document ilist_traits
[oota-llvm.git] / docs / ProgrammersManual.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <title>LLVM Programmer's Manual</title>
6   <link rel="stylesheet" href="llvm.css" type="text/css">
7 </head>
8 <body>
9
10 <div class="doc_title">
11   LLVM Programmer's Manual
12 </div>
13
14 <ol>
15   <li><a href="#introduction">Introduction</a></li>
16   <li><a href="#general">General Information</a>
17     <ul>
18       <li><a href="#stl">The C++ Standard Template Library</a></li>
19 <!--
20       <li>The <tt>-time-passes</tt> option</li>
21       <li>How to use the LLVM Makefile system</li>
22       <li>How to write a regression test</li>
23
24 --> 
25     </ul>
26   </li>
27   <li><a href="#apis">Important and useful LLVM APIs</a>
28     <ul>
29       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
31       <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
32 option</a>
33         <ul>
34           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35 and the <tt>-debug-only</tt> option</a> </li>
36         </ul>
37       </li>
38       <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
39 option</a></li>
40 <!--
41       <li>The <tt>InstVisitor</tt> template
42       <li>The general graph API
43 --> 
44       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
45     </ul>
46   </li>
47   <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
48     <ul>
49     <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
50     <ul>
51       <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
52       <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
53       <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
54       <li><a href="#dss_vector">&lt;vector&gt;</a></li>
55       <li><a href="#dss_deque">&lt;deque&gt;</a></li>
56       <li><a href="#dss_list">&lt;list&gt;</a></li>
57       <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
58       <li><a href="#dss_other">Other Sequential Container Options</a></li>
59     </ul></li>
60     <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
61     <ul>
62       <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
63       <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
64       <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
65       <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
66       <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
67       <li><a href="#dss_set">&lt;set&gt;</a></li>
68       <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
69       <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
70       <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
71     </ul></li>
72     <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
73     <ul>
74       <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
75       <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
76       <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
77       <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
78       <li><a href="#dss_map">&lt;map&gt;</a></li>
79       <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
80     </ul></li>
81     <li><a href="#ds_bit">BitVector-like containers</a>
82     <ul>
83       <li><a href="#dss_bitvector">A dense bitvector</a></li>
84       <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
85     </ul></li>
86   </ul>
87   </li>
88   <li><a href="#common">Helpful Hints for Common Operations</a>
89     <ul>
90       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
91         <ul>
92           <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
93 in a <tt>Function</tt></a> </li>
94           <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
95 in a <tt>BasicBlock</tt></a> </li>
96           <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
97 in a <tt>Function</tt></a> </li>
98           <li><a href="#iterate_convert">Turning an iterator into a
99 class pointer</a> </li>
100           <li><a href="#iterate_complex">Finding call sites: a more
101 complex example</a> </li>
102           <li><a href="#calls_and_invokes">Treating calls and invokes
103 the same way</a> </li>
104           <li><a href="#iterate_chains">Iterating over def-use &amp;
105 use-def chains</a> </li>
106           <li><a href="#iterate_preds">Iterating over predecessors &amp;
107 successors of blocks</a></li>
108         </ul>
109       </li>
110       <li><a href="#simplechanges">Making simple changes</a>
111         <ul>
112           <li><a href="#schanges_creating">Creating and inserting new
113                  <tt>Instruction</tt>s</a> </li>
114           <li><a href="#schanges_deleting">Deleting              <tt>Instruction</tt>s</a> </li>
115           <li><a href="#schanges_replacing">Replacing an                 <tt>Instruction</tt>
116 with another <tt>Value</tt></a> </li>
117           <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
118         </ul>
119       </li>
120 <!--
121     <li>Working with the Control Flow Graph
122     <ul>
123       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
124       <li>
125       <li>
126     </ul>
127 --> 
128     </ul>
129   </li>
130
131   <li><a href="#advanced">Advanced Topics</a>
132   <ul>
133   <li><a href="#TypeResolve">LLVM Type Resolution</a>
134   <ul>
135     <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
136     <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
137     <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
138     <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
139   </ul></li>
140
141   <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes</a></li>
142   <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
143   </ul></li>
144
145   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
146     <ul>
147       <li><a href="#Type">The <tt>Type</tt> class</a> </li>
148       <li><a href="#Module">The <tt>Module</tt> class</a></li>
149       <li><a href="#Value">The <tt>Value</tt> class</a>
150       <ul>
151         <li><a href="#User">The <tt>User</tt> class</a>
152         <ul>
153           <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
154           <li><a href="#Constant">The <tt>Constant</tt> class</a>
155           <ul>
156             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
157             <ul>
158               <li><a href="#Function">The <tt>Function</tt> class</a></li>
159               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
160             </ul>
161             </li>
162           </ul>
163           </li>
164         </ul>
165         </li>
166         <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
167         <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
168       </ul>
169       </li>
170     </ul>
171   </li>
172 </ol>
173
174 <div class="doc_author">    
175   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>, 
176                 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, 
177                 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>, 
178                 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a> and
179                 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
180 </div>
181
182 <!-- *********************************************************************** -->
183 <div class="doc_section">
184   <a name="introduction">Introduction </a>
185 </div>
186 <!-- *********************************************************************** -->
187
188 <div class="doc_text">
189
190 <p>This document is meant to highlight some of the important classes and
191 interfaces available in the LLVM source-base.  This manual is not
192 intended to explain what LLVM is, how it works, and what LLVM code looks
193 like.  It assumes that you know the basics of LLVM and are interested
194 in writing transformations or otherwise analyzing or manipulating the
195 code.</p>
196
197 <p>This document should get you oriented so that you can find your
198 way in the continuously growing source code that makes up the LLVM
199 infrastructure. Note that this manual is not intended to serve as a
200 replacement for reading the source code, so if you think there should be
201 a method in one of these classes to do something, but it's not listed,
202 check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
203 are provided to make this as easy as possible.</p>
204
205 <p>The first section of this document describes general information that is
206 useful to know when working in the LLVM infrastructure, and the second describes
207 the Core LLVM classes.  In the future this manual will be extended with
208 information describing how to use extension libraries, such as dominator
209 information, CFG traversal routines, and useful utilities like the <tt><a
210 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
211
212 </div>
213
214 <!-- *********************************************************************** -->
215 <div class="doc_section">
216   <a name="general">General Information</a>
217 </div>
218 <!-- *********************************************************************** -->
219
220 <div class="doc_text">
221
222 <p>This section contains general information that is useful if you are working
223 in the LLVM source-base, but that isn't specific to any particular API.</p>
224
225 </div>
226
227 <!-- ======================================================================= -->
228 <div class="doc_subsection">
229   <a name="stl">The C++ Standard Template Library</a>
230 </div>
231
232 <div class="doc_text">
233
234 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
235 perhaps much more than you are used to, or have seen before.  Because of
236 this, you might want to do a little background reading in the
237 techniques used and capabilities of the library.  There are many good
238 pages that discuss the STL, and several books on the subject that you
239 can get, so it will not be discussed in this document.</p>
240
241 <p>Here are some useful links:</p>
242
243 <ol>
244
245 <li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
246 reference</a> - an excellent reference for the STL and other parts of the
247 standard C++ library.</li>
248
249 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
250 O'Reilly book in the making.  It has a decent 
251 Standard Library
252 Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been 
253 published.</li>
254
255 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
256 Questions</a></li>
257
258 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
259 Contains a useful <a
260 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
261 STL</a>.</li>
262
263 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
264 Page</a></li>
265
266 <li><a href="http://64.78.49.204/">
267 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
268 the book).</a></li>
269
270 </ol>
271   
272 <p>You are also encouraged to take a look at the <a
273 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
274 to write maintainable code more than where to put your curly braces.</p>
275
276 </div>
277
278 <!-- ======================================================================= -->
279 <div class="doc_subsection">
280   <a name="stl">Other useful references</a>
281 </div>
282
283 <div class="doc_text">
284
285 <ol>
286 <li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
287 Branch and Tag Primer</a></li>
288 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
289 static and shared libraries across platforms</a></li>
290 </ol>
291
292 </div>
293
294 <!-- *********************************************************************** -->
295 <div class="doc_section">
296   <a name="apis">Important and useful LLVM APIs</a>
297 </div>
298 <!-- *********************************************************************** -->
299
300 <div class="doc_text">
301
302 <p>Here we highlight some LLVM APIs that are generally useful and good to
303 know about when writing transformations.</p>
304
305 </div>
306
307 <!-- ======================================================================= -->
308 <div class="doc_subsection">
309   <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
310   <tt>dyn_cast&lt;&gt;</tt> templates</a>
311 </div>
312
313 <div class="doc_text">
314
315 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
316 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
317 operator, but they don't have some drawbacks (primarily stemming from
318 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
319 have a v-table). Because they are used so often, you must know what they
320 do and how they work. All of these templates are defined in the <a
321  href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
322 file (note that you very rarely have to include this file directly).</p>
323
324 <dl>
325   <dt><tt>isa&lt;&gt;</tt>: </dt>
326
327   <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
328   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
329   a reference or pointer points to an instance of the specified class.  This can
330   be very useful for constraint checking of various sorts (example below).</p>
331   </dd>
332
333   <dt><tt>cast&lt;&gt;</tt>: </dt>
334
335   <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
336   converts a pointer or reference from a base class to a derived class, causing
337   an assertion failure if it is not really an instance of the right type.  This
338   should be used in cases where you have some information that makes you believe
339   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
340   and <tt>cast&lt;&gt;</tt> template is:</p>
341
342 <div class="doc_code">
343 <pre>
344 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
345   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
346     return true;
347
348   // <i>Otherwise, it must be an instruction...</i>
349   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
350 }
351 </pre>
352 </div>
353
354   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
355   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
356   operator.</p>
357
358   </dd>
359
360   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
361
362   <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
363   It checks to see if the operand is of the specified type, and if so, returns a
364   pointer to it (this operator does not work with references). If the operand is
365   not of the correct type, a null pointer is returned.  Thus, this works very
366   much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
367   used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
368   operator is used in an <tt>if</tt> statement or some other flow control
369   statement like this:</p>
370
371 <div class="doc_code">
372 <pre>
373 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
374   // <i>...</i>
375 }
376 </pre>
377 </div>
378    
379   <p>This form of the <tt>if</tt> statement effectively combines together a call
380   to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
381   statement, which is very convenient.</p>
382
383   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
384   <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
385   abused.  In particular, you should not use big chained <tt>if/then/else</tt>
386   blocks to check for lots of different variants of classes.  If you find
387   yourself wanting to do this, it is much cleaner and more efficient to use the
388   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
389
390   </dd>
391
392   <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
393   
394   <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
395   <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
396   argument (which it then propagates).  This can sometimes be useful, allowing
397   you to combine several null checks into one.</p></dd>
398
399   <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
400
401   <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
402   <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
403   as an argument (which it then propagates).  This can sometimes be useful,
404   allowing you to combine several null checks into one.</p></dd>
405
406 </dl>
407
408 <p>These five templates can be used with any classes, whether they have a
409 v-table or not.  To add support for these templates, you simply need to add
410 <tt>classof</tt> static methods to the class you are interested casting
411 to. Describing this is currently outside the scope of this document, but there
412 are lots of examples in the LLVM source base.</p>
413
414 </div>
415
416 <!-- ======================================================================= -->
417 <div class="doc_subsection">
418   <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
419 </div>
420
421 <div class="doc_text">
422
423 <p>Often when working on your pass you will put a bunch of debugging printouts
424 and other code into your pass.  After you get it working, you want to remove
425 it, but you may need it again in the future (to work out new bugs that you run
426 across).</p>
427
428 <p> Naturally, because of this, you don't want to delete the debug printouts,
429 but you don't want them to always be noisy.  A standard compromise is to comment
430 them out, allowing you to enable them if you need them in the future.</p>
431
432 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
433 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
434 this problem.  Basically, you can put arbitrary code into the argument of the
