Fix broken internal links.
[oota-llvm.git] / docs / SourceLevelDebugging.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <title>Source Level Debugging with LLVM</title>
6   <link rel="stylesheet" href="llvm.css" type="text/css">
7 </head>
8 <body>
9
10 <div class="doc_title">Source Level Debugging with LLVM</div>
11
12 <table border="0" width="100%">
13 <tr>
14 <td valign="top">
15 <ul>
16
17   <li><a href="#introduction">Introduction</a>
18   <ol>
19     <li><a href="#phil">Philosophy behind LLVM debugging information</a></li>
20     <li><a href="#debugopt">Debugging optimized code</a></li>
21     <li><a href="#future">Future work</a></li>
22   </ol></li>
23   <li><a href="#llvm-db">Using the <tt>llvm-db</tt> tool</a>
24   <ol>
25     <li><a href="#limitations">Limitations of <tt>llvm-db</tt></a></li>
26     <li><a href="#sample">A sample <tt>llvm-db</tt> session</a></li>
27     <li><a href="#startup">Starting the debugger</a></li>
28     <li><a href="#commands">Commands recognized by the debugger</a></li>
29   </ol></li>
30
31   <li><a href="#architecture">Architecture of the LLVM debugger</a>
32   <ol>
33     <li><a href="#arch_debugger">The Debugger and InferiorProcess classes</a></li>
34     <li><a href="#arch_info">The RuntimeInfo, ProgramInfo, and SourceLanguage classes</a></li>
35     <li><a href="#arch_llvm-db">The <tt>llvm-db</tt> tool</a></li>
36     <li><a href="#arch_todo">Short-term TODO list</a></li>
37   </ol></li>
38
39   <li><a href="#format">Debugging information format</a>
40   <ol>
41     <li><a href="#format_common_anchors">Anchors for global objects</a></li>
42     <li><a href="#format_common_stoppoint">Representing stopping points in the source program</a></li>
43     <li><a href="#format_common_lifetime">Object lifetimes and scoping</a></li>
44     <li><a href="#format_common_descriptors">Object descriptor formats</a>
45     <ul>
46       <li><a href="#format_common_source_files">Representation of source files</a></li>
47       <li><a href="#format_common_program_objects">Representation of program objects</a></li>
48       <li><a href="#format_common_object_contexts">Program object contexts</a></li>
49     </ul></li>
50     <li><a href="#format_common_intrinsics">Debugger intrinsic functions</a></li>
51     <li><a href="#format_common_tags">Values for debugger tags</a></li>
52   </ol></li>
53   <li><a href="#ccxx_frontend">C/C++ front-end specific debug information</a>
54   <ol>
55     <li><a href="#ccxx_pse">Program Scope Entries</a>
56     <ul>
57       <li><a href="#ccxx_compilation_units">Compilation unit entries</a></li>
58       <li><a href="#ccxx_modules">Module, namespace, and importing entries</a></li>
59     </ul></li>
60     <li><a href="#ccxx_dataobjects">Data objects (program variables)</a></li>
61   </ol></li>
62 </ul>
63 </td>
64 <td align="right" valign="top">
65 <img src="img/venusflytrap.jpg" alt="A leafy and green bug eater" width="247"
66 height="369">
67 </td>
68 </tr>
69 </table>
70
71 <div class="doc_author">
72   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
73 </div>
74
75
76 <!-- *********************************************************************** -->
77 <div class="doc_section"><a name="introduction">Introduction</a></div> <!--
78 *********************************************************************** -->
79
80 <div class="doc_text">
81
82 <p>This document is the central repository for all information pertaining to
83 debug information in LLVM.  It describes the <a href="#llvm-db">user
84 interface</a> for the <a href="CommandGuide/llvm-db.html"><tt>llvm-db</tt>
85 tool</a>, which provides a powerful <a href="#llvm-db">source-level debugger</a>
86 to users of LLVM-based compilers.  It then describes the <a
87 href="#architecture">various components</a> that make up the debugger and the
88 libraries which future clients may use.  Finally, it describes the <a
89 href="#format">actual format that the LLVM debug information</a> takes,
90 which is useful for those interested in creating front-ends or dealing directly
91 with the information.</p>
92
93 </div>
94
95 <!-- ======================================================================= -->
96 <div class="doc_subsection">
97   <a name="phil">Philosophy behind LLVM debugging information</a>
98 </div>
99
100 <div class="doc_text">
101
102 <p>The idea of the LLVM debugging information is to capture how the important
103 pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
104 Several design aspects have shaped the solution that appears here.  The
105 important ones are:</p>
106
107 <ul>
108 <li>Debugging information should have very little impact on the rest of the
109 compiler.  No transformations, analyses, or code generators should need to be
110 modified because of debugging information.</li>
111
112 <li>LLVM optimizations should interact in <a href="#debugopt">well-defined and
113 easily described ways</a> with the debugging information.</li>
114
115 <li>Because LLVM is designed to support arbitrary programming languages,
116 LLVM-to-LLVM tools should not need to know anything about the semantics of the
117 source-level-language.</li>
118
119 <li>Source-level languages are often <b>widely</b> different from one another.
120 LLVM should not put any restrictions of the flavor of the source-language, and
121 the debugging information should work with any language.</li>
122
123 <li>With code generator support, it should be possible to use an LLVM compiler
124 to compile a program to native machine code and standard debugging formats.
