arm64: dts: rockchip: Add reset property for rk3368 mipi
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47 #include <trace/events/android_fs.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76                                            EXT4_INODE_SIZE(inode->i_sb) -
77                                            offset);
78                 }
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                                 struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         int ea_blocks = EXT4_I(inode)->i_file_acl ?
152                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153
154         if (ext4_has_inline_data(inode))
155                 return 0;
156
157         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158 }
159
160 /*
161  * Restart the transaction associated with *handle.  This does a commit,
162  * so before we call here everything must be consistently dirtied against
163  * this transaction.
164  */
165 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
166                                  int nblocks)
167 {
168         int ret;
169
170         /*
171          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
172          * moment, get_block can be called only for blocks inside i_size since
173          * page cache has been already dropped and writes are blocked by
174          * i_mutex. So we can safely drop the i_data_sem here.
175          */
176         BUG_ON(EXT4_JOURNAL(inode) == NULL);
177         jbd_debug(2, "restarting handle %p\n", handle);
178         up_write(&EXT4_I(inode)->i_data_sem);
179         ret = ext4_journal_restart(handle, nblocks);
180         down_write(&EXT4_I(inode)->i_data_sem);
181         ext4_discard_preallocations(inode);
182
183         return ret;
184 }
185
186 /*
187  * Called at the last iput() if i_nlink is zero.
188  */
189 void ext4_evict_inode(struct inode *inode)
190 {
191         handle_t *handle;
192         int err;
193
194         trace_ext4_evict_inode(inode);
195
196         if (inode->i_nlink) {
197                 /*
198                  * When journalling data dirty buffers are tracked only in the
199                  * journal. So although mm thinks everything is clean and
200                  * ready for reaping the inode might still have some pages to
201                  * write in the running transaction or waiting to be
202                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
203                  * (via truncate_inode_pages()) to discard these buffers can
204                  * cause data loss. Also even if we did not discard these
205                  * buffers, we would have no way to find them after the inode
206                  * is reaped and thus user could see stale data if he tries to
207                  * read them before the transaction is checkpointed. So be
208                  * careful and force everything to disk here... We use
209                  * ei->i_datasync_tid to store the newest transaction
210                  * containing inode's data.
211                  *
212                  * Note that directories do not have this problem because they
213                  * don't use page cache.
214                  */
215                 if (inode->i_ino != EXT4_JOURNAL_INO &&
216                     ext4_should_journal_data(inode) &&
217                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
218                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
219                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
220
221                         jbd2_complete_transaction(journal, commit_tid);
222                         filemap_write_and_wait(&inode->i_data);
223                 }
224                 truncate_inode_pages_final(&inode->i_data);
225
226                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
227                 goto no_delete;
228         }
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232         dquot_initialize(inode);
233
234         if (ext4_should_order_data(inode))
235                 ext4_begin_ordered_truncate(inode, 0);
236         truncate_inode_pages_final(&inode->i_data);
237
238         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
239
240         /*
241          * Protect us against freezing - iput() caller didn't have to have any
242          * protection against it
243          */
244         sb_start_intwrite(inode->i_sb);
245         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
246                                     ext4_blocks_for_truncate(inode)+3);
247         if (IS_ERR(handle)) {
248                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249                 /*
250                  * If we're going to skip the normal cleanup, we still need to
251                  * make sure that the in-core orphan linked list is properly
252                  * cleaned up.
253                  */
254                 ext4_orphan_del(NULL, inode);
255                 sb_end_intwrite(inode->i_sb);
256                 goto no_delete;
257         }
258
259         if (IS_SYNC(inode))
260                 ext4_handle_sync(handle);
261         inode->i_size = 0;
262         err = ext4_mark_inode_dirty(handle, inode);
263         if (err) {
264                 ext4_warning(inode->i_sb,
265                              "couldn't mark inode dirty (err %d)", err);
266                 goto stop_handle;
267         }
268         if (inode->i_blocks)
269                 ext4_truncate(inode);
270
271         /*
272          * ext4_ext_truncate() doesn't reserve any slop when it
273          * restarts journal transactions; therefore there may not be
274          * enough credits left in the handle to remove the inode from
275          * the orphan list and set the dtime field.
276          */
277         if (!ext4_handle_has_enough_credits(handle, 3)) {
278                 err = ext4_journal_extend(handle, 3);
279                 if (err > 0)
280                         err = ext4_journal_restart(handle, 3);
281                 if (err != 0) {
282                         ext4_warning(inode->i_sb,
283                                      "couldn't extend journal (err %d)", err);
284                 stop_handle:
285                         ext4_journal_stop(handle);
286                         ext4_orphan_del(NULL, inode);
287                         sb_end_intwrite(inode->i_sb);
288                         goto no_delete;
289                 }
290         }
291
292         /*
293          * Kill off the orphan record which ext4_truncate created.
294          * AKPM: I think this can be inside the above `if'.
295          * Note that ext4_orphan_del() has to be able to cope with the
296          * deletion of a non-existent orphan - this is because we don't
297          * know if ext4_truncate() actually created an orphan record.
298          * (Well, we could do this if we need to, but heck - it works)
299          */
300         ext4_orphan_del(handle, inode);
301         EXT4_I(inode)->i_dtime  = get_seconds();
302
303         /*
304          * One subtle ordering requirement: if anything has gone wrong
305          * (transaction abort, IO errors, whatever), then we can still
306          * do these next steps (the fs will already have been marked as
307          * having errors), but we can't free the inode if the mark_dirty
308          * fails.
309          */
310         if (ext4_mark_inode_dirty(handle, inode))
311                 /* If that failed, just do the required in-core inode clear. */
312                 ext4_clear_inode(inode);
313         else
314                 ext4_free_inode(handle, inode);
315         ext4_journal_stop(handle);
316         sb_end_intwrite(inode->i_sb);
317         return;
318 no_delete:
319         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
320 }
321
322 #ifdef CONFIG_QUOTA
323 qsize_t *ext4_get_reserved_space(struct inode *inode)
324 {
325         return &EXT4_I(inode)->i_reserved_quota;
326 }
327 #endif
328
329 /*
330  * Called with i_data_sem down, which is important since we can call
331  * ext4_discard_preallocations() from here.
332  */
333 void ext4_da_update_reserve_space(struct inode *inode,
334                                         int used, int quota_claim)
335 {
336         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
337         struct ext4_inode_info *ei = EXT4_I(inode);
338
339         spin_lock(&ei->i_block_reservation_lock);
340         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
341         if (unlikely(used > ei->i_reserved_data_blocks)) {
342                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
343                          "with only %d reserved data blocks",
344                          __func__, inode->i_ino, used,
345                          ei->i_reserved_data_blocks);
346                 WARN_ON(1);
347                 used = ei->i_reserved_data_blocks;
348         }
349
350         /* Update per-inode reservations */
351         ei->i_reserved_data_blocks -= used;
352         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
353
354         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
355
356         /* Update quota subsystem for data blocks */
357         if (quota_claim)
358                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
359         else {
360                 /*
361                  * We did fallocate with an offset that is already delayed
362                  * allocated. So on delayed allocated writeback we should
363                  * not re-claim the quota for fallocated blocks.
364                  */
365                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
366         }
367
368         /*
369          * If we have done all the pending block allocations and if
370          * there aren't any writers on the inode, we can discard the
371          * inode's preallocations.
372          */
373         if ((ei->i_reserved_data_blocks == 0) &&
374             (atomic_read(&inode->i_writecount) == 0))
375                 ext4_discard_preallocations(inode);
376 }
377
378 static int __check_block_validity(struct inode *inode, const char *func,
379                                 unsigned int line,
380                                 struct ext4_map_blocks *map)
381 {
382         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
383                                    map->m_len)) {
384                 ext4_error_inode(inode, func, line, map->m_pblk,
385                                  "lblock %lu mapped to illegal pblock "
386                                  "(length %d)", (unsigned long) map->m_lblk,
387                                  map->m_len);
388                 return -EFSCORRUPTED;
389         }
390         return 0;
391 }
392
393 #define check_block_validity(inode, map)        \
394         __check_block_validity((inode), __func__, __LINE__, (map))
395
396 #ifdef ES_AGGRESSIVE_TEST
397 static void ext4_map_blocks_es_recheck(handle_t *handle,
398                                        struct inode *inode,
399                                        struct ext4_map_blocks *es_map,
400                                        struct ext4_map_blocks *map,
401                                        int flags)
402 {
403         int retval;
404
405         map->m_flags = 0;
406         /*
407          * There is a race window that the result is not the same.
408          * e.g. xfstests #223 when dioread_nolock enables.  The reason
409          * is that we lookup a block mapping in extent status tree with
410          * out taking i_data_sem.  So at the time the unwritten extent
411          * could be converted.
412          */
413         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
414                 down_read(&EXT4_I(inode)->i_data_sem);
415         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
416                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
417                                              EXT4_GET_BLOCKS_KEEP_SIZE);
418         } else {
419                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
420                                              EXT4_GET_BLOCKS_KEEP_SIZE);
421         }
422         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
423                 up_read((&EXT4_I(inode)->i_data_sem));
424
425         /*
426          * We don't check m_len because extent will be collpased in status
427          * tree.  So the m_len might not equal.
428          */
429         if (es_map->m_lblk != map->m_lblk ||
430             es_map->m_flags != map->m_flags ||
431             es_map->m_pblk != map->m_pblk) {
432                 printk("ES cache assertion failed for inode: %lu "
433                        "es_cached ex [%d/%d/%llu/%x] != "
434                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
435                        inode->i_ino, es_map->m_lblk, es_map->m_len,
436                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
437                        map->m_len, map->m_pblk, map->m_flags,
438                        retval, flags);
439         }
440 }
441 #endif /* ES_AGGRESSIVE_TEST */
442
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocated.
456  * if create==0 and the blocks are pre-allocated and unwritten block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466                     struct ext4_map_blocks *map, int flags)
467 {
468         struct extent_status es;
469         int retval;
470         int ret = 0;
471 #ifdef ES_AGGRESSIVE_TEST
472         struct ext4_map_blocks orig_map;
473
474         memcpy(&orig_map, map, sizeof(*map));
475 #endif
476
477         map->m_flags = 0;
478         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
479                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
480                   (unsigned long) map->m_lblk);
481
482         /*
483          * ext4_map_blocks returns an int, and m_len is an unsigned int
484          */
485         if (unlikely(map->m_len > INT_MAX))
486                 map->m_len = INT_MAX;
487
488         /* We can handle the block number less than EXT_MAX_BLOCKS */
489         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
490                 return -EFSCORRUPTED;
491
492         /* Lookup extent status tree firstly */
493         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
494                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
495                         map->m_pblk = ext4_es_pblock(&es) +
496                                         map->m_lblk - es.es_lblk;
497                         map->m_flags |= ext4_es_is_written(&es) ?
498                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
499                         retval = es.es_len - (map->m_lblk - es.es_lblk);
500                         if (retval > map->m_len)
501                                 retval = map->m_len;
502                         map->m_len = retval;
503                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
504                         retval = 0;
505                 } else {
506                         BUG_ON(1);
507                 }
508 #ifdef ES_AGGRESSIVE_TEST
509                 ext4_map_blocks_es_recheck(handle, inode, map,
510                                            &orig_map, flags);
511 #endif
512                 goto found;
513         }
514
515         /*
516          * Try to see if we can get the block without requesting a new
517          * file system block.
518          */
519         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
520                 down_read(&EXT4_I(inode)->i_data_sem);
521         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
522                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
523                                              EXT4_GET_BLOCKS_KEEP_SIZE);
524         } else {
525                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
526                                              EXT4_GET_BLOCKS_KEEP_SIZE);
527         }
528         if (retval > 0) {
529                 unsigned int status;
530
531                 if (unlikely(retval != map->m_len)) {
532                         ext4_warning(inode->i_sb,
533                                      "ES len assertion failed for inode "
534                                      "%lu: retval %d != map->m_len %d",
535                                      inode->i_ino, retval, map->m_len);
536                         WARN_ON(1);
537                 }
538
539                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
540                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
541                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
542                     !(status & EXTENT_STATUS_WRITTEN) &&
543                     ext4_find_delalloc_range(inode, map->m_lblk,
544                                              map->m_lblk + map->m_len - 1))
545                         status |= EXTENT_STATUS_DELAYED;
546                 ret = ext4_es_insert_extent(inode, map->m_lblk,
547                                             map->m_len, map->m_pblk, status);
548                 if (ret < 0)
549                         retval = ret;
550         }
551         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552                 up_read((&EXT4_I(inode)->i_data_sem));
553
554 found:
555         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
556                 ret = check_block_validity(inode, map);
557                 if (ret != 0)
558                         return ret;
559         }
560
561         /* If it is only a block(s) look up */
562         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
563                 return retval;
564
565         /*
566          * Returns if the blocks have already allocated
567          *
568          * Note that if blocks have been preallocated
569          * ext4_ext_get_block() returns the create = 0
570          * with buffer head unmapped.
571          */
572         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
573                 /*
574                  * If we need to convert extent to unwritten
575                  * we continue and do the actual work in
576                  * ext4_ext_map_blocks()
577                  */
578                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
579                         return retval;
580
581         /*
582          * Here we clear m_flags because after allocating an new extent,
583          * it will be set again.
584          */
585         map->m_flags &= ~EXT4_MAP_FLAGS;
586
587         /*
588          * New blocks allocate and/or writing to unwritten extent
589          * will possibly result in updating i_data, so we take
590          * the write lock of i_data_sem, and call get_block()
591          * with create == 1 flag.
592          */
593         down_write(&EXT4_I(inode)->i_data_sem);
594
595         /*
596          * We need to check for EXT4 here because migrate
597          * could have changed the inode type in between
598          */
599         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
600                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
601         } else {
602                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
603
604                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
605                         /*
606                          * We allocated new blocks which will result in
607                          * i_data's format changing.  Force the migrate
608                          * to fail by clearing migrate flags
609                          */
610                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
611                 }
612
613                 /*
614                  * Update reserved blocks/metadata blocks after successful
615                  * block allocation which had been deferred till now. We don't
616                  * support fallocate for non extent files. So we can update
617                  * reserve space here.
618                  */
619                 if ((retval > 0) &&
620                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
621                         ext4_da_update_reserve_space(inode, retval, 1);
622         }
623
624         if (retval > 0) {
625                 unsigned int status;
626
627                 if (unlikely(retval != map->m_len)) {
628                         ext4_warning(inode->i_sb,
629                                      "ES len assertion failed for inode "
630                                      "%lu: retval %d != map->m_len %d",
631                                      inode->i_ino, retval, map->m_len);
632                         WARN_ON(1);
633                 }
634
635                 /*
636                  * If the extent has been zeroed out, we don't need to update
637                  * extent status tree.
638                  */
639                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
640                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
641                         if (ext4_es_is_written(&es))
642                                 goto has_zeroout;
643                 }
644                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
645                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
646                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
647                     !(status & EXTENT_STATUS_WRITTEN) &&
648                     ext4_find_delalloc_range(inode, map->m_lblk,
649                                              map->m_lblk + map->m_len - 1))
650                         status |= EXTENT_STATUS_DELAYED;
651                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
652                                             map->m_pblk, status);
653                 if (ret < 0)
654                         retval = ret;
655         }
656
657 has_zeroout:
658         up_write((&EXT4_I(inode)->i_data_sem));
659         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
660                 ret = check_block_validity(inode, map);
661                 if (ret != 0)
662                         return ret;
663         }
664         return retval;
665 }
666
667 /*
668  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
669  * we have to be careful as someone else may be manipulating b_state as well.
670  */
671 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
672 {
673         unsigned long old_state;
674         unsigned long new_state;
675
676         flags &= EXT4_MAP_FLAGS;
677
678         /* Dummy buffer_head? Set non-atomically. */
679         if (!bh->b_page) {
680                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
681                 return;
682         }
683         /*
684          * Someone else may be modifying b_state. Be careful! This is ugly but
685          * once we get rid of using bh as a container for mapping information
686          * to pass to / from get_block functions, this can go away.
687          */
688         do {
689                 old_state = READ_ONCE(bh->b_state);
690                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
691         } while (unlikely(
692                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
693 }
694
695 /* Maximum number of blocks we map for direct IO at once. */
696 #define DIO_MAX_BLOCKS 4096
697
698 static int _ext4_get_block(struct inode *inode, sector_t iblock,
699                            struct buffer_head *bh, int flags)
700 {
701         handle_t *handle = ext4_journal_current_handle();
702         struct ext4_map_blocks map;
703         int ret = 0, started = 0;
704         int dio_credits;
705
706         if (ext4_has_inline_data(inode))
707                 return -ERANGE;
708
709         map.m_lblk = iblock;
710         map.m_len = bh->b_size >> inode->i_blkbits;
711
712         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
713                 /* Direct IO write... */
714                 if (map.m_len > DIO_MAX_BLOCKS)
715                         map.m_len = DIO_MAX_BLOCKS;
716                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
717                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
718                                             dio_credits);
719                 if (IS_ERR(handle)) {
720                         ret = PTR_ERR(handle);
721                         return ret;
722                 }
723                 started = 1;
724         }
725
726         ret = ext4_map_blocks(handle, inode, &map, flags);
727         if (ret > 0) {
728                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
729
730                 map_bh(bh, inode->i_sb, map.m_pblk);
731                 ext4_update_bh_state(bh, map.m_flags);
732                 if (IS_DAX(inode) && buffer_unwritten(bh)) {
733                         /*
734                          * dgc: I suspect unwritten conversion on ext4+DAX is
735                          * fundamentally broken here when there are concurrent
736                          * read/write in progress on this inode.
737                          */
738                         WARN_ON_ONCE(io_end);
739                         bh->b_assoc_map = inode->i_mapping;
740                         bh->b_private = (void *)(unsigned long)iblock;
741                 }
742                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
743                         set_buffer_defer_completion(bh);
744                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
745                 ret = 0;
746         }
747         if (started)
748                 ext4_journal_stop(handle);
749         return ret;
750 }
751
752 int ext4_get_block(struct inode *inode, sector_t iblock,
753                    struct buffer_head *bh, int create)
754 {
755         return _ext4_get_block(inode, iblock, bh,
756                                create ? EXT4_GET_BLOCKS_CREATE : 0);
757 }
758
759 /*
760  * `handle' can be NULL if create is zero
761  */
762 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
763                                 ext4_lblk_t block, int map_flags)
764 {
765         struct ext4_map_blocks map;
766         struct buffer_head *bh;
767         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
768         int err;
769
770         J_ASSERT(handle != NULL || create == 0);
771
772         map.m_lblk = block;
773         map.m_len = 1;
774         err = ext4_map_blocks(handle, inode, &map, map_flags);
775
776         if (err == 0)
777                 return create ? ERR_PTR(-ENOSPC) : NULL;
778         if (err < 0)
779                 return ERR_PTR(err);
780
781         bh = sb_getblk(inode->i_sb, map.m_pblk);
782         if (unlikely(!bh))
783                 return ERR_PTR(-ENOMEM);
784         if (map.m_flags & EXT4_MAP_NEW) {
785                 J_ASSERT(create != 0);
786                 J_ASSERT(handle != NULL);
787
788                 /*
789                  * Now that we do not always journal data, we should
790                  * keep in mind whether this should always journal the
791                  * new buffer as metadata.  For now, regular file
792                  * writes use ext4_get_block instead, so it's not a
793                  * problem.
794                  */
795                 lock_buffer(bh);
796                 BUFFER_TRACE(bh, "call get_create_access");
797                 err = ext4_journal_get_create_access(handle, bh);
798                 if (unlikely(err)) {
799                         unlock_buffer(bh);
800                         goto errout;
801                 }
802                 if (!buffer_uptodate(bh)) {
803                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
804                         set_buffer_uptodate(bh);
805                 }
806                 unlock_buffer(bh);
807                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
808                 err = ext4_handle_dirty_metadata(handle, inode, bh);
809                 if (unlikely(err))
810                         goto errout;
811         } else
812                 BUFFER_TRACE(bh, "not a new buffer");
813         return bh;
814 errout:
815         brelse(bh);
816         return ERR_PTR(err);
817 }
818
819 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
820                                ext4_lblk_t block, int map_flags)
821 {
822         struct buffer_head *bh;
823
824         bh = ext4_getblk(handle, inode, block, map_flags);
825         if (IS_ERR(bh))
826                 return bh;
827         if (!bh || buffer_uptodate(bh))
828                 return bh;
829         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
830         wait_on_buffer(bh);
831         if (buffer_uptodate(bh))
832                 return bh;
833         put_bh(bh);
834         return ERR_PTR(-EIO);
835 }
836
837 int ext4_walk_page_buffers(handle_t *handle,
838                            struct buffer_head *head,
839                            unsigned from,
840                            unsigned to,
841                            int *partial,
842                            int (*fn)(handle_t *handle,
843                                      struct buffer_head *bh))
844 {
845         struct buffer_head *bh;
846         unsigned block_start, block_end;
847         unsigned blocksize = head->b_size;
848         int err, ret = 0;
849         struct buffer_head *next;
850
851         for (bh = head, block_start = 0;
852              ret == 0 && (bh != head || !block_start);
853              block_start = block_end, bh = next) {
854                 next = bh->b_this_page;
855                 block_end = block_start + blocksize;
856                 if (block_end <= from || block_start >= to) {
857                         if (partial && !buffer_uptodate(bh))
858                                 *partial = 1;
859                         continue;
860                 }
861                 err = (*fn)(handle, bh);
862                 if (!ret)
863                         ret = err;
864         }
865         return ret;
866 }
867
868 /*
869  * To preserve ordering, it is essential that the hole instantiation and
870  * the data write be encapsulated in a single transaction.  We cannot
871  * close off a transaction and start a new one between the ext4_get_block()
872  * and the commit_write().  So doing the jbd2_journal_start at the start of
873  * prepare_write() is the right place.
