Handle STRT (and friends) like LDRT (and friends) for decoding purposes. Port over...
[oota-llvm.git] / docs / tutorial / OCamlLangImpl4.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3
4 <html>
5 <head>
6   <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
8   <meta name="author" content="Chris Lattner">
9   <meta name="author" content="Erick Tryzelaar">
10   <link rel="stylesheet" href="../llvm.css" type="text/css">
11 </head>
12
13 <body>
14
15 <h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
16
17 <ul>
18 <li><a href="index.html">Up to Tutorial Index</a></li>
19 <li>Chapter 4
20   <ol>
21     <li><a href="#intro">Chapter 4 Introduction</a></li>
22     <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
23     <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
24     <li><a href="#jit">Adding a JIT Compiler</a></li>
25     <li><a href="#code">Full Code Listing</a></li>
26   </ol>
27 </li>
28 <li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control
29 Flow</li>
30 </ul>
31
32 <div class="doc_author">
33         <p>
34                 Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
35                 and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
36         </p>
37 </div>
38
39 <!-- *********************************************************************** -->
40 <h2><a name="intro">Chapter 4 Introduction</a></h2>
41 <!-- *********************************************************************** -->
42
43 <div>
44
45 <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
46 with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
47 language and added support for generating LLVM IR.  This chapter describes
48 two new techniques: adding optimizer support to your language, and adding JIT
49 compiler support.  These additions will demonstrate how to get nice, efficient code
50 for the Kaleidoscope language.</p>
51
52 </div>
53
54 <!-- *********************************************************************** -->
55 <h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
56 <!-- *********************************************************************** -->
57
58 <div>
59
60 <p><b>Note:</b> the default <tt>IRBuilder</tt> now always includes the constant 
61 folding optimisations below.<p>
62
63 <p>
64 Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
65 it does not produce wonderful code.  For example, when compiling simple code,
66 we don't get obvious optimizations:</p>
67
68 <div class="doc_code">
69 <pre>
70 ready&gt; <b>def test(x) 1+2+x;</b>
71 Read function definition:
72 define double @test(double %x) {
73 entry:
74         %addtmp = fadd double 1.000000e+00, 2.000000e+00
75         %addtmp1 = fadd double %addtmp, %x
76         ret double %addtmp1
77 }
78 </pre>
79 </div>
80
81 <p>This code is a very, very literal transcription of the AST built by parsing
82 the input. As such, this transcription lacks optimizations like constant folding
83 (we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other
84 more important optimizations.  Constant folding, in particular, is a very common
85 and very important optimization: so much so that many language implementors
86 implement constant folding support in their AST representation.</p>
87
88 <p>With LLVM, you don't need this support in the AST.  Since all calls to build
89 LLVM IR go through the LLVM builder, it would be nice if the builder itself
90 checked to see if there was a constant folding opportunity when you call it.
91 If so, it could just do the constant fold and return the constant instead of
92 creating an instruction.  This is exactly what the <tt>LLVMFoldingBuilder</tt>
93 class does.