125 This allows compatibility with traditional machine-code level debuggers, like
126 GDB or DBX.</li>
127
128 </ul>
129
130 <p>The approach used by the LLVM implementation is to use a small set of <a
131 href="#format_common_intrinsics">intrinsic functions</a> to define a mapping
132 between LLVM program objects and the source-level objects.  The description of
133 the source-level program is maintained in LLVM global variables in an <a
134 href="#ccxx_frontend">implementation-defined format</a> (the C/C++ front-end
135 currently uses working draft 7 of the <a
136 href="http://www.eagercon.com/dwarf/dwarf3std.htm">Dwarf 3 standard</a>).</p>
137
138 <p>When a program is debugged, the debugger interacts with the user and turns
139 the stored debug information into source-language specific information.  As
140 such, the debugger must be aware of the source-language, and is thus tied to a
141 specific language of family of languages.  The <a href="#llvm-db">LLVM
142 debugger</a> is designed to be modular in its support for source-languages.</p>
143
144 </div>
145
146
147 <!-- ======================================================================= -->
148 <div class="doc_subsection">
149   <a name="debugopt">Debugging optimized code</a>
150 </div>
151
152 <div class="doc_text">
153
154 <p>An extremely high priority of LLVM debugging information is to make it
155 interact well with optimizations and analysis.  In particular, the LLVM debug
156 information provides the following guarantees:</p>
157
158 <ul>
159
160 <li>LLVM debug information <b>always provides information to accurately read the
161 source-level state of the program</b>, regardless of which LLVM optimizations
162 have been run, and without any modification to the optimizations themselves.
163 However, some optimizations may impact the ability to modify the current state
164 of the program with a debugger, such as setting program variables, or calling
165 function that have been deleted.</li>
166
167 <li>LLVM optimizations gracefully interact with debugging information.  If they
168 are not aware of debug information, they are automatically disabled as necessary
169 in the cases that would invalidate the debug info.  This retains the LLVM
170 features making it easy to write new transformations.</li>
171
172 <li>As desired, LLVM optimizations can be upgraded to be aware of the LLVM
173 debugging information, allowing them to update the debugging information as they
174 perform aggressive optimizations.  This means that, with effort, the LLVM
175 optimizers could optimize debug code just as well as non-debug code.</li>
176
177 <li>LLVM debug information does not prevent many important optimizations from
178 happening (for example inlining, basic block reordering/merging/cleanup, tail
179 duplication, etc), further reducing the amount of the compiler that eventually
180 is "aware" of debugging information.</li>
181
182 <li>LLVM debug information is automatically optimized along with the rest of the
183 program, using existing facilities.  For example, duplicate information is
184 automatically merged by the linker, and unused information is automatically
185 removed.</li>
186
187 </ul>
188
189 <p>Basically, the debug information allows you to compile a program with
190 "<tt>-O0 -g</tt>" and get full debug information, allowing you to arbitrarily
191 modify the program as it executes from the debugger.  Compiling a program with
192 "<tt>-O3 -g</tt>" gives you full debug information that is always available and
193 accurate for reading (e.g., you get accurate stack traces despite tail call
194 elimination and inlining), but you might lose the ability to modify the program
195 and call functions where were optimized out of the program, or inlined away
196 completely.</p>
197
198 </div>
199
200 <!-- ======================================================================= -->
201 <div class="doc_subsection">
202   <a name="future">Future work</a>
203 </div>
204
205 <div class="doc_text">
206 <p>There are several important extensions that could be eventually added to the
207 LLVM debugger.  The most important extension would be to upgrade the LLVM code
208 generators to support debugging information.  This would also allow, for
209 example, the X86 code generator to emit native objects that contain debugging
210 information consumable by traditional source-level debuggers like GDB or
211 DBX.</p>
212
213 <p>Additionally, LLVM optimizations can be upgraded to incrementally update the
214 debugging information, <a href="#commands">new commands</a> can be added to the
215 debugger, and thread support could be added to the debugger.</p>
216
217 <p>The "SourceLanguage" modules provided by <tt>llvm-db</tt> could be
218 substantially improved to provide good support for C++ language features like
219 namespaces and scoping rules.</p>
220
221 <p>After working with the debugger for a while, perhaps the nicest improvement
222 would be to add some sort of line editor, such as GNU readline (but one that is
223 compatible with the LLVM license).</p>
224
225 <p>For someone so inclined, it should be straight-forward to write different
226 front-ends for the LLVM debugger, as the LLVM debugging engine is cleanly
227 separated from the <tt>llvm-db</tt> front-end.  A new LLVM GUI debugger or IDE
228 would be nice. :)</p>
229
230 </div>
231
232 <!-- *********************************************************************** -->
233 <div class="doc_section">
234   <a name="llvm-db">Using the <tt>llvm-db</tt> tool</a>
235 </div>
236 <!-- *********************************************************************** -->
237
238 <div class="doc_text">
239
240 <p>The <tt>llvm-db</tt> tool provides a GDB-like interface for source-level
241 debugging of programs.  This tool provides many standard commands for inspecting
242 and modifying the program as it executes, loading new programs, single stepping,
243 placing breakpoints, etc.  This section describes how to use the debugger.</p>
244
245 <p><tt>llvm-db</tt> has been designed to be as similar to GDB in its user
246 interface as possible.  This should make it extremely easy to learn
247 <tt>llvm-db</tt> if you already know <tt>GDB</tt>.  In general, <tt>llvm-db</tt>
248 provides the subset of GDB commands that are applicable to LLVM debugging users.
249 If there is a command missing that make a reasonable amount of sense within the
250 <a href="#limitations">limitations of <tt>llvm-db</tt></a>, please report it as
251 a bug or, better yet, submit a patch to add it. :)</p>
252
253 </div>
254
255 <!-- ======================================================================= -->
256 <div class="doc_subsection">
257   <a name="limitations">Limitations of <tt>llvm-db</tt></a>
258 </div>
259
260 <div class="doc_text">
261
262 <p><tt>llvm-db</tt> is designed to be modular and easy to extend.  This
263 extensibility was key to getting the debugger up-and-running quickly, because we
264 can start with simple-but-unsophisicated implementations of various components.