874  *
875  * Also, this function can nest inside ext4_writepage().  In that case, we
876  * *know* that ext4_writepage() has generated enough buffer credits to do the
877  * whole page.  So we won't block on the journal in that case, which is good,
878  * because the caller may be PF_MEMALLOC.
879  *
880  * By accident, ext4 can be reentered when a transaction is open via
881  * quota file writes.  If we were to commit the transaction while thus
882  * reentered, there can be a deadlock - we would be holding a quota
883  * lock, and the commit would never complete if another thread had a
884  * transaction open and was blocking on the quota lock - a ranking
885  * violation.
886  *
887  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
888  * will _not_ run commit under these circumstances because handle->h_ref
889  * is elevated.  We'll still have enough credits for the tiny quotafile
890  * write.
891  */
892 int do_journal_get_write_access(handle_t *handle,
893                                 struct buffer_head *bh)
894 {
895         int dirty = buffer_dirty(bh);
896         int ret;
897
898         if (!buffer_mapped(bh) || buffer_freed(bh))
899                 return 0;
900         /*
901          * __block_write_begin() could have dirtied some buffers. Clean
902          * the dirty bit as jbd2_journal_get_write_access() could complain
903          * otherwise about fs integrity issues. Setting of the dirty bit
904          * by __block_write_begin() isn't a real problem here as we clear
905          * the bit before releasing a page lock and thus writeback cannot
906          * ever write the buffer.
907          */
908         if (dirty)
909                 clear_buffer_dirty(bh);
910         BUFFER_TRACE(bh, "get write access");
911         ret = ext4_journal_get_write_access(handle, bh);
912         if (!ret && dirty)
913                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
914         return ret;
915 }
916
917 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
918                    struct buffer_head *bh_result, int create);
919
920 #ifdef CONFIG_EXT4_FS_ENCRYPTION
921 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
922                                   get_block_t *get_block)
923 {
924         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
925         unsigned to = from + len;
926         struct inode *inode = page->mapping->host;
927         unsigned block_start, block_end;
928         sector_t block;
929         int err = 0;
930         unsigned blocksize = inode->i_sb->s_blocksize;
931         unsigned bbits;
932         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
933         bool decrypt = false;
934
935         BUG_ON(!PageLocked(page));
936         BUG_ON(from > PAGE_CACHE_SIZE);
937         BUG_ON(to > PAGE_CACHE_SIZE);
938         BUG_ON(from > to);
939
940         if (!page_has_buffers(page))
941                 create_empty_buffers(page, blocksize, 0);
942         head = page_buffers(page);
943         bbits = ilog2(blocksize);
944         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
945
946         for (bh = head, block_start = 0; bh != head || !block_start;
947             block++, block_start = block_end, bh = bh->b_this_page) {
948                 block_end = block_start + blocksize;
949                 if (block_end <= from || block_start >= to) {
950                         if (PageUptodate(page)) {
951                                 if (!buffer_uptodate(bh))
952                                         set_buffer_uptodate(bh);
953                         }
954                         continue;
955                 }
956                 if (buffer_new(bh))
957                         clear_buffer_new(bh);
958                 if (!buffer_mapped(bh)) {
959                         WARN_ON(bh->b_size != blocksize);
960                         err = get_block(inode, block, bh, 1);
961                         if (err)
962                                 break;
963                         if (buffer_new(bh)) {
964                                 unmap_underlying_metadata(bh->b_bdev,
965                                                           bh->b_blocknr);
966                                 if (PageUptodate(page)) {
967                                         clear_buffer_new(bh);
968                                         set_buffer_uptodate(bh);
969                                         mark_buffer_dirty(bh);
970                                         continue;
971                                 }
972                                 if (block_end > to || block_start < from)
973                                         zero_user_segments(page, to, block_end,
974                                                            block_start, from);
975                                 continue;
976                         }
977                 }
978                 if (PageUptodate(page)) {
979                         if (!buffer_uptodate(bh))
980                                 set_buffer_uptodate(bh);
981                         continue;
982                 }
983                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
984                     !buffer_unwritten(bh) &&
985                     (block_start < from || block_end > to)) {
986                         ll_rw_block(READ, 1, &bh);
987                         *wait_bh++ = bh;
988                         decrypt = ext4_encrypted_inode(inode) &&
989                                 S_ISREG(inode->i_mode);
990                 }
991         }
992         /*
993          * If we issued read requests, let them complete.
994          */
995         while (wait_bh > wait) {
996                 wait_on_buffer(*--wait_bh);
997                 if (!buffer_uptodate(*wait_bh))
998                         err = -EIO;
999         }
1000         if (unlikely(err))
1001                 page_zero_new_buffers(page, from, to);
1002         else if (decrypt)
1003                 err = ext4_decrypt(page);
1004         return err;
1005 }
1006 #endif
1007
1008 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1009                             loff_t pos, unsigned len, unsigned flags,
1010                             struct page **pagep, void **fsdata)
1011 {
1012         struct inode *inode = mapping->host;
1013         int ret, needed_blocks;
1014         handle_t *handle;
1015         int retries = 0;
1016         struct page *page;
1017         pgoff_t index;
1018         unsigned from, to;
1019
1020         trace_android_fs_datawrite_start(inode, pos, len,
1021                                          current->pid, current->comm);
1022         trace_ext4_write_begin(inode, pos, len, flags);
1023         /*
1024          * Reserve one block more for addition to orphan list in case
1025          * we allocate blocks but write fails for some reason
1026          */
1027         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1028         index = pos >> PAGE_CACHE_SHIFT;
1029         from = pos & (PAGE_CACHE_SIZE - 1);
1030         to = from + len;
1031
1032         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1033                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1034                                                     flags, pagep);
1035                 if (ret < 0)
1036                         return ret;
1037                 if (ret == 1)
1038                         return 0;
1039         }
1040
1041         /*
1042          * grab_cache_page_write_begin() can take a long time if the
1043          * system is thrashing due to memory pressure, or if the page
1044          * is being written back.  So grab it first before we start
1045          * the transaction handle.  This also allows us to allocate
1046          * the page (if needed) without using GFP_NOFS.
1047          */
1048 retry_grab:
1049         page = grab_cache_page_write_begin(mapping, index, flags);
1050         if (!page)
1051                 return -ENOMEM;
1052         unlock_page(page);
1053
1054 retry_journal:
1055         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1056         if (IS_ERR(handle)) {
1057                 page_cache_release(page);
1058                 return PTR_ERR(handle);
1059         }
1060
1061         lock_page(page);
1062         if (page->mapping != mapping) {
1063                 /* The page got truncated from under us */
1064                 unlock_page(page);
1065                 page_cache_release(page);
1066                 ext4_journal_stop(handle);
1067                 goto retry_grab;
1068         }
1069         /* In case writeback began while the page was unlocked */
1070         wait_for_stable_page(page);
1071
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073         if (ext4_should_dioread_nolock(inode))
1074                 ret = ext4_block_write_begin(page, pos, len,
1075                                              ext4_get_block_write);
1076         else
1077                 ret = ext4_block_write_begin(page, pos, len,
1078                                              ext4_get_block);
1079 #else
1080         if (ext4_should_dioread_nolock(inode))
1081                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1082         else
1083                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1084 #endif
1085         if (!ret && ext4_should_journal_data(inode)) {
1086                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1087                                              from, to, NULL,
1088                                              do_journal_get_write_access);
1089         }
1090
1091         if (ret) {
1092                 unlock_page(page);
1093                 /*
1094                  * __block_write_begin may have instantiated a few blocks
1095                  * outside i_size.  Trim these off again. Don't need
1096                  * i_size_read because we hold i_mutex.
1097                  *
1098                  * Add inode to orphan list in case we crash before
1099                  * truncate finishes
1100                  */
1101                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1102                         ext4_orphan_add(handle, inode);
1103
1104                 ext4_journal_stop(handle);
1105                 if (pos + len > inode->i_size) {
1106                         ext4_truncate_failed_write(inode);
1107                         /*
1108                          * If truncate failed early the inode might
1109                          * still be on the orphan list; we need to
1110                          * make sure the inode is removed from the
1111                          * orphan list in that case.
1112                          */
1113                         if (inode->i_nlink)
1114                                 ext4_orphan_del(NULL, inode);
1115                 }
1116
1117                 if (ret == -ENOSPC &&
1118                     ext4_should_retry_alloc(inode->i_sb, &retries))
1119                         goto retry_journal;
1120                 page_cache_release(page);
1121                 return ret;
1122         }
1123         *pagep = page;
1124         return ret;
1125 }
1126
1127 /* For write_end() in data=journal mode */
1128 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1129 {
1130         int ret;
1131         if (!buffer_mapped(bh) || buffer_freed(bh))
1132                 return 0;
1133         set_buffer_uptodate(bh);
1134         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1135         clear_buffer_meta(bh);
1136         clear_buffer_prio(bh);
1137         return ret;
1138 }
1139
1140 /*
1141  * We need to pick up the new inode size which generic_commit_write gave us
1142  * `file' can be NULL - eg, when called from page_symlink().
1143  *
1144  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1145  * buffers are managed internally.
1146  */
1147 static int ext4_write_end(struct file *file,
1148                           struct address_space *mapping,
1149                           loff_t pos, unsigned len, unsigned copied,
1150                           struct page *page, void *fsdata)
1151 {
1152         handle_t *handle = ext4_journal_current_handle();
1153         struct inode *inode = mapping->host;
1154         loff_t old_size = inode->i_size;
1155         int ret = 0, ret2;
1156         int i_size_changed = 0;
1157
1158         trace_android_fs_datawrite_end(inode, pos, len);
1159         trace_ext4_write_end(inode, pos, len, copied);
1160         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1161                 ret = ext4_jbd2_file_inode(handle, inode);
1162                 if (ret) {
1163                         unlock_page(page);
1164                         page_cache_release(page);
1165                         goto errout;
1166                 }
1167         }
1168
1169         if (ext4_has_inline_data(inode)) {
1170                 ret = ext4_write_inline_data_end(inode, pos, len,
1171                                                  copied, page);
1172                 if (ret < 0) {
1173                         unlock_page(page);
1174                         put_page(page);
1175                         goto errout;
1176                 }
1177                 copied = ret;
1178         } else
1179                 copied = block_write_end(file, mapping, pos,
1180                                          len, copied, page, fsdata);
1181         /*
1182          * it's important to update i_size while still holding page lock:
1183          * page writeout could otherwise come in and zero beyond i_size.
1184          */
1185         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1186         unlock_page(page);
1187         page_cache_release(page);
1188
1189         if (old_size < pos)
1190                 pagecache_isize_extended(inode, old_size, pos);
1191         /*
1192          * Don't mark the inode dirty under page lock. First, it unnecessarily
1193          * makes the holding time of page lock longer. Second, it forces lock
1194          * ordering of page lock and transaction start for journaling
1195          * filesystems.
1196          */
1197         if (i_size_changed)
1198                 ext4_mark_inode_dirty(handle, inode);
1199
1200         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1201                 /* if we have allocated more blocks and copied
1202                  * less. We will have blocks allocated outside
1203                  * inode->i_size. So truncate them
1204                  */
1205                 ext4_orphan_add(handle, inode);
1206 errout:
1207         ret2 = ext4_journal_stop(handle);
1208         if (!ret)
1209                 ret = ret2;
1210
1211         if (pos + len > inode->i_size) {
1212                 ext4_truncate_failed_write(inode);
1213                 /*
1214                  * If truncate failed early the inode might still be
1215                  * on the orphan list; we need to make sure the inode
1216                  * is removed from the orphan list in that case.
1217                  */
1218                 if (inode->i_nlink)
1219                         ext4_orphan_del(NULL, inode);
1220         }
1221
1222         return ret ? ret : copied;
1223 }
1224
1225 /*
1226  * This is a private version of page_zero_new_buffers() which doesn't
1227  * set the buffer to be dirty, since in data=journalled mode we need
1228  * to call ext4_handle_dirty_metadata() instead.
1229  */
1230 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1231                                             struct page *page,
1232                                             unsigned from, unsigned to)
1233 {
1234         unsigned int block_start = 0, block_end;
1235         struct buffer_head *head, *bh;
1236
1237         bh = head = page_buffers(page);
1238         do {
1239                 block_end = block_start + bh->b_size;
1240                 if (buffer_new(bh)) {
1241                         if (block_end > from && block_start < to) {
1242                                 if (!PageUptodate(page)) {
1243                                         unsigned start, size;
1244
1245                                         start = max(from, block_start);
1246                                         size = min(to, block_end) - start;
1247
1248                                         zero_user(page, start, size);
1249                                         write_end_fn(handle, bh);
1250                                 }
1251                                 clear_buffer_new(bh);
1252                         }
1253                 }
1254                 block_start = block_end;
1255                 bh = bh->b_this_page;
1256         } while (bh != head);
1257 }
1258
1259 static int ext4_journalled_write_end(struct file *file,
1260                                      struct address_space *mapping,
1261                                      loff_t pos, unsigned len, unsigned copied,
1262                                      struct page *page, void *fsdata)
1263 {
1264         handle_t *handle = ext4_journal_current_handle();
1265         struct inode *inode = mapping->host;
1266         loff_t old_size = inode->i_size;
1267         int ret = 0, ret2;
1268         int partial = 0;
1269         unsigned from, to;
1270         int size_changed = 0;
1271
1272         trace_android_fs_datawrite_end(inode, pos, len);
1273         trace_ext4_journalled_write_end(inode, pos, len, copied);
1274         from = pos & (PAGE_CACHE_SIZE - 1);
1275         to = from + len;
1276
1277         BUG_ON(!ext4_handle_valid(handle));
1278
1279         if (ext4_has_inline_data(inode)) {
1280                 ret = ext4_write_inline_data_end(inode, pos, len,
1281                                                  copied, page);
1282                 if (ret < 0) {
1283                         unlock_page(page);
1284                         put_page(page);
1285                         goto errout;
1286                 }
1287                 copied = ret;
1288         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1289                 copied = 0;
1290                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1291         } else {
1292                 if (unlikely(copied < len))
1293                         ext4_journalled_zero_new_buffers(handle, page,
1294                                                          from + copied, to);
1295                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1296                                              from + copied, &partial,
1297                                              write_end_fn);
1298                 if (!partial)
1299                         SetPageUptodate(page);
1300         }
1301         size_changed = ext4_update_inode_size(inode, pos + copied);
1302         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1303         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1304         unlock_page(page);
1305         page_cache_release(page);
1306
1307         if (old_size < pos)
1308                 pagecache_isize_extended(inode, old_size, pos);
1309
1310         if (size_changed) {
1311                 ret2 = ext4_mark_inode_dirty(handle, inode);
1312                 if (!ret)
1313                         ret = ret2;
1314         }
1315
1316         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1317                 /* if we have allocated more blocks and copied
1318                  * less. We will have blocks allocated outside
1319                  * inode->i_size. So truncate them
1320                  */
1321                 ext4_orphan_add(handle, inode);
1322
1323 errout:
1324         ret2 = ext4_journal_stop(handle);
1325         if (!ret)
1326                 ret = ret2;
1327         if (pos + len > inode->i_size) {
1328                 ext4_truncate_failed_write(inode);
1329                 /*
1330                  * If truncate failed early the inode might still be
1331                  * on the orphan list; we need to make sure the inode
1332                  * is removed from the orphan list in that case.
1333                  */
1334                 if (inode->i_nlink)
1335                         ext4_orphan_del(NULL, inode);
1336         }
1337
1338         return ret ? ret : copied;
1339 }
1340
1341 /*
1342  * Reserve space for a single cluster
1343  */
1344 static int ext4_da_reserve_space(struct inode *inode)
1345 {
1346         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1347         struct ext4_inode_info *ei = EXT4_I(inode);
1348         int ret;
1349
1350         /*
1351          * We will charge metadata quota at writeout time; this saves
1352          * us from metadata over-estimation, though we may go over by
1353          * a small amount in the end.  Here we just reserve for data.
1354          */
1355         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1356         if (ret)
1357                 return ret;
1358
1359         spin_lock(&ei->i_block_reservation_lock);
1360         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1361                 spin_unlock(&ei->i_block_reservation_lock);
1362                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1363                 return -ENOSPC;
1364         }
1365         ei->i_reserved_data_blocks++;
1366         trace_ext4_da_reserve_space(inode);
1367         spin_unlock(&ei->i_block_reservation_lock);
1368
1369         return 0;       /* success */
1370 }
1371
1372 static void ext4_da_release_space(struct inode *inode, int to_free)
1373 {
1374         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1375         struct ext4_inode_info *ei = EXT4_I(inode);
1376
1377         if (!to_free)
1378                 return;         /* Nothing to release, exit */
1379
1380         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1381
1382         trace_ext4_da_release_space(inode, to_free);
1383         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1384                 /*
1385                  * if there aren't enough reserved blocks, then the
1386                  * counter is messed up somewhere.  Since this
1387                  * function is called from invalidate page, it's
1388                  * harmless to return without any action.
1389                  */
1390                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1391                          "ino %lu, to_free %d with only %d reserved "
1392                          "data blocks", inode->i_ino, to_free,
1393                          ei->i_reserved_data_blocks);
1394                 WARN_ON(1);
1395                 to_free = ei->i_reserved_data_blocks;
1396         }
1397         ei->i_reserved_data_blocks -= to_free;
1398
1399         /* update fs dirty data blocks counter */
1400         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1401
1402         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1403
1404         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1405 }
1406
1407 static void ext4_da_page_release_reservation(struct page *page,
1408                                              unsigned int offset,
1409                                              unsigned int length)
1410 {
1411         int to_release = 0, contiguous_blks = 0;
1412         struct buffer_head *head, *bh;
1413         unsigned int curr_off = 0;
1414         struct inode *inode = page->mapping->host;
1415         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1416         unsigned int stop = offset + length;
1417         int num_clusters;
1418         ext4_fsblk_t lblk;
1419
1420         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1421
1422         head = page_buffers(page);
1423         bh = head;
1424         do {
1425                 unsigned int next_off = curr_off + bh->b_size;
1426
1427                 if (next_off > stop)
1428                         break;
1429
1430                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1431                         to_release++;
1432                         contiguous_blks++;
1433                         clear_buffer_delay(bh);
1434                 } else if (contiguous_blks) {
1435                         lblk = page->index <<
1436                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1437                         lblk += (curr_off >> inode->i_blkbits) -
1438                                 contiguous_blks;
1439                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1440                         contiguous_blks = 0;
1441                 }
1442                 curr_off = next_off;
1443         } while ((bh = bh->b_this_page) != head);
1444
1445         if (contiguous_blks) {
1446                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1447                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1448                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1449         }
1450
1451         /* If we have released all the blocks belonging to a cluster, then we
1452          * need to release the reserved space for that cluster. */
1453         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1454         while (num_clusters > 0) {
1455                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1456                         ((num_clusters - 1) << sbi->s_cluster_bits);
1457                 if (sbi->s_cluster_ratio == 1 ||
1458                     !ext4_find_delalloc_cluster(inode, lblk))
1459                         ext4_da_release_space(inode, 1);
1460
1461                 num_clusters--;
1462         }
1463 }
1464
1465 /*
1466  * Delayed allocation stuff
1467  */
1468
1469 struct mpage_da_data {
1470         struct inode *inode;
1471         struct writeback_control *wbc;
1472
1473         pgoff_t first_page;     /* The first page to write */
1474         pgoff_t next_page;      /* Current page to examine */
1475         pgoff_t last_page;      /* Last page to examine */
1476         /*
1477          * Extent to map - this can be after first_page because that can be
1478          * fully mapped. We somewhat abuse m_flags to store whether the extent
1479          * is delalloc or unwritten.
1480          */
1481         struct ext4_map_blocks map;
1482         struct ext4_io_submit io_submit;        /* IO submission data */
1483 };
1484
1485 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1486                                        bool invalidate)
1487 {
1488         int nr_pages, i;
1489         pgoff_t index, end;
1490         struct pagevec pvec;
1491         struct inode *inode = mpd->inode;
1492         struct address_space *mapping = inode->i_mapping;
1493
1494         /* This is necessary when next_page == 0. */
1495         if (mpd->first_page >= mpd->next_page)
1496                 return;
1497
1498         index = mpd->first_page;
1499         end   = mpd->next_page - 1;
1500         if (invalidate) {
1501                 ext4_lblk_t start, last;
1502                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1503                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1504                 ext4_es_remove_extent(inode, start, last - start + 1);
1505         }
1506
1507         pagevec_init(&pvec, 0);
1508         while (index <= end) {
1509                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1510                 if (nr_pages == 0)
1511                         break;
1512                 for (i = 0; i < nr_pages; i++) {
1513                         struct page *page = pvec.pages[i];
1514                         if (page->index > end)
1515                                 break;
1516                         BUG_ON(!PageLocked(page));
1517                         BUG_ON(PageWriteback(page));
1518                         if (invalidate) {
1519                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1520                                 ClearPageUptodate(page);
1521                         }
1522                         unlock_page(page);
1523                 }
1524                 index = pvec.pages[nr_pages - 1]->index + 1;
1525                 pagevec_release(&pvec);
1526         }
1527 }
1528
1529 static void ext4_print_free_blocks(struct inode *inode)
1530 {
1531         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1532         struct super_block *sb = inode->i_sb;
1533         struct ext4_inode_info *ei = EXT4_I(inode);
1534
1535         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536                EXT4_C2B(EXT4_SB(inode->i_sb),
1537                         ext4_count_free_clusters(sb)));
1538         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540                (long long) EXT4_C2B(EXT4_SB(sb),
1541                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543                (long long) EXT4_C2B(EXT4_SB(sb),
1544                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547                  ei->i_reserved_data_blocks);
1548         return;
1549 }
1550
1551 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1552 {
1553         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1554 }
1555
1556 /*
1557  * This function is grabs code from the very beginning of
1558  * ext4_map_blocks, but assumes that the caller is from delayed write
1559  * time. This function looks up the requested blocks and sets the
1560  * buffer delay bit under the protection of i_data_sem.