94
95 <p>All we did was switch from <tt>LLVMBuilder</tt> to
96 <tt>LLVMFoldingBuilder</tt>.  Though we change no other code, we now have all of our
97 instructions implicitly constant folded without us having to do anything
98 about it.  For example, the input above now compiles to:</p>
99
100 <div class="doc_code">
101 <pre>
102 ready&gt; <b>def test(x) 1+2+x;</b>
103 Read function definition:
104 define double @test(double %x) {
105 entry:
106         %addtmp = fadd double 3.000000e+00, %x
107         ret double %addtmp
108 }
109 </pre>
110 </div>
111
112 <p>Well, that was easy :).  In practice, we recommend always using
113 <tt>LLVMFoldingBuilder</tt> when generating code like this.  It has no
114 "syntactic overhead" for its use (you don't have to uglify your compiler with
115 constant checks everywhere) and it can dramatically reduce the amount of
116 LLVM IR that is generated in some cases (particular for languages with a macro
117 preprocessor or that use a lot of constants).</p>
118
119 <p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact
120 that it does all of its analysis inline with the code as it is built.  If you
121 take a slightly more complex example:</p>
122
123 <div class="doc_code">
124 <pre>
125 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
126 ready&gt; Read function definition:
127 define double @test(double %x) {
128 entry:
129         %addtmp = fadd double 3.000000e+00, %x
130         %addtmp1 = fadd double %x, 3.000000e+00
131         %multmp = fmul double %addtmp, %addtmp1
132         ret double %multmp
133 }
134 </pre>
135 </div>
136
137 <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
138 really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
139 of computing "<tt>x*3</tt>" twice.</p>
140
141 <p>Unfortunately, no amount of local analysis will be able to detect and correct
142 this.  This requires two transformations: reassociation of expressions (to
143 make the add's lexically identical) and Common Subexpression Elimination (CSE)
144 to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
145 range of optimizations that you can use, in the form of "passes".</p>
146
147 </div>
148
149 <!-- *********************************************************************** -->
150 <h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
151 <!-- *********************************************************************** -->
152
153 <div>
154
155 <p>LLVM provides many optimization passes, which do many different sorts of
156 things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
157 to the mistaken notion that one set of optimizations is right for all languages
158 and for all situations.  LLVM allows a compiler implementor to make complete
159 decisions about what optimizations to use, in which order, and in what
160 situation.</p>
161
162 <p>As a concrete example, LLVM supports both "whole module" passes, which look
163 across as large of body of code as they can (often a whole file, but if run
164 at link time, this can be a substantial portion of the whole program).  It also
165 supports and includes "per-function" passes which just operate on a single
166 function at a time, without looking at other functions.  For more information
167 on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
168 to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
169 Passes</a>.</p>
170
171 <p>For Kaleidoscope, we are currently generating functions on the fly, one at
172 a time, as the user types them in.  We aren't shooting for the ultimate
173 optimization experience in this setting, but we also want to catch the easy and
174 quick stuff where possible.  As such, we will choose to run a few per-function
175 optimizations as the user types the function in.  If we wanted to make a "static
176 Kaleidoscope compiler", we would use exactly the code we have now, except that
177 we would defer running the optimizer until the entire file has been parsed.</p>
178
179 <p>In order to get per-function optimizations going, we need to set up a
180 <a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and
181 organize the LLVM optimizations that we want to run.  Once we have that, we can
182 add a set of optimizations to run.  The code looks like this:</p>
183
184 <div class="doc_code">
185 <pre>
186   (* Create the JIT. *)
187   let the_execution_engine = ExecutionEngine.create Codegen.the_module in
188   let the_fpm = PassManager.create_function Codegen.the_module in
189
190   (* Set up the optimizer pipeline.  Start with registering info about how the
191    * target lays out data structures. *)
192   TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
193
194   (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
195   add_instruction_combining the_fpm;
196
197   (* reassociate expressions. *)
198   add_reassociation the_fpm;
199
200   (* Eliminate Common SubExpressions. *)
201   add_gvn the_fpm;
202
203   (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
204   add_cfg_simplification the_fpm;
205
206   ignore (PassManager.initialize the_fpm);
207
208   (* Run the main "interpreter loop" now. *)
209   Toplevel.main_loop the_fpm the_execution_engine stream;
210 </pre>
211 </div>
212
213 <p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>".  It
214 requires a pointer to the <tt>the_module</tt> to construct itself.  Once it is
215 set up, we use a series of "add" calls to add a bunch of LLVM passes.  The
216 first pass is basically boilerplate, it adds a pass so that later optimizations
217 know how the data structures in the program are laid out.  The
218 "<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
219 get to in the next section.</p>
220
221 <p>In this case, we choose to add 4 optimization passes.  The passes we chose
222 here are a pretty standard set of "cleanup" optimizations that are useful for
223 a wide variety of code.  I won't delve into what they do but, believe me,
224 they are a good starting place :).</p>
225
226 <p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it.
227 We do this by running it after our newly created function is constructed (in
228 <tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p>
229
230 <div class="doc_code">
231 <pre>
232 let codegen_func the_fpm = function
233       ...
