
1317         if (step < 1) {
1318                 step++;
1319                 goto next;
1320         }
1321
1322         if (!cycled && !done) {
1323                 cycled = 1;
1324                 index = 0;
1325                 end = writeback_index - 1;
1326                 goto retry;
1327         }
1328         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1329                 mapping->writeback_index = done_index;
1330
1331         return ret;
1332 }
1333
1334 static int f2fs_write_data_pages(struct address_space *mapping,
1335                             struct writeback_control *wbc)
1336 {
1337         struct inode *inode = mapping->host;
1338         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1339         bool locked = false;
1340         int ret;
1341         long diff;
1342
1343         trace_f2fs_writepages(mapping->host, wbc, DATA);
1344
1345         /* deal with chardevs and other special file */
1346         if (!mapping->a_ops->writepage)
1347                 return 0;
1348
1349         /* skip writing if there is no dirty page in this inode */
1350         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1351                 return 0;
1352
1353         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1354                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1355                         available_free_memory(sbi, DIRTY_DENTS))
1356                 goto skip_write;
1357
1358         /* during POR, we don't need to trigger writepage at all. */
1359         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1360                 goto skip_write;
1361
1362         diff = nr_pages_to_write(sbi, DATA, wbc);
1363
1364         if (!S_ISDIR(inode->i_mode)) {
1365                 mutex_lock(&sbi->writepages);
1366                 locked = true;
1367         }
1368         ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1369         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1370         if (locked)
1371                 mutex_unlock(&sbi->writepages);
1372
1373         remove_dirty_dir_inode(inode);
1374
1375         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1376         return ret;
1377
1378 skip_write:
1379         wbc->pages_skipped += get_dirty_pages(inode);
1380         return 0;
1381 }
1382
1383 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1384 {
1385         struct inode *inode = mapping->host;
1386
1387         if (to > inode->i_size) {
1388                 truncate_pagecache(inode, inode->i_size);
1389                 truncate_blocks(inode, inode->i_size, true);
1390         }
1391 }
1392
1393 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1394                 loff_t pos, unsigned len, unsigned flags,
1395                 struct page **pagep, void **fsdata)
1396 {
1397         struct inode *inode = mapping->host;
1398         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1399         struct page *page = NULL;
1400         struct page *ipage;
1401         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1402         struct dnode_of_data dn;
1403         int err = 0;
1404
1405         trace_android_fs_datawrite_start(inode, pos, len,
1406                                          current->pid, current->comm);
1407         trace_f2fs_write_begin(inode, pos, len, flags);
1408
1409         f2fs_balance_fs(sbi);
1410
1411         /*
1412          * We should check this at this moment to avoid deadlock on inode page
1413          * and #0 page. The locking rule for inline_data conversion should be:
1414          * lock_page(page #0) -> lock_page(inode_page)
1415          */
1416         if (index != 0) {
1417                 err = f2fs_convert_inline_inode(inode);
1418                 if (err)
1419                         goto fail;
1420         }
1421 repeat:
1422         page = grab_cache_page_write_begin(mapping, index, flags);
1423         if (!page) {
1424                 err = -ENOMEM;
1425                 goto fail;
1426         }
1427
1428         *pagep = page;
1429
1430         f2fs_lock_op(sbi);
1431
1432         /* check inline_data */
1433         ipage = get_node_page(sbi, inode->i_ino);
1434         if (IS_ERR(ipage)) {
1435                 err = PTR_ERR(ipage);
1436                 goto unlock_fail;
1437         }
1438
1439         set_new_dnode(&dn, inode, ipage, ipage, 0);
1440
1441         if (f2fs_has_inline_data(inode)) {
1442                 if (pos + len <= MAX_INLINE_DATA) {
1443                         read_inline_data(page, ipage);
1444                         set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1445                         sync_inode_page(&dn);
1446                         goto put_next;
1447                 }
1448                 err = f2fs_convert_inline_page(&dn, page);
1449                 if (err)
1450                         goto put_fail;
1451         }
1452
1453         err = f2fs_get_block(&dn, index);