1561  */
1562 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1563                               struct ext4_map_blocks *map,
1564                               struct buffer_head *bh)
1565 {
1566         struct extent_status es;
1567         int retval;
1568         sector_t invalid_block = ~((sector_t) 0xffff);
1569 #ifdef ES_AGGRESSIVE_TEST
1570         struct ext4_map_blocks orig_map;
1571
1572         memcpy(&orig_map, map, sizeof(*map));
1573 #endif
1574
1575         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1576                 invalid_block = ~0;
1577
1578         map->m_flags = 0;
1579         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1580                   "logical block %lu\n", inode->i_ino, map->m_len,
1581                   (unsigned long) map->m_lblk);
1582
1583         /* Lookup extent status tree firstly */
1584         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1585                 if (ext4_es_is_hole(&es)) {
1586                         retval = 0;
1587                         down_read(&EXT4_I(inode)->i_data_sem);
1588                         goto add_delayed;
1589                 }
1590
1591                 /*
1592                  * Delayed extent could be allocated by fallocate.
1593                  * So we need to check it.
1594                  */
1595                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1596                         map_bh(bh, inode->i_sb, invalid_block);
1597                         set_buffer_new(bh);
1598                         set_buffer_delay(bh);
1599                         return 0;
1600                 }
1601
1602                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1603                 retval = es.es_len - (iblock - es.es_lblk);
1604                 if (retval > map->m_len)
1605                         retval = map->m_len;
1606                 map->m_len = retval;
1607                 if (ext4_es_is_written(&es))
1608                         map->m_flags |= EXT4_MAP_MAPPED;
1609                 else if (ext4_es_is_unwritten(&es))
1610                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1611                 else
1612                         BUG_ON(1);
1613
1614 #ifdef ES_AGGRESSIVE_TEST
1615                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1616 #endif
1617                 return retval;
1618         }
1619
1620         /*
1621          * Try to see if we can get the block without requesting a new
1622          * file system block.
1623          */
1624         down_read(&EXT4_I(inode)->i_data_sem);
1625         if (ext4_has_inline_data(inode))
1626                 retval = 0;
1627         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1628                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1629         else
1630                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1631
1632 add_delayed:
1633         if (retval == 0) {
1634                 int ret;
1635                 /*
1636                  * XXX: __block_prepare_write() unmaps passed block,
1637                  * is it OK?
1638                  */
1639                 /*
1640                  * If the block was allocated from previously allocated cluster,
1641                  * then we don't need to reserve it again. However we still need
1642                  * to reserve metadata for every block we're going to write.
1643                  */
1644                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1645                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1646                         ret = ext4_da_reserve_space(inode);
1647                         if (ret) {
1648                                 /* not enough space to reserve */
1649                                 retval = ret;
1650                                 goto out_unlock;
1651                         }
1652                 }
1653
1654                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1655                                             ~0, EXTENT_STATUS_DELAYED);
1656                 if (ret) {
1657                         retval = ret;
1658                         goto out_unlock;
1659                 }
1660
1661                 map_bh(bh, inode->i_sb, invalid_block);
1662                 set_buffer_new(bh);
1663                 set_buffer_delay(bh);
1664         } else if (retval > 0) {
1665                 int ret;
1666                 unsigned int status;
1667
1668                 if (unlikely(retval != map->m_len)) {
1669                         ext4_warning(inode->i_sb,
1670                                      "ES len assertion failed for inode "
1671                                      "%lu: retval %d != map->m_len %d",
1672                                      inode->i_ino, retval, map->m_len);
1673                         WARN_ON(1);
1674                 }
1675
1676                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1677                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1678                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1679                                             map->m_pblk, status);
1680                 if (ret != 0)
1681                         retval = ret;
1682         }
1683
1684 out_unlock:
1685         up_read((&EXT4_I(inode)->i_data_sem));
1686
1687         return retval;
1688 }
1689
1690 /*
1691  * This is a special get_block_t callback which is used by
1692  * ext4_da_write_begin().  It will either return mapped block or
1693  * reserve space for a single block.
1694  *
1695  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1696  * We also have b_blocknr = -1 and b_bdev initialized properly
1697  *
1698  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1699  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1700  * initialized properly.
1701  */
1702 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1703                            struct buffer_head *bh, int create)
1704 {
1705         struct ext4_map_blocks map;
1706         int ret = 0;
1707
1708         BUG_ON(create == 0);
1709         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1710
1711         map.m_lblk = iblock;
1712         map.m_len = 1;
1713
1714         /*
1715          * first, we need to know whether the block is allocated already
1716          * preallocated blocks are unmapped but should treated
1717          * the same as allocated blocks.
1718          */
1719         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1720         if (ret <= 0)
1721                 return ret;
1722
1723         map_bh(bh, inode->i_sb, map.m_pblk);
1724         ext4_update_bh_state(bh, map.m_flags);
1725
1726         if (buffer_unwritten(bh)) {
1727                 /* A delayed write to unwritten bh should be marked
1728                  * new and mapped.  Mapped ensures that we don't do
1729                  * get_block multiple times when we write to the same
1730                  * offset and new ensures that we do proper zero out
1731                  * for partial write.
1732                  */
1733                 set_buffer_new(bh);
1734                 set_buffer_mapped(bh);
1735         }
1736         return 0;
1737 }
1738
1739 static int bget_one(handle_t *handle, struct buffer_head *bh)
1740 {
1741         get_bh(bh);
1742         return 0;
1743 }
1744
1745 static int bput_one(handle_t *handle, struct buffer_head *bh)
1746 {
1747         put_bh(bh);
1748         return 0;
1749 }
1750
1751 static int __ext4_journalled_writepage(struct page *page,
1752                                        unsigned int len)
1753 {
1754         struct address_space *mapping = page->mapping;
1755         struct inode *inode = mapping->host;
1756         struct buffer_head *page_bufs = NULL;
1757         handle_t *handle = NULL;
1758         int ret = 0, err = 0;
1759         int inline_data = ext4_has_inline_data(inode);
1760         struct buffer_head *inode_bh = NULL;
1761
1762         ClearPageChecked(page);
1763
1764         if (inline_data) {
1765                 BUG_ON(page->index != 0);
1766                 BUG_ON(len > ext4_get_max_inline_size(inode));
1767                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1768                 if (inode_bh == NULL)
1769                         goto out;
1770         } else {
1771                 page_bufs = page_buffers(page);
1772                 if (!page_bufs) {
1773                         BUG();
1774                         goto out;
1775                 }
1776                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1777                                        NULL, bget_one);
1778         }
1779         /*
1780          * We need to release the page lock before we start the
1781          * journal, so grab a reference so the page won't disappear
1782          * out from under us.
1783          */
1784         get_page(page);
1785         unlock_page(page);
1786
1787         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1788                                     ext4_writepage_trans_blocks(inode));
1789         if (IS_ERR(handle)) {
1790                 ret = PTR_ERR(handle);
1791                 put_page(page);
1792                 goto out_no_pagelock;
1793         }
1794         BUG_ON(!ext4_handle_valid(handle));
1795
1796         lock_page(page);
1797         put_page(page);
1798         if (page->mapping != mapping) {
1799                 /* The page got truncated from under us */
1800                 ext4_journal_stop(handle);
1801                 ret = 0;
1802                 goto out;
1803         }
1804
1805         if (inline_data) {
1806                 BUFFER_TRACE(inode_bh, "get write access");
1807                 ret = ext4_journal_get_write_access(handle, inode_bh);
1808
1809                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1810
1811         } else {
1812                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1813                                              do_journal_get_write_access);
1814
1815                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1816                                              write_end_fn);
1817         }
1818         if (ret == 0)
1819                 ret = err;
1820         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1821         err = ext4_journal_stop(handle);
1822         if (!ret)
1823                 ret = err;
1824
1825         if (!ext4_has_inline_data(inode))
1826                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1827                                        NULL, bput_one);
1828         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1829 out:
1830         unlock_page(page);
1831 out_no_pagelock:
1832         brelse(inode_bh);
1833         return ret;
1834 }
1835
1836 /*
1837  * Note that we don't need to start a transaction unless we're journaling data
1838  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1839  * need to file the inode to the transaction's list in ordered mode because if
1840  * we are writing back data added by write(), the inode is already there and if
1841  * we are writing back data modified via mmap(), no one guarantees in which
1842  * transaction the data will hit the disk. In case we are journaling data, we
1843  * cannot start transaction directly because transaction start ranks above page
1844  * lock so we have to do some magic.
1845  *
1846  * This function can get called via...
1847  *   - ext4_writepages after taking page lock (have journal handle)
1848  *   - journal_submit_inode_data_buffers (no journal handle)
1849  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1850  *   - grab_page_cache when doing write_begin (have journal handle)
1851  *
1852  * We don't do any block allocation in this function. If we have page with
1853  * multiple blocks we need to write those buffer_heads that are mapped. This
1854  * is important for mmaped based write. So if we do with blocksize 1K
1855  * truncate(f, 1024);
1856  * a = mmap(f, 0, 4096);
1857  * a[0] = 'a';
1858  * truncate(f, 4096);
1859  * we have in the page first buffer_head mapped via page_mkwrite call back
1860  * but other buffer_heads would be unmapped but dirty (dirty done via the
1861  * do_wp_page). So writepage should write the first block. If we modify
1862  * the mmap area beyond 1024 we will again get a page_fault and the
1863  * page_mkwrite callback will do the block allocation and mark the
1864  * buffer_heads mapped.
1865  *
1866  * We redirty the page if we have any buffer_heads that is either delay or
1867  * unwritten in the page.
1868  *
1869  * We can get recursively called as show below.
1870  *
1871  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1872  *              ext4_writepage()
1873  *
1874  * But since we don't do any block allocation we should not deadlock.
1875  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1876  */
1877 static int ext4_writepage(struct page *page,
1878                           struct writeback_control *wbc)
1879 {
1880         int ret = 0;
1881         loff_t size;
1882         unsigned int len;
1883         struct buffer_head *page_bufs = NULL;
1884         struct inode *inode = page->mapping->host;
1885         struct ext4_io_submit io_submit;
1886         bool keep_towrite = false;
1887
1888         trace_ext4_writepage(page);
1889         size = i_size_read(inode);
1890         if (page->index == size >> PAGE_CACHE_SHIFT)
1891                 len = size & ~PAGE_CACHE_MASK;
1892         else
1893                 len = PAGE_CACHE_SIZE;
1894
1895         page_bufs = page_buffers(page);
1896         /*
1897          * We cannot do block allocation or other extent handling in this
1898          * function. If there are buffers needing that, we have to redirty
1899          * the page. But we may reach here when we do a journal commit via
1900          * journal_submit_inode_data_buffers() and in that case we must write
1901          * allocated buffers to achieve data=ordered mode guarantees.
1902          *
1903          * Also, if there is only one buffer per page (the fs block
1904          * size == the page size), if one buffer needs block
1905          * allocation or needs to modify the extent tree to clear the
1906          * unwritten flag, we know that the page can't be written at
1907          * all, so we might as well refuse the write immediately.
1908          * Unfortunately if the block size != page size, we can't as
1909          * easily detect this case using ext4_walk_page_buffers(), but
1910          * for the extremely common case, this is an optimization that
1911          * skips a useless round trip through ext4_bio_write_page().
1912          */
1913         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1914                                    ext4_bh_delay_or_unwritten)) {
1915                 redirty_page_for_writepage(wbc, page);
1916                 if ((current->flags & PF_MEMALLOC) ||
1917                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1918                         /*
1919                          * For memory cleaning there's no point in writing only
1920                          * some buffers. So just bail out. Warn if we came here
1921                          * from direct reclaim.
1922                          */
1923                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1924                                                         == PF_MEMALLOC);
1925                         unlock_page(page);
1926                         return 0;
1927                 }
1928                 keep_towrite = true;
1929         }
1930
1931         if (PageChecked(page) && ext4_should_journal_data(inode))
1932                 /*
1933                  * It's mmapped pagecache.  Add buffers and journal it.  There
1934                  * doesn't seem much point in redirtying the page here.
1935                  */
1936                 return __ext4_journalled_writepage(page, len);
1937
1938         ext4_io_submit_init(&io_submit, wbc);
1939         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1940         if (!io_submit.io_end) {
1941                 redirty_page_for_writepage(wbc, page);
1942                 unlock_page(page);
1943                 return -ENOMEM;
1944         }
1945         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1946         ext4_io_submit(&io_submit);
1947         /* Drop io_end reference we got from init */
1948         ext4_put_io_end_defer(io_submit.io_end);
1949         return ret;
1950 }
1951
1952 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1953 {
1954         int len;
1955         loff_t size = i_size_read(mpd->inode);
1956         int err;
1957
1958         BUG_ON(page->index != mpd->first_page);
1959         if (page->index == size >> PAGE_CACHE_SHIFT)
1960                 len = size & ~PAGE_CACHE_MASK;
1961         else
1962                 len = PAGE_CACHE_SIZE;
1963         clear_page_dirty_for_io(page);
1964         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1965         if (!err)
1966                 mpd->wbc->nr_to_write--;
1967         mpd->first_page++;
1968
1969         return err;
1970 }
1971
1972 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1973
1974 /*
1975  * mballoc gives us at most this number of blocks...
1976  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1977  * The rest of mballoc seems to handle chunks up to full group size.
1978  */
1979 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1980
1981 /*
1982  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1983  *
1984  * @mpd - extent of blocks
1985  * @lblk - logical number of the block in the file
1986  * @bh - buffer head we want to add to the extent
1987  *
1988  * The function is used to collect contig. blocks in the same state. If the
1989  * buffer doesn't require mapping for writeback and we haven't started the
1990  * extent of buffers to map yet, the function returns 'true' immediately - the
1991  * caller can write the buffer right away. Otherwise the function returns true
1992  * if the block has been added to the extent, false if the block couldn't be
1993  * added.
1994  */
1995 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1996                                    struct buffer_head *bh)
1997 {
1998         struct ext4_map_blocks *map = &mpd->map;
1999
2000         /* Buffer that doesn't need mapping for writeback? */
2001         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2002             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2003                 /* So far no extent to map => we write the buffer right away */
2004                 if (map->m_len == 0)
2005                         return true;
2006                 return false;
2007         }
2008
2009         /* First block in the extent? */
2010         if (map->m_len == 0) {
2011                 map->m_lblk = lblk;
2012                 map->m_len = 1;
2013                 map->m_flags = bh->b_state & BH_FLAGS;
2014                 return true;
2015         }
2016
2017         /* Don't go larger than mballoc is willing to allocate */
2018         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2019                 return false;
2020
2021         /* Can we merge the block to our big extent? */
2022         if (lblk == map->m_lblk + map->m_len &&
2023             (bh->b_state & BH_FLAGS) == map->m_flags) {
2024                 map->m_len++;
2025                 return true;
2026         }
2027         return false;
2028 }
2029
2030 /*
2031  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2032  *
2033  * @mpd - extent of blocks for mapping
2034  * @head - the first buffer in the page
2035  * @bh - buffer we should start processing from
2036  * @lblk - logical number of the block in the file corresponding to @bh
2037  *
2038  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2039  * the page for IO if all buffers in this page were mapped and there's no
2040  * accumulated extent of buffers to map or add buffers in the page to the
2041  * extent of buffers to map. The function returns 1 if the caller can continue
2042  * by processing the next page, 0 if it should stop adding buffers to the
2043  * extent to map because we cannot extend it anymore. It can also return value
2044  * < 0 in case of error during IO submission.
2045  */
2046 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2047                                    struct buffer_head *head,
2048                                    struct buffer_head *bh,
2049                                    ext4_lblk_t lblk)
2050 {
2051         struct inode *inode = mpd->inode;
2052         int err;
2053         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2054                                                         >> inode->i_blkbits;
2055
2056         do {
2057                 BUG_ON(buffer_locked(bh));
2058
2059                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2060                         /* Found extent to map? */
2061                         if (mpd->map.m_len)
2062                                 return 0;
2063                         /* Everything mapped so far and we hit EOF */
2064                         break;
2065                 }
2066         } while (lblk++, (bh = bh->b_this_page) != head);
2067         /* So far everything mapped? Submit the page for IO. */
2068         if (mpd->map.m_len == 0) {
2069                 err = mpage_submit_page(mpd, head->b_page);
2070                 if (err < 0)
2071                         return err;
2072         }
2073         return lblk < blocks;
2074 }
2075
2076 /*
2077  * mpage_map_buffers - update buffers corresponding to changed extent and
2078  *                     submit fully mapped pages for IO
2079  *
2080  * @mpd - description of extent to map, on return next extent to map
2081  *
2082  * Scan buffers corresponding to changed extent (we expect corresponding pages
2083  * to be already locked) and update buffer state according to new extent state.
2084  * We map delalloc buffers to their physical location, clear unwritten bits,
2085  * and mark buffers as uninit when we perform writes to unwritten extents
2086  * and do extent conversion after IO is finished. If the last page is not fully
2087  * mapped, we update @map to the next extent in the last page that needs
2088  * mapping. Otherwise we submit the page for IO.
2089  */
2090 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2091 {
2092         struct pagevec pvec;
2093         int nr_pages, i;
2094         struct inode *inode = mpd->inode;
2095         struct buffer_head *head, *bh;
2096         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2097         pgoff_t start, end;
2098         ext4_lblk_t lblk;
2099         sector_t pblock;
2100         int err;
2101
2102         start = mpd->map.m_lblk >> bpp_bits;
2103         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2104         lblk = start << bpp_bits;
2105         pblock = mpd->map.m_pblk;
2106
2107         pagevec_init(&pvec, 0);
2108         while (start <= end) {
2109                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2110                                           PAGEVEC_SIZE);
2111                 if (nr_pages == 0)
2112                         break;
2113                 for (i = 0; i < nr_pages; i++) {
2114                         struct page *page = pvec.pages[i];
2115
2116                         if (page->index > end)
2117                                 break;
2118                         /* Up to 'end' pages must be contiguous */
2119                         BUG_ON(page->index != start);
2120                         bh = head = page_buffers(page);
2121                         do {
2122                                 if (lblk < mpd->map.m_lblk)
2123                                         continue;
2124                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2125                                         /*
2126                                          * Buffer after end of mapped extent.
2127                                          * Find next buffer in the page to map.
2128                                          */
2129                                         mpd->map.m_len = 0;
2130                                         mpd->map.m_flags = 0;
2131                                         /*
2132                                          * FIXME: If dioread_nolock supports
2133                                          * blocksize < pagesize, we need to make
2134                                          * sure we add size mapped so far to
2135                                          * io_end->size as the following call
2136                                          * can submit the page for IO.
2137                                          */
2138                                         err = mpage_process_page_bufs(mpd, head,
2139                                                                       bh, lblk);
2140                                         pagevec_release(&pvec);
2141                                         if (err > 0)
2142                                                 err = 0;
2143                                         return err;
2144                                 }
2145                                 if (buffer_delay(bh)) {
2146                                         clear_buffer_delay(bh);
2147                                         bh->b_blocknr = pblock++;
2148                                 }
2149                                 clear_buffer_unwritten(bh);
2150                         } while (lblk++, (bh = bh->b_this_page) != head);
2151
2152                         /*
2153                          * FIXME: This is going to break if dioread_nolock
2154                          * supports blocksize < pagesize as we will try to
2155                          * convert potentially unmapped parts of inode.
2156                          */
2157                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2158                         /* Page fully mapped - let IO run! */
2159                         err = mpage_submit_page(mpd, page);
2160                         if (err < 0) {
2161                                 pagevec_release(&pvec);
2162                                 return err;
2163                         }
2164                         start++;
2165                 }
2166                 pagevec_release(&pvec);
2167         }
2168         /* Extent fully mapped and matches with page boundary. We are done. */
2169         mpd->map.m_len = 0;
2170         mpd->map.m_flags = 0;
2171         return 0;
2172 }
2173
2174 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2175 {
2176         struct inode *inode = mpd->inode;
2177         struct ext4_map_blocks *map = &mpd->map;
2178         int get_blocks_flags;
2179         int err, dioread_nolock;
2180
2181         trace_ext4_da_write_pages_extent(inode, map);
2182         /*
2183          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2184          * to convert an unwritten extent to be initialized (in the case
2185          * where we have written into one or more preallocated blocks).  It is
2186          * possible that we're going to need more metadata blocks than
2187          * previously reserved. However we must not fail because we're in
2188          * writeback and there is nothing we can do about it so it might result
2189          * in data loss.  So use reserved blocks to allocate metadata if
2190          * possible.
2191          *
2192          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2193          * the blocks in question are delalloc blocks.  This indicates
2194          * that the blocks and quotas has already been checked when
2195          * the data was copied into the page cache.