265 Because of this, it is currently missing many features, though they should be
266 easy to add over time (patches welcomed!).  The biggest inherent limitations of
267 <tt>llvm-db</tt> are currently due to extremely simple <a
268 href="#arch_debugger">debugger backend</a> (implemented in
269 "lib/Debugger/UnixLocalInferiorProcess.cpp") which is designed to work without
270 any cooperation from the code generators.  Because it is so simple, it suffers
271 from the following inherent limitations:</p>
272
273 <ul>
274
275 <li>Running a program in <tt>llvm-db</tt> is a bit slower than running it with
276 <tt>lli</tt> (i.e., in the JIT).</li>
277
278 <li>Inspection of the target hardware is not supported.  This means that you
279 cannot, for example, print the contents of X86 registers.</li>
280
281 <li>Inspection of LLVM code is not supported.  This means that you cannot print
282 the contents of arbitrary LLVM values, or use commands such as <tt>stepi</tt>.
283 This also means that you cannot debug code without debug information.</li>
284
285 <li>Portions of the debugger run in the same address space as the program being
286 debugged.  This means that memory corruption by the program could trample on
287 portions of the debugger.</li>
288
289 <li>Attaching to existing processes and core files is not currently
290 supported.</li>
291
292 </ul>
293
294 <p>That said, the debugger is still quite useful, and all of these limitations
295 can be eliminated by integrating support for the debugger into the code
296 generators, and writing a new <a href="#arch_debugger">InferiorProcess</a>
297 subclass to use it.  See the <a href="#future">future work</a> section for ideas
298 of how to extend the LLVM debugger despite these limitations.</p>
299
300 </div>
301
302
303 <!-- ======================================================================= -->
304 <div class="doc_subsection">
305   <a name="sample">A sample <tt>llvm-db</tt> session</a>
306 </div>
307
308 <div class="doc_text">
309
310 <p>TODO: this is obviously lame, when more is implemented, this can be much
311 better.</p>
312
313 <pre>
314 $ <b>llvm-db funccall</b>
315 llvm-db: The LLVM source-level debugger
316 Loading program... successfully loaded 'funccall.bc'!
317 (llvm-db) <b>create</b>
318 Starting program: funccall.bc
319 main at funccall.c:9:2
320 9 ->            q = 0;
321 (llvm-db) <b>list main</b>
322 4       void foo() {
323 5               int t = q;
324 6               q = t + 1;
325 7       }
326 8       int main() {
327 9 ->            q = 0;
328 10              foo();
329 11              q = q - 1;
330 12
331 13              return q;
332 (llvm-db) <b>list</b>
333 14      }
334 (llvm-db) <b>step</b>
335 10 ->           foo();
336 (llvm-db) <b>s</b>
337 foo at funccall.c:5:2
338 5 ->            int t = q;
339 (llvm-db) <b>bt</b>
340 #0 ->   0x85ffba0 in foo at funccall.c:5:2
341 #1      0x85ffd98 in main at funccall.c:10:2
342 (llvm-db) <b>finish</b>
343 main at funccall.c:11:2
344 11 ->           q = q - 1;
345 (llvm-db) <b>s</b>
346 13 ->           return q;
347 (llvm-db) <b>s</b>
348 The program stopped with exit code 0
349 (llvm-db) <b>quit</b>
350 $
351 </pre>
352
353 </div>
354
355
356
357 <!-- ======================================================================= -->
358 <div class="doc_subsection">
359   <a name="startup">Starting the debugger</a>
360 </div>
361
362 <div class="doc_text">
363
364 <p>There are three ways to start up the <tt>llvm-db</tt> debugger:</p>
365
366 <p>When run with no options, just <tt>llvm-db</tt>, the debugger starts up
367 without a program loaded at all.  You must use the <a
368 href="#c_file"><tt>file</tt> command</a> to load a program, and the <a
369 href="#c_set_args"><tt>set args</tt></a> or <a href="#c_run"><tt>run</tt></a>
370 commands to specify the arguments for the program.</p>
371
372 <p>If you start the debugger with one argument, as <tt>llvm-db
373 &lt;program&gt;</tt>, the debugger will start up and load in the specified
374 program.  You can then optionally specify arguments to the program with the <a
375 href="#c_set_args"><tt>set args</tt></a> or <a href="#c_run"><tt>run</tt></a>
376 commands.</p>
377
378 <p>The third way to start the program is with the <tt>--args</tt> option.  This
379 option allows you to specify the program to load and the arguments to start out
380 with.  <!-- No options to <tt>llvm-db</tt> may be specified after the
381 <tt>-args</tt> option. --> Example use: <tt>llvm-db --args ls /home</tt></p>
382
383 </div>
384
385 <!-- ======================================================================= -->
386 <div class="doc_subsection">
387   <a name="commands">Commands recognized by the debugger</a>
388 </div>
389
390 <div class="doc_text">
391
392 <p>FIXME: this needs work obviously.  See the <a
393 href="http://sources.redhat.com/gdb/documentation/">GDB documentation</a> for
394 information about what these do, or try '<tt>help [command]</tt>' within
395 <tt>llvm-db</tt> to get information.</p>
396
397 <p>
398 <h2>General usage:</h2>
399 <ul>
400 <li>help [command]</li>
401 <li>quit</li>
402 <li><a name="c_file">file</a> [program]</li>
403 </ul>
404
405 <h2>Program inspection and interaction:</h2>
406 <ul>
407 <li>create (start the program, stopping it ASAP in <tt>main</tt>)</li>
408 <li>kill</li>
409 <li>run [args]</li>
410 <li>step [num]</li>
411 <li>next [num]</li>
412 <li>cont</li>
413 <li>finish</li>
414
415 <li>list [start[, end]]</li>
416 <li>info source</li>
417 <li>info sources</li>
418 <li>info functions</li>
419 </ul>
420
421 <h2>Call stack inspection:</h2>
422 <ul>
423 <li>backtrace</li>
424 <li>up [n]</li>
425 <li>down [n]</li>
426 <li>frame [n]</li>
427 </ul>
428
429
430 <h2>Debugger inspection and interaction:</h2>
431 <ul>
432 <li>info target</li>
433 <li>show prompt</li>
434 <li>set prompt</li>
435 <li>show listsize</li>
436 <li>set listsize</li>
437 <li>show language</li>
438 <li>set language</li>
439 <li>show args</li>
440 <li>set args [args]</li>
441 </ul>
442
443 <h2>TODO:</h2>
444 <ul>
445 <li>info frame</li>
446 <li>break</li>
447 <li>print</li>
448 <li>ptype</li>