1454         if (err)
1455                 goto put_fail;
1456 put_next:
1457         f2fs_put_dnode(&dn);
1458         f2fs_unlock_op(sbi);
1459
1460         f2fs_wait_on_page_writeback(page, DATA);
1461
1462         /* wait for GCed encrypted page writeback */
1463         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1464                 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
1465
1466         if (len == PAGE_CACHE_SIZE)
1467                 goto out_update;
1468         if (PageUptodate(page))
1469                 goto out_clear;
1470
1471         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1472                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1473                 unsigned end = start + len;
1474
1475                 /* Reading beyond i_size is simple: memset to zero */
1476                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1477                 goto out_update;
1478         }
1479
1480         if (dn.data_blkaddr == NEW_ADDR) {
1481                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1482         } else {
1483                 struct f2fs_io_info fio = {
1484                         .sbi = sbi,
1485                         .type = DATA,
1486                         .rw = READ_SYNC,
1487                         .blk_addr = dn.data_blkaddr,
1488                         .page = page,
1489                         .encrypted_page = NULL,
1490                 };
1491                 err = f2fs_submit_page_bio(&fio);
1492                 if (err)
1493                         goto fail;
1494
1495                 lock_page(page);
1496                 if (unlikely(!PageUptodate(page))) {
1497                         err = -EIO;
1498                         goto fail;
1499                 }
1500                 if (unlikely(page->mapping != mapping)) {
1501                         f2fs_put_page(page, 1);
1502                         goto repeat;
1503                 }
1504
1505                 /* avoid symlink page */
1506                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1507                         err = f2fs_decrypt_one(inode, page);
1508                         if (err)
1509                                 goto fail;
1510                 }
1511         }
1512 out_update:
1513         SetPageUptodate(page);
1514 out_clear:
1515         clear_cold_data(page);
1516         return 0;
1517
1518 put_fail:
1519         f2fs_put_dnode(&dn);
1520 unlock_fail:
1521         f2fs_unlock_op(sbi);
1522 fail:
1523         f2fs_put_page(page, 1);
1524         f2fs_write_failed(mapping, pos + len);
1525         return err;
1526 }
1527
1528 static int f2fs_write_end(struct file *file,
1529                         struct address_space *mapping,
1530                         loff_t pos, unsigned len, unsigned copied,
1531                         struct page *page, void *fsdata)
1532 {
1533         struct inode *inode = page->mapping->host;
1534
1535         trace_android_fs_datawrite_end(inode, pos, len);
1536         trace_f2fs_write_end(inode, pos, len, copied);
1537
1538         set_page_dirty(page);
1539
1540         if (pos + copied > i_size_read(inode)) {
1541                 i_size_write(inode, pos + copied);
1542                 mark_inode_dirty(inode);
1543                 update_inode_page(inode);
1544         }
1545
1546         f2fs_put_page(page, 1);
1547         return copied;
1548 }
1549
1550 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1551                            loff_t offset)
1552 {
1553         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1554
1555         if (offset & blocksize_mask)
1556                 return -EINVAL;
1557
1558         if (iov_iter_alignment(iter) & blocksize_mask)
1559                 return -EINVAL;
1560
1561         return 0;
1562 }
1563
1564 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1565                               loff_t offset)
1566 {
1567         struct file *file = iocb->ki_filp;
1568         struct address_space *mapping = file->f_mapping;
1569         struct inode *inode = mapping->host;
1570         size_t count = iov_iter_count(iter);
1571         int err;
1572
1573         /* we don't need to use inline_data strictly */
1574         if (f2fs_has_inline_data(inode)) {
1575                 err = f2fs_convert_inline_inode(inode);
1576                 if (err)
1577                         return err;
1578         }
1579
1580         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1581                 return 0;
1582
1583         err = check_direct_IO(inode, iter, offset);
1584         if (err)
1585                 return err;
1586
1587         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1588
1589         if (trace_android_fs_dataread_start_enabled() &&
1590             (iov_iter_rw(iter) == READ))
1591                 trace_android_fs_dataread_start(inode, offset,