2196          */
2197         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2198                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2199         dioread_nolock = ext4_should_dioread_nolock(inode);
2200         if (dioread_nolock)
2201                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2202         if (map->m_flags & (1 << BH_Delay))
2203                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2204
2205         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2206         if (err < 0)
2207                 return err;
2208         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2209                 if (!mpd->io_submit.io_end->handle &&
2210                     ext4_handle_valid(handle)) {
2211                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2212                         handle->h_rsv_handle = NULL;
2213                 }
2214                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2215         }
2216
2217         BUG_ON(map->m_len == 0);
2218         if (map->m_flags & EXT4_MAP_NEW) {
2219                 struct block_device *bdev = inode->i_sb->s_bdev;
2220                 int i;
2221
2222                 for (i = 0; i < map->m_len; i++)
2223                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2224         }
2225         return 0;
2226 }
2227
2228 /*
2229  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2230  *                               mpd->len and submit pages underlying it for IO
2231  *
2232  * @handle - handle for journal operations
2233  * @mpd - extent to map
2234  * @give_up_on_write - we set this to true iff there is a fatal error and there
2235  *                     is no hope of writing the data. The caller should discard
2236  *                     dirty pages to avoid infinite loops.
2237  *
2238  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2239  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2240  * them to initialized or split the described range from larger unwritten
2241  * extent. Note that we need not map all the described range since allocation
2242  * can return less blocks or the range is covered by more unwritten extents. We
2243  * cannot map more because we are limited by reserved transaction credits. On
2244  * the other hand we always make sure that the last touched page is fully
2245  * mapped so that it can be written out (and thus forward progress is
2246  * guaranteed). After mapping we submit all mapped pages for IO.
2247  */
2248 static int mpage_map_and_submit_extent(handle_t *handle,
2249                                        struct mpage_da_data *mpd,
2250                                        bool *give_up_on_write)
2251 {
2252         struct inode *inode = mpd->inode;
2253         struct ext4_map_blocks *map = &mpd->map;
2254         int err;
2255         loff_t disksize;
2256         int progress = 0;
2257
2258         mpd->io_submit.io_end->offset =
2259                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2260         do {
2261                 err = mpage_map_one_extent(handle, mpd);
2262                 if (err < 0) {
2263                         struct super_block *sb = inode->i_sb;
2264
2265                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2266                                 goto invalidate_dirty_pages;
2267                         /*
2268                          * Let the uper layers retry transient errors.
2269                          * In the case of ENOSPC, if ext4_count_free_blocks()
2270                          * is non-zero, a commit should free up blocks.
2271                          */
2272                         if ((err == -ENOMEM) ||
2273                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2274                                 if (progress)
2275                                         goto update_disksize;
2276                                 return err;
2277                         }
2278                         ext4_msg(sb, KERN_CRIT,
2279                                  "Delayed block allocation failed for "
2280                                  "inode %lu at logical offset %llu with"
2281                                  " max blocks %u with error %d",
2282                                  inode->i_ino,
2283                                  (unsigned long long)map->m_lblk,
2284                                  (unsigned)map->m_len, -err);
2285                         ext4_msg(sb, KERN_CRIT,
2286                                  "This should not happen!! Data will "
2287                                  "be lost\n");
2288                         if (err == -ENOSPC)
2289                                 ext4_print_free_blocks(inode);
2290                 invalidate_dirty_pages:
2291                         *give_up_on_write = true;
2292                         return err;
2293                 }
2294                 progress = 1;
2295                 /*
2296                  * Update buffer state, submit mapped pages, and get us new
2297                  * extent to map
2298                  */
2299                 err = mpage_map_and_submit_buffers(mpd);
2300                 if (err < 0)
2301                         goto update_disksize;
2302         } while (map->m_len);
2303
2304 update_disksize:
2305         /*
2306          * Update on-disk size after IO is submitted.  Races with
2307          * truncate are avoided by checking i_size under i_data_sem.
2308          */
2309         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2310         if (disksize > EXT4_I(inode)->i_disksize) {
2311                 int err2;
2312                 loff_t i_size;
2313
2314                 down_write(&EXT4_I(inode)->i_data_sem);
2315                 i_size = i_size_read(inode);
2316                 if (disksize > i_size)
2317                         disksize = i_size;
2318                 if (disksize > EXT4_I(inode)->i_disksize)
2319                         EXT4_I(inode)->i_disksize = disksize;
2320                 err2 = ext4_mark_inode_dirty(handle, inode);
2321                 up_write(&EXT4_I(inode)->i_data_sem);
2322                 if (err2)
2323                         ext4_error(inode->i_sb,
2324                                    "Failed to mark inode %lu dirty",
2325                                    inode->i_ino);
2326                 if (!err)
2327                         err = err2;
2328         }
2329         return err;
2330 }
2331
2332 /*
2333  * Calculate the total number of credits to reserve for one writepages
2334  * iteration. This is called from ext4_writepages(). We map an extent of
2335  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2336  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2337  * bpp - 1 blocks in bpp different extents.
2338  */
2339 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2340 {
2341         int bpp = ext4_journal_blocks_per_page(inode);
2342
2343         return ext4_meta_trans_blocks(inode,
2344                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2345 }
2346
2347 /*
2348  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2349  *                               and underlying extent to map
2350  *
2351  * @mpd - where to look for pages
2352  *
2353  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2354  * IO immediately. When we find a page which isn't mapped we start accumulating
2355  * extent of buffers underlying these pages that needs mapping (formed by
2356  * either delayed or unwritten buffers). We also lock the pages containing
2357  * these buffers. The extent found is returned in @mpd structure (starting at
2358  * mpd->lblk with length mpd->len blocks).
2359  *
2360  * Note that this function can attach bios to one io_end structure which are
2361  * neither logically nor physically contiguous. Although it may seem as an
2362  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2363  * case as we need to track IO to all buffers underlying a page in one io_end.
2364  */
2365 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2366 {
2367         struct address_space *mapping = mpd->inode->i_mapping;
2368         struct pagevec pvec;
2369         unsigned int nr_pages;
2370         long left = mpd->wbc->nr_to_write;
2371         pgoff_t index = mpd->first_page;
2372         pgoff_t end = mpd->last_page;
2373         int tag;
2374         int i, err = 0;
2375         int blkbits = mpd->inode->i_blkbits;
2376         ext4_lblk_t lblk;
2377         struct buffer_head *head;
2378
2379         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2380                 tag = PAGECACHE_TAG_TOWRITE;
2381         else
2382                 tag = PAGECACHE_TAG_DIRTY;
2383
2384         pagevec_init(&pvec, 0);
2385         mpd->map.m_len = 0;
2386         mpd->next_page = index;
2387         while (index <= end) {
2388                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2389                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2390                 if (nr_pages == 0)
2391                         goto out;
2392
2393                 for (i = 0; i < nr_pages; i++) {
2394                         struct page *page = pvec.pages[i];
2395
2396                         /*
2397                          * At this point, the page may be truncated or
2398                          * invalidated (changing page->mapping to NULL), or
2399                          * even swizzled back from swapper_space to tmpfs file
2400                          * mapping. However, page->index will not change
2401                          * because we have a reference on the page.
2402                          */
2403                         if (page->index > end)
2404                                 goto out;
2405
2406                         /*
2407                          * Accumulated enough dirty pages? This doesn't apply
2408                          * to WB_SYNC_ALL mode. For integrity sync we have to
2409                          * keep going because someone may be concurrently
2410                          * dirtying pages, and we might have synced a lot of
2411                          * newly appeared dirty pages, but have not synced all
2412                          * of the old dirty pages.
2413                          */
2414                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2415                                 goto out;
2416
2417                         /* If we can't merge this page, we are done. */
2418                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2419                                 goto out;
2420
2421                         lock_page(page);
2422                         /*
2423                          * If the page is no longer dirty, or its mapping no
2424                          * longer corresponds to inode we are writing (which
2425                          * means it has been truncated or invalidated), or the
2426                          * page is already under writeback and we are not doing
2427                          * a data integrity writeback, skip the page
2428                          */
2429                         if (!PageDirty(page) ||
2430                             (PageWriteback(page) &&
2431                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2432                             unlikely(page->mapping != mapping)) {
2433                                 unlock_page(page);
2434                                 continue;
2435                         }
2436
2437                         wait_on_page_writeback(page);
2438                         BUG_ON(PageWriteback(page));
2439
2440                         if (mpd->map.m_len == 0)
2441                                 mpd->first_page = page->index;
2442                         mpd->next_page = page->index + 1;
2443                         /* Add all dirty buffers to mpd */
2444                         lblk = ((ext4_lblk_t)page->index) <<
2445                                 (PAGE_CACHE_SHIFT - blkbits);
2446                         head = page_buffers(page);
2447                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2448                         if (err <= 0)
2449                                 goto out;
2450                         err = 0;
2451                         left--;
2452                 }
2453                 pagevec_release(&pvec);
2454                 cond_resched();
2455         }
2456         return 0;
2457 out:
2458         pagevec_release(&pvec);
2459         return err;
2460 }
2461
2462 static int __writepage(struct page *page, struct writeback_control *wbc,
2463                        void *data)
2464 {
2465         struct address_space *mapping = data;
2466         int ret = ext4_writepage(page, wbc);
2467         mapping_set_error(mapping, ret);
2468         return ret;
2469 }
2470
2471 static int ext4_writepages(struct address_space *mapping,
2472                            struct writeback_control *wbc)
2473 {
2474         pgoff_t writeback_index = 0;
2475         long nr_to_write = wbc->nr_to_write;
2476         int range_whole = 0;
2477         int cycled = 1;
2478         handle_t *handle = NULL;
2479         struct mpage_da_data mpd;
2480         struct inode *inode = mapping->host;
2481         int needed_blocks, rsv_blocks = 0, ret = 0;
2482         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2483         bool done;
2484         struct blk_plug plug;
2485         bool give_up_on_write = false;
2486
2487         trace_ext4_writepages(inode, wbc);
2488
2489         /*
2490          * No pages to write? This is mainly a kludge to avoid starting
2491          * a transaction for special inodes like journal inode on last iput()
2492          * because that could violate lock ordering on umount
2493          */
2494         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2495                 goto out_writepages;
2496
2497         if (ext4_should_journal_data(inode)) {
2498                 struct blk_plug plug;
2499
2500                 blk_start_plug(&plug);
2501                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2502                 blk_finish_plug(&plug);
2503                 goto out_writepages;
2504         }
2505
2506         /*
2507          * If the filesystem has aborted, it is read-only, so return
2508          * right away instead of dumping stack traces later on that
2509          * will obscure the real source of the problem.  We test
2510          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2511          * the latter could be true if the filesystem is mounted
2512          * read-only, and in that case, ext4_writepages should
2513          * *never* be called, so if that ever happens, we would want
2514          * the stack trace.
2515          */
2516         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2517                 ret = -EROFS;
2518                 goto out_writepages;
2519         }
2520
2521         if (ext4_should_dioread_nolock(inode)) {
2522                 /*
2523                  * We may need to convert up to one extent per block in
2524                  * the page and we may dirty the inode.
2525                  */
2526                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2527         }
2528
2529         /*
2530          * If we have inline data and arrive here, it means that
2531          * we will soon create the block for the 1st page, so
2532          * we'd better clear the inline data here.
2533          */
2534         if (ext4_has_inline_data(inode)) {
2535                 /* Just inode will be modified... */
2536                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2537                 if (IS_ERR(handle)) {
2538                         ret = PTR_ERR(handle);
2539                         goto out_writepages;
2540                 }
2541                 BUG_ON(ext4_test_inode_state(inode,
2542                                 EXT4_STATE_MAY_INLINE_DATA));
2543                 ext4_destroy_inline_data(handle, inode);
2544                 ext4_journal_stop(handle);
2545         }
2546
2547         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2548                 range_whole = 1;
2549
2550         if (wbc->range_cyclic) {
2551                 writeback_index = mapping->writeback_index;
2552                 if (writeback_index)
2553                         cycled = 0;
2554                 mpd.first_page = writeback_index;
2555                 mpd.last_page = -1;
2556         } else {
2557                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2558                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2559         }
2560
2561         mpd.inode = inode;
2562         mpd.wbc = wbc;
2563         ext4_io_submit_init(&mpd.io_submit, wbc);
2564 retry:
2565         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2566                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2567         done = false;
2568         blk_start_plug(&plug);
2569         while (!done && mpd.first_page <= mpd.last_page) {
2570                 /* For each extent of pages we use new io_end */
2571                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2572                 if (!mpd.io_submit.io_end) {
2573                         ret = -ENOMEM;
2574                         break;
2575                 }
2576
2577                 /*
2578                  * We have two constraints: We find one extent to map and we
2579                  * must always write out whole page (makes a difference when
2580                  * blocksize < pagesize) so that we don't block on IO when we
2581                  * try to write out the rest of the page. Journalled mode is
2582                  * not supported by delalloc.
2583                  */
2584                 BUG_ON(ext4_should_journal_data(inode));
2585                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2586
2587                 /* start a new transaction */
2588                 handle = ext4_journal_start_with_reserve(inode,
2589                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2590                 if (IS_ERR(handle)) {
2591                         ret = PTR_ERR(handle);
2592                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2593                                "%ld pages, ino %lu; err %d", __func__,
2594                                 wbc->nr_to_write, inode->i_ino, ret);
2595                         /* Release allocated io_end */
2596                         ext4_put_io_end(mpd.io_submit.io_end);
2597                         break;
2598                 }
2599
2600                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2601                 ret = mpage_prepare_extent_to_map(&mpd);
2602                 if (!ret) {
2603                         if (mpd.map.m_len)
2604                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2605                                         &give_up_on_write);
2606                         else {
2607                                 /*
2608                                  * We scanned the whole range (or exhausted
2609                                  * nr_to_write), submitted what was mapped and
2610                                  * didn't find anything needing mapping. We are
2611                                  * done.
2612                                  */
2613                                 done = true;
2614                         }
2615                 }
2616                 /*
2617                  * Caution: If the handle is synchronous,
2618                  * ext4_journal_stop() can wait for transaction commit
2619                  * to finish which may depend on writeback of pages to
2620                  * complete or on page lock to be released.  In that
2621                  * case, we have to wait until after after we have
2622                  * submitted all the IO, released page locks we hold,
2623                  * and dropped io_end reference (for extent conversion
2624                  * to be able to complete) before stopping the handle.
2625                  */
2626                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2627                         ext4_journal_stop(handle);
2628                         handle = NULL;
2629                 }
2630                 /* Submit prepared bio */
2631                 ext4_io_submit(&mpd.io_submit);
2632                 /* Unlock pages we didn't use */
2633                 mpage_release_unused_pages(&mpd, give_up_on_write);
2634                 /*
2635                  * Drop our io_end reference we got from init. We have
2636                  * to be careful and use deferred io_end finishing if
2637                  * we are still holding the transaction as we can
2638                  * release the last reference to io_end which may end
2639                  * up doing unwritten extent conversion.
2640                  */
2641                 if (handle) {
2642                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2643                         ext4_journal_stop(handle);
2644                 } else
2645                         ext4_put_io_end(mpd.io_submit.io_end);
2646
2647                 if (ret == -ENOSPC && sbi->s_journal) {
2648                         /*
2649                          * Commit the transaction which would
2650                          * free blocks released in the transaction
2651                          * and try again
2652                          */
2653                         jbd2_journal_force_commit_nested(sbi->s_journal);
2654                         ret = 0;
2655                         continue;
2656                 }
2657                 /* Fatal error - ENOMEM, EIO... */
2658                 if (ret)
2659                         break;
2660         }
2661         blk_finish_plug(&plug);
2662         if (!ret && !cycled && wbc->nr_to_write > 0) {
2663                 cycled = 1;
2664                 mpd.last_page = writeback_index - 1;
2665                 mpd.first_page = 0;
2666                 goto retry;
2667         }
2668
2669         /* Update index */
2670         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2671                 /*
2672                  * Set the writeback_index so that range_cyclic
2673                  * mode will write it back later
2674                  */
2675                 mapping->writeback_index = mpd.first_page;
2676
2677 out_writepages:
2678         trace_ext4_writepages_result(inode, wbc, ret,
2679                                      nr_to_write - wbc->nr_to_write);
2680         return ret;
2681 }
2682
2683 static int ext4_nonda_switch(struct super_block *sb)
2684 {
2685         s64 free_clusters, dirty_clusters;
2686         struct ext4_sb_info *sbi = EXT4_SB(sb);
2687
2688         /*
2689          * switch to non delalloc mode if we are running low
2690          * on free block. The free block accounting via percpu
2691          * counters can get slightly wrong with percpu_counter_batch getting
2692          * accumulated on each CPU without updating global counters
2693          * Delalloc need an accurate free block accounting. So switch
2694          * to non delalloc when we are near to error range.
2695          */
2696         free_clusters =
2697                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2698         dirty_clusters =
2699                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2700         /*
2701          * Start pushing delalloc when 1/2 of free blocks are dirty.
2702          */
2703         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2704                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2705
2706         if (2 * free_clusters < 3 * dirty_clusters ||
2707             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2708                 /*
2709                  * free block count is less than 150% of dirty blocks
2710                  * or free blocks is less than watermark
2711                  */
2712                 return 1;
2713         }
2714         return 0;
2715 }
2716
2717 /* We always reserve for an inode update; the superblock could be there too */
2718 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2719 {
2720         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2721                 return 1;
2722
2723         if (pos + len <= 0x7fffffffULL)
2724                 return 1;
2725
2726         /* We might need to update the superblock to set LARGE_FILE */
2727         return 2;
2728 }
2729
2730 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2731                                loff_t pos, unsigned len, unsigned flags,
2732                                struct page **pagep, void **fsdata)
2733 {
2734         int ret, retries = 0;
2735         struct page *page;
2736         pgoff_t index;
2737         struct inode *inode = mapping->host;
2738         handle_t *handle;
2739
2740         index = pos >> PAGE_CACHE_SHIFT;
2741
2742         if (ext4_nonda_switch(inode->i_sb)) {
2743                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2744                 return ext4_write_begin(file, mapping, pos,
2745                                         len, flags, pagep, fsdata);
2746         }
2747         *fsdata = (void *)0;
2748         trace_android_fs_datawrite_start(inode, pos, len,
2749                                          current->pid, current->comm);
2750         trace_ext4_da_write_begin(inode, pos, len, flags);
2751
2752         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2753                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2754                                                       pos, len, flags,
2755                                                       pagep, fsdata);
2756                 if (ret < 0)
2757                         return ret;
2758                 if (ret == 1)
2759                         return 0;
2760         }
2761
2762         /*
2763          * grab_cache_page_write_begin() can take a long time if the
2764          * system is thrashing due to memory pressure, or if the page
2765          * is being written back.  So grab it first before we start
2766          * the transaction handle.  This also allows us to allocate
2767          * the page (if needed) without using GFP_NOFS.
2768          */
2769 retry_grab:
2770         page = grab_cache_page_write_begin(mapping, index, flags);
2771         if (!page)
2772                 return -ENOMEM;
2773         unlock_page(page);
2774
2775         /*
2776          * With delayed allocation, we don't log the i_disksize update
2777          * if there is delayed block allocation. But we still need
2778          * to journalling the i_disksize update if writes to the end
2779          * of file which has an already mapped buffer.
2780          */
2781 retry_journal:
2782         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2783                                 ext4_da_write_credits(inode, pos, len));
2784         if (IS_ERR(handle)) {
2785                 page_cache_release(page);
2786                 return PTR_ERR(handle);
2787         }
2788
2789         lock_page(page);
2790         if (page->mapping != mapping) {
2791                 /* The page got truncated from under us */
2792                 unlock_page(page);
2793                 page_cache_release(page);
2794                 ext4_journal_stop(handle);
2795                 goto retry_grab;
2796         }
2797         /* In case writeback began while the page was unlocked */
2798         wait_for_stable_page(page);
2799
2800 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2801         ret = ext4_block_write_begin(page, pos, len,
2802                                      ext4_da_get_block_prep);
2803 #else
2804         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2805 #endif
2806         if (ret < 0) {
2807                 unlock_page(page);
2808                 ext4_journal_stop(handle);
2809                 /*
2810                  * block_write_begin may have instantiated a few blocks
2811                  * outside i_size.  Trim these off again. Don't need
2812                  * i_size_read because we hold i_mutex.
2813                  */
2814                 if (pos + len > inode->i_size)
2815                         ext4_truncate_failed_write(inode);
2816
2817                 if (ret == -ENOSPC &&
2818                     ext4_should_retry_alloc(inode->i_sb, &retries))
2819                         goto retry_journal;
2820
2821                 page_cache_release(page);
2822                 return ret;
2823         }
2824
2825         *pagep = page;
2826         return ret;
2827 }
2828
2829 /*
2830  * Check if we should update i_disksize
2831  * when write to the end of file but not require block allocation
2832  */
2833 static int ext4_da_should_update_i_disksize(struct page *page,
2834                                             unsigned long offset)
2835 {
2836         struct buffer_head *bh;
2837         struct inode *inode = page->mapping->host;
2838         unsigned int idx;
2839         int i;
2840
2841         bh = page_buffers(page);
2842         idx = offset >> inode->i_blkbits;
2843
2844         for (i = 0; i < idx; i++)
2845                 bh = bh->b_this_page;
2846
2847         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2848                 return 0;
2849         return 1;
2850 }
2851
2852 static int ext4_da_write_end(struct file *file,
2853                              struct address_space *mapping,
2854                              loff_t pos, unsigned len, unsigned copied,
2855                              struct page *page, void *fsdata)
2856 {
2857         struct inode *inode = mapping->host;
2858         int ret = 0, ret2;
2859         handle_t *handle = ext4_journal_current_handle();
2860         loff_t new_i_size;
2861         unsigned long start, end;
2862         int write_mode = (int)(unsigned long)fsdata;
2863
2864         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2865                 return ext4_write_end(file, mapping, pos,
2866                                       len, copied, page, fsdata);
2867
2868         trace_android_fs_datawrite_end(inode, pos, len);
2869         trace_ext4_da_write_end(inode, pos, len, copied);
2870         start = pos & (PAGE_CACHE_SIZE - 1);
2871         end = start + copied - 1;
2872
2873         /*
2874          * generic_write_end() will run mark_inode_dirty() if i_size
2875          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2876          * into that.