449
450 <li>info types</li>
451 <li>info variables</li>
452 <li>info program</li>
453
454 <li>info args</li>
455 <li>info locals</li>
456 <li>info catch</li>
457 <li>... many others</li>
458 </ul>
459
460 </div>
461
462 <!-- *********************************************************************** -->
463 <div class="doc_section">
464   <a name="architecture">Architecture of the LLVM debugger</a>
465 </div>
466 <!-- *********************************************************************** -->
467
468 <div class="doc_text">
469 <p>The LLVM debugger is built out of three distinct layers of software.  These
470 layers provide clients with different interface options depending on what pieces
471 of they want to implement themselves, and it also promotes code modularity and
472 good design.  The three layers are the <a href="#arch_debugger">Debugger
473 interface</a>, the <a href="#arch_info">"info" interfaces</a>, and the <a
474 href="#arch_llvm-db"><tt>llvm-db</tt> tool</a> itself.</p>
475 </div>
476
477 <!-- ======================================================================= -->
478 <div class="doc_subsection">
479   <a name="arch_debugger">The Debugger and InferiorProcess classes</a>
480 </div>
481
482 <div class="doc_text">
483 <p>The Debugger class (defined in the <tt>include/llvm/Debugger/</tt> directory)
484 is a low-level class which is used to maintain information about the loaded
485 program, as well as start and stop the program running as necessary.  This class
486 does not provide any high-level analysis or control over the program, only
487 exposing simple interfaces like <tt>load/unloadProgram</tt>,
488 <tt>create/killProgram</tt>, <tt>step/next/finish/contProgram</tt>, and
489 low-level methods for installing breakpoints.</p>
490
491 <p>
492 The Debugger class is itself a wrapper around the lowest-level InferiorProcess
493 class.  This class is used to represent an instance of the program running under
494 debugger control.  The InferiorProcess class can be implemented in different
495 ways for different targets and execution scenarios (e.g., remote debugging).
496 The InferiorProcess class exposes a small and simple collection of interfaces
497 which are useful for inspecting the current state of the program (such as
498 collecting stack trace information, reading the memory image of the process,
499 etc).  The interfaces in this class are designed to be as low-level and simple
500 as possible, to make it easy to create new instances of the class.
501 </p>
502
503 <p>
504 The Debugger class exposes the currently active instance of InferiorProcess
505 through the <tt>Debugger::getRunningProcess</tt> method, which returns a
506 <tt>const</tt> reference to the class.  This means that clients of the Debugger
507 class can only <b>inspect</b> the running instance of the program directly.  To
508 change the executing process in some way, they must use the interces exposed by
509 the Debugger class.
510 </p>
511 </div>
512
513 <!-- ======================================================================= -->
514 <div class="doc_subsection">
515   <a name="arch_info">The RuntimeInfo, ProgramInfo, and SourceLanguage classes</a>
516 </div>
517
518 <div class="doc_text">
519 <p>
520 The next-highest level of debugger abstraction is provided through the
521 ProgramInfo, RuntimeInfo, SourceLanguage and related classes (also defined in
522 the <tt>include/llvm/Debugger/</tt> directory).  These classes efficiently
523 decode the debugging information and low-level interfaces exposed by
524 InferiorProcess into a higher-level representation, suitable for analysis by the
525 debugger.
526 </p>
527
528 <p>
529 The ProgramInfo class exposes a variety of different kinds of information about
530 the program objects in the source-level-language.  The SourceFileInfo class
531 represents a source-file in the program (e.g. a .cpp or .h file).  The
532 SourceFileInfo class captures information such as which SourceLanguage was used
533 to compile the file, where the debugger can get access to the actual file text
534 (which is lazily loaded on demand), etc.  The SourceFunctionInfo class
535 represents a... <b>FIXME: finish</b>.  The ProgramInfo class provides interfaces
536 to lazily find and decode the information needed to create the Source*Info
537 classes requested by the debugger.
538 </p>
539
540 <p>
541 The RuntimeInfo class exposes information about the currently executed program,
542 by decoding information from the InferiorProcess and ProgramInfo classes.  It
543 provides a StackFrame class which provides an easy-to-use interface for
544 inspecting the current and suspended stack frames in the program.
545 </p>
546
547 <p>
548 The SourceLanguage class is an abstract interface used by the debugger to
549 perform all source-language-specific tasks.  For example, this interface is used
550 by the ProgramInfo class to decode language-specific types and functions and by
551 the debugger front-end (such as <a href="#arch_llvm-db"><tt>llvm-db</tt></a> to
552 evaluate source-langauge expressions typed into the debugger.  This class uses
553 the RuntimeInfo &amp; ProgramInfo classes to get information about the current
554 execution context and the loaded program, respectively.
555 </p>
556
557 </div>
558
559 <!-- ======================================================================= -->
560 <div class="doc_subsection">
561   <a name="arch_llvm-db">The <tt>llvm-db</tt> tool</a>
562 </div>
563
564 <div class="doc_text">
565 <p>
566 The <tt>llvm-db</tt> is designed to be a debugger providing an interface as <a
567 href="#llvm-db">similar to GDB</a> as reasonable, but no more so than that.
568 Because the <a href="#arch_debugger">Debugger</a> and <a
569 href="#arch_info">info</a> classes implement all of the heavy lifting and
570 analysis, <tt>llvm-db</tt> (which lives in <tt>llvm/tools/llvm-db</tt>) consists
571 mainly of of code to interact with the user and parse commands.  The CLIDebugger
572 constructor registers all of the builtin commands for the debugger, and each
573 command is implemented as a CLIDebugger::[name]Command method.