435 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
436 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
437
438 <div class="doc_code">
439 <pre>
440 DOUT &lt;&lt; "I am here!\n";
441 </pre>
442 </div>
443
444 <p>Then you can run your pass like this:</p>
445
446 <div class="doc_code">
447 <pre>
448 $ opt &lt; a.bc &gt; /dev/null -mypass
449 <i>&lt;no output&gt;</i>
450 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
451 I am here!
452 </pre>
453 </div>
454
455 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
456 to not have to create "yet another" command line option for the debug output for
457 your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
458 so they do not cause a performance impact at all (for the same reason, they
459 should also not contain side-effects!).</p>
460
461 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
462 enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
463 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
464 program hasn't been started yet, you can always just run it with
465 <tt>-debug</tt>.</p>
466
467 </div>
468
469 <!-- _______________________________________________________________________ -->
470 <div class="doc_subsubsection">
471   <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
472   the <tt>-debug-only</tt> option</a>
473 </div>
474
475 <div class="doc_text">
476
477 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
478 just turns on <b>too much</b> information (such as when working on the code
479 generator).  If you want to enable debug information with more fine-grained
480 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
481 option as follows:</p>
482
483 <div class="doc_code">
484 <pre>
485 DOUT &lt;&lt; "No debug type\n";
486 #undef  DEBUG_TYPE
487 #define DEBUG_TYPE "foo"
488 DOUT &lt;&lt; "'foo' debug type\n";
489 #undef  DEBUG_TYPE
490 #define DEBUG_TYPE "bar"
491 DOUT &lt;&lt; "'bar' debug type\n";
492 #undef  DEBUG_TYPE
493 #define DEBUG_TYPE ""
494 DOUT &lt;&lt; "No debug type (2)\n";
495 </pre>
496 </div>
497
498 <p>Then you can run your pass like this:</p>
499
500 <div class="doc_code">
501 <pre>
502 $ opt &lt; a.bc &gt; /dev/null -mypass
503 <i>&lt;no output&gt;</i>
504 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
505 No debug type
506 'foo' debug type
507 'bar' debug type
508 No debug type (2)
509 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
510 'foo' debug type
511 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
512 'bar' debug type
513 </pre>
514 </div>
515
516 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
517 a file, to specify the debug type for the entire module (if you do this before
518 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
519 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
520 "bar", because there is no system in place to ensure that names do not
521 conflict. If two different modules use the same string, they will all be turned
522 on when the name is specified. This allows, for example, all debug information
523 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
524 even if the source lives in multiple files.</p>
525
526 </div>
527
528 <!-- ======================================================================= -->
529 <div class="doc_subsection">
530   <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
531   option</a>
532 </div>
533
534 <div class="doc_text">
535
536 <p>The "<tt><a
537 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
538 provides a class named <tt>Statistic</tt> that is used as a unified way to
539 keep track of what the LLVM compiler is doing and how effective various
540 optimizations are.  It is useful to see what optimizations are contributing to
541 making a particular program run faster.</p>
542
543 <p>Often you may run your pass on some big program, and you're interested to see
544 how many times it makes a certain transformation.  Although you can do this with
545 hand inspection, or some ad-hoc method, this is a real pain and not very useful
546 for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
547 keep track of this information, and the calculated information is presented in a
548 uniform manner with the rest of the passes being executed.</p>
549
550 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
551 it are as follows:</p>
552
553 <ol>
554     <li><p>Define your statistic like this:</p>
555
556 <div class="doc_code">
557 <pre>
558 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
559 STATISTIC(NumXForms, "The # of times I did stuff");
560 </pre>
561 </div>
562
563   <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
564     specified by the first argument.  The pass name is taken from the DEBUG_TYPE
565     macro, and the description is taken from the second argument.  The variable
566     defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
567
568     <li><p>Whenever you make a transformation, bump the counter:</p>
569
570 <div class="doc_code">
571 <pre>
572 ++NumXForms;   // <i>I did stuff!</i>
573 </pre>
574 </div>
575
576     </li>
577   </ol>
578
579   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
580   statistics gathered, use the '<tt>-stats</tt>' option:</p>
581
582 <div class="doc_code">
583 <pre>
584 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
585 <i>... statistics output ...</i>
586 </pre>
587 </div>
588
589   <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
590 suite, it gives a report that looks like this:</p>
591
592 <div class="doc_code">
593 <pre>
594    7646 bitcodewriter   - Number of normal instructions
595     725 bitcodewriter   - Number of oversized instructions
596  129996 bitcodewriter   - Number of bitcode bytes written
597    2817 raise           - Number of insts DCEd or constprop'd
598    3213 raise           - Number of cast-of-self removed
599    5046 raise           - Number of expression trees converted
600      75 raise           - Number of other getelementptr's formed
601     138 raise           - Number of load/store peepholes
602      42 deadtypeelim    - Number of unused typenames removed from symtab
603     392 funcresolve     - Number of varargs functions resolved
604      27 globaldce       - Number of global variables removed
605       2 adce            - Number of basic blocks removed
606     134 cee             - Number of branches revectored
607      49 cee             - Number of setcc instruction eliminated
608     532 gcse            - Number of loads removed
609    2919 gcse            - Number of instructions removed
610      86 indvars         - Number of canonical indvars added
611      87 indvars         - Number of aux indvars removed
612      25 instcombine     - Number of dead inst eliminate
613     434 instcombine     - Number of insts combined
614     248 licm            - Number of load insts hoisted
615    1298 licm            - Number of insts hoisted to a loop pre-header
616       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
617      75 mem2reg         - Number of alloca's promoted
618    1444 cfgsimplify     - Number of blocks simplified
619 </pre>
620 </div>
621
622 <p>Obviously, with so many optimizations, having a unified framework for this
623 stuff is very nice.  Making your pass fit well into the framework makes it more
624 maintainable and useful.</p>
625
626 </div>
627
628 <!-- ======================================================================= -->
629 <div class="doc_subsection">
630   <a name="ViewGraph">Viewing graphs while debugging code</a>
631 </div>
632
633 <div class="doc_text">
634
635 <p>Several of the important data structures in LLVM are graphs: for example
636 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
637 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
638 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
639 DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
640 nice to instantly visualize these graphs.</p>
641
642 <p>LLVM provides several callbacks that are available in a debug build to do
643 exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
644 the current LLVM tool will pop up a window containing the CFG for the function
645 where each basic block is a node in the graph, and each node contains the
646 instructions in the block.  Similarly, there also exists 
647 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
648 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
649 and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
650 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
651 up a window.  Alternatively, you can sprinkle calls to these functions in your
652 code in places you want to debug.</p>
653
654 <p>Getting this to work requires a small amount of configuration.  On Unix
655 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
656 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
657 Mac OS/X, download and install the Mac OS/X <a 
658 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
659 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
660 it) to your path.  Once in your system and path are set up, rerun the LLVM
661 configure script and rebuild LLVM to enable this functionality.</p>
662
663 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
664 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
665 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
666 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
667 specified color (choices of colors can be found at <a
668 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
669 complex node attributes can be provided with <tt>call
670 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
671 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
672 Attributes</a>.)  If you want to restart and clear all the current graph
673 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
674
675 </div>
676
677 <!-- *********************************************************************** -->
678 <div class="doc_section">
679   <a name="datastructure">Picking the Right Data Structure for a Task</a>
680 </div>
681 <!-- *********************************************************************** -->
682
683 <div class="doc_text">
684
685 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
686  and we commonly use STL data structures.  This section describes the trade-offs
687  you should consider when you pick one.</p>
688
689 <p>
690 The first step is a choose your own adventure: do you want a sequential
691 container, a set-like container, or a map-like container?  The most important
692 thing when choosing a container is the algorithmic properties of how you plan to
693 access the container.  Based on that, you should use:</p>
694
695 <ul>
696 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
697     of an value based on another value.  Map-like containers also support
698     efficient queries for containment (whether a key is in the map).  Map-like
699     containers generally do not support efficient reverse mapping (values to
700     keys).  If you need that, use two maps.  Some map-like containers also
701     support efficient iteration through the keys in sorted order.  Map-like
702     containers are the most expensive sort, only use them if you need one of
703     these capabilities.</li>
704
705 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
706     stuff into a container that automatically eliminates duplicates.  Some
707     set-like containers support efficient iteration through the elements in
708     sorted order.  Set-like containers are more expensive than sequential
709     containers.
710 </li>
711
712 <li>a <a href="#ds_sequential">sequential</a> container provides
713     the most efficient way to add elements and keeps track of the order they are
714     added to the collection.  They permit duplicates and support efficient
715     iteration, but do not support efficient look-up based on a key.
716 </li>
717
718 <li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
719     perform set operations on sets of numeric id's, while automatically
720     eliminating duplicates.  Bit containers require a maximum of 1 bit for each
721     identifier you want to store.
722 </li>
723 </ul>
724
725 <p>
726 Once the proper category of container is determined, you can fine tune the
727 memory use, constant factors, and cache behaviors of access by intelligently
728 picking a member of the category.  Note that constant factors and cache behavior
729 can be a big deal.  If you have a vector that usually only contains a few
730 elements (but could contain many), for example, it's much better to use
731 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
732 .  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
733 cost of adding the elements to the container. </p>
734
735 </div>
736
737 <!-- ======================================================================= -->
738 <div class="doc_subsection">
739   <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
740 </div>
741
742 <div class="doc_text">
743 There are a variety of sequential containers available for you, based on your
744 needs.  Pick the first in this section that will do what you want.
745 </div>
746
747 <!-- _______________________________________________________________________ -->
748 <div class="doc_subsubsection">
749   <a name="dss_fixedarrays">Fixed Size Arrays</a>
750 </div>
751
752 <div class="doc_text">
753 <p>Fixed size arrays are very simple and very fast.  They are good if you know
754 exactly how many elements you have, or you have a (low) upper bound on how many
755 you have.</p>
756 </div>
757
758 <!-- _______________________________________________________________________ -->
759 <div class="doc_subsubsection">
760   <a name="dss_heaparrays">Heap Allocated Arrays</a>
761 </div>
762
763 <div class="doc_text">
764 <p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
765 the number of elements is variable, if you know how many elements you will need
766 before the array is allocated, and if the array is usually large (if not,
767 consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
768 allocated array is the cost of the new/delete (aka malloc/free).  Also note that
769 if you are allocating an array of a type with a constructor, the constructor and
770 destructors will be run for every element in the array (re-sizable vectors only
771 construct those elements actually used).</p>
772 </div>
773
774 <!-- _______________________________________________________________________ -->
775 <div class="doc_subsubsection">
776   <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
777 </div>
778
779 <div class="doc_text">
780 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
781 just like <tt>vector&lt;Type&gt;</tt>:
782 it supports efficient iteration, lays out elements in memory order (so you can
783 do pointer arithmetic between elements), supports efficient push_back/pop_back
784 operations, supports efficient random access to its elements, etc.</p>
785
786 <p>The advantage of SmallVector is that it allocates space for
787 some number of elements (N) <b>in the object itself</b>.  Because of this, if
788 the SmallVector is dynamically smaller than N, no malloc is performed.  This can
789 be a big win in cases where the malloc/free call is far more expensive than the
790 code that fiddles around with the elements.</p>
791
792 <p>This is good for vectors that are "usually small" (e.g. the number of
793 predecessors/successors of a block is usually less than 8).  On the other hand,
794 this makes the size of the SmallVector itself large, so you don't want to
795 allocate lots of them (doing so will waste a lot of space).  As such,
796 SmallVectors are most useful when on the stack.</p>
797
798 <p>SmallVector also provides a nice portable and efficient replacement for
799 <tt>alloca</tt>.</p>
800
801 </div>
802
803 <!-- _______________________________________________________________________ -->
804 <div class="doc_subsubsection">
805   <a name="dss_vector">&lt;vector&gt;</a>
806 </div>
807
808 <div class="doc_text">
809 <p>
810 std::vector is well loved and respected.  It is useful when SmallVector isn't:
811 when the size of the vector is often large (thus the small optimization will
812 rarely be a benefit) or if you will be allocating many instances of the vector
813 itself (which would waste space for elements that aren't in the container).