234       try
235         let ret_val = codegen_expr body in
236
237         (* Finish off the function. *)
238         let _ = build_ret ret_val builder in
239
240         (* Validate the generated code, checking for consistency. *)
241         Llvm_analysis.assert_valid_function the_function;
242
243         (* Optimize the function. *)
244         let _ = PassManager.run_function the_function the_fpm in
245
246         the_function
247 </pre>
248 </div>
249
250 <p>As you can see, this is pretty straightforward.  The <tt>the_fpm</tt>
251 optimizes and updates the LLVM Function* in place, improving (hopefully) its
252 body.  With this in place, we can try our test above again:</p>
253
254 <div class="doc_code">
255 <pre>
256 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
257 ready&gt; Read function definition:
258 define double @test(double %x) {
259 entry:
260         %addtmp = fadd double %x, 3.000000e+00
261         %multmp = fmul double %addtmp, %addtmp
262         ret double %multmp
263 }
264 </pre>
265 </div>
266
267 <p>As expected, we now get our nicely optimized code, saving a floating point
268 add instruction from every execution of this function.</p>
269
270 <p>LLVM provides a wide variety of optimizations that can be used in certain
271 circumstances.  Some <a href="../Passes.html">documentation about the various
272 passes</a> is available, but it isn't very complete.  Another good source of
273 ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
274 <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to
275 experiment with passes from the command line, so you can see if they do
276 anything.</p>
277
278 <p>Now that we have reasonable code coming out of our front-end, lets talk about
279 executing it!</p>
280
281 </div>
282
283 <!-- *********************************************************************** -->
284 <h2><a name="jit">Adding a JIT Compiler</a></h2>
285 <!-- *********************************************************************** -->
286
287 <div>
288
289 <p>Code that is available in LLVM IR can have a wide variety of tools
290 applied to it.  For example, you can run optimizations on it (as we did above),
291 you can dump it out in textual or binary forms, you can compile the code to an
292 assembly file (.s) for some target, or you can JIT compile it.  The nice thing
293 about the LLVM IR representation is that it is the "common currency" between
294 many different parts of the compiler.
295 </p>
296
297 <p>In this section, we'll add JIT compiler support to our interpreter.  The
298 basic idea that we want for Kaleidoscope is to have the user enter function
299 bodies as they do now, but immediately evaluate the top-level expressions they
300 type in.  For example, if they type in "1 + 2;", we should evaluate and print
301 out 3.  If they define a function, they should be able to call it from the
302 command line.</p>
303
304 <p>In order to do this, we first declare and initialize the JIT.  This is done
305 by adding a global variable and a call in <tt>main</tt>:</p>
306
307 <div class="doc_code">
308 <pre>
309 ...
310 let main () =
311   ...
312   <b>(* Create the JIT. *)
313   let the_execution_engine = ExecutionEngine.create Codegen.the_module in</b>
314   ...
315 </pre>
316 </div>
317
318 <p>This creates an abstract "Execution Engine" which can be either a JIT
319 compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
320 for you if one is available for your platform, otherwise it will fall back to
321 the interpreter.</p>
322
323 <p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT
324 is ready to be used.  There are a variety of APIs that are useful, but the
325 simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
326 function.  This method JIT compiles the specified LLVM Function and returns a
327 function pointer to the generated machine code.  In our case, this means that we
328 can change the code that parses a top-level expression to look like this:</p>
329
330 <div class="doc_code">
331 <pre>
332             (* Evaluate a top-level expression into an anonymous function. *)
333             let e = Parser.parse_toplevel stream in
334             print_endline "parsed a top-level expr";
335             let the_function = Codegen.codegen_func the_fpm e in
336             dump_value the_function;
337
338             (* JIT the function, returning a function pointer. *)
339             let result = ExecutionEngine.run_function the_function [||]
340               the_execution_engine in
341
342             print_string "Evaluated to ";
343             print_float (GenericValue.as_float Codegen.double_type result);
344             print_newline ();
345 </pre>
346 </div>
347
348 <p>Recall that we compile top-level expressions into a self-contained LLVM
349 function that takes no arguments and returns the computed double.  Because the
350 LLVM JIT compiler matches the native platform ABI, this means that you can just
351 cast the result pointer to a function pointer of that type and call it directly.