574 </p>
575 </div>
576
577
578 <!-- ======================================================================= -->
579 <div class="doc_subsection">
580   <a name="arch_todo">Short-term TODO list</a>
581 </div>
582
583 <div class="doc_text">
584
585 <p>
586 FIXME: this section will eventually go away.  These are notes to myself of
587 things that should be implemented, but haven't yet.
588 </p>
589
590 <p>
591 <b>Breakpoints:</b> Support is already implemented in the 'InferiorProcess'
592 class, though it hasn't been tested yet.  To finish breakpoint support, we need
593 to implement breakCommand (which should reuse the linespec parser from the list
594 command), and handle the fact that 'break foo' or 'break file.c:53' may insert
595 multiple breakpoints.  Also, if you say 'break file.c:53' and there is no
596 stoppoint on line 53, the breakpoint should go on the next available line.  My
597 idea was to have the Debugger class provide a "Breakpoint" class which
598 encapsulated this messiness, giving the debugger front-end a simple interface.
599 The debugger front-end would have to map the really complex semantics of
600 temporary breakpoints and 'conditional' breakpoints onto this intermediate
601 level. Also, breakpoints should survive as much as possible across program
602 reloads.
603 </p>
604
605 <p>
606 <b>UnixLocalInferiorProcess.cpp speedup</b>: There is no reason for the debugged
607 process to code gen the globals corresponding to debug information.  The
608 IntrinsicLowering object could instead change descriptors into constant expr
609 casts of the constant address of the LLVM objects for the descriptors.  This
610 would also allow us to eliminate the mapping back and forth between physical
611 addresses that must be done.</p>
612
613 <p>
614 <b>Process deaths</b>: The InferiorProcessDead exception should be extended to
615 know "how" a process died, i.e., it was killed by a signal.  This is easy to
616 collect in the UnixLocalInferiorProcess, we just need to represent it.</p>
617
618 </div>
619
620 <!-- *********************************************************************** -->
621 <div class="doc_section">
622   <a name="format">Debugging information format</a>
623 </div>
624 <!-- *********************************************************************** -->
625
626 <div class="doc_text">
627
628 <p>LLVM debugging information has been carefully designed to make it possible
629 for the optimizer to optimize the program and debugging information without
630 necessarily having to know anything about debugging information.  In particular,
631 the global constant merging pass automatically eliminates duplicated debugging
632 information (often caused by header files), the global dead code elimination
633 pass automatically deletes debugging information for a function if it decides to
634 delete the function, and the linker eliminates debug information when it merges
635 <tt>linkonce</tt> functions.</p>
636
637 <p>To do this, most of the debugging information (descriptors for types,
638 variables, functions, source files, etc) is inserted by the language front-end
639 in the form of LLVM global variables.  These LLVM global variables are no
640 different from any other global variables, except that they have a web of LLVM
641 intrinsic functions that point to them.  If the last references to a particular
642 piece of debugging information are deleted (for example, by the
643 <tt>-globaldce</tt> pass), the extraneous debug information will automatically
644 become dead and be removed by the optimizer.</p>
645
646 <p>The debugger is designed to be agnostic about the contents of most of the
647 debugging information.  It uses a <a href="#arch_info">source-language-specific
648 module</a> to decode the information that represents variables, types,
649 functions, namespaces, etc: this allows for arbitrary source-language semantics
650 and type-systems to be used, as long as there is a module written for the
651 debugger to interpret the information.</p>
652
653 <p>To provide basic functionality, the LLVM debugger does have to make some
654 assumptions about the source-level language being debugged, though it keeps
655 these to a minimum.  The only common features that the LLVM debugger assumes
656 exist are <a href="#format_common_source_files">source files</a>, and <a
657 href="#format_program_objects">program objects</a>.  These abstract objects are
658 used by the debugger to form stack traces, show information about local
659 variables, etc.</p>
660
661 <p>This section of the documentation first describes the representation aspects
662 common to any source-language.  The <a href="#ccxx_frontend">next section</a>
663 describes the data layout conventions used by the C and C++ front-ends.</p>
664
665 </div>
666
667 <!-- ======================================================================= -->
668 <div class="doc_subsection">
669   <a name="format_common_anchors">Anchors for global objects</a>
670 </div>
671
672 <div class="doc_text">
673 <p>One important aspect of the LLVM debug representation is that it allows the
674 LLVM debugger to efficiently index all of the global objects without having the
675 scan the program.  To do this, all of the global objects use "anchor" globals of
676 type "<tt>{}</tt>", with designated names.  These anchor objects obviously do
677 not contain any content or meaning by themselves, but all of the global objects
678 of a particular type (e.g., source file descriptors) contain a pointer to the
679 anchor.  This pointer allows the debugger to use def-use chains to find all
680 global objects of that type.</p>
681
682 <p>So far, the following names are recognized as anchors by the LLVM
683 debugger:</p>
684
685 <pre>
686   %<a href="#format_common_source_files">llvm.dbg.translation_units</a> = linkonce global {} {}
687   %<a href="#format_program_objects">llvm.dbg.globals</a>         = linkonce global {} {}
688 </pre>
689
690 <p>Using anchors in this way (where the source file descriptor points to the
691 anchors, as opposed to having a list of source file descriptors) allows for the
692 standard dead global elimination and merging passes to automatically remove
693 unused debugging information.  If the globals were kept track of through lists,
694 there would always be an object pointing to the descriptors, thus would never be
695 deleted.</p>
696
697 </div>
698
699 <!-- ======================================================================= -->
700 <div class="doc_subsection">
701   <a name="format_common_stoppoint">
702      Representing stopping points in the source program
703   </a>
704 </div>
705