814 vector is also useful when interfacing with code that expects vectors :).
815 </p>
816
817 <p>One worthwhile note about std::vector: avoid code like this:</p>
818
819 <div class="doc_code">
820 <pre>
821 for ( ... ) {
822    std::vector&lt;foo&gt; V;
823    use V;
824 }
825 </pre>
826 </div>
827
828 <p>Instead, write this as:</p>
829
830 <div class="doc_code">
831 <pre>
832 std::vector&lt;foo&gt; V;
833 for ( ... ) {
834    use V;
835    V.clear();
836 }
837 </pre>
838 </div>
839
840 <p>Doing so will save (at least) one heap allocation and free per iteration of
841 the loop.</p>
842
843 </div>
844
845 <!-- _______________________________________________________________________ -->
846 <div class="doc_subsubsection">
847   <a name="dss_deque">&lt;deque&gt;</a>
848 </div>
849
850 <div class="doc_text">
851 <p>std::deque is, in some senses, a generalized version of std::vector.  Like
852 std::vector, it provides constant time random access and other similar
853 properties, but it also provides efficient access to the front of the list.  It
854 does not guarantee continuity of elements within memory.</p>
855
856 <p>In exchange for this extra flexibility, std::deque has significantly higher
857 constant factor costs than std::vector.  If possible, use std::vector or
858 something cheaper.</p>
859 </div>
860
861 <!-- _______________________________________________________________________ -->
862 <div class="doc_subsubsection">
863   <a name="dss_list">&lt;list&gt;</a>
864 </div>
865
866 <div class="doc_text">
867 <p>std::list is an extremely inefficient class that is rarely useful.
868 It performs a heap allocation for every element inserted into it, thus having an
869 extremely high constant factor, particularly for small data types.  std::list
870 also only supports bidirectional iteration, not random access iteration.</p>
871
872 <p>In exchange for this high cost, std::list supports efficient access to both
873 ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
874 addition, the iterator invalidation characteristics of std::list are stronger
875 than that of a vector class: inserting or removing an element into the list does
876 not invalidate iterator or pointers to other elements in the list.</p>
877 </div>
878
879 <!-- _______________________________________________________________________ -->
880 <div class="doc_subsubsection">
881   <a name="dss_ilist">llvm/ADT/ilist.h</a>
882 </div>
883
884 <div class="doc_text">
885 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
886 intrusive, because it requires the element to store and provide access to the
887 prev/next pointers for the list.</p>
888
889 <p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
890 requires an <tt>ilist_traits</tt> implementation for the element type, but it
891 provides some novel characteristics.  In particular, it can efficiently store
892 polymorphic objects, the traits class is informed when an element is inserted or
893 removed from the list, and ilists are guaranteed to support a constant-time splice
894 operation.</p>
895
896 <p>These properties are exactly what we want for things like <tt>Instruction</tt>s
897 and basic blocks, which is why these are implemented with <tt>ilist</tt>s.</p>
898
899 Related classes of interest are explained in the following subsections:
900     <ul>
901       <li><a href="#dss_ilist_traits">ilist_traits</a></li>
902       <li><a href="#dss_iplist">iplist</a></li>
903       <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
904     </ul>
905 </div>
906
907 <!-- _______________________________________________________________________ -->
908 <div class="doc_subsubsection">
909   <a name="dss_ilist_traits">ilist_traits</a>
910 </div>
911
912 <div class="doc_text">
913 <p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
914 mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
915 publicly derive from this traits class.</p>
916 </div>
917
918 <!-- _______________________________________________________________________ -->
919 <div class="doc_subsubsection">
920   <a name="dss_iplist">iplist</a>
921 </div>
922
923 <div class="doc_text">
924 <p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
925 supports a slightly narrower interface. Notably, inserters from <tt>T&amp;</tt>
926 are absent.</p>
927
928 <p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
929 used for a wide variety of customizations.</p>
930 </div>
931
932 <!-- _______________________________________________________________________ -->
933 <div class="doc_subsubsection">
934   <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
935 </div>
936
937 <div class="doc_text">
938 <p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
939 that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
940 in the default manner.</p>
941
942 <p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
943 <tt>T</tt>.</p>
944 </div>
945
946 <!-- _______________________________________________________________________ -->
947 <div class="doc_subsubsection">
948   <a name="dss_other">Other Sequential Container options</a>
949 </div>
950
951 <div class="doc_text">
952 <p>Other STL containers are available, such as std::string.</p>
953
954 <p>There are also various STL adapter classes such as std::queue,
955 std::priority_queue, std::stack, etc.  These provide simplified access to an
956 underlying container but don't affect the cost of the container itself.</p>
957
958 </div>
959
960
961 <!-- ======================================================================= -->
962 <div class="doc_subsection">
963   <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
964 </div>
965
966 <div class="doc_text">
967
968 <p>Set-like containers are useful when you need to canonicalize multiple values
969 into a single representation.  There are several different choices for how to do
970 this, providing various trade-offs.</p>
971
972 </div>
973
974
975 <!-- _______________________________________________________________________ -->
976 <div class="doc_subsubsection">
977   <a name="dss_sortedvectorset">A sorted 'vector'</a>
978 </div>
979
980 <div class="doc_text">
981
982 <p>If you intend to insert a lot of elements, then do a lot of queries, a
983 great approach is to use a vector (or other sequential container) with
984 std::sort+std::unique to remove duplicates.  This approach works really well if
985 your usage pattern has these two distinct phases (insert then query), and can be
986 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
987 </p>
988
989 <p>
990 This combination provides the several nice properties: the result data is
991 contiguous in memory (good for cache locality), has few allocations, is easy to
992 address (iterators in the final vector are just indices or pointers), and can be
993 efficiently queried with a standard binary or radix search.</p>
994
995 </div>
996
997 <!-- _______________________________________________________________________ -->
998 <div class="doc_subsubsection">
999   <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1000 </div>
1001
1002 <div class="doc_text">
1003
1004 <p>If you have a set-like data structure that is usually small and whose elements
1005 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
1006 has space for N elements in place (thus, if the set is dynamically smaller than
1007 N, no malloc traffic is required) and accesses them with a simple linear search.
1008 When the set grows beyond 'N' elements, it allocates a more expensive representation that
1009 guarantees efficient access (for most types, it falls back to std::set, but for
1010 pointers it uses something far better, <a
1011 href="#dss_smallptrset">SmallPtrSet</a>).</p>
1012
1013 <p>The magic of this class is that it handles small sets extremely efficiently,
1014 but gracefully handles extremely large sets without loss of efficiency.  The
1015 drawback is that the interface is quite small: it supports insertion, queries
1016 and erasing, but does not support iteration.</p>
1017
1018 </div>
1019
1020 <!-- _______________________________________________________________________ -->
1021 <div class="doc_subsubsection">
1022   <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1023 </div>
1024
1025 <div class="doc_text">
1026
1027 <p>SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is 
1028 transparently implemented with a SmallPtrSet), but also supports iterators.  If
1029 more than 'N' insertions are performed, a single quadratically
1030 probed hash table is allocated and grows as needed, providing extremely
1031 efficient access (constant time insertion/deleting/queries with low constant
1032 factors) and is very stingy with malloc traffic.</p>
1033
1034 <p>Note that, unlike std::set, the iterators of SmallPtrSet are invalidated
1035 whenever an insertion occurs.  Also, the values visited by the iterators are not
1036 visited in sorted order.</p>
1037
1038 </div>
1039
1040 <!-- _______________________________________________________________________ -->
1041 <div class="doc_subsubsection">
1042   <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1043 </div>
1044
1045 <div class="doc_text">
1046
1047 <p>
1048 DenseSet is a simple quadratically probed hash table.  It excels at supporting
1049 small values: it uses a single allocation to hold all of the pairs that
1050 are currently inserted in the set.  DenseSet is a great way to unique small
1051 values that are not simple pointers (use <a 
1052 href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
1053 the same requirements for the value type that <a 
1054 href="#dss_densemap">DenseMap</a> has.
1055 </p>
1056
1057 </div>
1058
1059 <!-- _______________________________________________________________________ -->
1060 <div class="doc_subsubsection">
1061   <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1062 </div>
1063
1064 <div class="doc_text">
1065
1066 <p>
1067 FoldingSet is an aggregate class that is really good at uniquing
1068 expensive-to-create or polymorphic objects.  It is a combination of a chained
1069 hash table with intrusive links (uniqued objects are required to inherit from
1070 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1071 its ID process.</p>
1072
1073 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
1074 a complex object (for example, a node in the code generator).  The client has a
1075 description of *what* it wants to generate (it knows the opcode and all the
1076 operands), but we don't want to 'new' a node, then try inserting it into a set
1077 only to find out it already exists, at which point we would have to delete it
1078 and return the node that already exists.
1079 </p>
1080
1081 <p>To support this style of client, FoldingSet perform a query with a
1082 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1083 element that we want to query for.  The query either returns the element
1084 matching the ID or it returns an opaque ID that indicates where insertion should
1085 take place.  Construction of the ID usually does not require heap traffic.</p>
1086
1087 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1088 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1089 Because the elements are individually allocated, pointers to the elements are
1090 stable: inserting or removing elements does not invalidate any pointers to other
1091 elements.
1092 </p>
1093
1094 </div>
1095
1096 <!-- _______________________________________________________________________ -->
1097 <div class="doc_subsubsection">
1098   <a name="dss_set">&lt;set&gt;</a>
1099 </div>
1100
1101 <div class="doc_text">
1102
1103 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1104 many things but great at nothing.  std::set allocates memory for each element
1105 inserted (thus it is very malloc intensive) and typically stores three pointers
1106 per element in the set (thus adding a large amount of per-element space
1107 overhead).  It offers guaranteed log(n) performance, which is not particularly
1108 fast from a complexity standpoint (particularly if the elements of the set are
1109 expensive to compare, like strings), and has extremely high constant factors for
1110 lookup, insertion and removal.</p>
1111
1112 <p>The advantages of std::set are that its iterators are stable (deleting or
1113 inserting an element from the set does not affect iterators or pointers to other
1114 elements) and that iteration over the set is guaranteed to be in sorted order.
1115 If the elements in the set are large, then the relative overhead of the pointers
1116 and malloc traffic is not a big deal, but if the elements of the set are small,
1117 std::set is almost never a good choice.</p>
1118
1119 </div>
1120
1121 <!-- _______________________________________________________________________ -->
1122 <div class="doc_subsubsection">
1123   <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1124 </div>
1125
1126 <div class="doc_text">
1127 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1128 a set-like container along with a <a href="#ds_sequential">Sequential 
1129 Container</a>.  The important property
1130 that this provides is efficient insertion with uniquing (duplicate elements are
1131 ignored) with iteration support.  It implements this by inserting elements into
1132 both a set-like container and the sequential container, using the set-like
1133 container for uniquing and the sequential container for iteration.