352 This means, there is no difference between JIT compiled code and native machine
353 code that is statically linked into your application.</p>
354
355 <p>With just these two changes, lets see how Kaleidoscope works now!</p>
356
357 <div class="doc_code">
358 <pre>
359 ready&gt; <b>4+5;</b>
360 define double @""() {
361 entry:
362         ret double 9.000000e+00
363 }
364
365 <em>Evaluated to 9.000000</em>
366 </pre>
367 </div>
368
369 <p>Well this looks like it is basically working.  The dump of the function
370 shows the "no argument function that always returns double" that we synthesize
371 for each top level expression that is typed in.  This demonstrates very basic
372 functionality, but can we do more?</p>
373
374 <div class="doc_code">
375 <pre>
376 ready&gt; <b>def testfunc(x y) x + y*2; </b>
377 Read function definition:
378 define double @testfunc(double %x, double %y) {
379 entry:
380         %multmp = fmul double %y, 2.000000e+00
381         %addtmp = fadd double %multmp, %x
382         ret double %addtmp
383 }
384
385 ready&gt; <b>testfunc(4, 10);</b>
386 define double @""() {
387 entry:
388         %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
389         ret double %calltmp
390 }
391
392 <em>Evaluated to 24.000000</em>
393 </pre>
394 </div>
395
396 <p>This illustrates that we can now call user code, but there is something a bit
397 subtle going on here.  Note that we only invoke the JIT on the anonymous
398 functions that <em>call testfunc</em>, but we never invoked it
399 on <em>testfunc</em> itself.  What actually happened here is that the JIT
400 scanned for all non-JIT'd functions transitively called from the anonymous
401 function and compiled all of them before returning
402 from <tt>run_function</tt>.</p>
403
404 <p>The JIT provides a number of other more advanced interfaces for things like
405 freeing allocated machine code, rejit'ing functions to update them, etc.
406 However, even with this simple code, we get some surprisingly powerful
407 capabilities - check this out (I removed the dump of the anonymous functions,
408 you should get the idea by now :) :</p>
409
410 <div class="doc_code">
411 <pre>
412 ready&gt; <b>extern sin(x);</b>
413 Read extern:
414 declare double @sin(double)
415
416 ready&gt; <b>extern cos(x);</b>
417 Read extern:
418 declare double @cos(double)
419
420 ready&gt; <b>sin(1.0);</b>
421 <em>Evaluated to 0.841471</em>
422
423 ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
424 Read function definition:
425 define double @foo(double %x) {
426 entry:
427         %calltmp = call double @sin(double %x)
428         %multmp = fmul double %calltmp, %calltmp
429         %calltmp2 = call double @cos(double %x)
430         %multmp4 = fmul double %calltmp2, %calltmp2
431         %addtmp = fadd double %multmp, %multmp4
432         ret double %addtmp
433 }
434
435 ready&gt; <b>foo(4.0);</b>
436 <em>Evaluated to 1.000000</em>
437 </pre>
438 </div>
439
440 <p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
441 simple: in this example, the JIT started execution of a function and got to a
442 function call.  It realized that the function was not yet JIT compiled and
443 invoked the standard set of routines to resolve the function.  In this case,
444 there is no body defined for the function, so the JIT ended up calling
445 "<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself.  Since
446 "<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
447 calls in the module to call the libm version of <tt>sin</tt> directly.</p>
448
449 <p>The LLVM JIT provides a number of interfaces (look in the
450 <tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions
451 get resolved.  It allows you to establish explicit mappings between IR objects
452 and addresses (useful for LLVM global variables that you want to map to static
453 tables, for example), allows you to dynamically decide on the fly based on the
454 function name, and even allows you to have the JIT compile functions lazily the
455 first time they're called.</p>
456
457 <p>One interesting application of this is that we can now extend the language
458 by writing arbitrary C code to implement operations.  For example, if we add:
459 </p>
460
461 <div class="doc_code">
462 <pre>
463 /* putchard - putchar that takes a double and returns 0. */
464 extern "C"
465 double putchard(double X) {
466   putchar((char)X);
467   return 0;
468 }
469 </pre>
470 </div>
471
472 <p>Now we can produce simple output to the console by using things like:
473 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
474 the console (120 is the ASCII code for 'x').  Similar code could be used to
475 implement file I/O, console input, and many other capabilities in
476 Kaleidoscope.</p>
477
478 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