706 <div class="doc_text">
707
708 <p>LLVM debugger "stop points" are a key part of the debugging representation
709 that allows the LLVM to maintain simple semantics for <a
710 href="#debugopt">debugging optimized code</a>.  The basic idea is that the
711 front-end inserts calls to the <tt>%llvm.dbg.stoppoint</tt> intrinsic function
712 at every point in the program where the debugger should be able to inspect the
713 program (these correspond to places the debugger stops when you "<tt>step</tt>"
714 through it).  The front-end can choose to place these as fine-grained as it
715 would like (for example, before every subexpression evaluated), but it is
716 recommended to only put them after every source statement that includes
717 executable code.</p>
718
719 <p>Using calls to this intrinsic function to demark legal points for the
720 debugger to inspect the program automatically disables any optimizations that
721 could potentially confuse debugging information.  To non-debug-information-aware
722 transformations, these calls simply look like calls to an external function,
723 which they must assume to do anything (including reading or writing to any part
724 of reachable memory).  On the other hand, it does not impact many optimizations,
725 such as code motion of non-trapping instructions, nor does it impact
726 optimization of subexpressions, code duplication transformations, or basic-block
727 reordering transformations.</p>
728
729 <p>An important aspect of the calls to the <tt>%llvm.dbg.stoppoint</tt>
730 intrinsic is that the function-local debugging information is woven together
731 with use-def chains.  This makes it easy for the debugger to, for example,
732 locate the 'next' stop point.  For a concrete example of stop points, see the
733 example in <a href="#format_common_lifetime">the next section</a>.</p>
734
735 </div>
736
737
738 <!-- ======================================================================= -->
739 <div class="doc_subsection">
740   <a name="format_common_lifetime">Object lifetimes and scoping</a>
741 </div>
742
743 <div class="doc_text">
744 <p>In many languages, the local variables in functions can have their lifetime
745 or scope limited to a subset of a function.  In the C family of languages, for
746 example, variables are only live (readable and writable) within the source block
747 that they are defined in.  In functional languages, values are only readable
748 after they have been defined.  Though this is a very obvious concept, it is also
749 non-trivial to model in LLVM, because it has no notion of scoping in this sense,
750 and does not want to be tied to a language's scoping rules.</p>
751
752 <p>In order to handle this, the LLVM debug format uses the notion of "regions"
753 of a function, delineated by calls to intrinsic functions.  These intrinsic
754 functions define new regions of the program and indicate when the region
755 lifetime expires.  Consider the following C fragment, for example:</p>
756
757 <pre>
758 1.  void foo() {
759 2.    int X = ...;
760 3.    int Y = ...;
761 4.    {
762 5.      int Z = ...;
763 6.      ...
764 7.    }
765 8.    ...
766 9.  }
767 </pre>
768
769 <p>Compiled to LLVM, this function would be represented like this (FIXME: CHECK
770 AND UPDATE THIS):</p>
771
772 <pre>
773 void %foo() {
774     %X = alloca int
775     %Y = alloca int
776     %Z = alloca int
777     <a name="#icl_ex_D1">%D1</a> = call {}* %llvm.dbg.func.start(<a href="#format_program_objects">%lldb.global</a>* %d.foo)
778     %D2 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D1, uint 2, uint 2, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)
779
780     %D3 = call {}* %llvm.dbg.DEFINEVARIABLE({}* %D2, ...)
781     <i>;; Evaluate expression on line 2, assigning to X.</i>
782     %D4 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D3, uint 3, uint 2, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)
783
784     %D5 = call {}* %llvm.dbg.DEFINEVARIABLE({}* %D4, ...)
785     <i>;; Evaluate expression on line 3, assigning to Y.</i>
786     %D6 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D5, uint 5, uint 4, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)
787
788     <a name="#icl_ex_D1">%D7</a> = call {}* %llvm.region.start({}* %D6)
789     %D8 = call {}* %llvm.dbg.DEFINEVARIABLE({}* %D7, ...)
790     <i>;; Evaluate expression on line 5, assigning to Z.</i>
791     %D9 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D8, uint 6, uint 4, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)
792
793     <i>;; Code for line 6.</i>
794     %D10 = call {}* %llvm.region.end({}* %D9)
795     %D11 = call {}* <a href="#format_common_stoppoint">%llvm.dbg.stoppoint</a>({}* %D10, uint 8, uint 2, <a href="#format_common_source_files">%lldb.compile_unit</a>* %file)
796
797     <i>;; Code for line 8.</i>
798     <a name="#icl_ex_D1">%D12</a> = call {}* %llvm.region.end({}* %D11)
799     ret void
800 }
801 </pre>
802
803 <p>This example illustrates a few important details about the LLVM debugging
804 information.  In particular, it shows how the various intrinsics used are woven
805 together with def-use and use-def chains, similar to how <a
806 href="#format_common_anchors">anchors</a> are used with globals.  This allows
807 the debugger to analyze the relationship between statements, variable
808 definitions, and the code used to implement the function.</p>
809
810 <p>In this example, two explicit regions are defined, one with the <a
811 href="#icl_ex_D1">definition of the <tt>%D1</tt> variable</a> and one with the
812 <a href="#icl_ex_D7">definition of <tt>%D7</tt></a>.  In the case of
813 <tt>%D1</tt>, the debug information indicates that the function whose <a
814 href="#format_program_objects">descriptor</a> is specified as an argument to the
815 intrinsic.  This defines a new stack frame whose lifetime ends when the region
816 is ended by <a href="#icl_ex_D12">the <tt>%D12</tt> call</a>.</p>
817
818 <p>Using regions to represent the boundaries of source-level functions allow
819 LLVM interprocedural optimizations to arbitrarily modify LLVM functions without
820 having to worry about breaking mapping information between the LLVM code and the
821 and source-level program.  In particular, the inliner requires no modification
822 to support inlining with debugging information: there is no explicit correlation
823 drawn between LLVM functions and their source-level counterparts (note however,
824 that if the inliner inlines all instances of a non-strong-linkage function into
825 its caller that it will not be possible for the user to manually invoke the