2877          */
2878         new_i_size = pos + copied;
2879         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2880                 if (ext4_has_inline_data(inode) ||
2881                     ext4_da_should_update_i_disksize(page, end)) {
2882                         ext4_update_i_disksize(inode, new_i_size);
2883                         /* We need to mark inode dirty even if
2884                          * new_i_size is less that inode->i_size
2885                          * bu greater than i_disksize.(hint delalloc)
2886                          */
2887                         ext4_mark_inode_dirty(handle, inode);
2888                 }
2889         }
2890
2891         if (write_mode != CONVERT_INLINE_DATA &&
2892             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2893             ext4_has_inline_data(inode))
2894                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2895                                                      page);
2896         else
2897                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2898                                                         page, fsdata);
2899
2900         copied = ret2;
2901         if (ret2 < 0)
2902                 ret = ret2;
2903         ret2 = ext4_journal_stop(handle);
2904         if (!ret)
2905                 ret = ret2;
2906
2907         return ret ? ret : copied;
2908 }
2909
2910 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2911                                    unsigned int length)
2912 {
2913         /*
2914          * Drop reserved blocks
2915          */
2916         BUG_ON(!PageLocked(page));
2917         if (!page_has_buffers(page))
2918                 goto out;
2919
2920         ext4_da_page_release_reservation(page, offset, length);
2921
2922 out:
2923         ext4_invalidatepage(page, offset, length);
2924
2925         return;
2926 }
2927
2928 /*
2929  * Force all delayed allocation blocks to be allocated for a given inode.
2930  */
2931 int ext4_alloc_da_blocks(struct inode *inode)
2932 {
2933         trace_ext4_alloc_da_blocks(inode);
2934
2935         if (!EXT4_I(inode)->i_reserved_data_blocks)
2936                 return 0;
2937
2938         /*
2939          * We do something simple for now.  The filemap_flush() will
2940          * also start triggering a write of the data blocks, which is
2941          * not strictly speaking necessary (and for users of
2942          * laptop_mode, not even desirable).  However, to do otherwise
2943          * would require replicating code paths in:
2944          *
2945          * ext4_writepages() ->
2946          *    write_cache_pages() ---> (via passed in callback function)
2947          *        __mpage_da_writepage() -->
2948          *           mpage_add_bh_to_extent()
2949          *           mpage_da_map_blocks()
2950          *
2951          * The problem is that write_cache_pages(), located in
2952          * mm/page-writeback.c, marks pages clean in preparation for
2953          * doing I/O, which is not desirable if we're not planning on
2954          * doing I/O at all.
2955          *
2956          * We could call write_cache_pages(), and then redirty all of
2957          * the pages by calling redirty_page_for_writepage() but that
2958          * would be ugly in the extreme.  So instead we would need to
2959          * replicate parts of the code in the above functions,
2960          * simplifying them because we wouldn't actually intend to
2961          * write out the pages, but rather only collect contiguous
2962          * logical block extents, call the multi-block allocator, and
2963          * then update the buffer heads with the block allocations.
2964          *
2965          * For now, though, we'll cheat by calling filemap_flush(),
2966          * which will map the blocks, and start the I/O, but not
2967          * actually wait for the I/O to complete.
2968          */
2969         return filemap_flush(inode->i_mapping);
2970 }
2971
2972 /*
2973  * bmap() is special.  It gets used by applications such as lilo and by
2974  * the swapper to find the on-disk block of a specific piece of data.
2975  *
2976  * Naturally, this is dangerous if the block concerned is still in the
2977  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2978  * filesystem and enables swap, then they may get a nasty shock when the
2979  * data getting swapped to that swapfile suddenly gets overwritten by
2980  * the original zero's written out previously to the journal and
2981  * awaiting writeback in the kernel's buffer cache.
2982  *
2983  * So, if we see any bmap calls here on a modified, data-journaled file,
2984  * take extra steps to flush any blocks which might be in the cache.
2985  */
2986 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2987 {
2988         struct inode *inode = mapping->host;
2989         journal_t *journal;
2990         int err;
2991
2992         /*
2993          * We can get here for an inline file via the FIBMAP ioctl
2994          */
2995         if (ext4_has_inline_data(inode))
2996                 return 0;
2997
2998         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2999                         test_opt(inode->i_sb, DELALLOC)) {
3000                 /*
3001                  * With delalloc we want to sync the file
3002                  * so that we can make sure we allocate
3003                  * blocks for file
3004                  */
3005                 filemap_write_and_wait(mapping);
3006         }
3007
3008         if (EXT4_JOURNAL(inode) &&
3009             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3010                 /*
3011                  * This is a REALLY heavyweight approach, but the use of
3012                  * bmap on dirty files is expected to be extremely rare:
3013                  * only if we run lilo or swapon on a freshly made file
3014                  * do we expect this to happen.
3015                  *
3016                  * (bmap requires CAP_SYS_RAWIO so this does not
3017                  * represent an unprivileged user DOS attack --- we'd be
3018                  * in trouble if mortal users could trigger this path at
3019                  * will.)
3020                  *
3021                  * NB. EXT4_STATE_JDATA is not set on files other than
3022                  * regular files.  If somebody wants to bmap a directory
3023                  * or symlink and gets confused because the buffer
3024                  * hasn't yet been flushed to disk, they deserve
3025                  * everything they get.
3026                  */
3027
3028                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3029                 journal = EXT4_JOURNAL(inode);
3030                 jbd2_journal_lock_updates(journal);
3031                 err = jbd2_journal_flush(journal);
3032                 jbd2_journal_unlock_updates(journal);
3033
3034                 if (err)
3035                         return 0;
3036         }
3037
3038         return generic_block_bmap(mapping, block, ext4_get_block);
3039 }
3040
3041 static int ext4_readpage(struct file *file, struct page *page)
3042 {
3043         int ret = -EAGAIN;
3044         struct inode *inode = page->mapping->host;
3045
3046         trace_ext4_readpage(page);
3047
3048         if (ext4_has_inline_data(inode))
3049                 ret = ext4_readpage_inline(inode, page);
3050
3051         if (ret == -EAGAIN)
3052                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3053
3054         return ret;
3055 }
3056
3057 static int
3058 ext4_readpages(struct file *file, struct address_space *mapping,
3059                 struct list_head *pages, unsigned nr_pages)
3060 {
3061         struct inode *inode = mapping->host;
3062
3063         /* If the file has inline data, no need to do readpages. */
3064         if (ext4_has_inline_data(inode))
3065                 return 0;
3066
3067         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3068 }
3069
3070 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3071                                 unsigned int length)
3072 {
3073         trace_ext4_invalidatepage(page, offset, length);
3074
3075         /* No journalling happens on data buffers when this function is used */
3076         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3077
3078         block_invalidatepage(page, offset, length);
3079 }
3080
3081 static int __ext4_journalled_invalidatepage(struct page *page,
3082                                             unsigned int offset,
3083                                             unsigned int length)
3084 {
3085         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3086
3087         trace_ext4_journalled_invalidatepage(page, offset, length);
3088
3089         /*
3090          * If it's a full truncate we just forget about the pending dirtying
3091          */
3092         if (offset == 0 && length == PAGE_CACHE_SIZE)
3093                 ClearPageChecked(page);
3094
3095         return jbd2_journal_invalidatepage(journal, page, offset, length);
3096 }
3097
3098 /* Wrapper for aops... */
3099 static void ext4_journalled_invalidatepage(struct page *page,
3100                                            unsigned int offset,
3101                                            unsigned int length)
3102 {
3103         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3104 }
3105
3106 static int ext4_releasepage(struct page *page, gfp_t wait)
3107 {
3108         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3109
3110         trace_ext4_releasepage(page);
3111
3112         /* Page has dirty journalled data -> cannot release */
3113         if (PageChecked(page))
3114                 return 0;
3115         if (journal)
3116                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3117         else
3118                 return try_to_free_buffers(page);
3119 }
3120
3121 /*
3122  * ext4_get_block used when preparing for a DIO write or buffer write.
3123  * We allocate an uinitialized extent if blocks haven't been allocated.
3124  * The extent will be converted to initialized after the IO is complete.
3125  */
3126 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3127                    struct buffer_head *bh_result, int create)
3128 {
3129         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3130                    inode->i_ino, create);
3131         return _ext4_get_block(inode, iblock, bh_result,
3132                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3133 }
3134
3135 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3136                    struct buffer_head *bh_result, int create)
3137 {
3138         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3139                    inode->i_ino, create);
3140         return _ext4_get_block(inode, iblock, bh_result,
3141                                EXT4_GET_BLOCKS_NO_LOCK);
3142 }
3143
3144 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3145                    struct buffer_head *bh_result, int create)
3146 {
3147         int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3148         if (create)
3149                 flags |= EXT4_GET_BLOCKS_CREATE;
3150         ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3151                    inode->i_ino, create);
3152         return _ext4_get_block(inode, iblock, bh_result, flags);
3153 }
3154
3155 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3156                             ssize_t size, void *private)
3157 {
3158         ext4_io_end_t *io_end = iocb->private;
3159
3160         /* if not async direct IO just return */
3161         if (!io_end)
3162                 return;
3163
3164         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3165                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3166                   iocb->private, io_end->inode->i_ino, iocb, offset,
3167                   size);
3168
3169         iocb->private = NULL;
3170         io_end->offset = offset;
3171         io_end->size = size;
3172         ext4_put_io_end(io_end);
3173 }
3174
3175 /*
3176  * For ext4 extent files, ext4 will do direct-io write to holes,
3177  * preallocated extents, and those write extend the file, no need to
3178  * fall back to buffered IO.
3179  *
3180  * For holes, we fallocate those blocks, mark them as unwritten
3181  * If those blocks were preallocated, we mark sure they are split, but
3182  * still keep the range to write as unwritten.
3183  *
3184  * The unwritten extents will be converted to written when DIO is completed.
3185  * For async direct IO, since the IO may still pending when return, we
3186  * set up an end_io call back function, which will do the conversion
3187  * when async direct IO completed.
3188  *
3189  * If the O_DIRECT write will extend the file then add this inode to the
3190  * orphan list.  So recovery will truncate it back to the original size
3191  * if the machine crashes during the write.
3192  *
3193  */
3194 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3195                                   loff_t offset)
3196 {
3197         struct file *file = iocb->ki_filp;
3198         struct inode *inode = file->f_mapping->host;
3199         ssize_t ret;
3200         size_t count = iov_iter_count(iter);
3201         int overwrite = 0;
3202         get_block_t *get_block_func = NULL;
3203         int dio_flags = 0;
3204         loff_t final_size = offset + count;
3205         ext4_io_end_t *io_end = NULL;
3206
3207         /* Use the old path for reads and writes beyond i_size. */
3208         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3209                 return ext4_ind_direct_IO(iocb, iter, offset);
3210
3211         BUG_ON(iocb->private == NULL);
3212
3213         /*
3214          * Make all waiters for direct IO properly wait also for extent
3215          * conversion. This also disallows race between truncate() and
3216          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3217          */
3218         if (iov_iter_rw(iter) == WRITE)
3219                 inode_dio_begin(inode);
3220
3221         /* If we do a overwrite dio, i_mutex locking can be released */
3222         overwrite = *((int *)iocb->private);
3223
3224         if (overwrite) {
3225                 down_read(&EXT4_I(inode)->i_data_sem);
3226                 mutex_unlock(&inode->i_mutex);
3227         }
3228
3229         /*
3230          * We could direct write to holes and fallocate.
3231          *
3232          * Allocated blocks to fill the hole are marked as
3233          * unwritten to prevent parallel buffered read to expose
3234          * the stale data before DIO complete the data IO.
3235          *
3236          * As to previously fallocated extents, ext4 get_block will
3237          * just simply mark the buffer mapped but still keep the
3238          * extents unwritten.
3239          *
3240          * For non AIO case, we will convert those unwritten extents
3241          * to written after return back from blockdev_direct_IO.
3242          *
3243          * For async DIO, the conversion needs to be deferred when the
3244          * IO is completed. The ext4 end_io callback function will be
3245          * called to take care of the conversion work.  Here for async
3246          * case, we allocate an io_end structure to hook to the iocb.
3247          */
3248         iocb->private = NULL;
3249         ext4_inode_aio_set(inode, NULL);
3250         if (!is_sync_kiocb(iocb)) {
3251                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3252                 if (!io_end) {
3253                         ret = -ENOMEM;
3254                         goto retake_lock;
3255                 }
3256                 /*
3257                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3258                  */
3259                 iocb->private = ext4_get_io_end(io_end);
3260                 /*
3261                  * we save the io structure for current async direct
3262                  * IO, so that later ext4_map_blocks() could flag the
3263                  * io structure whether there is a unwritten extents
3264                  * needs to be converted when IO is completed.
3265                  */
3266                 ext4_inode_aio_set(inode, io_end);
3267         }
3268
3269         if (overwrite) {
3270                 get_block_func = ext4_get_block_write_nolock;
3271         } else {
3272                 get_block_func = ext4_get_block_write;
3273                 dio_flags = DIO_LOCKING;
3274         }
3275 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3276         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3277 #endif
3278         if (IS_DAX(inode))
3279                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3280                                 ext4_end_io_dio, dio_flags);
3281         else
3282                 ret = __blockdev_direct_IO(iocb, inode,
3283                                            inode->i_sb->s_bdev, iter, offset,
3284                                            get_block_func,
3285                                            ext4_end_io_dio, NULL, dio_flags);
3286
3287         /*
3288          * Put our reference to io_end. This can free the io_end structure e.g.
3289          * in sync IO case or in case of error. It can even perform extent
3290          * conversion if all bios we submitted finished before we got here.
3291          * Note that in that case iocb->private can be already set to NULL
3292          * here.
3293          */
3294         if (io_end) {
3295                 ext4_inode_aio_set(inode, NULL);
3296                 ext4_put_io_end(io_end);
3297                 /*
3298                  * When no IO was submitted ext4_end_io_dio() was not
3299                  * called so we have to put iocb's reference.
3300                  */
3301                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3302                         WARN_ON(iocb->private != io_end);
3303                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3304                         ext4_put_io_end(io_end);
3305                         iocb->private = NULL;
3306                 }
3307         }
3308         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3309                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3310                 int err;
3311                 /*
3312                  * for non AIO case, since the IO is already
3313                  * completed, we could do the conversion right here
3314                  */
3315                 err = ext4_convert_unwritten_extents(NULL, inode,
3316                                                      offset, ret);
3317                 if (err < 0)
3318                         ret = err;
3319                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3320         }
3321
3322 retake_lock:
3323         if (iov_iter_rw(iter) == WRITE)
3324                 inode_dio_end(inode);
3325         /* take i_mutex locking again if we do a ovewrite dio */
3326         if (overwrite) {
3327                 up_read(&EXT4_I(inode)->i_data_sem);
3328                 mutex_lock(&inode->i_mutex);
3329         }
3330
3331         return ret;
3332 }
3333
3334 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3335                               loff_t offset)
3336 {
3337         struct file *file = iocb->ki_filp;
3338         struct inode *inode = file->f_mapping->host;
3339         size_t count = iov_iter_count(iter);
3340         ssize_t ret;
3341
3342 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3343         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3344                 return 0;
3345 #endif
3346
3347         /*
3348          * If we are doing data journalling we don't support O_DIRECT
3349          */
3350         if (ext4_should_journal_data(inode))
3351                 return 0;
3352
3353         /* Let buffer I/O handle the inline data case. */
3354         if (ext4_has_inline_data(inode))
3355                 return 0;
3356
3357         if (trace_android_fs_dataread_start_enabled() &&
3358             (iov_iter_rw(iter) == READ))
3359                 trace_android_fs_dataread_start(inode, offset, count,
3360                                                 current->pid,
3361                                                 current->comm);
3362         if (trace_android_fs_datawrite_start_enabled() &&
3363             (iov_iter_rw(iter) == WRITE))
3364                 trace_android_fs_datawrite_start(inode, offset, count,
3365                                                  current->pid,
3366                                                  current->comm);
3367
3368         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3369         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3370                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3371         else
3372                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3373         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3374
3375         if (trace_android_fs_dataread_start_enabled() &&
3376             (iov_iter_rw(iter) == READ))
3377                 trace_android_fs_dataread_end(inode, offset, count);
3378         if (trace_android_fs_datawrite_start_enabled() &&
3379             (iov_iter_rw(iter) == WRITE))
3380                 trace_android_fs_datawrite_end(inode, offset, count);
3381
3382         return ret;
3383 }
3384
3385 /*
3386  * Pages can be marked dirty completely asynchronously from ext4's journalling
3387  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3388  * much here because ->set_page_dirty is called under VFS locks.  The page is
3389  * not necessarily locked.
3390  *
3391  * We cannot just dirty the page and leave attached buffers clean, because the
3392  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3393  * or jbddirty because all the journalling code will explode.
3394  *
3395  * So what we do is to mark the page "pending dirty" and next time writepage
3396  * is called, propagate that into the buffers appropriately.
3397  */
3398 static int ext4_journalled_set_page_dirty(struct page *page)
3399 {
3400         SetPageChecked(page);
3401         return __set_page_dirty_nobuffers(page);
3402 }
3403
3404 static const struct address_space_operations ext4_aops = {
3405         .readpage               = ext4_readpage,
3406         .readpages              = ext4_readpages,
3407         .writepage              = ext4_writepage,
3408         .writepages             = ext4_writepages,
3409         .write_begin            = ext4_write_begin,
3410         .write_end              = ext4_write_end,
3411         .bmap                   = ext4_bmap,
3412         .invalidatepage         = ext4_invalidatepage,
3413         .releasepage            = ext4_releasepage,
3414         .direct_IO              = ext4_direct_IO,
3415         .migratepage            = buffer_migrate_page,
3416         .is_partially_uptodate  = block_is_partially_uptodate,
3417         .error_remove_page      = generic_error_remove_page,
3418 };
3419
3420 static const struct address_space_operations ext4_journalled_aops = {
3421         .readpage               = ext4_readpage,
3422         .readpages              = ext4_readpages,
3423         .writepage              = ext4_writepage,
3424         .writepages             = ext4_writepages,
3425         .write_begin            = ext4_write_begin,
3426         .write_end              = ext4_journalled_write_end,
3427         .set_page_dirty         = ext4_journalled_set_page_dirty,
3428         .bmap                   = ext4_bmap,
3429         .invalidatepage         = ext4_journalled_invalidatepage,
3430         .releasepage            = ext4_releasepage,
3431         .direct_IO              = ext4_direct_IO,
3432         .is_partially_uptodate  = block_is_partially_uptodate,
3433         .error_remove_page      = generic_error_remove_page,
3434 };
3435
3436 static const struct address_space_operations ext4_da_aops = {
3437         .readpage               = ext4_readpage,
3438         .readpages              = ext4_readpages,
3439         .writepage              = ext4_writepage,
3440         .writepages             = ext4_writepages,
3441         .write_begin            = ext4_da_write_begin,
3442         .write_end              = ext4_da_write_end,
3443         .bmap                   = ext4_bmap,
3444         .invalidatepage         = ext4_da_invalidatepage,
3445         .releasepage            = ext4_releasepage,
3446         .direct_IO              = ext4_direct_IO,
3447         .migratepage            = buffer_migrate_page,
3448         .is_partially_uptodate  = block_is_partially_uptodate,
3449         .error_remove_page      = generic_error_remove_page,
3450 };
3451
3452 void ext4_set_aops(struct inode *inode)
3453 {
3454         switch (ext4_inode_journal_mode(inode)) {
3455         case EXT4_INODE_ORDERED_DATA_MODE:
3456                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3457                 break;
3458         case EXT4_INODE_WRITEBACK_DATA_MODE:
3459                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3460                 break;
3461         case EXT4_INODE_JOURNAL_DATA_MODE:
3462                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3463                 return;
3464         default:
3465                 BUG();
3466         }
3467         if (test_opt(inode->i_sb, DELALLOC))
3468                 inode->i_mapping->a_ops = &ext4_da_aops;
3469         else
3470                 inode->i_mapping->a_ops = &ext4_aops;
3471 }
3472
3473 static int __ext4_block_zero_page_range(handle_t *handle,
3474                 struct address_space *mapping, loff_t from, loff_t length)
3475 {
3476         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3477         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3478         unsigned blocksize, pos;
3479         ext4_lblk_t iblock;
3480         struct inode *inode = mapping->host;
3481         struct buffer_head *bh;
3482         struct page *page;
3483         int err = 0;
3484
3485         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3486                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3487         if (!page)
3488                 return -ENOMEM;
3489
3490         blocksize = inode->i_sb->s_blocksize;
3491
3492         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3493
3494         if (!page_has_buffers(page))
3495                 create_empty_buffers(page, blocksize, 0);
3496
3497         /* Find the buffer that contains "offset" */
3498         bh = page_buffers(page);
3499         pos = blocksize;
3500         while (offset >= pos) {
3501                 bh = bh->b_this_page;
3502                 iblock++;
3503                 pos += blocksize;
3504         }
3505         if (buffer_freed(bh)) {
3506                 BUFFER_TRACE(bh, "freed: skip");
3507                 goto unlock;
3508         }
3509         if (!buffer_mapped(bh)) {
3510                 BUFFER_TRACE(bh, "unmapped");
3511                 ext4_get_block(inode, iblock, bh, 0);
3512                 /* unmapped? It's a hole - nothing to do */
3513                 if (!buffer_mapped(bh)) {
3514                         BUFFER_TRACE(bh, "still unmapped");
3515                         goto unlock;
3516                 }
3517         }
3518
3519         /* Ok, it's mapped. Make sure it's up-to-date */
3520         if (PageUptodate(page))
3521                 set_buffer_uptodate(bh);
3522
3523         if (!buffer_uptodate(bh)) {
3524                 err = -EIO;
3525                 ll_rw_block(READ, 1, &bh);
3526                 wait_on_buffer(bh);
3527                 /* Uhhuh. Read error. Complain and punt. */
3528                 if (!buffer_uptodate(bh))
3529                         goto unlock;
3530                 if (S_ISREG(inode->i_mode) &&
3531                     ext4_encrypted_inode(inode)) {
3532                         /* We expect the key to be set. */
3533                         BUG_ON(!ext4_has_encryption_key(inode));
3534                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3535                         WARN_ON_ONCE(ext4_decrypt(page));
3536                 }
3537         }
3538         if (ext4_should_journal_data(inode)) {
3539                 BUFFER_TRACE(bh, "get write access");
3540                 err = ext4_journal_get_write_access(handle, bh);
3541                 if (err)
3542                         goto unlock;
3543         }
3544         zero_user(page, offset, length);
3545         BUFFER_TRACE(bh, "zeroed end of block");
3546
3547         if (ext4_should_journal_data(inode)) {
3548                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3549         } else {
3550                 err = 0;
3551                 mark_buffer_dirty(bh);
3552                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3553                         err = ext4_jbd2_file_inode(handle, inode);
3554         }
3555
3556 unlock:
3557         unlock_page(page);
3558         page_cache_release(page);
3559         return err;
3560 }
3561
3562 /*
3563  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3564  * starting from file offset 'from'.  The range to be zero'd must
3565  * be contained with in one block.  If the specified range exceeds
3566  * the end of the block it will be shortened to end of the block
3567  * that cooresponds to 'from'
3568  */
3569 static int ext4_block_zero_page_range(handle_t *handle,
3570                 struct address_space *mapping, loff_t from, loff_t length)
3571 {
3572         struct inode *inode = mapping->host;
3573         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3574         unsigned blocksize = inode->i_sb->s_blocksize;
3575         unsigned max = blocksize - (offset & (blocksize - 1));
3576
3577         /*
3578          * correct length if it does not fall between
3579          * 'from' and the end of the block
3580          */
3581         if (length > max || length < 0)
3582                 length = max;
3583
3584         if (IS_DAX(inode))
3585                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3586         return __ext4_block_zero_page_range(handle, mapping, from, length);
3587 }
3588
3589 /*
3590  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3591  * up to the end of the block which corresponds to `from'.