479 this point, we can compile a non-Turing-complete programming language, optimize
480 and JIT compile it in a user-driven way.  Next up we'll look into <a
481 href="OCamlLangImpl5.html">extending the language with control flow
482 constructs</a>, tackling some interesting LLVM IR issues along the way.</p>
483
484 </div>
485
486 <!-- *********************************************************************** -->
487 <h2><a name="code">Full Code Listing</a></h2>
488 <!-- *********************************************************************** -->
489
490 <div>
491
492 <p>
493 Here is the complete code listing for our running example, enhanced with the
494 LLVM JIT and optimizer.  To build this example, use:
495 </p>
496
497 <div class="doc_code">
498 <pre>
499 # Compile
500 ocamlbuild toy.byte
501 # Run
502 ./toy.byte
503 </pre>
504 </div>
505
506 <p>Here is the code:</p>
507
508 <dl>
509 <dt>_tags:</dt>
510 <dd class="doc_code">
511 <pre>
512 &lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
513 &lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
514 &lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
515 &lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
516 </pre>
517 </dd>
518
519 <dt>myocamlbuild.ml:</dt>
520 <dd class="doc_code">
521 <pre>
522 open Ocamlbuild_plugin;;
523
524 ocaml_lib ~extern:true "llvm";;
525 ocaml_lib ~extern:true "llvm_analysis";;
526 ocaml_lib ~extern:true "llvm_executionengine";;
527 ocaml_lib ~extern:true "llvm_target";;
528 ocaml_lib ~extern:true "llvm_scalar_opts";;
529
530 flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
531 dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
532 </pre>
533 </dd>
534
535 <dt>token.ml:</dt>
536 <dd class="doc_code">
537 <pre>
538 (*===----------------------------------------------------------------------===
539  * Lexer Tokens
540  *===----------------------------------------------------------------------===*)
541
542 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
543  * these others for known things. *)
544 type token =
545   (* commands *)
546   | Def | Extern
547
548   (* primary *)
549   | Ident of string | Number of float
550
551   (* unknown *)
552   | Kwd of char
553 </pre>
554 </dd>
555
556 <dt>lexer.ml:</dt>
557 <dd class="doc_code">
558 <pre>
559 (*===----------------------------------------------------------------------===
560  * Lexer
561  *===----------------------------------------------------------------------===*)
562
563 let rec lex = parser
564   (* Skip any whitespace. *)
565   | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
566
567   (* identifier: [a-zA-Z][a-zA-Z0-9] *)
568   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
569       let buffer = Buffer.create 1 in
570       Buffer.add_char buffer c;
571       lex_ident buffer stream
572
573   (* number: [0-9.]+ *)
574   | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
575       let buffer = Buffer.create 1 in
576       Buffer.add_char buffer c;
577       lex_number buffer stream
578
579   (* Comment until end of line. *)
580   | [&lt; ' ('#'); stream &gt;] -&gt;
581       lex_comment stream
582
583   (* Otherwise, just return the character as its ascii value. *)
584   | [&lt; 'c; stream &gt;] -&gt;
585       [&lt; 'Token.Kwd c; lex stream &gt;]
586
587   (* end of stream. *)
588   | [&lt; &gt;] -&gt; [&lt; &gt;]
589
590 and lex_number buffer = parser
591   | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
592       Buffer.add_char buffer c;
593       lex_number buffer stream
594   | [&lt; stream=lex &gt;] -&gt;
595       [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
596
597 and lex_ident buffer = parser
598   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
599       Buffer.add_char buffer c;
600       lex_ident buffer stream
601   | [&lt; stream=lex &gt;] -&gt;
602       match Buffer.contents buffer with
603       | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
604       | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
605       | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
606
607 and lex_comment = parser
608   | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
609   | [&lt; 'c; e=lex_comment &gt;] -&gt; e
610   | [&lt; &gt;] -&gt; [&lt; &gt;]
611 </pre>
612 </dd>
613
614 <dt>ast.ml:</dt>
615 <dd class="doc_code">
616 <pre>
617 (*===----------------------------------------------------------------------===
618  * Abstract Syntax Tree (aka Parse Tree)
619  *===----------------------------------------------------------------------===*)
620
621 (* expr - Base type for all expression nodes. *)
622 type expr =
623   (* variant for numeric literals like "1.0". *)
624   | Number of float
625
626   (* variant for referencing a variable, like "a". *)