1134 </p>
1135
1136 <p>The difference between SetVector and other sets is that the order of
1137 iteration is guaranteed to match the order of insertion into the SetVector.
1138 This property is really important for things like sets of pointers.  Because
1139 pointer values are non-deterministic (e.g. vary across runs of the program on
1140 different machines), iterating over the pointers in the set will
1141 not be in a well-defined order.</p>
1142
1143 <p>
1144 The drawback of SetVector is that it requires twice as much space as a normal
1145 set and has the sum of constant factors from the set-like container and the 
1146 sequential container that it uses.  Use it *only* if you need to iterate over 
1147 the elements in a deterministic order.  SetVector is also expensive to delete
1148 elements out of (linear time), unless you use it's "pop_back" method, which is
1149 faster.
1150 </p>
1151
1152 <p>SetVector is an adapter class that defaults to using std::vector and std::set
1153 for the underlying containers, so it is quite expensive.  However,
1154 <tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1155 defaults to using a SmallVector and SmallSet of a specified size.  If you use
1156 this, and if your sets are dynamically smaller than N, you will save a lot of 
1157 heap traffic.</p>
1158
1159 </div>
1160
1161 <!-- _______________________________________________________________________ -->
1162 <div class="doc_subsubsection">
1163   <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1164 </div>
1165
1166 <div class="doc_text">
1167
1168 <p>
1169 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1170 retains a unique ID for each element inserted into the set.  It internally
1171 contains a map and a vector, and it assigns a unique ID for each value inserted
1172 into the set.</p>
1173
1174 <p>UniqueVector is very expensive: its cost is the sum of the cost of
1175 maintaining both the map and vector, it has high complexity, high constant
1176 factors, and produces a lot of malloc traffic.  It should be avoided.</p>
1177
1178 </div>
1179
1180
1181 <!-- _______________________________________________________________________ -->
1182 <div class="doc_subsubsection">
1183   <a name="dss_otherset">Other Set-Like Container Options</a>
1184 </div>
1185
1186 <div class="doc_text">
1187
1188 <p>
1189 The STL provides several other options, such as std::multiset and the various 
1190 "hash_set" like containers (whether from C++ TR1 or from the SGI library).</p>
1191
1192 <p>std::multiset is useful if you're not interested in elimination of
1193 duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
1194 don't delete duplicate entries) or some other approach is almost always
1195 better.</p>
1196
1197 <p>The various hash_set implementations (exposed portably by
1198 "llvm/ADT/hash_set") is a simple chained hashtable.  This algorithm is as malloc
1199 intensive as std::set (performing an allocation for each element inserted,
1200 thus having really high constant factors) but (usually) provides O(1)
1201 insertion/deletion of elements.  This can be useful if your elements are large
1202 (thus making the constant-factor cost relatively low) or if comparisons are
1203 expensive.  Element iteration does not visit elements in a useful order.</p>
1204
1205 </div>
1206
1207 <!-- ======================================================================= -->
1208 <div class="doc_subsection">
1209   <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1210 </div>
1211
1212 <div class="doc_text">
1213 Map-like containers are useful when you want to associate data to a key.  As
1214 usual, there are a lot of different ways to do this. :)
1215 </div>
1216
1217 <!-- _______________________________________________________________________ -->
1218 <div class="doc_subsubsection">
1219   <a name="dss_sortedvectormap">A sorted 'vector'</a>
1220 </div>
1221
1222 <div class="doc_text">
1223
1224 <p>
1225 If your usage pattern follows a strict insert-then-query approach, you can
1226 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1227 for set-like containers</a>.  The only difference is that your query function
1228 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
1229 the key, not both the key and value.  This yields the same advantages as sorted
1230 vectors for sets.
1231 </p>
1232 </div>
1233
1234 <!-- _______________________________________________________________________ -->
1235 <div class="doc_subsubsection">
1236   <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1237 </div>
1238
1239 <div class="doc_text">
1240
1241 <p>
1242 Strings are commonly used as keys in maps, and they are difficult to support
1243 efficiently: they are variable length, inefficient to hash and compare when
1244 long, expensive to copy, etc.  StringMap is a specialized container designed to
1245 cope with these issues.  It supports mapping an arbitrary range of bytes to an
1246 arbitrary other object.</p>
1247
1248 <p>The StringMap implementation uses a quadratically-probed hash table, where
1249 the buckets store a pointer to the heap allocated entries (and some other
1250 stuff).  The entries in the map must be heap allocated because the strings are
1251 variable length.  The string data (key) and the element object (value) are
1252 stored in the same allocation with the string data immediately after the element
1253 object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1254 to the key string for a value.</p>
1255
1256 <p>The StringMap is very fast for several reasons: quadratic probing is very
1257 cache efficient for lookups, the hash value of strings in buckets is not
1258 recomputed when lookup up an element, StringMap rarely has to touch the
1259 memory for unrelated objects when looking up a value (even when hash collisions
1260 happen), hash table growth does not recompute the hash values for strings
1261 already in the table, and each pair in the map is store in a single allocation
1262 (the string data is stored in the same allocation as the Value of a pair).</p>
1263
1264 <p>StringMap also provides query methods that take byte ranges, so it only ever
1265 copies a string if a value is inserted into the table.</p>
1266 </div>
1267
1268 <!-- _______________________________________________________________________ -->
1269 <div class="doc_subsubsection">
1270   <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1271 </div>
1272
1273 <div class="doc_text">
1274 <p>
1275 IndexedMap is a specialized container for mapping small dense integers (or
1276 values that can be mapped to small dense integers) to some other type.  It is
1277 internally implemented as a vector with a mapping function that maps the keys to
1278 the dense integer range.
1279 </p>
1280
1281 <p>
1282 This is useful for cases like virtual registers in the LLVM code generator: they
1283 have a dense mapping that is offset by a compile-time constant (the first
1284 virtual register ID).</p>
1285
1286 </div>
1287
1288 <!-- _______________________________________________________________________ -->
1289 <div class="doc_subsubsection">
1290   <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1291 </div>
1292
1293 <div class="doc_text">
1294
1295 <p>
1296 DenseMap is a simple quadratically probed hash table.  It excels at supporting
1297 small keys and values: it uses a single allocation to hold all of the pairs that
1298 are currently inserted in the map.  DenseMap is a great way to map pointers to
1299 pointers, or map other small types to each other.
1300 </p>
1301
1302 <p>
1303 There are several aspects of DenseMap that you should be aware of, however.  The
1304 iterators in a densemap are invalidated whenever an insertion occurs, unlike
1305 map.  Also, because DenseMap allocates space for a large number of key/value
1306 pairs (it starts with 64 by default), it will waste a lot of space if your keys
1307 or values are large.  Finally, you must implement a partial specialization of
1308 DenseMapInfo for the key that you want, if it isn't already supported.  This
1309 is required to tell DenseMap about two special marker values (which can never be
1310 inserted into the map) that it needs internally.</p>
1311
1312 </div>
1313
1314 <!-- _______________________________________________________________________ -->
1315 <div class="doc_subsubsection">
1316   <a name="dss_map">&lt;map&gt;</a>
1317 </div>
1318
1319 <div class="doc_text">
1320
1321 <p>
1322 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1323 a single allocation per pair inserted into the map, it offers log(n) lookup with
1324 an extremely large constant factor, imposes a space penalty of 3 pointers per
1325 pair in the map, etc.</p>
1326
1327 <p>std::map is most useful when your keys or values are very large, if you need
1328 to iterate over the collection in sorted order, or if you need stable iterators
1329 into the map (i.e. they don't get invalidated if an insertion or deletion of
1330 another element takes place).</p>
1331
1332 </div>
1333
1334 <!-- _______________________________________________________________________ -->
1335 <div class="doc_subsubsection">
1336   <a name="dss_othermap">Other Map-Like Container Options</a>
1337 </div>
1338
1339 <div class="doc_text">
1340
1341 <p>
1342 The STL provides several other options, such as std::multimap and the various 
1343 "hash_map" like containers (whether from C++ TR1 or from the SGI library).</p>
1344
1345 <p>std::multimap is useful if you want to map a key to multiple values, but has
1346 all the drawbacks of std::map.  A sorted vector or some other approach is almost
1347 always better.</p>
1348
1349 <p>The various hash_map implementations (exposed portably by
1350 "llvm/ADT/hash_map") are simple chained hash tables.  This algorithm is as
1351 malloc intensive as std::map (performing an allocation for each element
1352 inserted, thus having really high constant factors) but (usually) provides O(1)
1353 insertion/deletion of elements.  This can be useful if your elements are large
1354 (thus making the constant-factor cost relatively low) or if comparisons are
1355 expensive.  Element iteration does not visit elements in a useful order.</p>
1356
1357 </div>
1358
1359 <!-- ======================================================================= -->
1360 <div class="doc_subsection">
1361   <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1362 </div>
1363
1364 <div class="doc_text">
1365 <p>Unlike the other containers, there are only two bit storage containers, and 
1366 choosing when to use each is relatively straightforward.</p>
1367
1368 <p>One additional option is 
1369 <tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1370 implementation in many common compilers (e.g. commonly available versions of 
1371 GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1372 deprecate this container and/or change it significantly somehow.  In any case,
1373 please don't use it.</p>
1374 </div>
1375
1376 <!-- _______________________________________________________________________ -->
1377 <div class="doc_subsubsection">
1378   <a name="dss_bitvector">BitVector</a>
1379 </div>
1380
1381 <div class="doc_text">
1382 <p> The BitVector container provides a fixed size set of bits for manipulation.
1383 It supports individual bit setting/testing, as well as set operations.  The set
1384 operations take time O(size of bitvector), but operations are performed one word
1385 at a time, instead of one bit at a time.  This makes the BitVector very fast for
1386 set operations compared to other containers.  Use the BitVector when you expect
1387 the number of set bits to be high (IE a dense set).