3592  * This required during truncate. We need to physically zero the tail end
3593  * of that block so it doesn't yield old data if the file is later grown.
3594  */
3595 static int ext4_block_truncate_page(handle_t *handle,
3596                 struct address_space *mapping, loff_t from)
3597 {
3598         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3599         unsigned length;
3600         unsigned blocksize;
3601         struct inode *inode = mapping->host;
3602
3603         /* If we are processing an encrypted inode during orphan list handling */
3604         if (ext4_encrypted_inode(inode) && !ext4_has_encryption_key(inode))
3605                 return 0;
3606
3607         blocksize = inode->i_sb->s_blocksize;
3608         length = blocksize - (offset & (blocksize - 1));
3609
3610         return ext4_block_zero_page_range(handle, mapping, from, length);
3611 }
3612
3613 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3614                              loff_t lstart, loff_t length)
3615 {
3616         struct super_block *sb = inode->i_sb;
3617         struct address_space *mapping = inode->i_mapping;
3618         unsigned partial_start, partial_end;
3619         ext4_fsblk_t start, end;
3620         loff_t byte_end = (lstart + length - 1);
3621         int err = 0;
3622
3623         partial_start = lstart & (sb->s_blocksize - 1);
3624         partial_end = byte_end & (sb->s_blocksize - 1);
3625
3626         start = lstart >> sb->s_blocksize_bits;
3627         end = byte_end >> sb->s_blocksize_bits;
3628
3629         /* Handle partial zero within the single block */
3630         if (start == end &&
3631             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3632                 err = ext4_block_zero_page_range(handle, mapping,
3633                                                  lstart, length);
3634                 return err;
3635         }
3636         /* Handle partial zero out on the start of the range */
3637         if (partial_start) {
3638                 err = ext4_block_zero_page_range(handle, mapping,
3639                                                  lstart, sb->s_blocksize);
3640                 if (err)
3641                         return err;
3642         }
3643         /* Handle partial zero out on the end of the range */
3644         if (partial_end != sb->s_blocksize - 1)
3645                 err = ext4_block_zero_page_range(handle, mapping,
3646                                                  byte_end - partial_end,
3647                                                  partial_end + 1);
3648         return err;
3649 }
3650
3651 int ext4_can_truncate(struct inode *inode)
3652 {
3653         if (S_ISREG(inode->i_mode))
3654                 return 1;
3655         if (S_ISDIR(inode->i_mode))
3656                 return 1;
3657         if (S_ISLNK(inode->i_mode))
3658                 return !ext4_inode_is_fast_symlink(inode);
3659         return 0;
3660 }
3661
3662 /*
3663  * We have to make sure i_disksize gets properly updated before we truncate
3664  * page cache due to hole punching or zero range. Otherwise i_disksize update
3665  * can get lost as it may have been postponed to submission of writeback but
3666  * that will never happen after we truncate page cache.
3667  */
3668 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3669                                       loff_t len)
3670 {
3671         handle_t *handle;
3672         loff_t size = i_size_read(inode);
3673
3674         WARN_ON(!mutex_is_locked(&inode->i_mutex));
3675         if (offset > size || offset + len < size)
3676                 return 0;
3677
3678         if (EXT4_I(inode)->i_disksize >= size)
3679                 return 0;
3680
3681         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3682         if (IS_ERR(handle))
3683                 return PTR_ERR(handle);
3684         ext4_update_i_disksize(inode, size);
3685         ext4_mark_inode_dirty(handle, inode);
3686         ext4_journal_stop(handle);
3687
3688         return 0;
3689 }
3690
3691 /*
3692  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3693  * associated with the given offset and length
3694  *
3695  * @inode:  File inode
3696  * @offset: The offset where the hole will begin
3697  * @len:    The length of the hole
3698  *
3699  * Returns: 0 on success or negative on failure
3700  */
3701
3702 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3703 {
3704         struct super_block *sb = inode->i_sb;
3705         ext4_lblk_t first_block, stop_block;
3706         struct address_space *mapping = inode->i_mapping;
3707         loff_t first_block_offset, last_block_offset;
3708         handle_t *handle;
3709         unsigned int credits;
3710         int ret = 0;
3711
3712         if (!S_ISREG(inode->i_mode))
3713                 return -EOPNOTSUPP;
3714
3715         trace_ext4_punch_hole(inode, offset, length, 0);
3716
3717         /*
3718          * Write out all dirty pages to avoid race conditions
3719          * Then release them.
3720          */
3721         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3722                 ret = filemap_write_and_wait_range(mapping, offset,
3723                                                    offset + length - 1);
3724                 if (ret)
3725                         return ret;
3726         }
3727
3728         mutex_lock(&inode->i_mutex);
3729
3730         /* No need to punch hole beyond i_size */
3731         if (offset >= inode->i_size)
3732                 goto out_mutex;
3733
3734         /*
3735          * If the hole extends beyond i_size, set the hole
3736          * to end after the page that contains i_size
3737          */
3738         if (offset + length > inode->i_size) {
3739                 length = inode->i_size +
3740                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3741                    offset;
3742         }
3743
3744         if (offset & (sb->s_blocksize - 1) ||
3745             (offset + length) & (sb->s_blocksize - 1)) {
3746                 /*
3747                  * Attach jinode to inode for jbd2 if we do any zeroing of
3748                  * partial block
3749                  */
3750                 ret = ext4_inode_attach_jinode(inode);
3751                 if (ret < 0)
3752                         goto out_mutex;
3753
3754         }
3755
3756         /* Wait all existing dio workers, newcomers will block on i_mutex */
3757         ext4_inode_block_unlocked_dio(inode);
3758         inode_dio_wait(inode);
3759
3760         /*
3761          * Prevent page faults from reinstantiating pages we have released from
3762          * page cache.
3763          */
3764         down_write(&EXT4_I(inode)->i_mmap_sem);
3765         first_block_offset = round_up(offset, sb->s_blocksize);
3766         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3767
3768         /* Now release the pages and zero block aligned part of pages*/
3769         if (last_block_offset > first_block_offset) {
3770                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3771                 if (ret)
3772                         goto out_dio;
3773                 truncate_pagecache_range(inode, first_block_offset,
3774                                          last_block_offset);
3775         }
3776
3777         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3778                 credits = ext4_writepage_trans_blocks(inode);
3779         else
3780                 credits = ext4_blocks_for_truncate(inode);
3781         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3782         if (IS_ERR(handle)) {
3783                 ret = PTR_ERR(handle);
3784                 ext4_std_error(sb, ret);
3785                 goto out_dio;
3786         }
3787
3788         ret = ext4_zero_partial_blocks(handle, inode, offset,
3789                                        length);
3790         if (ret)
3791                 goto out_stop;
3792
3793         first_block = (offset + sb->s_blocksize - 1) >>
3794                 EXT4_BLOCK_SIZE_BITS(sb);
3795         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3796
3797         /* If there are no blocks to remove, return now */
3798         if (first_block >= stop_block)
3799                 goto out_stop;
3800
3801         down_write(&EXT4_I(inode)->i_data_sem);
3802         ext4_discard_preallocations(inode);
3803
3804         ret = ext4_es_remove_extent(inode, first_block,
3805                                     stop_block - first_block);
3806         if (ret) {
3807                 up_write(&EXT4_I(inode)->i_data_sem);
3808                 goto out_stop;
3809         }
3810
3811         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3812                 ret = ext4_ext_remove_space(inode, first_block,
3813                                             stop_block - 1);
3814         else
3815                 ret = ext4_ind_remove_space(handle, inode, first_block,
3816                                             stop_block);
3817
3818         up_write(&EXT4_I(inode)->i_data_sem);
3819         if (IS_SYNC(inode))
3820                 ext4_handle_sync(handle);
3821
3822         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3823         ext4_mark_inode_dirty(handle, inode);
3824 out_stop:
3825         ext4_journal_stop(handle);
3826 out_dio:
3827         up_write(&EXT4_I(inode)->i_mmap_sem);
3828         ext4_inode_resume_unlocked_dio(inode);
3829 out_mutex:
3830         mutex_unlock(&inode->i_mutex);
3831         return ret;
3832 }
3833
3834 int ext4_inode_attach_jinode(struct inode *inode)
3835 {
3836         struct ext4_inode_info *ei = EXT4_I(inode);
3837         struct jbd2_inode *jinode;
3838
3839         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3840                 return 0;
3841
3842         jinode = jbd2_alloc_inode(GFP_KERNEL);
3843         spin_lock(&inode->i_lock);
3844         if (!ei->jinode) {
3845                 if (!jinode) {
3846                         spin_unlock(&inode->i_lock);
3847                         return -ENOMEM;
3848                 }
3849                 ei->jinode = jinode;
3850                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3851                 jinode = NULL;
3852         }
3853         spin_unlock(&inode->i_lock);
3854         if (unlikely(jinode != NULL))
3855                 jbd2_free_inode(jinode);
3856         return 0;
3857 }
3858
3859 /*
3860  * ext4_truncate()
3861  *
3862  * We block out ext4_get_block() block instantiations across the entire
3863  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3864  * simultaneously on behalf of the same inode.
3865  *
3866  * As we work through the truncate and commit bits of it to the journal there
3867  * is one core, guiding principle: the file's tree must always be consistent on
3868  * disk.  We must be able to restart the truncate after a crash.
3869  *
3870  * The file's tree may be transiently inconsistent in memory (although it
3871  * probably isn't), but whenever we close off and commit a journal transaction,
3872  * the contents of (the filesystem + the journal) must be consistent and
3873  * restartable.  It's pretty simple, really: bottom up, right to left (although
3874  * left-to-right works OK too).
3875  *
3876  * Note that at recovery time, journal replay occurs *before* the restart of
3877  * truncate against the orphan inode list.
3878  *
3879  * The committed inode has the new, desired i_size (which is the same as
3880  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3881  * that this inode's truncate did not complete and it will again call
3882  * ext4_truncate() to have another go.  So there will be instantiated blocks
3883  * to the right of the truncation point in a crashed ext4 filesystem.  But
3884  * that's fine - as long as they are linked from the inode, the post-crash
3885  * ext4_truncate() run will find them and release them.
3886  */
3887 void ext4_truncate(struct inode *inode)
3888 {
3889         struct ext4_inode_info *ei = EXT4_I(inode);
3890         unsigned int credits;
3891         handle_t *handle;
3892         struct address_space *mapping = inode->i_mapping;
3893
3894         /*
3895          * There is a possibility that we're either freeing the inode
3896          * or it's a completely new inode. In those cases we might not
3897          * have i_mutex locked because it's not necessary.
3898          */
3899         if (!(inode->i_state & (I_NEW|I_FREEING)))
3900                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3901         trace_ext4_truncate_enter(inode);
3902
3903         if (!ext4_can_truncate(inode))
3904                 return;
3905
3906         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3907
3908         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3909                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3910
3911         if (ext4_has_inline_data(inode)) {
3912                 int has_inline = 1;
3913
3914                 ext4_inline_data_truncate(inode, &has_inline);
3915                 if (has_inline)
3916                         return;
3917         }
3918
3919         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3920         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3921                 if (ext4_inode_attach_jinode(inode) < 0)
3922                         return;
3923         }
3924
3925         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3926                 credits = ext4_writepage_trans_blocks(inode);
3927         else
3928                 credits = ext4_blocks_for_truncate(inode);
3929
3930         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3931         if (IS_ERR(handle)) {
3932                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3933                 return;
3934         }
3935
3936         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3937                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3938
3939         /*
3940          * We add the inode to the orphan list, so that if this
3941          * truncate spans multiple transactions, and we crash, we will
3942          * resume the truncate when the filesystem recovers.  It also
3943          * marks the inode dirty, to catch the new size.
3944          *
3945          * Implication: the file must always be in a sane, consistent
3946          * truncatable state while each transaction commits.
3947          */
3948         if (ext4_orphan_add(handle, inode))
3949                 goto out_stop;
3950
3951         down_write(&EXT4_I(inode)->i_data_sem);
3952
3953         ext4_discard_preallocations(inode);
3954
3955         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3956                 ext4_ext_truncate(handle, inode);
3957         else
3958                 ext4_ind_truncate(handle, inode);
3959
3960         up_write(&ei->i_data_sem);
3961
3962         if (IS_SYNC(inode))
3963                 ext4_handle_sync(handle);
3964
3965 out_stop:
3966         /*
3967          * If this was a simple ftruncate() and the file will remain alive,
3968          * then we need to clear up the orphan record which we created above.
3969          * However, if this was a real unlink then we were called by
3970          * ext4_evict_inode(), and we allow that function to clean up the
3971          * orphan info for us.
3972          */
3973         if (inode->i_nlink)
3974                 ext4_orphan_del(handle, inode);
3975
3976         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3977         ext4_mark_inode_dirty(handle, inode);
3978         ext4_journal_stop(handle);
3979
3980         trace_ext4_truncate_exit(inode);
3981 }
3982
3983 /*
3984  * ext4_get_inode_loc returns with an extra refcount against the inode's
3985  * underlying buffer_head on success. If 'in_mem' is true, we have all
3986  * data in memory that is needed to recreate the on-disk version of this
3987  * inode.
3988  */
3989 static int __ext4_get_inode_loc(struct inode *inode,
3990                                 struct ext4_iloc *iloc, int in_mem)
3991 {
3992         struct ext4_group_desc  *gdp;
3993         struct buffer_head      *bh;
3994         struct super_block      *sb = inode->i_sb;
3995         ext4_fsblk_t            block;
3996         int                     inodes_per_block, inode_offset;
3997
3998         iloc->bh = NULL;
3999         if (!ext4_valid_inum(sb, inode->i_ino))
4000                 return -EFSCORRUPTED;
4001
4002         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4003         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4004         if (!gdp)
4005                 return -EIO;
4006
4007         /*
4008          * Figure out the offset within the block group inode table
4009          */
4010         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4011         inode_offset = ((inode->i_ino - 1) %
4012                         EXT4_INODES_PER_GROUP(sb));
4013         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4014         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4015
4016         bh = sb_getblk(sb, block);
4017         if (unlikely(!bh))
4018                 return -ENOMEM;
4019         if (!buffer_uptodate(bh)) {
4020                 lock_buffer(bh);
4021
4022                 /*
4023                  * If the buffer has the write error flag, we have failed
4024                  * to write out another inode in the same block.  In this
4025                  * case, we don't have to read the block because we may
4026                  * read the old inode data successfully.
4027                  */
4028                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4029                         set_buffer_uptodate(bh);
4030
4031                 if (buffer_uptodate(bh)) {
4032                         /* someone brought it uptodate while we waited */
4033                         unlock_buffer(bh);
4034                         goto has_buffer;
4035                 }
4036
4037                 /*
4038                  * If we have all information of the inode in memory and this
4039                  * is the only valid inode in the block, we need not read the
4040                  * block.
4041                  */
4042                 if (in_mem) {
4043                         struct buffer_head *bitmap_bh;
4044                         int i, start;
4045
4046                         start = inode_offset & ~(inodes_per_block - 1);
4047
4048                         /* Is the inode bitmap in cache? */
4049                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4050                         if (unlikely(!bitmap_bh))
4051                                 goto make_io;
4052
4053                         /*
4054                          * If the inode bitmap isn't in cache then the
4055                          * optimisation may end up performing two reads instead
4056                          * of one, so skip it.
4057                          */
4058                         if (!buffer_uptodate(bitmap_bh)) {
4059                                 brelse(bitmap_bh);
4060                                 goto make_io;
4061                         }
4062                         for (i = start; i < start + inodes_per_block; i++) {
4063                                 if (i == inode_offset)
4064                                         continue;
4065                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4066                                         break;
4067                         }
4068                         brelse(bitmap_bh);
4069                         if (i == start + inodes_per_block) {
4070                                 /* all other inodes are free, so skip I/O */
4071                                 memset(bh->b_data, 0, bh->b_size);
4072                                 set_buffer_uptodate(bh);
4073                                 unlock_buffer(bh);
4074                                 goto has_buffer;
4075                         }
4076                 }
4077
4078 make_io:
4079                 /*
4080                  * If we need to do any I/O, try to pre-readahead extra
4081                  * blocks from the inode table.
4082                  */
4083                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4084                         ext4_fsblk_t b, end, table;
4085                         unsigned num;
4086                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4087
4088                         table = ext4_inode_table(sb, gdp);
4089                         /* s_inode_readahead_blks is always a power of 2 */
4090                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4091                         if (table > b)
4092                                 b = table;
4093                         end = b + ra_blks;
4094                         num = EXT4_INODES_PER_GROUP(sb);
4095                         if (ext4_has_group_desc_csum(sb))
4096                                 num -= ext4_itable_unused_count(sb, gdp);
4097                         table += num / inodes_per_block;
4098                         if (end > table)
4099                                 end = table;
4100                         while (b <= end)
4101                                 sb_breadahead(sb, b++);
4102                 }
4103
4104                 /*
4105                  * There are other valid inodes in the buffer, this inode
4106                  * has in-inode xattrs, or we don't have this inode in memory.
4107                  * Read the block from disk.