627   | Variable of string
628
629   (* variant for a binary operator. *)
630   | Binary of char * expr * expr
631
632   (* variant for function calls. *)
633   | Call of string * expr array
634
635 (* proto - This type represents the "prototype" for a function, which captures
636  * its name, and its argument names (thus implicitly the number of arguments the
637  * function takes). *)
638 type proto = Prototype of string * string array
639
640 (* func - This type represents a function definition itself. *)
641 type func = Function of proto * expr
642 </pre>
643 </dd>
644
645 <dt>parser.ml:</dt>
646 <dd class="doc_code">
647 <pre>
648 (*===---------------------------------------------------------------------===
649  * Parser
650  *===---------------------------------------------------------------------===*)
651
652 (* binop_precedence - This holds the precedence for each binary operator that is
653  * defined *)
654 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
655
656 (* precedence - Get the precedence of the pending binary operator token. *)
657 let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
658
659 (* primary
660  *   ::= identifier
661  *   ::= numberexpr
662  *   ::= parenexpr *)
663 let rec parse_primary = parser
664   (* numberexpr ::= number *)
665   | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
666
667   (* parenexpr ::= '(' expression ')' *)
668   | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
669
670   (* identifierexpr
671    *   ::= identifier
672    *   ::= identifier '(' argumentexpr ')' *)
673   | [&lt; 'Token.Ident id; stream &gt;] -&gt;
674       let rec parse_args accumulator = parser
675         | [&lt; e=parse_expr; stream &gt;] -&gt;
676             begin parser
677               | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
678               | [&lt; &gt;] -&gt; e :: accumulator
679             end stream
680         | [&lt; &gt;] -&gt; accumulator
681       in
682       let rec parse_ident id = parser
683         (* Call. *)
684         | [&lt; 'Token.Kwd '(';
685              args=parse_args [];
686              'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
687             Ast.Call (id, Array.of_list (List.rev args))
688
689         (* Simple variable ref. *)
690         | [&lt; &gt;] -&gt; Ast.Variable id
691       in
692       parse_ident id stream
693
694   | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
695
696 (* binoprhs
697  *   ::= ('+' primary)* *)
698 and parse_bin_rhs expr_prec lhs stream =
699   match Stream.peek stream with
700   (* If this is a binop, find its precedence. *)
701   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
702       let token_prec = precedence c in
703
704       (* If this is a binop that binds at least as tightly as the current binop,
705        * consume it, otherwise we are done. *)
706       if token_prec &lt; expr_prec then lhs else begin
707         (* Eat the binop. *)
708         Stream.junk stream;
709
710         (* Parse the primary expression after the binary operator. *)
711         let rhs = parse_primary stream in
712
713         (* Okay, we know this is a binop. *)
714         let rhs =
715           match Stream.peek stream with
716           | Some (Token.Kwd c2) -&gt;
717               (* If BinOp binds less tightly with rhs than the operator after
718                * rhs, let the pending operator take rhs as its lhs. *)
719               let next_prec = precedence c2 in
720               if token_prec &lt; next_prec
721               then parse_bin_rhs (token_prec + 1) rhs stream
722               else rhs
723           | _ -&gt; rhs
724         in
725
726         (* Merge lhs/rhs. *)
727         let lhs = Ast.Binary (c, lhs, rhs) in
728         parse_bin_rhs expr_prec lhs stream
729       end
730   | _ -&gt; lhs
731
732 (* expression
733  *   ::= primary binoprhs *)
734 and parse_expr = parser
735   | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
736
737 (* prototype
738  *   ::= id '(' id* ')' *)
739 let parse_prototype =
740   let rec parse_args accumulator = parser
741     | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
742     | [&lt; &gt;] -&gt; accumulator
743   in
744
745   parser
746   | [&lt; 'Token.Ident id;
747        'Token.Kwd '(' ?? "expected '(' in prototype";
748        args=parse_args [];
749        'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
750       (* success. *)
751       Ast.Prototype (id, Array.of_list (List.rev args))
752
753   | [&lt; &gt;] -&gt;
754       raise (Stream.Error "expected function name in prototype")
755
756 (* definition ::= 'def' prototype expression *)
757 let parse_definition = parser
758   | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
759       Ast.Function (p, e)
760