826 inlined function from the debugger).</p>
827
828 <p>Once the function has been defined, the <a
829 href="#format_common_stoppoint">stopping point</a> corresponding to line #2 of
830 the function is encountered.  At this point in the function, <b>no</b> local
831 variables are live.  As lines 2 and 3 of the example are executed, their
832 variable definitions are automatically introduced into the program, without the
833 need to specify a new region.  These variables do not require new regions to be
834 introduced because they go out of scope at the same point in the program: line
835 9.</p>
836
837 <p>In contrast, the <tt>Z</tt> variable goes out of scope at a different time,
838 on line 7.  For this reason, it is defined within <a href="#icl_ex_D7">the
839 <tt>%D7</tt> region</a>, which kills the availability of <tt>Z</tt> before the
840 code for line 8 is executed.  In this way, regions can support arbitrary
841 source-language scoping rules, as long as they can only be nested (ie, one scope
842 cannot partially overlap with a part of another scope).</p>
843
844 <p>It is worth noting that this scoping mechanism is used to control scoping of
845 all declarations, not just variable declarations.  For example, the scope of a
846 C++ using declaration is controlled with this, and the <tt>llvm-db</tt> C++
847 support routines could use this to change how name lookup is performed (though
848 this is not implemented yet).</p>
849
850 </div>
851
852 <!-- ======================================================================= -->
853 <div class="doc_subsection">
854   <a name="format_common_descriptors">Object descriptor formats</a>
855 </div>
856
857 <div class="doc_text">
858 <p>The LLVM debugger expects the descriptors for program objects to start in a
859 canonical format, but the descriptors can include additional information
860 appended at the end that is source-language specific.  All LLVM debugging
861 information is versioned, allowing backwards compatibility in the case that the
862 core structures need to change in some way.  Also, all debugging information
863 objects start with a <a href="#format_common_tags">tag</a> to indicate what type
864 of object it is.  The source-language is allows to define its own objects, by
865 using unreserved tag numbers.</p>
866
867 <p>The lowest-level descriptor are those describing <a
868 href="#format_common_source_files">the files containing the program source
869 code</a>, as most other descriptors (sometimes indirectly) refer to them.
870 </p>
871 </div>
872
873
874 <!-- ------------------------------------------------------------------------ ->
875 <div class="doc_subsubsection">
876   <a name="format_common_source_files">Representation of source files</a>
877 </div>
878
879 <div class="doc_text">
880 <p>
881 Source file descriptors are patterned after the Dwarf "compile_unit" object.
882 The descriptor currently is defined to have at least the following LLVM
883 type entries:</p>
884
885 <pre>
886 %lldb.compile_unit = type {
887        uint,                 <i>;; Tag: <a href="#tag_compile_unit">LLVM_COMPILE_UNIT</a></i>
888        ushort,               <i>;; LLVM debug version number</i>
889        ushort,               <i>;; Dwarf language identifier</i>
890        sbyte*,               <i>;; Filename</i>
891        sbyte*,               <i>;; Working directory when compiled</i>
892        sbyte*                <i>;; Producer of the debug information</i>
893 }
894 </pre>
895
896 <p>
897 These descriptors contain the version number for the debug info, a source
898 language ID for the file (we use the Dwarf 3.0 ID numbers, such as
899 <tt>DW_LANG_C89</tt>, <tt>DW_LANG_C_plus_plus</tt>, <tt>DW_LANG_Cobol74</tt>,
900 etc), three strings describing the filename, working directory of the compiler,
901 and an identifier string for the compiler that produced it.  Note that actual
902 compile_unit declarations must also include an <a
903 href="#format_common_anchors">anchor</a> to <tt>llvm.dbg.translation_units</tt>,
904 but it is not specified where the anchor is to be located.  Here is an example
905 descriptor:
906 </p>
907
908 <p><pre>
909 %arraytest_source_file = internal constant %lldb.compile_unit {
910     <a href="#tag_compile_unit">uint 17</a>,                                                      ; Tag value
911     ushort 0,                                                     ; Version #0
912     ushort 1,                                                     ; DW_LANG_C89
913     sbyte* getelementptr ([12 x sbyte]* %.str_1, long 0, long 0), ; filename
914     sbyte* getelementptr ([12 x sbyte]* %.str_2, long 0, long 0), ; working dir
915     sbyte* getelementptr ([12 x sbyte]* %.str_3, long 0, long 0), ; producer
916     {}* %llvm.dbg.translation_units                               ; Anchor
917 }
918 %.str_1 = internal constant [12 x sbyte] c"arraytest.c\00"
919 %.str_2 = internal constant [12 x sbyte] c"/home/sabre\00"
920 %.str_3 = internal constant [12 x sbyte] c"llvmgcc 3.4\00"
921 </pre></p>
922
923 <p>
924 Note that the LLVM constant merging pass should eliminate duplicate copies of
925 the strings that get emitted to each translation unit, such as the producer.
926 </p>
927
928 </div>
929
930
931 <!-- ----------------------------------------------------------------------- -->
932 <div class="doc_subsubsection">
933   <a name="format_program_objects">Representation of program objects</a>
934 </div>
935
936 <div class="doc_text">
937 <p>
938 The LLVM debugger needs to know about some source-language program objects, in
939 order to build stack traces, print information about local variables, and other
940 related activities.  The LLVM debugger differentiates between three different
941 types of program objects: subprograms (functions, messages, methods, etc),
942 variables (locals and globals), and others.  Because source-languages have
943 widely varying forms of these objects, the LLVM debugger expects only a few
944 fields in the descriptor for each object:
945 </p>
946
947 <pre>
948 %lldb.object = type {
949        uint,                  <i>;; <a href="#format_common_tag">A tag</a></i>
950        <i>any</i>*,                  <i>;; The <a href="#format_common_object_contexts">context</a> for the object</i>
951        sbyte*                 <i>;; The object 'name'</i>
952 }
953 </pre>
954
955 <p>The first field contains a tag for the descriptor.  The second field contains
956 either a pointer to the descriptor for the containing <a
957 href="#format_common_source_files">source file</a>, or it contains a pointer to
958 another program object whose context pointer eventually reaches a source file.