4108                  */
4109                 trace_ext4_load_inode(inode);
4110                 get_bh(bh);
4111                 bh->b_end_io = end_buffer_read_sync;
4112                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4113                 wait_on_buffer(bh);
4114                 if (!buffer_uptodate(bh)) {
4115                         EXT4_ERROR_INODE_BLOCK(inode, block,
4116                                                "unable to read itable block");
4117                         brelse(bh);
4118                         return -EIO;
4119                 }
4120         }
4121 has_buffer:
4122         iloc->bh = bh;
4123         return 0;
4124 }
4125
4126 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4127 {
4128         /* We have all inode data except xattrs in memory here. */
4129         return __ext4_get_inode_loc(inode, iloc,
4130                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4131 }
4132
4133 void ext4_set_inode_flags(struct inode *inode)
4134 {
4135         unsigned int flags = EXT4_I(inode)->i_flags;
4136         unsigned int new_fl = 0;
4137
4138         if (flags & EXT4_SYNC_FL)
4139                 new_fl |= S_SYNC;
4140         if (flags & EXT4_APPEND_FL)
4141                 new_fl |= S_APPEND;
4142         if (flags & EXT4_IMMUTABLE_FL)
4143                 new_fl |= S_IMMUTABLE;
4144         if (flags & EXT4_NOATIME_FL)
4145                 new_fl |= S_NOATIME;
4146         if (flags & EXT4_DIRSYNC_FL)
4147                 new_fl |= S_DIRSYNC;
4148         if (test_opt(inode->i_sb, DAX))
4149                 new_fl |= S_DAX;
4150         inode_set_flags(inode, new_fl,
4151                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4152 }
4153
4154 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4155 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4156 {
4157         unsigned int vfs_fl;
4158         unsigned long old_fl, new_fl;
4159
4160         do {
4161                 vfs_fl = ei->vfs_inode.i_flags;
4162                 old_fl = ei->i_flags;
4163                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4164                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4165                                 EXT4_DIRSYNC_FL);
4166                 if (vfs_fl & S_SYNC)
4167                         new_fl |= EXT4_SYNC_FL;
4168                 if (vfs_fl & S_APPEND)
4169                         new_fl |= EXT4_APPEND_FL;
4170                 if (vfs_fl & S_IMMUTABLE)
4171                         new_fl |= EXT4_IMMUTABLE_FL;
4172                 if (vfs_fl & S_NOATIME)
4173                         new_fl |= EXT4_NOATIME_FL;
4174                 if (vfs_fl & S_DIRSYNC)
4175                         new_fl |= EXT4_DIRSYNC_FL;
4176         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4177 }
4178
4179 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4180                                   struct ext4_inode_info *ei)
4181 {
4182         blkcnt_t i_blocks ;
4183         struct inode *inode = &(ei->vfs_inode);
4184         struct super_block *sb = inode->i_sb;
4185
4186         if (ext4_has_feature_huge_file(sb)) {
4187                 /* we are using combined 48 bit field */
4188                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4189                                         le32_to_cpu(raw_inode->i_blocks_lo);
4190                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4191                         /* i_blocks represent file system block size */
4192                         return i_blocks  << (inode->i_blkbits - 9);
4193                 } else {
4194                         return i_blocks;
4195                 }
4196         } else {
4197                 return le32_to_cpu(raw_inode->i_blocks_lo);
4198         }
4199 }
4200
4201 static inline void ext4_iget_extra_inode(struct inode *inode,
4202                                          struct ext4_inode *raw_inode,
4203                                          struct ext4_inode_info *ei)
4204 {
4205         __le32 *magic = (void *)raw_inode +
4206                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4207         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4208                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4209                 ext4_find_inline_data_nolock(inode);
4210         } else
4211                 EXT4_I(inode)->i_inline_off = 0;
4212 }
4213
4214 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4215 {
4216         struct ext4_iloc iloc;
4217         struct ext4_inode *raw_inode;
4218         struct ext4_inode_info *ei;
4219         struct inode *inode;
4220         journal_t *journal = EXT4_SB(sb)->s_journal;
4221         long ret;
4222         loff_t size;
4223         int block;
4224         uid_t i_uid;
4225         gid_t i_gid;
4226
4227         inode = iget_locked(sb, ino);
4228         if (!inode)
4229                 return ERR_PTR(-ENOMEM);
4230         if (!(inode->i_state & I_NEW))
4231                 return inode;
4232
4233         ei = EXT4_I(inode);
4234         iloc.bh = NULL;
4235
4236         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4237         if (ret < 0)
4238                 goto bad_inode;
4239         raw_inode = ext4_raw_inode(&iloc);
4240
4241         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4242                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4243                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4244                     EXT4_INODE_SIZE(inode->i_sb)) {
4245                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4246                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4247                                 EXT4_INODE_SIZE(inode->i_sb));
4248                         ret = -EFSCORRUPTED;
4249                         goto bad_inode;
4250                 }
4251         } else
4252                 ei->i_extra_isize = 0;
4253
4254         /* Precompute checksum seed for inode metadata */
4255         if (ext4_has_metadata_csum(sb)) {
4256                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4257                 __u32 csum;
4258                 __le32 inum = cpu_to_le32(inode->i_ino);
4259                 __le32 gen = raw_inode->i_generation;
4260                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4261                                    sizeof(inum));
4262                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4263                                               sizeof(gen));
4264         }
4265
4266         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4267                 EXT4_ERROR_INODE(inode, "checksum invalid");
4268                 ret = -EFSBADCRC;
4269                 goto bad_inode;
4270         }
4271
4272         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4273         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4274         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4275         if (!(test_opt(inode->i_sb, NO_UID32))) {
4276                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4277                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4278         }
4279         i_uid_write(inode, i_uid);
4280         i_gid_write(inode, i_gid);
4281         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4282
4283         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4284         ei->i_inline_off = 0;
4285         ei->i_dir_start_lookup = 0;
4286         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4287         /* We now have enough fields to check if the inode was active or not.
4288          * This is needed because nfsd might try to access dead inodes
4289          * the test is that same one that e2fsck uses
4290          * NeilBrown 1999oct15
4291          */
4292         if (inode->i_nlink == 0) {
4293                 if ((inode->i_mode == 0 ||
4294                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4295                     ino != EXT4_BOOT_LOADER_INO) {
4296                         /* this inode is deleted */
4297                         ret = -ESTALE;
4298                         goto bad_inode;
4299                 }
4300                 /* The only unlinked inodes we let through here have
4301                  * valid i_mode and are being read by the orphan
4302                  * recovery code: that's fine, we're about to complete
4303                  * the process of deleting those.
4304                  * OR it is the EXT4_BOOT_LOADER_INO which is
4305                  * not initialized on a new filesystem. */
4306         }
4307         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4308         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4309         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4310         if (ext4_has_feature_64bit(sb))
4311                 ei->i_file_acl |=
4312                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4313         inode->i_size = ext4_isize(raw_inode);
4314         if ((size = i_size_read(inode)) < 0) {
4315                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4316                 ret = -EFSCORRUPTED;
4317                 goto bad_inode;
4318         }
4319         ei->i_disksize = inode->i_size;
4320 #ifdef CONFIG_QUOTA
4321         ei->i_reserved_quota = 0;
4322 #endif
4323         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4324         ei->i_block_group = iloc.block_group;
4325         ei->i_last_alloc_group = ~0;
4326         /*
4327          * NOTE! The in-memory inode i_data array is in little-endian order
4328          * even on big-endian machines: we do NOT byteswap the block numbers!
4329          */
4330         for (block = 0; block < EXT4_N_BLOCKS; block++)
4331                 ei->i_data[block] = raw_inode->i_block[block];
4332         INIT_LIST_HEAD(&ei->i_orphan);
4333
4334         /*
4335          * Set transaction id's of transactions that have to be committed
4336          * to finish f[data]sync. We set them to currently running transaction
4337          * as we cannot be sure that the inode or some of its metadata isn't
4338          * part of the transaction - the inode could have been reclaimed and
4339          * now it is reread from disk.
4340          */
4341         if (journal) {
4342                 transaction_t *transaction;
4343                 tid_t tid;
4344
4345                 read_lock(&journal->j_state_lock);
4346                 if (journal->j_running_transaction)
4347                         transaction = journal->j_running_transaction;
4348                 else
4349                         transaction = journal->j_committing_transaction;
4350                 if (transaction)
4351                         tid = transaction->t_tid;
4352                 else
4353                         tid = journal->j_commit_sequence;
4354                 read_unlock(&journal->j_state_lock);
4355                 ei->i_sync_tid = tid;
4356                 ei->i_datasync_tid = tid;
4357         }
4358
4359         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4360                 if (ei->i_extra_isize == 0) {
4361                         /* The extra space is currently unused. Use it. */
4362                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4363                                             EXT4_GOOD_OLD_INODE_SIZE;
4364                 } else {
4365                         ext4_iget_extra_inode(inode, raw_inode, ei);
4366                 }
4367         }
4368
4369         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4370         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4371         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4372         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4373
4374         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4375                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4376                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4377                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378                                 inode->i_version |=
4379                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4380                 }
4381         }
4382
4383         ret = 0;
4384         if (ei->i_file_acl &&
4385             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4386                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4387                                  ei->i_file_acl);
4388                 ret = -EFSCORRUPTED;
4389                 goto bad_inode;
4390         } else if (!ext4_has_inline_data(inode)) {
4391                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4392                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4393                             (S_ISLNK(inode->i_mode) &&
4394                              !ext4_inode_is_fast_symlink(inode))))
4395                                 /* Validate extent which is part of inode */
4396                                 ret = ext4_ext_check_inode(inode);
4397                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4398                            (S_ISLNK(inode->i_mode) &&
4399                             !ext4_inode_is_fast_symlink(inode))) {
4400                         /* Validate block references which are part of inode */
4401                         ret = ext4_ind_check_inode(inode);
4402                 }
4403         }
4404         if (ret)
4405                 goto bad_inode;
4406
4407         if (S_ISREG(inode->i_mode)) {
4408                 inode->i_op = &ext4_file_inode_operations;
4409                 inode->i_fop = &ext4_file_operations;
4410                 ext4_set_aops(inode);
4411         } else if (S_ISDIR(inode->i_mode)) {
4412                 inode->i_op = &ext4_dir_inode_operations;
4413                 inode->i_fop = &ext4_dir_operations;
4414         } else if (S_ISLNK(inode->i_mode)) {
4415                 if (ext4_encrypted_inode(inode)) {
4416                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4417                         ext4_set_aops(inode);
4418                 } else if (ext4_inode_is_fast_symlink(inode)) {
4419                         inode->i_link = (char *)ei->i_data;
4420                         inode->i_op = &ext4_fast_symlink_inode_operations;
4421                         nd_terminate_link(ei->i_data, inode->i_size,
4422                                 sizeof(ei->i_data) - 1);
4423                 } else {
4424                         inode->i_op = &ext4_symlink_inode_operations;
4425                         ext4_set_aops(inode);
4426                 }
4427         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4428               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4429                 inode->i_op = &ext4_special_inode_operations;
4430                 if (raw_inode->i_block[0])
4431                         init_special_inode(inode, inode->i_mode,
4432                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4433                 else
4434                         init_special_inode(inode, inode->i_mode,
4435                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4436         } else if (ino == EXT4_BOOT_LOADER_INO) {
4437                 make_bad_inode(inode);
4438         } else {
4439                 ret = -EFSCORRUPTED;
4440                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4441                 goto bad_inode;
4442         }
4443         brelse(iloc.bh);
4444         ext4_set_inode_flags(inode);
4445         unlock_new_inode(inode);
4446         return inode;
4447
4448 bad_inode:
4449         brelse(iloc.bh);
4450         iget_failed(inode);
4451         return ERR_PTR(ret);
4452 }
4453
4454 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4455 {
4456         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4457                 return ERR_PTR(-EFSCORRUPTED);
4458         return ext4_iget(sb, ino);
4459 }
4460
4461 static int ext4_inode_blocks_set(handle_t *handle,
4462                                 struct ext4_inode *raw_inode,
4463                                 struct ext4_inode_info *ei)
4464 {
4465         struct inode *inode = &(ei->vfs_inode);
4466         u64 i_blocks = inode->i_blocks;
4467         struct super_block *sb = inode->i_sb;
4468
4469         if (i_blocks <= ~0U) {
4470                 /*
4471                  * i_blocks can be represented in a 32 bit variable
4472                  * as multiple of 512 bytes
4473                  */
4474                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4475                 raw_inode->i_blocks_high = 0;
4476                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4477                 return 0;
4478         }
4479         if (!ext4_has_feature_huge_file(sb))
4480                 return -EFBIG;
4481
4482         if (i_blocks <= 0xffffffffffffULL) {
4483                 /*
4484                  * i_blocks can be represented in a 48 bit variable
4485                  * as multiple of 512 bytes
4486                  */
4487                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4488                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4489                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4490         } else {
4491                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4492                 /* i_block is stored in file system block size */
4493                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4494                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4495                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4496         }
4497         return 0;
4498 }
4499
4500 struct other_inode {
4501         unsigned long           orig_ino;
4502         struct ext4_inode       *raw_inode;
4503 };
4504
4505 static int other_inode_match(struct inode * inode, unsigned long ino,
4506                              void *data)
4507 {
4508         struct other_inode *oi = (struct other_inode *) data;
4509
4510         if ((inode->i_ino != ino) ||
4511             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4512                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4513             ((inode->i_state & I_DIRTY_TIME) == 0))
4514                 return 0;
4515         spin_lock(&inode->i_lock);
4516         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4517                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4518             (inode->i_state & I_DIRTY_TIME)) {
4519                 struct ext4_inode_info  *ei = EXT4_I(inode);
4520
4521                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4522                 spin_unlock(&inode->i_lock);
4523
4524                 spin_lock(&ei->i_raw_lock);
4525                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4526                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4527                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4528                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4529                 spin_unlock(&ei->i_raw_lock);
4530                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4531                 return -1;
4532         }
4533         spin_unlock(&inode->i_lock);
4534         return -1;
4535 }
4536
4537 /*
4538  * Opportunistically update the other time fields for other inodes in
4539  * the same inode table block.
4540  */
4541 static void ext4_update_other_inodes_time(struct super_block *sb,
4542                                           unsigned long orig_ino, char *buf)
4543 {
4544         struct other_inode oi;
4545         unsigned long ino;
4546         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4547         int inode_size = EXT4_INODE_SIZE(sb);
4548
4549         oi.orig_ino = orig_ino;
4550         /*
4551          * Calculate the first inode in the inode table block.  Inode
4552          * numbers are one-based.  That is, the first inode in a block
4553          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4554          */
4555         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4556         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4557                 if (ino == orig_ino)
4558                         continue;
4559                 oi.raw_inode = (struct ext4_inode *) buf;
4560                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4561         }
4562 }
4563
4564 /*
4565  * Post the struct inode info into an on-disk inode location in the
4566  * buffer-cache.  This gobbles the caller's reference to the
4567  * buffer_head in the inode location struct.
4568  *
4569  * The caller must have write access to iloc->bh.
4570  */
4571 static int ext4_do_update_inode(handle_t *handle,
4572                                 struct inode *inode,
4573                                 struct ext4_iloc *iloc)
4574 {
4575         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4576         struct ext4_inode_info *ei = EXT4_I(inode);
4577         struct buffer_head *bh = iloc->bh;
4578         struct super_block *sb = inode->i_sb;
4579         int err = 0, rc, block;
4580         int need_datasync = 0, set_large_file = 0;
4581         uid_t i_uid;
4582         gid_t i_gid;
4583
4584         spin_lock(&ei->i_raw_lock);
4585
4586         /* For fields not tracked in the in-memory inode,
4587          * initialise them to zero for new inodes. */
4588         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4589                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4590
4591         ext4_get_inode_flags(ei);
4592         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4593         i_uid = i_uid_read(inode);
4594         i_gid = i_gid_read(inode);
4595         if (!(test_opt(inode->i_sb, NO_UID32))) {
4596                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4597                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4598 /*
4599  * Fix up interoperability with old kernels. Otherwise, old inodes get
4600  * re-used with the upper 16 bits of the uid/gid intact
4601  */
4602                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4603                         raw_inode->i_uid_high = 0;
4604                         raw_inode->i_gid_high = 0;
4605                 } else {
4606                         raw_inode->i_uid_high =
4607                                 cpu_to_le16(high_16_bits(i_uid));
4608                         raw_inode->i_gid_high =
4609                                 cpu_to_le16(high_16_bits(i_gid));
4610                 }
4611         } else {
4612                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4613                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4614                 raw_inode->i_uid_high = 0;
4615                 raw_inode->i_gid_high = 0;
4616         }
4617         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4618
4619         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4620         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4621         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4622         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4623
4624         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4625         if (err) {
4626                 spin_unlock(&ei->i_raw_lock);
4627                 goto out_brelse;
4628         }
4629         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4630         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4631         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4632                 raw_inode->i_file_acl_high =
4633                         cpu_to_le16(ei->i_file_acl >> 32);
4634         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4635         if (ei->i_disksize != ext4_isize(raw_inode)) {
4636                 ext4_isize_set(raw_inode, ei->i_disksize);
4637                 need_datasync = 1;
4638         }
4639         if (ei->i_disksize > 0x7fffffffULL) {
4640                 if (!ext4_has_feature_large_file(sb) ||
4641                                 EXT4_SB(sb)->s_es->s_rev_level ==
4642                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4643                         set_large_file = 1;
4644         }
4645         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4646         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4647                 if (old_valid_dev(inode->i_rdev)) {
4648                         raw_inode->i_block[0] =
4649                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4650                         raw_inode->i_block[1] = 0;
4651                 } else {
4652                         raw_inode->i_block[0] = 0;
4653                         raw_inode->i_block[1] =
4654                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4655                         raw_inode->i_block[2] = 0;
4656                 }
4657         } else if (!ext4_has_inline_data(inode)) {
4658                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4659                         raw_inode->i_block[block] = ei->i_data[block];
4660         }
4661
4662         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4663                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4664                 if (ei->i_extra_isize) {
4665                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4666                                 raw_inode->i_version_hi =
4667                                         cpu_to_le32(inode->i_version >> 32);
4668                         raw_inode->i_extra_isize =
4669                                 cpu_to_le16(ei->i_extra_isize);
4670                 }
4671         }
4672         ext4_inode_csum_set(inode, raw_inode, ei);
4673         spin_unlock(&ei->i_raw_lock);
4674         if (inode->i_sb->s_flags & MS_LAZYTIME)
4675                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4676                                               bh->b_data);
4677
4678         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4679         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4680         if (!err)
4681                 err = rc;
4682         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4683         if (set_large_file) {
4684                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4685                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4686                 if (err)
4687                         goto out_brelse;
4688                 ext4_update_dynamic_rev(sb);
4689                 ext4_set_feature_large_file(sb);
4690                 ext4_handle_sync(handle);
4691                 err = ext4_handle_dirty_super(handle, sb);
4692         }
4693         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4694 out_brelse:
4695         brelse(bh);
4696         ext4_std_error(inode->i_sb, err);
4697         return err;
4698 }
4699
4700 /*
4701  * ext4_write_inode()
4702  *
4703  * We are called from a few places:
4704  *
4705  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4706  *   Here, there will be no transaction running. We wait for any running
4707  *   transaction to commit.
4708  *
4709  * - Within flush work (sys_sync(), kupdate and such).
4710  *   We wait on commit, if told to.
4711  *
4712  * - Within iput_final() -> write_inode_now()
4713  *   We wait on commit, if told to.
4714  *
4715  * In all cases it is actually safe for us to return without doing anything,
4716  * because the inode has been copied into a raw inode buffer in
4717  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4718  * writeback.
4719  *
4720  * Note that we are absolutely dependent upon all inode dirtiers doing the
4721  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4722  * which we are interested.
4723  *
4724  * It would be a bug for them to not do this.  The code:
4725  *
4726  *      mark_inode_dirty(inode)
4727  *      stuff();
4728  *      inode->i_size = expr;
4729  *
4730  * is in error because write_inode() could occur while `stuff()' is running,
4731  * and the new i_size will be lost.  Plus the inode will no longer be on the
4732  * superblock's dirty inode list.
4733  */
4734 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4735 {
4736         int err;
4737
4738         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4739                 return 0;
4740
4741         if (EXT4_SB(inode->i_sb)->s_journal) {
4742                 if (ext4_journal_current_handle()) {
4743                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4744                         dump_stack();
4745                         return -EIO;
4746                 }
4747
4748                 /*
4749                  * No need to force transaction in WB_SYNC_NONE mode. Also
4750                  * ext4_sync_fs() will force the commit after everything is
4751                  * written.
4752                  */
4753                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4754                         return 0;
4755
4756                 err = ext4_force_commit(inode->i_sb);
4757         } else {
4758                 struct ext4_iloc iloc;
4759
4760                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4761                 if (err)
4762                         return err;
4763                 /*
4764                  * sync(2) will flush the whole buffer cache. No need to do
4765                  * it here separately for each inode.
4766                  */
4767                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4768                         sync_dirty_buffer(iloc.bh);
4769                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4770                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4771                                          "IO error syncing inode");
4772                         err = -EIO;
4773                 }
4774                 brelse(iloc.bh);
4775         }
4776         return err;
4777 }
4778
4779 /*
4780  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4781  * buffers that are attached to a page stradding i_size and are undergoing
4782  * commit. In that case we have to wait for commit to finish and try again.
4783  */
4784 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4785 {
4786         struct page *page;
4787         unsigned offset;
4788         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4789         tid_t commit_tid = 0;
4790         int ret;
4791
4792         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4793         /*
4794          * All buffers in the last page remain valid? Then there's nothing to
4795          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4796          * blocksize case
4797          */
4798         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4799                 return;
4800         while (1) {
4801                 page = find_lock_page(inode->i_mapping,
4802                                       inode->i_size >> PAGE_CACHE_SHIFT);
4803                 if (!page)
4804                         return;
4805                 ret = __ext4_journalled_invalidatepage(page, offset,
4806                                                 PAGE_CACHE_SIZE - offset);
4807                 unlock_page(page);
4808                 page_cache_release(page);
4809                 if (ret != -EBUSY)
4810                         return;
4811                 commit_tid = 0;
4812                 read_lock(&journal->j_state_lock);
4813                 if (journal->j_committing_transaction)
4814                         commit_tid = journal->j_committing_transaction->t_tid;
4815                 read_unlock(&journal->j_state_lock);
4816                 if (commit_tid)
4817                         jbd2_log_wait_commit(journal, commit_tid);
4818         }
4819 }
4820
4821 /*
4822  * ext4_setattr()
4823  *
4824  * Called from notify_change.
4825  *
4826  * We want to trap VFS attempts to truncate the file as soon as
4827  * possible.  In particular, we want to make sure that when the VFS
4828  * shrinks i_size, we put the inode on the orphan list and modify
4829  * i_disksize immediately, so that during the subsequent flushing of
4830  * dirty pages and freeing of disk blocks, we can guarantee that any
4831  * commit will leave the blocks being flushed in an unused state on
4832  * disk.  (On recovery, the inode will get truncated and the blocks will
4833  * be freed, so we have a strong guarantee that no future commit will
4834  * leave these blocks visible to the user.)
4835  *
4836  * Another thing we have to assure is that if we are in ordered mode
4837  * and inode is still attached to the committing transaction, we must
4838  * we start writeout of all the dirty pages which are being truncated.