1388 </p>
1389 </div>
1390
1391 <!-- _______________________________________________________________________ -->
1392 <div class="doc_subsubsection">
1393   <a name="dss_sparsebitvector">SparseBitVector</a>
1394 </div>
1395
1396 <div class="doc_text">
1397 <p> The SparseBitVector container is much like BitVector, with one major
1398 difference: Only the bits that are set, are stored.  This makes the
1399 SparseBitVector much more space efficient than BitVector when the set is sparse,
1400 as well as making set operations O(number of set bits) instead of O(size of
1401 universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1402 (either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1403 </p>
1404 </div>
1405
1406 <!-- *********************************************************************** -->
1407 <div class="doc_section">
1408   <a name="common">Helpful Hints for Common Operations</a>
1409 </div>
1410 <!-- *********************************************************************** -->
1411
1412 <div class="doc_text">
1413
1414 <p>This section describes how to perform some very simple transformations of
1415 LLVM code.  This is meant to give examples of common idioms used, showing the
1416 practical side of LLVM transformations.  <p> Because this is a "how-to" section,
1417 you should also read about the main classes that you will be working with.  The
1418 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1419 and descriptions of the main classes that you should know about.</p>
1420
1421 </div>
1422
1423 <!-- NOTE: this section should be heavy on example code -->
1424 <!-- ======================================================================= -->
1425 <div class="doc_subsection">
1426   <a name="inspection">Basic Inspection and Traversal Routines</a>
1427 </div>
1428
1429 <div class="doc_text">
1430
1431 <p>The LLVM compiler infrastructure have many different data structures that may
1432 be traversed.  Following the example of the C++ standard template library, the
1433 techniques used to traverse these various data structures are all basically the
1434 same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1435 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1436 function returns an iterator pointing to one past the last valid element of the
1437 sequence, and there is some <tt>XXXiterator</tt> data type that is common
1438 between the two operations.</p>
1439
1440 <p>Because the pattern for iteration is common across many different aspects of
1441 the program representation, the standard template library algorithms may be used
1442 on them, and it is easier to remember how to iterate. First we show a few common
1443 examples of the data structures that need to be traversed.  Other data
1444 structures are traversed in very similar ways.</p>
1445
1446 </div>
1447
1448 <!-- _______________________________________________________________________ -->
1449 <div class="doc_subsubsection">
1450   <a name="iterate_function">Iterating over the </a><a
1451   href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1452   href="#Function"><tt>Function</tt></a>
1453 </div>
1454
1455 <div class="doc_text">
1456
1457 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1458 transform in some way; in particular, you'd like to manipulate its
1459 <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
1460 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1461 an example that prints the name of a <tt>BasicBlock</tt> and the number of
1462 <tt>Instruction</tt>s it contains:</p>
1463
1464 <div class="doc_code">
1465 <pre>
1466 // <i>func is a pointer to a Function instance</i>
1467 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1468   // <i>Print out the name of the basic block if it has one, and then the</i>
1469   // <i>number of instructions that it contains</i>
1470   llvm::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1471              &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1472 </pre>
1473 </div>
1474
1475 <p>Note that i can be used as if it were a pointer for the purposes of
1476 invoking member functions of the <tt>Instruction</tt> class.  This is
1477 because the indirection operator is overloaded for the iterator
1478 classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
1479 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1480
1481 </div>
1482
1483 <!-- _______________________________________________________________________ -->
1484 <div class="doc_subsubsection">
1485   <a name="iterate_basicblock">Iterating over the </a><a
1486   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1487   href="#BasicBlock"><tt>BasicBlock</tt></a>
1488 </div>
1489
1490 <div class="doc_text">
1491
1492 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1493 easy to iterate over the individual instructions that make up
1494 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1495 a <tt>BasicBlock</tt>:</p>
1496
1497 <div class="doc_code">
1498 <pre>
1499 // <i>blk is a pointer to a BasicBlock instance</i>
1500 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1501    // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1502    // <i>is overloaded for Instruction&amp;</i>
1503    llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
1504 </pre>
1505 </div>
1506
1507 <p>However, this isn't really the best way to print out the contents of a
1508 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
1509 anything you'll care about, you could have just invoked the print routine on the
1510 basic block itself: <tt>llvm::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1511
1512 </div>
1513
1514 <!-- _______________________________________________________________________ -->
1515 <div class="doc_subsubsection">
1516   <a name="iterate_institer">Iterating over the </a><a
1517   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1518   href="#Function"><tt>Function</tt></a>
1519 </div>
1520
1521 <div class="doc_text">
1522
1523 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1524 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1525 <tt>InstIterator</tt> should be used instead. You'll need to include <a
1526 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1527 and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
1528 small example that shows how to dump all instructions in a function to the standard error stream:<p>
1529
1530 <div class="doc_code">
1531 <pre>
1532 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1533
1534 // <i>F is a pointer to a Function instance</i>
1535 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1536   llvm::cerr &lt;&lt; *I &lt;&lt; "\n";
1537 </pre>
1538 </div>
1539
1540 <p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
1541 work list with its initial contents.  For example, if you wanted to
1542 initialize a work list to contain all instructions in a <tt>Function</tt>
1543 F, all you would need to do is something like:</p>
1544
1545 <div class="doc_code">
1546 <pre>
1547 std::set&lt;Instruction*&gt; worklist;
1548 // or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1549
1550 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1551    worklist.insert(&amp;*I);
1552 </pre>
1553 </div>
1554
1555 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
1556 <tt>Function</tt> pointed to by F.</p>
1557
1558 </div>
1559
1560 <!-- _______________________________________________________________________ -->
1561 <div class="doc_subsubsection">
1562   <a name="iterate_convert">Turning an iterator into a class pointer (and
1563   vice-versa)</a>
1564 </div>
1565
1566 <div class="doc_text">
1567
1568 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1569 instance when all you've got at hand is an iterator.  Well, extracting
1570 a reference or a pointer from an iterator is very straight-forward.
1571 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1572 is a <tt>BasicBlock::const_iterator</tt>:</p>
1573
1574 <div class="doc_code">
1575 <pre>
1576 Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
1577 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1578 const Instruction&amp; inst = *j;
1579 </pre>
1580 </div>
1581
1582 <p>However, the iterators you'll be working with in the LLVM framework are
1583 special: they will automatically convert to a ptr-to-instance type whenever they
1584 need to.  Instead of dereferencing the iterator and then taking the address of
1585 the result, you can simply assign the iterator to the proper pointer type and
1586 you get the dereference and address-of operation as a result of the assignment
1587 (behind the scenes, this is a result of overloading casting mechanisms).  Thus
1588 the last line of the last example,</p>
1589
1590 <div class="doc_code">
1591 <pre>
1592 Instruction *pinst = &amp;*i;
1593 </pre>
1594 </div>
1595
1596 <p>is semantically equivalent to</p>
1597
1598 <div class="doc_code">
1599 <pre>
1600 Instruction *pinst = i;
1601 </pre>
1602 </div>
1603
1604 <p>It's also possible to turn a class pointer into the corresponding iterator,
1605 and this is a constant time operation (very efficient).  The following code
1606 snippet illustrates use of the conversion constructors provided by LLVM
1607 iterators.  By using these, you can explicitly grab the iterator of something
1608 without actually obtaining it via iteration over some structure:</p>
1609
1610 <div class="doc_code">
1611 <pre>
1612 void printNextInstruction(Instruction* inst) {
1613   BasicBlock::iterator it(inst);
1614   ++it; // <i>After this line, it refers to the instruction after *inst</i>
1615   if (it != inst-&gt;getParent()-&gt;end()) llvm::cerr &lt;&lt; *it &lt;&lt; "\n";
1616 }
1617 </pre>
1618 </div>
1619
1620 </div>
1621
1622 <!--_______________________________________________________________________-->
1623 <div class="doc_subsubsection">
1624   <a name="iterate_complex">Finding call sites: a slightly more complex
1625   example</a>
1626 </div>
1627
1628 <div class="doc_text">
1629
1630 <p>Say that you're writing a FunctionPass and would like to count all the
1631 locations in the entire module (that is, across every <tt>Function</tt>) where a
1632 certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
1633 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1634 much more straight-forward manner, but this example will allow us to explore how
1635 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1636 is what we want to do:</p>
1637
1638 <div class="doc_code">
1639 <pre>
1640 initialize callCounter to zero
1641 for each Function f in the Module
1642   for each BasicBlock b in f
1643     for each Instruction i in b
1644       if (i is a CallInst and calls the given function)
1645         increment callCounter
1646 </pre>
1647 </div>
1648
1649 <p>And the actual code is (remember, because we're writing a
1650 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1651 override the <tt>runOnFunction</tt> method):</p>
1652
1653 <div class="doc_code">
1654 <pre>
1655 Function* targetFunc = ...;
1656
1657 class OurFunctionPass : public FunctionPass {
1658   public:
1659     OurFunctionPass(): callCounter(0) { }
1660
1661     virtual runOnFunction(Function&amp; F) {
1662       for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
1663         for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
1664           if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1665  href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1666             // <i>We know we've encountered a call instruction, so we</i>
1667             // <i>need to determine if it's a call to the</i>
1668             // <i>function pointed to by m_func or not.</i>
1669             if (callInst-&gt;getCalledFunction() == targetFunc)
1670               ++callCounter;
1671           }
1672         }
1673       }
1674     }
1675
1676   private:
1677     unsigned callCounter;
1678 };
1679 </pre>
1680 </div>
1681
1682 </div>
1683
1684 <!--_______________________________________________________________________-->
1685 <div class="doc_subsubsection">
1686   <a name="calls_and_invokes">Treating calls and invokes the same way</a>
1687 </div>
1688
1689 <div class="doc_text">
1690
1691 <p>You may have noticed that the previous example was a bit oversimplified in
1692 that it did not deal with call sites generated by 'invoke' instructions. In
1693 this, and in other situations, you may find that you want to treat
1694 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
1695 most-specific common base class is <tt>Instruction</tt>, which includes lots of
1696 less closely-related things. For these cases, LLVM provides a handy wrapper
1697 class called <a
1698 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
1699 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
1700 methods that provide functionality common to <tt>CallInst</tt>s and
1701 <tt>InvokeInst</tt>s.</p>
1702
1703 <p>This class has "value semantics": it should be passed by value, not by
1704 reference and it should not be dynamically allocated or deallocated using
1705 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
1706 assignable and constructable, with costs equivalents to that of a bare pointer.