959 Through this <a href="#format_common_object_contexts">context</a> pointer, the
960 LLVM debugger can establish the debug version number of the object.</p>
961
962 <p>The third field contains a string that the debugger can use to identify the
963 object if it does not contain explicit support for the source-language in use
964 (ie, the 'unknown' source language handler uses this string).  This should be
965 some sort of unmangled string that corresponds to the object, but it is a
966 quality of implementation issue what exactly it contains (it is legal, though
967 not useful, for all of these strings to be null).</p>
968
969 <p>Note again that descriptors can be extended to include
970 source-language-specific information in addition to the fields required by the
971 LLVM debugger.  See the <a href="#ccxx_descriptors">section on the C/C++
972 front-end</a> for more information.  Also remember that global objects
973 (functions, selectors, global variables, etc) must contain an <a
974 href="format_common_anchors">anchor</a> to the <tt>llvm.dbg.globals</tt>
975 variable.</p>
976 </div>
977
978
979 <!-- ======================================================================= -->
980 <div class="doc_subsection">
981   <a name="format_common_object_contexts">Program object contexts</a>
982 </div>
983
984 <div class="doc_text">
985 <pre>
986 Allow source-language specific contexts, use to identify namespaces etc
987 Must end up in a source file descriptor.
988 Debugger core ignores all unknown context objects.
989 </pre>
990 </div>
991
992 <!-- ======================================================================= -->
993 <div class="doc_subsection">
994   <a name="format_common_intrinsics">Debugger intrinsic functions</a>
995 </div>
996
997 <div class="doc_text">
998 <pre>
999 Define each intrinsics, as an extension of the language reference manual.
1000
1001 llvm.dbg.stoppoint
1002 llvm.dbg.region.start
1003 llvm.dbg.region.end
1004 llvm.dbg.function.start
1005 llvm.dbg.declare
1006 </pre>
1007 </div>
1008
1009 <!-- ======================================================================= -->
1010 <div class="doc_subsection">
1011   <a name="format_common_tags">Values for debugger tags</a>
1012 </div>
1013
1014 <div class="doc_text">
1015
1016 <p>Happen to be the same value as the similarly named Dwarf-3 tags, this may
1017 change in the future.</p>
1018
1019 <pre>
1020   <a name="tag_compile_unit">LLVM_COMPILE_UNIT</a>     : 17
1021   <a name="tag_subprogram">LLVM_SUBPROGRAM</a>       : 46
1022   <a name="tag_variable">LLVM_VARIABLE</a>         : 52
1023 <!--  <a name="tag_formal_parameter">LLVM_FORMAL_PARAMETER :  5-->
1024 </pre>
1025 </div>
1026
1027
1028
1029 <!-- *********************************************************************** -->
1030 <div class="doc_section">
1031   <a name="ccxx_frontend">C/C++ front-end specific debug information</a>
1032 </div>
1033
1034 <div class="doc_text">
1035
1036 <p>The C and C++ front-ends represent information about the program in a format
1037 that is effectively identical to <a
1038 href="http://www.eagercon.com/dwarf/dwarf3std.htm">Dwarf 3.0</a> in terms of
1039 information content.  This allows code generators to trivially support native
1040 debuggers by generating standard dwarf information, and contains enough
1041 information for non-dwarf targets to translate it as needed.</p>
1042
1043 <p>The basic debug information required by the debugger is (intentionally)
1044 designed to be as minimal as possible.  This basic information is so minimal
1045 that it is unlikely that <b>any</b> source-language could be adequately
1046 described by it.  Because of this, the debugger format was designed for
1047 extension to support source-language-specific information.  The extended
1048 descriptors are read and interpreted by the <a
1049 href="#arch_info">language-specific</a> modules in the debugger if there is
1050 support available, otherwise it is ignored.</p>
1051
1052 <p>This section describes the extensions used to represent C and C++ programs.
1053 Other languages could pattern themselves after this (which itself is tuned to
1054 representing programs in the same way that Dwarf 3 does), or they could choose
1055 to provide completely different extensions if they don't fit into the Dwarf
1056 model.  As support for debugging information gets added to the various LLVM
1057 source-language front-ends, the information used should be documented here.</p>
1058
1059 </div>
1060
1061 <!-- ======================================================================= -->
1062 <div class="doc_subsection">
1063   <a name="ccxx_pse">Program Scope Entries</a>
1064 </div>
1065
1066 <div class="doc_text">
1067 <p>TODO</p>
1068 </div>
1069
1070 <!-- -------------------------------------------------------------------------->
1071 <div class="doc_subsubsection">
1072   <a name="ccxx_compilation_units">Compilation unit entries</a>
1073 </div>
1074
1075 <div class="doc_text">
1076 <p>
1077 Translation units do not add any information over the standard <a
1078 href="#format_common_source_files">source file representation</a> already
1079 expected by the debugger.  As such, it uses descriptors of the type specified,
1080 with a trailing <a href="#format_common_anchors">anchor</a>.
1081 </p>
1082 </div>
1083
1084 <!-- -------------------------------------------------------------------------->
1085 <div class="doc_subsubsection">
1086   <a name="ccxx_modules">Module, namespace, and importing entries</a>
1087 </div>
1088
1089 <div class="doc_text">
1090 <p>TODO</p>
1091 </div>
1092
1093 <!-- ======================================================================= -->
1094 <div class="doc_subsection">
1095   <a name="ccxx_dataobjects">Data objects (program variables)</a>
1096 </div>
1097
1098 <div class="doc_text">
1099 <p>TODO</p>
1100 </div>
1101
1102
1103 <!-- *********************************************************************** -->
1104
1105 <hr>
1106 <address>
1107   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1108   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
1109   <a href="http://validator.w3.org/check/referer"><img
1110   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
1111
1112   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1113   <a href="http://llvm.cs.uiuc.edu">LLVM Compiler Infrastructure</a><br>
1114   Last modified: $Date$
1115 </address>
1116
1117 </body>
1118 </html>