4839  * This way we are sure that all the data written in the previous
4840  * transaction are already on disk (truncate waits for pages under
4841  * writeback).
4842  *
4843  * Called with inode->i_mutex down.
4844  */
4845 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4846 {
4847         struct inode *inode = d_inode(dentry);
4848         int error, rc = 0;
4849         int orphan = 0;
4850         const unsigned int ia_valid = attr->ia_valid;
4851
4852         error = inode_change_ok(inode, attr);
4853         if (error)
4854                 return error;
4855
4856         if (is_quota_modification(inode, attr)) {
4857                 error = dquot_initialize(inode);
4858                 if (error)
4859                         return error;
4860         }
4861         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4862             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4863                 handle_t *handle;
4864
4865                 /* (user+group)*(old+new) structure, inode write (sb,
4866                  * inode block, ? - but truncate inode update has it) */
4867                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4868                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4869                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4870                 if (IS_ERR(handle)) {
4871                         error = PTR_ERR(handle);
4872                         goto err_out;
4873                 }
4874                 error = dquot_transfer(inode, attr);
4875                 if (error) {
4876                         ext4_journal_stop(handle);
4877                         return error;
4878                 }
4879                 /* Update corresponding info in inode so that everything is in
4880                  * one transaction */
4881                 if (attr->ia_valid & ATTR_UID)
4882                         inode->i_uid = attr->ia_uid;
4883                 if (attr->ia_valid & ATTR_GID)
4884                         inode->i_gid = attr->ia_gid;
4885                 error = ext4_mark_inode_dirty(handle, inode);
4886                 ext4_journal_stop(handle);
4887         }
4888
4889         if (attr->ia_valid & ATTR_SIZE) {
4890                 handle_t *handle;
4891                 loff_t oldsize = inode->i_size;
4892                 int shrink = (attr->ia_size <= inode->i_size);
4893
4894                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4895                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4896
4897                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4898                                 return -EFBIG;
4899                 }
4900                 if (!S_ISREG(inode->i_mode))
4901                         return -EINVAL;
4902
4903                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4904                         inode_inc_iversion(inode);
4905
4906                 if (ext4_should_order_data(inode) &&
4907                     (attr->ia_size < inode->i_size)) {
4908                         error = ext4_begin_ordered_truncate(inode,
4909                                                             attr->ia_size);
4910                         if (error)
4911                                 goto err_out;
4912                 }
4913                 if (attr->ia_size != inode->i_size) {
4914                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4915                         if (IS_ERR(handle)) {
4916                                 error = PTR_ERR(handle);
4917                                 goto err_out;
4918                         }
4919                         if (ext4_handle_valid(handle) && shrink) {
4920                                 error = ext4_orphan_add(handle, inode);
4921                                 orphan = 1;
4922                         }
4923                         /*
4924                          * Update c/mtime on truncate up, ext4_truncate() will
4925                          * update c/mtime in shrink case below
4926                          */
4927                         if (!shrink) {
4928                                 inode->i_mtime = ext4_current_time(inode);
4929                                 inode->i_ctime = inode->i_mtime;
4930                         }
4931                         down_write(&EXT4_I(inode)->i_data_sem);
4932                         EXT4_I(inode)->i_disksize = attr->ia_size;
4933                         rc = ext4_mark_inode_dirty(handle, inode);
4934                         if (!error)
4935                                 error = rc;
4936                         /*
4937                          * We have to update i_size under i_data_sem together
4938                          * with i_disksize to avoid races with writeback code
4939                          * running ext4_wb_update_i_disksize().
4940                          */
4941                         if (!error)
4942                                 i_size_write(inode, attr->ia_size);
4943                         up_write(&EXT4_I(inode)->i_data_sem);
4944                         ext4_journal_stop(handle);
4945                         if (error) {
4946                                 if (orphan)
4947                                         ext4_orphan_del(NULL, inode);
4948                                 goto err_out;
4949                         }
4950                 }
4951                 if (!shrink)
4952                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4953
4954                 /*
4955                  * Blocks are going to be removed from the inode. Wait
4956                  * for dio in flight.  Temporarily disable
4957                  * dioread_nolock to prevent livelock.
4958                  */
4959                 if (orphan) {
4960                         if (!ext4_should_journal_data(inode)) {
4961                                 ext4_inode_block_unlocked_dio(inode);
4962                                 inode_dio_wait(inode);
4963                                 ext4_inode_resume_unlocked_dio(inode);
4964                         } else
4965                                 ext4_wait_for_tail_page_commit(inode);
4966                 }
4967                 down_write(&EXT4_I(inode)->i_mmap_sem);
4968                 /*
4969                  * Truncate pagecache after we've waited for commit
4970                  * in data=journal mode to make pages freeable.
4971                  */
4972                 truncate_pagecache(inode, inode->i_size);
4973                 if (shrink)
4974                         ext4_truncate(inode);
4975                 up_write(&EXT4_I(inode)->i_mmap_sem);
4976         }
4977
4978         if (!rc) {
4979                 setattr_copy(inode, attr);
4980                 mark_inode_dirty(inode);
4981         }
4982
4983         /*
4984          * If the call to ext4_truncate failed to get a transaction handle at
4985          * all, we need to clean up the in-core orphan list manually.
4986          */
4987         if (orphan && inode->i_nlink)
4988                 ext4_orphan_del(NULL, inode);
4989
4990         if (!rc && (ia_valid & ATTR_MODE))
4991                 rc = posix_acl_chmod(inode, inode->i_mode);
4992
4993 err_out:
4994         ext4_std_error(inode->i_sb, error);
4995         if (!error)
4996                 error = rc;
4997         return error;
4998 }
4999
5000 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5001                  struct kstat *stat)
5002 {
5003         struct inode *inode;
5004         unsigned long long delalloc_blocks;
5005
5006         inode = d_inode(dentry);
5007         generic_fillattr(inode, stat);
5008
5009         /*
5010          * If there is inline data in the inode, the inode will normally not
5011          * have data blocks allocated (it may have an external xattr block).
5012          * Report at least one sector for such files, so tools like tar, rsync,
5013          * others doen't incorrectly think the file is completely sparse.
5014          */
5015         if (unlikely(ext4_has_inline_data(inode)))
5016                 stat->blocks += (stat->size + 511) >> 9;
5017
5018         /*
5019          * We can't update i_blocks if the block allocation is delayed
5020          * otherwise in the case of system crash before the real block
5021          * allocation is done, we will have i_blocks inconsistent with
5022          * on-disk file blocks.
5023          * We always keep i_blocks updated together with real
5024          * allocation. But to not confuse with user, stat
5025          * will return the blocks that include the delayed allocation
5026          * blocks for this file.
5027          */
5028         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5029                                    EXT4_I(inode)->i_reserved_data_blocks);
5030         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5031         return 0;
5032 }
5033
5034 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5035                                    int pextents)
5036 {
5037         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5038                 return ext4_ind_trans_blocks(inode, lblocks);
5039         return ext4_ext_index_trans_blocks(inode, pextents);
5040 }
5041
5042 /*
5043  * Account for index blocks, block groups bitmaps and block group
5044  * descriptor blocks if modify datablocks and index blocks
5045  * worse case, the indexs blocks spread over different block groups
5046  *
5047  * If datablocks are discontiguous, they are possible to spread over
5048  * different block groups too. If they are contiguous, with flexbg,
5049  * they could still across block group boundary.
5050  *
5051  * Also account for superblock, inode, quota and xattr blocks
5052  */
5053 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5054                                   int pextents)
5055 {
5056         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5057         int gdpblocks;
5058         int idxblocks;
5059         int ret = 0;
5060
5061         /*
5062          * How many index blocks need to touch to map @lblocks logical blocks
5063          * to @pextents physical extents?
5064          */
5065         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5066
5067         ret = idxblocks;
5068
5069         /*
5070          * Now let's see how many group bitmaps and group descriptors need
5071          * to account
5072          */
5073         groups = idxblocks + pextents;
5074         gdpblocks = groups;
5075         if (groups > ngroups)
5076                 groups = ngroups;
5077         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5078                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5079
5080         /* bitmaps and block group descriptor blocks */
5081         ret += groups + gdpblocks;
5082
5083         /* Blocks for super block, inode, quota and xattr blocks */
5084         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5085
5086         return ret;
5087 }
5088
5089 /*
5090  * Calculate the total number of credits to reserve to fit
5091  * the modification of a single pages into a single transaction,
5092  * which may include multiple chunks of block allocations.
5093  *
5094  * This could be called via ext4_write_begin()
5095  *
5096  * We need to consider the worse case, when
5097  * one new block per extent.
5098  */
5099 int ext4_writepage_trans_blocks(struct inode *inode)
5100 {
5101         int bpp = ext4_journal_blocks_per_page(inode);
5102         int ret;
5103
5104         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5105
5106         /* Account for data blocks for journalled mode */
5107         if (ext4_should_journal_data(inode))
5108                 ret += bpp;
5109         return ret;
5110 }
5111
5112 /*
5113  * Calculate the journal credits for a chunk of data modification.
5114  *
5115  * This is called from DIO, fallocate or whoever calling
5116  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5117  *
5118  * journal buffers for data blocks are not included here, as DIO
5119  * and fallocate do no need to journal data buffers.
5120  */
5121 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5122 {
5123         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5124 }
5125
5126 /*
5127  * The caller must have previously called ext4_reserve_inode_write().
5128  * Give this, we know that the caller already has write access to iloc->bh.
5129  */
5130 int ext4_mark_iloc_dirty(handle_t *handle,
5131                          struct inode *inode, struct ext4_iloc *iloc)
5132 {
5133         int err = 0;
5134
5135         if (IS_I_VERSION(inode))
5136                 inode_inc_iversion(inode);
5137
5138         /* the do_update_inode consumes one bh->b_count */
5139         get_bh(iloc->bh);
5140
5141         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5142         err = ext4_do_update_inode(handle, inode, iloc);
5143         put_bh(iloc->bh);
5144         return err;
5145 }
5146
5147 /*
5148  * On success, We end up with an outstanding reference count against
5149  * iloc->bh.  This _must_ be cleaned up later.
5150  */
5151
5152 int
5153 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5154                          struct ext4_iloc *iloc)
5155 {
5156         int err;
5157
5158         err = ext4_get_inode_loc(inode, iloc);
5159         if (!err) {
5160                 BUFFER_TRACE(iloc->bh, "get_write_access");
5161                 err = ext4_journal_get_write_access(handle, iloc->bh);
5162                 if (err) {
5163                         brelse(iloc->bh);
5164                         iloc->bh = NULL;
5165                 }
5166         }
5167         ext4_std_error(inode->i_sb, err);
5168         return err;
5169 }
5170
5171 /*
5172  * Expand an inode by new_extra_isize bytes.
5173  * Returns 0 on success or negative error number on failure.
5174  */
5175 static int ext4_expand_extra_isize(struct inode *inode,
5176                                    unsigned int new_extra_isize,
5177                                    struct ext4_iloc iloc,
5178                                    handle_t *handle)
5179 {
5180         struct ext4_inode *raw_inode;
5181         struct ext4_xattr_ibody_header *header;
5182
5183         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5184                 return 0;
5185
5186         raw_inode = ext4_raw_inode(&iloc);
5187
5188         header = IHDR(inode, raw_inode);
5189
5190         /* No extended attributes present */
5191         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5192             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5193                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5194                         new_extra_isize);
5195                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5196                 return 0;
5197         }
5198
5199         /* try to expand with EAs present */
5200         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5201                                           raw_inode, handle);
5202 }
5203
5204 /*
5205  * What we do here is to mark the in-core inode as clean with respect to inode
5206  * dirtiness (it may still be data-dirty).
5207  * This means that the in-core inode may be reaped by prune_icache
5208  * without having to perform any I/O.  This is a very good thing,
5209  * because *any* task may call prune_icache - even ones which
5210  * have a transaction open against a different journal.
5211  *
5212  * Is this cheating?  Not really.  Sure, we haven't written the
5213  * inode out, but prune_icache isn't a user-visible syncing function.
5214  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5215  * we start and wait on commits.
5216  */
5217 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5218 {
5219         struct ext4_iloc iloc;
5220         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5221         static unsigned int mnt_count;
5222         int err, ret;
5223
5224         might_sleep();
5225         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5226         err = ext4_reserve_inode_write(handle, inode, &iloc);
5227         if (err)
5228                 return err;
5229         if (ext4_handle_valid(handle) &&
5230             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5231             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5232                 /*
5233                  * We need extra buffer credits since we may write into EA block
5234                  * with this same handle. If journal_extend fails, then it will
5235                  * only result in a minor loss of functionality for that inode.
5236                  * If this is felt to be critical, then e2fsck should be run to
5237                  * force a large enough s_min_extra_isize.
5238                  */
5239                 if ((jbd2_journal_extend(handle,
5240                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5241                         ret = ext4_expand_extra_isize(inode,
5242                                                       sbi->s_want_extra_isize,
5243                                                       iloc, handle);
5244                         if (ret) {
5245                                 if (mnt_count !=
5246                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5247                                         ext4_warning(inode->i_sb,
5248                                         "Unable to expand inode %lu. Delete"
5249                                         " some EAs or run e2fsck.",
5250                                         inode->i_ino);
5251                                         mnt_count =
5252                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5253                                 }
5254                         }
5255                 }
5256         }
5257         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5258 }
5259
5260 /*
5261  * ext4_dirty_inode() is called from __mark_inode_dirty()
5262  *
5263  * We're really interested in the case where a file is being extended.
5264  * i_size has been changed by generic_commit_write() and we thus need
5265  * to include the updated inode in the current transaction.
5266  *
5267  * Also, dquot_alloc_block() will always dirty the inode when blocks
5268  * are allocated to the file.
5269  *
5270  * If the inode is marked synchronous, we don't honour that here - doing
5271  * so would cause a commit on atime updates, which we don't bother doing.
5272  * We handle synchronous inodes at the highest possible level.
5273  *
5274  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5275  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5276  * to copy into the on-disk inode structure are the timestamp files.
5277  */
5278 void ext4_dirty_inode(struct inode *inode, int flags)
5279 {
5280         handle_t *handle;
5281
5282         if (flags == I_DIRTY_TIME)
5283                 return;
5284         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5285         if (IS_ERR(handle))
5286                 goto out;
5287
5288         ext4_mark_inode_dirty(handle, inode);
5289
5290         ext4_journal_stop(handle);
5291 out:
5292         return;
5293 }
5294
5295 #if 0
5296 /*
5297  * Bind an inode's backing buffer_head into this transaction, to prevent
5298  * it from being flushed to disk early.  Unlike
5299  * ext4_reserve_inode_write, this leaves behind no bh reference and
5300  * returns no iloc structure, so the caller needs to repeat the iloc
5301  * lookup to mark the inode dirty later.
5302  */
5303 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5304 {
5305         struct ext4_iloc iloc;
5306
5307         int err = 0;
5308         if (handle) {
5309                 err = ext4_get_inode_loc(inode, &iloc);
5310                 if (!err) {
5311                         BUFFER_TRACE(iloc.bh, "get_write_access");
5312                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5313                         if (!err)
5314                                 err = ext4_handle_dirty_metadata(handle,
5315                                                                  NULL,
5316                                                                  iloc.bh);
5317                         brelse(iloc.bh);
5318                 }
5319         }
5320         ext4_std_error(inode->i_sb, err);
5321         return err;
5322 }
5323 #endif
5324
5325 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5326 {
5327         journal_t *journal;
5328         handle_t *handle;
5329         int err;
5330
5331         /*
5332          * We have to be very careful here: changing a data block's
5333          * journaling status dynamically is dangerous.  If we write a
5334          * data block to the journal, change the status and then delete
5335          * that block, we risk forgetting to revoke the old log record
5336          * from the journal and so a subsequent replay can corrupt data.
5337          * So, first we make sure that the journal is empty and that
5338          * nobody is changing anything.
5339          */
5340
5341         journal = EXT4_JOURNAL(inode);
5342         if (!journal)
5343                 return 0;
5344         if (is_journal_aborted(journal))
5345                 return -EROFS;
5346         /* We have to allocate physical blocks for delalloc blocks
5347          * before flushing journal. otherwise delalloc blocks can not
5348          * be allocated any more. even more truncate on delalloc blocks
5349          * could trigger BUG by flushing delalloc blocks in journal.
5350          * There is no delalloc block in non-journal data mode.
5351          */
5352         if (val && test_opt(inode->i_sb, DELALLOC)) {
5353                 err = ext4_alloc_da_blocks(inode);
5354                 if (err < 0)
5355                         return err;
5356         }
5357
5358         /* Wait for all existing dio workers */
5359         ext4_inode_block_unlocked_dio(inode);
5360         inode_dio_wait(inode);
5361
5362         jbd2_journal_lock_updates(journal);
5363
5364         /*
5365          * OK, there are no updates running now, and all cached data is
5366          * synced to disk.  We are now in a completely consistent state
5367          * which doesn't have anything in the journal, and we know that
5368          * no filesystem updates are running, so it is safe to modify
5369          * the inode's in-core data-journaling state flag now.
5370          */
5371
5372         if (val)
5373                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5374         else {
5375                 err = jbd2_journal_flush(journal);
5376                 if (err < 0) {
5377                         jbd2_journal_unlock_updates(journal);
5378                         ext4_inode_resume_unlocked_dio(inode);
5379                         return err;
5380                 }
5381                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5382         }
5383         ext4_set_aops(inode);
5384
5385         jbd2_journal_unlock_updates(journal);
5386         ext4_inode_resume_unlocked_dio(inode);
5387
5388         /* Finally we can mark the inode as dirty. */
5389
5390         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5391         if (IS_ERR(handle))
5392                 return PTR_ERR(handle);
5393
5394         err = ext4_mark_inode_dirty(handle, inode);
5395         ext4_handle_sync(handle);
5396         ext4_journal_stop(handle);
5397         ext4_std_error(inode->i_sb, err);
5398
5399         return err;
5400 }
5401
5402 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5403 {
5404         return !buffer_mapped(bh);
5405 }
5406
5407 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5408 {
5409         struct page *page = vmf->page;
5410         loff_t size;
5411         unsigned long len;
5412         int ret;
5413         struct file *file = vma->vm_file;
5414         struct inode *inode = file_inode(file);
5415         struct address_space *mapping = inode->i_mapping;
5416         handle_t *handle;
5417         get_block_t *get_block;
5418         int retries = 0;
5419
5420         sb_start_pagefault(inode->i_sb);
5421         file_update_time(vma->vm_file);
5422
5423         down_read(&EXT4_I(inode)->i_mmap_sem);
5424         /* Delalloc case is easy... */
5425         if (test_opt(inode->i_sb, DELALLOC) &&
5426             !ext4_should_journal_data(inode) &&
5427             !ext4_nonda_switch(inode->i_sb)) {
5428                 do {
5429                         ret = block_page_mkwrite(vma, vmf,
5430                                                    ext4_da_get_block_prep);
5431                 } while (ret == -ENOSPC &&
5432                        ext4_should_retry_alloc(inode->i_sb, &retries));
5433                 goto out_ret;
5434         }
5435
5436         lock_page(page);
5437         size = i_size_read(inode);
5438         /* Page got truncated from under us? */
5439         if (page->mapping != mapping || page_offset(page) > size) {
5440                 unlock_page(page);
5441                 ret = VM_FAULT_NOPAGE;
5442                 goto out;
5443         }
5444
5445         if (page->index == size >> PAGE_CACHE_SHIFT)
5446                 len = size & ~PAGE_CACHE_MASK;
5447         else
5448                 len = PAGE_CACHE_SIZE;
5449         /*
5450          * Return if we have all the buffers mapped. This avoids the need to do
5451          * journal_start/journal_stop which can block and take a long time
5452          */
5453         if (page_has_buffers(page)) {
5454                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5455                                             0, len, NULL,
5456                                             ext4_bh_unmapped)) {
5457                         /* Wait so that we don't change page under IO */
5458                         wait_for_stable_page(page);
5459                         ret = VM_FAULT_LOCKED;
5460                         goto out;
5461                 }
5462         }
5463         unlock_page(page);
5464         /* OK, we need to fill the hole... */
5465         if (ext4_should_dioread_nolock(inode))
5466                 get_block = ext4_get_block_write;
5467         else
5468                 get_block = ext4_get_block;
5469 retry_alloc:
5470         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5471                                     ext4_writepage_trans_blocks(inode));
5472         if (IS_ERR(handle)) {
5473                 ret = VM_FAULT_SIGBUS;
5474                 goto out;
5475         }
5476         ret = block_page_mkwrite(vma, vmf, get_block);
5477         if (!ret && ext4_should_journal_data(inode)) {
5478                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5479                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5480                         unlock_page(page);
5481                         ret = VM_FAULT_SIGBUS;
5482                         ext4_journal_stop(handle);
5483                         goto out;
5484                 }
5485                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5486         }
5487         ext4_journal_stop(handle);
5488         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5489                 goto retry_alloc;
5490 out_ret:
5491         ret = block_page_mkwrite_return(ret);
5492 out:
5493         up_read(&EXT4_I(inode)->i_mmap_sem);
5494         sb_end_pagefault(inode->i_sb);
5495         return ret;
5496 }
5497
5498 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5499 {
5500         struct inode *inode = file_inode(vma->vm_file);
5501         int err;
5502
5503         down_read(&EXT4_I(inode)->i_mmap_sem);
5504         err = filemap_fault(vma, vmf);
5505         up_read(&EXT4_I(inode)->i_mmap_sem);
5506
5507         return err;
5508 }