1707 If you look at its definition, it has only a single pointer member.</p>
1708
1709 </div>
1710
1711 <!--_______________________________________________________________________-->
1712 <div class="doc_subsubsection">
1713   <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
1714 </div>
1715
1716 <div class="doc_text">
1717
1718 <p>Frequently, we might have an instance of the <a
1719 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
1720 determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
1721 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
1722 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
1723 particular function <tt>foo</tt>. Finding all of the instructions that
1724 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
1725 of <tt>F</tt>:</p>
1726
1727 <div class="doc_code">
1728 <pre>
1729 Function *F = ...;
1730
1731 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
1732   if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
1733     llvm::cerr &lt;&lt; "F is used in instruction:\n";
1734     llvm::cerr &lt;&lt; *Inst &lt;&lt; "\n";
1735   }
1736 </pre>
1737 </div>
1738
1739 <p>Alternately, it's common to have an instance of the <a
1740 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
1741 <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
1742 <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
1743 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
1744 all of the values that a particular instruction uses (that is, the operands of
1745 the particular <tt>Instruction</tt>):</p>
1746
1747 <div class="doc_code">
1748 <pre>
1749 Instruction *pi = ...;
1750
1751 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
1752   Value *v = *i;
1753   // <i>...</i>
1754 }
1755 </pre>
1756 </div>
1757
1758 <!--
1759   def-use chains ("finding all users of"): Value::use_begin/use_end
1760   use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
1761 -->
1762
1763 </div>
1764
1765 <!--_______________________________________________________________________-->
1766 <div class="doc_subsubsection">
1767   <a name="iterate_preds">Iterating over predecessors &amp;
1768 successors of blocks</a>
1769 </div>
1770
1771 <div class="doc_text">
1772
1773 <p>Iterating over the predecessors and successors of a block is quite easy
1774 with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
1775 this to iterate over all predecessors of BB:</p>
1776
1777 <div class="doc_code">
1778 <pre>
1779 #include "llvm/Support/CFG.h"
1780 BasicBlock *BB = ...;
1781
1782 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1783   BasicBlock *Pred = *PI;
1784   // <i>...</i>
1785 }
1786 </pre>
1787 </div>
1788
1789 <p>Similarly, to iterate over successors use
1790 succ_iterator/succ_begin/succ_end.</p>
1791
1792 </div>
1793
1794
1795 <!-- ======================================================================= -->
1796 <div class="doc_subsection">
1797   <a name="simplechanges">Making simple changes</a>
1798 </div>
1799
1800 <div class="doc_text">
1801
1802 <p>There are some primitive transformation operations present in the LLVM
1803 infrastructure that are worth knowing about.  When performing
1804 transformations, it's fairly common to manipulate the contents of basic
1805 blocks. This section describes some of the common methods for doing so
1806 and gives example code.</p>
1807
1808 </div>
1809
1810 <!--_______________________________________________________________________-->
1811 <div class="doc_subsubsection">
1812   <a name="schanges_creating">Creating and inserting new
1813   <tt>Instruction</tt>s</a>
1814 </div>
1815
1816 <div class="doc_text">
1817
1818 <p><i>Instantiating Instructions</i></p>
1819
1820 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
1821 constructor for the kind of instruction to instantiate and provide the necessary
1822 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
1823 (const-ptr-to) <tt>Type</tt>. Thus:</p> 
1824
1825 <div class="doc_code">
1826 <pre>
1827 AllocaInst* ai = new AllocaInst(Type::Int32Ty);
1828 </pre>
1829 </div>
1830
1831 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
1832 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
1833 subclass is likely to have varying default parameters which change the semantics
1834 of the instruction, so refer to the <a
1835 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
1836 Instruction</a> that you're interested in instantiating.</p>
1837
1838 <p><i>Naming values</i></p>
1839
1840 <p>It is very useful to name the values of instructions when you're able to, as
1841 this facilitates the debugging of your transformations.  If you end up looking
1842 at generated LLVM machine code, you definitely want to have logical names
1843 associated with the results of instructions!  By supplying a value for the
1844 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
1845 associate a logical name with the result of the instruction's execution at
1846 run time.  For example, say that I'm writing a transformation that dynamically
1847 allocates space for an integer on the stack, and that integer is going to be
1848 used as some kind of index by some other code.  To accomplish this, I place an
1849 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
1850 <tt>Function</tt>, and I'm intending to use it within the same
1851 <tt>Function</tt>. I might do:</p>
1852
1853 <div class="doc_code">
1854 <pre>
1855 AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
1856 </pre>
1857 </div>
1858
1859 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
1860 execution value, which is a pointer to an integer on the run time stack.</p>
1861
1862 <p><i>Inserting instructions</i></p>
1863
1864 <p>There are essentially two ways to insert an <tt>Instruction</tt>
1865 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
1866
1867 <ul>
1868   <li>Insertion into an explicit instruction list
1869
1870     <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
1871     <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
1872     before <tt>*pi</tt>, we do the following: </p>
1873
1874 <div class="doc_code">
1875 <pre>
1876 BasicBlock *pb = ...;
1877 Instruction *pi = ...;
1878 Instruction *newInst = new Instruction(...);
1879
1880 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
1881 </pre>
1882 </div>
1883
1884     <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
1885     the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
1886     classes provide constructors which take a pointer to a
1887     <tt>BasicBlock</tt> to be appended to. For example code that
1888     looked like: </p>
1889
1890 <div class="doc_code">
1891 <pre>
1892 BasicBlock *pb = ...;
1893 Instruction *newInst = new Instruction(...);
1894
1895 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
1896 </pre>
1897 </div>
1898
1899     <p>becomes: </p>
1900
1901 <div class="doc_code">
1902 <pre>
1903 BasicBlock *pb = ...;
1904 Instruction *newInst = new Instruction(..., pb);
1905 </pre>
1906 </div>
1907
1908     <p>which is much cleaner, especially if you are creating
1909     long instruction streams.</p></li>
1910
1911   <li>Insertion into an implicit instruction list
1912
1913     <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
1914     are implicitly associated with an existing instruction list: the instruction
1915     list of the enclosing basic block. Thus, we could have accomplished the same
1916     thing as the above code without being given a <tt>BasicBlock</tt> by doing:
1917     </p>
1918
1919 <div class="doc_code">
1920 <pre>
1921 Instruction *pi = ...;
1922 Instruction *newInst = new Instruction(...);
1923
1924 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
1925 </pre>
1926 </div>
1927
1928     <p>In fact, this sequence of steps occurs so frequently that the
1929     <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
1930     constructors which take (as a default parameter) a pointer to an
1931     <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
1932     precede.  That is, <tt>Instruction</tt> constructors are capable of
1933     inserting the newly-created instance into the <tt>BasicBlock</tt> of a
1934     provided instruction, immediately before that instruction.  Using an
1935     <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
1936     parameter, the above code becomes:</p>
1937
1938 <div class="doc_code">
1939 <pre>
1940 Instruction* pi = ...;
1941 Instruction* newInst = new Instruction(..., pi);
1942 </pre>
1943 </div>
1944
1945     <p>which is much cleaner, especially if you're creating a lot of
1946     instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
1947 </ul>
1948
1949 </div>
1950
1951 <!--_______________________________________________________________________-->
1952 <div class="doc_subsubsection">
1953   <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
1954 </div>
1955
1956 <div class="doc_text">
1957
1958 <p>Deleting an instruction from an existing sequence of instructions that form a
1959 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
1960 you must have a pointer to the instruction that you wish to delete.  Second, you
1961 need to obtain the pointer to that instruction's basic block. You use the
1962 pointer to the basic block to get its list of instructions and then use the
1963 erase function to remove your instruction. For example:</p>
1964
1965 <div class="doc_code">
1966 <pre>
1967 <a href="#Instruction">Instruction</a> *I = .. ;
1968 I-&gt;eraseFromParent();
1969 </pre>
1970 </div>
1971
1972 </div>
1973
1974 <!--_______________________________________________________________________-->
1975 <div class="doc_subsubsection">
1976   <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
1977   <tt>Value</tt></a>
1978 </div>
1979
1980 <div class="doc_text">
1981
1982 <p><i>Replacing individual instructions</i></p>
1983
1984 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
1985 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
1986 and <tt>ReplaceInstWithInst</tt>.</p>
1987
1988 <h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
1989
1990 <ul>
1991   <li><tt>ReplaceInstWithValue</tt>
1992
1993     <p>This function replaces all uses of a given instruction with a value,
1994     and then removes the original instruction. The following example
1995     illustrates the replacement of the result of a particular
1996     <tt>AllocaInst</tt> that allocates memory for a single integer with a null
1997     pointer to an integer.</p>
1998
1999 <div class="doc_code">
2000 <pre>
2001 AllocaInst* instToReplace = ...;
2002 BasicBlock::iterator ii(instToReplace);
2003
2004 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2005                      Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
2006 </pre></div></li>
2007
2008   <li><tt>ReplaceInstWithInst</tt> 
2009
2010     <p>This function replaces a particular instruction with another
2011     instruction, inserting the new instruction into the basic block at the
2012     location where the old instruction was, and replacing any uses of the old
2013     instruction with the new instruction. The following example illustrates
2014     the replacement of one <tt>AllocaInst</tt> with another.</p>
2015
2016 <div class="doc_code">
2017 <pre>
2018 AllocaInst* instToReplace = ...;
2019 BasicBlock::iterator ii(instToReplace);
2020
2021 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2022                     new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
2023 </pre></div></li>
2024 </ul>
2025
2026 <p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2027
2028 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
2029 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
2030 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2031 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2032 information.</p>
2033
2034 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2035 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2036 ReplaceInstWithValue, ReplaceInstWithInst -->
2037
2038 </div>
2039
2040 <!--_______________________________________________________________________-->
2041 <div class="doc_subsubsection">
2042   <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2043 </div>
2044
2045 <div class="doc_text">
2046
2047 <p>Deleting a global variable from a module is just as easy as deleting an 
2048 Instruction. First, you must have a pointer to the global variable that you wish
2049  to delete.  You use this pointer to erase it from its parent, the module.
2050  For example:</p>
2051
2052 <div class="doc_code">
2053 <pre>
2054 <a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2055
2056 GV-&gt;eraseFromParent();
2057 </pre>
2058 </div>
2059
2060 </div>
2061
2062 <!-- *********************************************************************** -->
2063 <div class="doc_section">
2064   <a name="advanced">Advanced Topics</a>
2065 </div>
2066 <!-- *********************************************************************** -->
2067
2068 <div class="doc_text">
2069 <p>
2070 This section describes some of the advanced or obscure API's that most clients
2071 do not need to be aware of.  These API's tend manage the inner workings of the
2072 LLVM system, and only need to be accessed in unusual circumstances.
2073 </p>
2074 </div>
2075
2076 <!-- ======================================================================= -->
2077 <div class="doc_subsection">
2078   <a name="TypeResolve">LLVM Type Resolution</a>
2079 </div>
2080
2081 <div class="doc_text">
2082
2083 <p>
2084 The LLVM type system has a very simple goal: allow clients to compare types for
2085 structural equality with a simple pointer comparison (aka a shallow compare).
2086 This goal makes clients much simpler and faster, and is used throughout the LLVM
2087 system.
2088 </p>
2089
2090 <p>
2091 Unfortunately achieving this goal is not a simple matter.  In particular,
2092 recursive types and late resolution of opaque types makes the situation very
2093 difficult to handle.  Fortunately, for the most part, our implementation makes
2094 most clients able to be completely unaware of the nasty internal details.  The
2095 primary case where clients are exposed to the inner workings of it are when
2096 building a recursive type.  In addition to this case, the LLVM bitcode reader,
2097 assembly parser, and linker also have to be aware of the inner workings of this
2098 system.
2099 </p>
2100
2101 <p>
2102 For our purposes below, we need three concepts.  First, an "Opaque Type" is 
2103 exactly as defined in the <a href="LangRef.html#t_opaque">language 
2104 reference</a>.  Second an "Abstract Type" is any type which includes an 
2105 opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
2106 Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32, 
2107 float }</tt>").
2108 </p>
2109
2110 </div>
2111
2112 <!-- ______________________________________________________________________ -->
2113 <div class="doc_subsubsection">
2114   <a name="BuildRecType">Basic Recursive Type Construction</a>
2115 </div>
2116
2117 <div class="doc_text">
2118
2119 <p>
2120 Because the most common question is "how do I build a recursive type with LLVM",
2121 we answer it now and explain it as we go.  Here we include enough to cause this
2122 to be emitted to an output .ll file:
2123 </p>
2124
2125 <div class="doc_code">
2126 <pre>
2127 %mylist = type { %mylist*, i32 }
2128 </pre>
2129 </div>
2130
2131 <p>
2132 To build this, use the following LLVM APIs:
2133 </p>
2134
2135 <div class="doc_code">
2136 <pre>
2137 // <i>Create the initial outer struct</i>
2138 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
2139 std::vector&lt;const Type*&gt; Elts;
2140 Elts.push_back(PointerType::getUnqual(StructTy));
2141 Elts.push_back(Type::Int32Ty);
2142 StructType *NewSTy = StructType::get(Elts);
2143
2144 // <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
2145 // <i>the struct and the opaque type are actually the same.</i>
2146 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
2147
2148 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
2149 // <i>kept up-to-date</i>
2150 NewSTy = cast&lt;StructType&gt;(StructTy.get());
2151
2152 // <i>Add a name for the type to the module symbol table (optional)</i>
2153 MyModule-&gt;addTypeName("mylist", NewSTy);
2154 </pre>
2155 </div>
2156
2157 <p>
2158 This code shows the basic approach used to build recursive types: build a
2159 non-recursive type using 'opaque', then use type unification to close the cycle.
2160 The type unification step is performed by the <tt><a
2161 href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
2162 described next.  After that, we describe the <a
2163 href="#PATypeHolder">PATypeHolder class</a>.
2164 </p>
2165
2166 </div>
2167
2168 <!-- ______________________________________________________________________ -->
2169 <div class="doc_subsubsection">
2170   <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
2171 </div>
2172
2173 <div class="doc_text">
2174 <p>
2175 The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
2176 While this method is actually a member of the DerivedType class, it is most
2177 often used on OpaqueType instances.  Type unification is actually a recursive
2178 process.  After unification, types can become structurally isomorphic to
2179 existing types, and all duplicates are deleted (to preserve pointer equality).