761 (* toplevelexpr ::= expression *)
762 let parse_toplevel = parser
763   | [&lt; e=parse_expr &gt;] -&gt;
764       (* Make an anonymous proto. *)
765       Ast.Function (Ast.Prototype ("", [||]), e)
766
767 (*  external ::= 'extern' prototype *)
768 let parse_extern = parser
769   | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
770 </pre>
771 </dd>
772
773 <dt>codegen.ml:</dt>
774 <dd class="doc_code">
775 <pre>
776 (*===----------------------------------------------------------------------===
777  * Code Generation
778  *===----------------------------------------------------------------------===*)
779
780 open Llvm
781
782 exception Error of string
783
784 let context = global_context ()
785 let the_module = create_module context "my cool jit"
786 let builder = builder context
787 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
788 let double_type = double_type context
789
790 let rec codegen_expr = function
791   | Ast.Number n -&gt; const_float double_type n
792   | Ast.Variable name -&gt;
793       (try Hashtbl.find named_values name with
794         | Not_found -&gt; raise (Error "unknown variable name"))
795   | Ast.Binary (op, lhs, rhs) -&gt;
796       let lhs_val = codegen_expr lhs in
797       let rhs_val = codegen_expr rhs in
798       begin
799         match op with
800         | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
801         | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
802         | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
803         | '&lt;' -&gt;
804             (* Convert bool 0/1 to double 0.0 or 1.0 *)
805             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
806             build_uitofp i double_type "booltmp" builder
807         | _ -&gt; raise (Error "invalid binary operator")
808       end
809   | Ast.Call (callee, args) -&gt;
810       (* Look up the name in the module table. *)
811       let callee =
812         match lookup_function callee the_module with
813         | Some callee -&gt; callee
814         | None -&gt; raise (Error "unknown function referenced")
815       in
816       let params = params callee in
817
818       (* If argument mismatch error. *)
819       if Array.length params == Array.length args then () else
820         raise (Error "incorrect # arguments passed");
821       let args = Array.map codegen_expr args in
822       build_call callee args "calltmp" builder
823
824 let codegen_proto = function
825   | Ast.Prototype (name, args) -&gt;
826       (* Make the function type: double(double,double) etc. *)
827       let doubles = Array.make (Array.length args) double_type in
828       let ft = function_type double_type doubles in
829       let f =
830         match lookup_function name the_module with
831         | None -&gt; declare_function name ft the_module
832
833         (* If 'f' conflicted, there was already something named 'name'. If it
834          * has a body, don't allow redefinition or reextern. *)
835         | Some f -&gt;
836             (* If 'f' already has a body, reject this. *)
837             if block_begin f &lt;&gt; At_end f then
838               raise (Error "redefinition of function");
839
840             (* If 'f' took a different number of arguments, reject. *)
841             if element_type (type_of f) &lt;&gt; ft then
842               raise (Error "redefinition of function with different # args");
843             f
844       in
845
846       (* Set names for all arguments. *)
847       Array.iteri (fun i a -&gt;
848         let n = args.(i) in
849         set_value_name n a;
850         Hashtbl.add named_values n a;
851       ) (params f);
852       f
853
854 let codegen_func the_fpm = function
855   | Ast.Function (proto, body) -&gt;
856       Hashtbl.clear named_values;
857       let the_function = codegen_proto proto in
858
859       (* Create a new basic block to start insertion into. *)
860       let bb = append_block context "entry" the_function in
861       position_at_end bb builder;
862
863       try
864         let ret_val = codegen_expr body in
865
866         (* Finish off the function. *)
867         let _ = build_ret ret_val builder in
868
869         (* Validate the generated code, checking for consistency. *)
870         Llvm_analysis.assert_valid_function the_function;
871
872         (* Optimize the function. *)
873         let _ = PassManager.run_function the_function the_fpm in
874
875         the_function
876       with e -&gt;
877         delete_function the_function;
878         raise e
879 </pre>
880 </dd>
881
882 <dt>toplevel.ml:</dt>
883 <dd class="doc_code">
884 <pre>
885 (*===----------------------------------------------------------------------===
886  * Top-Level parsing and JIT Driver