1592                                                 count, current->pid,
1593                                                 current->comm);
1594         if (trace_android_fs_datawrite_start_enabled() &&
1595             (iov_iter_rw(iter) == WRITE))
1596                 trace_android_fs_datawrite_start(inode, offset, count,
1597                                                  current->pid, current->comm);
1598
1599         if (iov_iter_rw(iter) == WRITE) {
1600                 __allocate_data_blocks(inode, offset, count);
1601                 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1602                         err = -EIO;
1603                         goto out;
1604                 }
1605         }
1606
1607         err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1608 out:
1609         if (err < 0 && iov_iter_rw(iter) == WRITE)
1610                 f2fs_write_failed(mapping, offset + count);
1611
1612         if (trace_android_fs_dataread_start_enabled() &&
1613             (iov_iter_rw(iter) == READ))
1614                 trace_android_fs_dataread_end(inode, offset, count);
1615         if (trace_android_fs_datawrite_start_enabled() &&
1616             (iov_iter_rw(iter) == WRITE))
1617                 trace_android_fs_datawrite_end(inode, offset, count);
1618
1619         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1620
1621         return err;
1622 }
1623
1624 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1625                                                         unsigned int length)
1626 {
1627         struct inode *inode = page->mapping->host;
1628         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1629
1630         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1631                 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1632                 return;
1633
1634         if (PageDirty(page)) {
1635                 if (inode->i_ino == F2FS_META_INO(sbi))
1636                         dec_page_count(sbi, F2FS_DIRTY_META);
1637                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1638                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1639                 else
1640                         inode_dec_dirty_pages(inode);
1641         }
1642
1643         /* This is atomic written page, keep Private */
1644         if (IS_ATOMIC_WRITTEN_PAGE(page))
1645                 return;
1646
1647         ClearPagePrivate(page);
1648 }
1649
1650 int f2fs_release_page(struct page *page, gfp_t wait)
1651 {
1652         /* If this is dirty page, keep PagePrivate */
1653         if (PageDirty(page))
1654                 return 0;
1655
1656         /* This is atomic written page, keep Private */
1657         if (IS_ATOMIC_WRITTEN_PAGE(page))
1658                 return 0;
1659
1660         ClearPagePrivate(page);
1661         return 1;
1662 }
1663
1664 static int f2fs_set_data_page_dirty(struct page *page)
1665 {
1666         struct address_space *mapping = page->mapping;
1667         struct inode *inode = mapping->host;
1668
1669         trace_f2fs_set_page_dirty(page, DATA);
1670
1671         SetPageUptodate(page);
1672
1673         if (f2fs_is_atomic_file(inode)) {
1674                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1675                         register_inmem_page(inode, page);
1676                         return 1;
1677                 }
1678                 /*
1679                  * Previously, this page has been registered, we just
1680                  * return here.
1681                  */
1682                 return 0;
1683         }
1684
1685         if (!PageDirty(page)) {
1686                 __set_page_dirty_nobuffers(page);
1687                 update_dirty_page(inode, page);
1688                 return 1;
1689         }
1690         return 0;
1691 }
1692
1693 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1694 {
1695         struct inode *inode = mapping->host;
1696
1697         if (f2fs_has_inline_data(inode))
1698                 return 0;
1699
1700         /* make sure allocating whole blocks */
1701         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1702                 filemap_write_and_wait(mapping);
1703
1704         return generic_block_bmap(mapping, block, get_data_block_bmap);
1705 }
1706
1707 const struct address_space_operations f2fs_dblock_aops = {
1708         .readpage       = f2fs_read_data_page,
1709         .readpages      = f2fs_read_data_pages,
1710         .writepage      = f2fs_write_data_page,
1711         .writepages     = f2fs_write_data_pages,
1712         .write_begin    = f2fs_write_begin,
1713         .write_end      = f2fs_write_end,
1714         .set_page_dirty = f2fs_set_data_page_dirty,
1715         .invalidatepage = f2fs_invalidate_page,
1716         .releasepage    = f2fs_release_page,
1717         .direct_IO      = f2fs_direct_IO,
1718         .bmap           = f2fs_bmap,
1719 };