2180 </p>
2181
2182 <p>
2183 In the example above, the OpaqueType object is definitely deleted.
2184 Additionally, if there is an "{ \2*, i32}" type already created in the system,
2185 the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
2186 a type is deleted, any "Type*" pointers in the program are invalidated.  As
2187 such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
2188 live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
2189 types can never move or be deleted).  To deal with this, the <a
2190 href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
2191 reference to a possibly refined type, and the <a
2192 href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
2193 complex datastructures.
2194 </p>
2195
2196 </div>
2197
2198 <!-- ______________________________________________________________________ -->
2199 <div class="doc_subsubsection">
2200   <a name="PATypeHolder">The PATypeHolder Class</a>
2201 </div>
2202
2203 <div class="doc_text">
2204 <p>
2205 PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
2206 happily goes about nuking types that become isomorphic to existing types, it
2207 automatically updates all PATypeHolder objects to point to the new type.  In the
2208 example above, this allows the code to maintain a pointer to the resultant
2209 resolved recursive type, even though the Type*'s are potentially invalidated.
2210 </p>
2211
2212 <p>
2213 PATypeHolder is an extremely light-weight object that uses a lazy union-find
2214 implementation to update pointers.  For example the pointer from a Value to its
2215 Type is maintained by PATypeHolder objects.
2216 </p>
2217
2218 </div>
2219
2220 <!-- ______________________________________________________________________ -->
2221 <div class="doc_subsubsection">
2222   <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2223 </div>
2224
2225 <div class="doc_text">
2226
2227 <p>
2228 Some data structures need more to perform more complex updates when types get
2229 resolved.  To support this, a class can derive from the AbstractTypeUser class.
2230 This class
2231 allows it to get callbacks when certain types are resolved.  To register to get
2232 callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2233 methods can be called on a type.  Note that these methods only work for <i>
2234   abstract</i> types.  Concrete types (those that do not include any opaque 
2235 objects) can never be refined.
2236 </p>
2237 </div>
2238
2239
2240 <!-- ======================================================================= -->
2241 <div class="doc_subsection">
2242   <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
2243    <tt>TypeSymbolTable</tt> classes</a>
2244 </div>
2245
2246 <div class="doc_text">
2247 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2248 ValueSymbolTable</a></tt> class provides a symbol table that the <a
2249 href="#Function"><tt>Function</tt></a> and <a href="#Module">
2250 <tt>Module</tt></a> classes use for naming value definitions. The symbol table
2251 can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
2252 The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
2253 TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
2254 names for types.</p>
2255
2256 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
2257 by most clients.  It should only be used when iteration over the symbol table 
2258 names themselves are required, which is very special purpose.  Note that not 
2259 all LLVM
2260 <tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
2261 an empty name) do not exist in the symbol table.
2262 </p>
2263
2264 <p>These symbol tables support iteration over the values/types in the symbol
2265 table with <tt>begin/end/iterator</tt> and supports querying to see if a
2266 specific name is in the symbol table (with <tt>lookup</tt>).  The
2267 <tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2268 simply call <tt>setName</tt> on a value, which will autoinsert it into the
2269 appropriate symbol table.  For types, use the Module::addTypeName method to
2270 insert entries into the symbol table.</p>
2271
2272 </div>
2273
2274
2275
2276 <!-- ======================================================================= -->
2277 <div class="doc_subsection">
2278   <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2279 </div>
2280
2281 <div class="doc_text">
2282 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
2283 User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
2284 towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2285 Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
2286 Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
2287 addition and removal.</p>
2288
2289 <!-- ______________________________________________________________________ -->
2290 <div class="doc_subsubsection">
2291   <a name="Use2User">Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects</a>
2292 </div>
2293
2294 <div class="doc_text">
2295 <p>
2296 A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
2297 or refer to them out-of-line by means of a pointer. A mixed variant
2298 (some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2299 that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2300 </p>
2301 </div>
2302
2303 <p>
2304 We have 2 different layouts in the <tt>User</tt> (sub)classes:
2305 <ul>
2306 <li><p>Layout a)
2307 The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2308 object and there are a fixed number of them.</p>
2309
2310 <li><p>Layout b)
2311 The <tt>Use</tt> object(s) are referenced by a pointer to an
2312 array from the <tt>User</tt> object and there may be a variable
2313 number of them.</p>
2314 </ul>
2315 <p>
2316 As of v2.4 each layout still possesses a direct pointer to the
2317 start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
2318 we stick to this redundancy for the sake of simplicity.
2319 The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
2320 has. (Theoretically this information can also be calculated
2321 given the scheme presented below.)</p>
2322 <p>
2323 Special forms of allocation operators (<tt>operator new</tt>)
2324 enforce the following memory layouts:</p>
2325
2326 <ul>
2327 <li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
2328
2329 <pre>
2330 ...---.---.---.---.-------...
2331   | P | P | P | P | User
2332 '''---'---'---'---'-------'''
2333 </pre>
2334
2335 <li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
2336 <pre>
2337 .-------...
2338 | User
2339 '-------'''
2340     |
2341     v
2342     .---.---.---.---...
2343     | P | P | P | P |
2344     '---'---'---'---'''
2345 </pre>
2346 </ul>
2347 <i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2348     is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
2349
2350 <!-- ______________________________________________________________________ -->
2351 <div class="doc_subsubsection">
2352   <a name="Waymarking">The waymarking algorithm</a>
2353 </div>
2354
2355 <div class="doc_text">
2356 <p>
2357 Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
2358 their <tt>User</tt> objects, there must be a fast and exact method to
2359 recover it. This is accomplished by the following scheme:</p>
2360 </div>
2361
2362 A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
2363 start of the <tt>User</tt> object:
2364 <ul>
2365 <li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2366 <li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2367 <li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2368 <li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2369 </ul>
2370 <p>
2371 Given a <tt>Use*</tt>, all we have to do is to walk till we get
2372 a stop and we either have a <tt>User</tt> immediately behind or
2373 we have to walk to the next stop picking up digits
2374 and calculating the offset:</p>
2375 <pre>
2376 .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2377 | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2378 '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2379     |+15                |+10            |+6         |+3     |+1
2380     |                   |               |           |       |__>
2381     |                   |               |           |__________>
2382     |                   |               |______________________>
2383     |                   |______________________________________>
2384     |__________________________________________________________>
2385 </pre>
2386 <p>
2387 Only the significant number of bits need to be stored between the
2388 stops, so that the <i>worst case is 20 memory accesses</i> when there are
2389 1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
2390
2391 <!-- ______________________________________________________________________ -->
2392 <div class="doc_subsubsection">
2393   <a name="ReferenceImpl">Reference implementation</a>
2394 </div>
2395
2396 <div class="doc_text">
2397 <p>
2398 The following literate Haskell fragment demonstrates the concept:</p>
2399 </div>
2400
2401 <div class="doc_code">
2402 <pre>
2403 > import Test.QuickCheck
2404
2405 > digits :: Int -> [Char] -> [Char]
2406 > digits 0 acc = '0' : acc
2407 > digits 1 acc = '1' : acc
2408 > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2409
2410 > dist :: Int -> [Char] -> [Char]
2411 > dist 0 [] = ['S']
2412 > dist 0 acc = acc
2413 > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2414 > dist n acc = dist (n - 1) $ dist 1 acc
2415
2416 > takeLast n ss = reverse $ take n $ reverse ss
2417
2418 > test = takeLast 40 $ dist 20 []
2419
2420 </pre>
2421 </div>
2422 <p>
2423 Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2424 <p>
2425 The reverse algorithm computes the length of the string just by examining
2426 a certain prefix:</p>
2427
2428 <div class="doc_code">
2429 <pre>
2430 > pref :: [Char] -> Int
2431 > pref "S" = 1
2432 > pref ('s':'1':rest) = decode 2 1 rest
2433 > pref (_:rest) = 1 + pref rest
2434
2435 > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2436 > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2437 > decode walk acc _ = walk + acc
2438
2439 </pre>
2440 </div>
2441 <p>
2442 Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2443 <p>
2444 We can <i>quickCheck</i> this with following property:</p>
2445
2446 <div class="doc_code">
2447 <pre>
2448 > testcase = dist 2000 []
2449 > testcaseLength = length testcase
2450
2451 > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2452 >     where arr = takeLast n testcase
2453
2454 </pre>
2455 </div>
2456 <p>
2457 As expected &lt;quickCheck identityProp&gt; gives:</p>
2458
2459 <pre>
2460 *Main> quickCheck identityProp
2461 OK, passed 100 tests.
2462 </pre>
2463 <p>
2464 Let's be a bit more exhaustive:</p>
2465
2466 <div class="doc_code">
2467 <pre>
2468
2469 > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2470
2471 </pre>
2472 </div>
2473 <p>
2474 And here is the result of &lt;deepCheck identityProp&gt;:</p>
2475
2476 <pre>
2477 *Main> deepCheck identityProp
2478 OK, passed 500 tests.
2479 </pre>
2480
2481 <!-- ______________________________________________________________________ -->
2482 <div class="doc_subsubsection">
2483   <a name="Tagging">Tagging considerations</a>
2484 </div>
2485
2486 <p>
2487 To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2488 never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2489 new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2490 tag bits.</p>
2491 <p>
2492 For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
2493 Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
2494 that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
2495 the LSBit set. (Portability is relying on the fact that all known compilers place the
2496 <tt>vptr</tt> in the first word of the instances.)</p>
2497
2498 </div>
2499
2500   <!-- *********************************************************************** -->
2501 <div class="doc_section">
2502   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2503 </div>
2504 <!-- *********************************************************************** -->
2505
2506 <div class="doc_text">
2507 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2508 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2509
2510 <p>The Core LLVM classes are the primary means of representing the program
2511 being inspected or transformed.  The core LLVM classes are defined in
2512 header files in the <tt>include/llvm/</tt> directory, and implemented in
2513 the <tt>lib/VMCore</tt> directory.</p>
2514
2515 </div>
2516
2517 <!-- ======================================================================= -->
2518 <div class="doc_subsection">
2519   <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2520 </div>
2521
2522 <div class="doc_text">
2523
2524   <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
2525   a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
2526   through its subclasses. Certain primitive types (<tt>VoidType</tt>,
2527   <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
2528   subclasses. They are hidden because they offer no useful functionality beyond
2529   what the <tt>Type</tt> class offers except to distinguish themselves from 
2530   other subclasses of <tt>Type</tt>.</p>
2531   <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
2532   named, but this is not a requirement. There exists exactly 
2533   one instance of a given shape at any one time.  This allows type equality to
2534   be performed with address equality of the Type Instance. That is, given two 
2535   <tt>Type*</tt> values, the types are identical if the pointers are identical.
2536   </p>
2537 </div>
2538
2539 <!-- _______________________________________________________________________ -->
2540 <div class="doc_subsubsection">
2541   <a name="m_Type">Important Public Methods</a>
2542 </div>
2543
2544 <div class="doc_text">
2545
2546 <ul>
2547   <li><tt>bool isInteger() const</tt>: Returns true for any integer type.</li>
2548
2549   <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2550   floating point types.</li>
2551
2552   <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
2553   an OpaqueType anywhere in its definition).</li>
2554
2555   <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
2556   that don't have a size are abstract types, labels and void.</li>
2557
2558 </ul>
2559 </div>
2560
2561 <!-- _______________________________________________________________________ -->
2562 <div class="doc_subsubsection">
2563   <a name="derivedtypes">Important Derived Types</a>
2564 </div>
2565 <div class="doc_text">
2566 <dl>
2567   <dt><tt>IntegerType</tt></dt>
2568   <dd>Subclass of DerivedType that represents integer types of any bit width. 