887  *===----------------------------------------------------------------------===*)
888
889 open Llvm
890 open Llvm_executionengine
891
892 (* top ::= definition | external | expression | ';' *)
893 let rec main_loop the_fpm the_execution_engine stream =
894   match Stream.peek stream with
895   | None -&gt; ()
896
897   (* ignore top-level semicolons. *)
898   | Some (Token.Kwd ';') -&gt;
899       Stream.junk stream;
900       main_loop the_fpm the_execution_engine stream
901
902   | Some token -&gt;
903       begin
904         try match token with
905         | Token.Def -&gt;
906             let e = Parser.parse_definition stream in
907             print_endline "parsed a function definition.";
908             dump_value (Codegen.codegen_func the_fpm e);
909         | Token.Extern -&gt;
910             let e = Parser.parse_extern stream in
911             print_endline "parsed an extern.";
912             dump_value (Codegen.codegen_proto e);
913         | _ -&gt;
914             (* Evaluate a top-level expression into an anonymous function. *)
915             let e = Parser.parse_toplevel stream in
916             print_endline "parsed a top-level expr";
917             let the_function = Codegen.codegen_func the_fpm e in
918             dump_value the_function;
919
920             (* JIT the function, returning a function pointer. *)
921             let result = ExecutionEngine.run_function the_function [||]
922               the_execution_engine in
923
924             print_string "Evaluated to ";
925             print_float (GenericValue.as_float Codegen.double_type result);
926             print_newline ();
927         with Stream.Error s | Codegen.Error s -&gt;
928           (* Skip token for error recovery. *)
929           Stream.junk stream;
930           print_endline s;
931       end;
932       print_string "ready&gt; "; flush stdout;
933       main_loop the_fpm the_execution_engine stream
934 </pre>
935 </dd>
936
937 <dt>toy.ml:</dt>
938 <dd class="doc_code">
939 <pre>
940 (*===----------------------------------------------------------------------===
941  * Main driver code.
942  *===----------------------------------------------------------------------===*)
943
944 open Llvm
945 open Llvm_executionengine
946 open Llvm_target
947 open Llvm_scalar_opts
948
949 let main () =
950   ignore (initialize_native_target ());
951
952   (* Install standard binary operators.
953    * 1 is the lowest precedence. *)
954   Hashtbl.add Parser.binop_precedence '&lt;' 10;
955   Hashtbl.add Parser.binop_precedence '+' 20;
956   Hashtbl.add Parser.binop_precedence '-' 20;
957   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
958
959   (* Prime the first token. *)
960   print_string "ready&gt; "; flush stdout;
961   let stream = Lexer.lex (Stream.of_channel stdin) in
962
963   (* Create the JIT. *)
964   let the_execution_engine = ExecutionEngine.create Codegen.the_module in
965   let the_fpm = PassManager.create_function Codegen.the_module in
966
967   (* Set up the optimizer pipeline.  Start with registering info about how the
968    * target lays out data structures. *)
969   TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
970
971   (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
972   add_instruction_combination the_fpm;
973
974   (* reassociate expressions. *)
975   add_reassociation the_fpm;
976
977   (* Eliminate Common SubExpressions. *)
978   add_gvn the_fpm;
979
980   (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
981   add_cfg_simplification the_fpm;
982
983   ignore (PassManager.initialize the_fpm);
984
985   (* Run the main "interpreter loop" now. *)
986   Toplevel.main_loop the_fpm the_execution_engine stream;
987
988   (* Print out all the generated code. *)
989   dump_module Codegen.the_module
990 ;;
991
992 main ()
993 </pre>
994 </dd>
995
996 <dt>bindings.c</dt>
997 <dd class="doc_code">
998 <pre>
999 #include &lt;stdio.h&gt;
1000
1001 /* putchard - putchar that takes a double and returns 0. */
1002 extern double putchard(double X) {
1003   putchar((char)X);
1004   return 0;
1005 }
1006 </pre>
1007 </dd>
1008 </dl>
1009
1010 <a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a>
1011 </div>
1012
1013 <!-- *********************************************************************** -->
1014 <hr>
1015 <address>
1016   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1017   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1018   <a href="http://validator.w3.org/check/referer"><img
1019   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1020
1021   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1022   <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
1023   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1024   Last modified: $Date$
1025 </address>
1026 </body>
1027 </html>