2569   Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
2570   <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
2571   <ul>
2572     <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
2573     type of a specific bit width.</li>
2574     <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
2575     type.</li>
2576   </ul>
2577   </dd>
2578   <dt><tt>SequentialType</tt></dt>
2579   <dd>This is subclassed by ArrayType and PointerType
2580     <ul>
2581       <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2582       of the elements in the sequential type. </li>
2583     </ul>
2584   </dd>
2585   <dt><tt>ArrayType</tt></dt>
2586   <dd>This is a subclass of SequentialType and defines the interface for array 
2587   types.
2588     <ul>
2589       <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
2590       elements in the array. </li>
2591     </ul>
2592   </dd>
2593   <dt><tt>PointerType</tt></dt>
2594   <dd>Subclass of SequentialType for pointer types.</dd>
2595   <dt><tt>VectorType</tt></dt>
2596   <dd>Subclass of SequentialType for vector types. A 
2597   vector type is similar to an ArrayType but is distinguished because it is 
2598   a first class type wherease ArrayType is not. Vector types are used for 
2599   vector operations and are usually small vectors of of an integer or floating 
2600   point type.</dd>
2601   <dt><tt>StructType</tt></dt>
2602   <dd>Subclass of DerivedTypes for struct types.</dd>
2603   <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
2604   <dd>Subclass of DerivedTypes for function types.
2605     <ul>
2606       <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
2607       function</li>
2608       <li><tt> const Type * getReturnType() const</tt>: Returns the
2609       return type of the function.</li>
2610       <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
2611       the type of the ith parameter.</li>
2612       <li><tt> const unsigned getNumParams() const</tt>: Returns the
2613       number of formal parameters.</li>
2614     </ul>
2615   </dd>
2616   <dt><tt>OpaqueType</tt></dt>
2617   <dd>Sublcass of DerivedType for abstract types. This class 
2618   defines no content and is used as a placeholder for some other type. Note 
2619   that OpaqueType is used (temporarily) during type resolution for forward 
2620   references of types. Once the referenced type is resolved, the OpaqueType 
2621   is replaced with the actual type. OpaqueType can also be used for data 
2622   abstraction. At link time opaque types can be resolved to actual types 
2623   of the same name.</dd>
2624 </dl>
2625 </div>
2626
2627
2628
2629 <!-- ======================================================================= -->
2630 <div class="doc_subsection">
2631   <a name="Module">The <tt>Module</tt> class</a>
2632 </div>
2633
2634 <div class="doc_text">
2635
2636 <p><tt>#include "<a
2637 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
2638 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
2639
2640 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
2641 programs.  An LLVM module is effectively either a translation unit of the
2642 original program or a combination of several translation units merged by the
2643 linker.  The <tt>Module</tt> class keeps track of a list of <a
2644 href="#Function"><tt>Function</tt></a>s, a list of <a
2645 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
2646 href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
2647 helpful member functions that try to make common operations easy.</p>
2648
2649 </div>
2650
2651 <!-- _______________________________________________________________________ -->
2652 <div class="doc_subsubsection">
2653   <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
2654 </div>
2655
2656 <div class="doc_text">
2657
2658 <ul>
2659   <li><tt>Module::Module(std::string name = "")</tt></li>
2660 </ul>
2661
2662 <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
2663 provide a name for it (probably based on the name of the translation unit).</p>
2664
2665 <ul>
2666   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
2667     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
2668
2669     <tt>begin()</tt>, <tt>end()</tt>
2670     <tt>size()</tt>, <tt>empty()</tt>
2671
2672     <p>These are forwarding methods that make it easy to access the contents of
2673     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
2674     list.</p></li>
2675
2676   <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
2677
2678     <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
2679     necessary to use when you need to update the list or perform a complex
2680     action that doesn't have a forwarding method.</p>
2681
2682     <p><!--  Global Variable --></p></li> 
2683 </ul>
2684
2685 <hr>
2686
2687 <ul>
2688   <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
2689
2690     <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
2691
2692     <tt>global_begin()</tt>, <tt>global_end()</tt>
2693     <tt>global_size()</tt>, <tt>global_empty()</tt>
2694
2695     <p> These are forwarding methods that make it easy to access the contents of
2696     a <tt>Module</tt> object's <a
2697     href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
2698
2699   <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
2700
2701     <p>Returns the list of <a
2702     href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
2703     use when you need to update the list or perform a complex action that
2704     doesn't have a forwarding method.</p>
2705
2706     <p><!--  Symbol table stuff --> </p></li>
2707 </ul>
2708
2709 <hr>
2710
2711 <ul>
2712   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2713
2714     <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2715     for this <tt>Module</tt>.</p>
2716
2717     <p><!--  Convenience methods --></p></li>
2718 </ul>
2719
2720 <hr>
2721
2722 <ul>
2723   <li><tt><a href="#Function">Function</a> *getFunction(const std::string
2724   &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
2725
2726     <p>Look up the specified function in the <tt>Module</tt> <a
2727     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
2728     <tt>null</tt>.</p></li>
2729
2730   <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
2731   std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
2732
2733     <p>Look up the specified function in the <tt>Module</tt> <a
2734     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
2735     external declaration for the function and return it.</p></li>
2736
2737   <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
2738
2739     <p>If there is at least one entry in the <a
2740     href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
2741     href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
2742     string.</p></li>
2743
2744   <li><tt>bool addTypeName(const std::string &amp;Name, const <a
2745   href="#Type">Type</a> *Ty)</tt>
2746
2747     <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2748     mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
2749     name, true is returned and the <a
2750     href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
2751 </ul>
2752
2753 </div>
2754
2755
2756 <!-- ======================================================================= -->
2757 <div class="doc_subsection">
2758   <a name="Value">The <tt>Value</tt> class</a>
2759 </div>
2760
2761 <div class="doc_text">
2762
2763 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
2764 <br> 
2765 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
2766
2767 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
2768 base.  It represents a typed value that may be used (among other things) as an
2769 operand to an instruction.  There are many different types of <tt>Value</tt>s,
2770 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
2771 href="#Argument"><tt>Argument</tt></a>s. Even <a
2772 href="#Instruction"><tt>Instruction</tt></a>s and <a
2773 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
2774
2775 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
2776 for a program.  For example, an incoming argument to a function (represented
2777 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
2778 every instruction in the function that references the argument.  To keep track
2779 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
2780 href="#User"><tt>User</tt></a>s that is using it (the <a
2781 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
2782 graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
2783 def-use information in the program, and is accessible through the <tt>use_</tt>*
2784 methods, shown below.</p>
2785
2786 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
2787 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
2788 method. In addition, all LLVM values can be named.  The "name" of the
2789 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
2790
2791 <div class="doc_code">
2792 <pre>
2793 %<b>foo</b> = add i32 1, 2
2794 </pre>
2795 </div>
2796
2797 <p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
2798 that the name of any value may be missing (an empty string), so names should
2799 <b>ONLY</b> be used for debugging (making the source code easier to read,
2800 debugging printouts), they should not be used to keep track of values or map
2801 between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
2802 <tt>Value</tt> itself instead.</p>
2803
2804 <p>One important aspect of LLVM is that there is no distinction between an SSA
2805 variable and the operation that produces it.  Because of this, any reference to
2806 the value produced by an instruction (or the value available as an incoming
2807 argument, for example) is represented as a direct pointer to the instance of
2808 the class that
2809 represents this value.  Although this may take some getting used to, it
2810 simplifies the representation and makes it easier to manipulate.</p>
2811
2812 </div>
2813
2814 <!-- _______________________________________________________________________ -->
2815 <div class="doc_subsubsection">
2816   <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
2817 </div>
2818
2819 <div class="doc_text">
2820
2821 <ul>
2822   <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
2823 use-list<br>
2824     <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
2825 the use-list<br>
2826     <tt>unsigned use_size()</tt> - Returns the number of users of the
2827 value.<br>
2828     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
2829     <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
2830 the use-list.<br>
2831     <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
2832 use-list.<br>
2833     <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
2834 element in the list.
2835     <p> These methods are the interface to access the def-use
2836 information in LLVM.  As with all other iterators in LLVM, the naming
2837 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
2838   </li>
2839   <li><tt><a href="#Type">Type</a> *getType() const</tt>
2840     <p>This method returns the Type of the Value.</p>
2841   </li>
2842   <li><tt>bool hasName() const</tt><br>
2843     <tt>std::string getName() const</tt><br>
2844     <tt>void setName(const std::string &amp;Name)</tt>
2845     <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
2846 be aware of the <a href="#nameWarning">precaution above</a>.</p>
2847   </li>
2848   <li><tt>void replaceAllUsesWith(Value *V)</tt>
2849
2850     <p>This method traverses the use list of a <tt>Value</tt> changing all <a
2851     href="#User"><tt>User</tt>s</a> of the current value to refer to
2852     "<tt>V</tt>" instead.  For example, if you detect that an instruction always
2853     produces a constant value (for example through constant folding), you can
2854     replace all uses of the instruction with the constant like this:</p>
2855
2856 <div class="doc_code">
2857 <pre>
2858 Inst-&gt;replaceAllUsesWith(ConstVal);
2859 </pre>
2860 </div>
2861
2862 </ul>
2863
2864 </div>
2865
2866 <!-- ======================================================================= -->
2867 <div class="doc_subsection">
2868   <a name="User">The <tt>User</tt> class</a>
2869 </div>
2870
2871 <div class="doc_text">
2872   
2873 <p>
2874 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
2875 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
2876 Superclass: <a href="#Value"><tt>Value</tt></a></p>
2877
2878 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
2879 refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
2880 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
2881 referring to.  The <tt>User</tt> class itself is a subclass of
2882 <tt>Value</tt>.</p>
2883
2884 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
2885 href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
2886 Single Assignment (SSA) form, there can only be one definition referred to,
2887 allowing this direct connection.  This connection provides the use-def
2888 information in LLVM.</p>
2889
2890 </div>
2891
2892 <!-- _______________________________________________________________________ -->
2893 <div class="doc_subsubsection">
2894   <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
2895 </div>
2896
2897 <div class="doc_text">
2898
2899 <p>The <tt>User</tt> class exposes the operand list in two ways: through
2900 an index access interface and through an iterator based interface.</p>
2901
2902 <ul>
2903   <li><tt>Value *getOperand(unsigned i)</tt><br>
2904     <tt>unsigned getNumOperands()</tt>
2905     <p> These two methods expose the operands of the <tt>User</tt> in a
2906 convenient form for direct access.</p></li>
2907
2908   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
2909 list<br>
2910     <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
2911 the operand list.<br>
2912     <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
2913 operand list.
2914     <p> Together, these methods make up the iterator based interface to
2915 the operands of a <tt>User</tt>.</p></li>
2916 </ul>
2917
2918 </div>    
2919
2920 <!-- ======================================================================= -->
2921 <div class="doc_subsection">
2922   <a name="Instruction">The <tt>Instruction</tt> class</a>
2923 </div>
2924
2925 <div class="doc_text">
2926
2927 <p><tt>#include "</tt><tt><a
2928 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
2929 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
2930 Superclasses: <a href="#User"><tt>User</tt></a>, <a
2931 href="#Value"><tt>Value</tt></a></p>
2932
2933 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
2934 instructions.  It provides only a few methods, but is a very commonly used
2935 class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
2936 opcode (instruction type) and the parent <a
2937 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
2938 into.  To represent a specific type of instruction, one of many subclasses of
2939 <tt>Instruction</tt> are used.</p>
2940
2941 <p> Because the <tt>Instruction</tt> class subclasses the <a
2942 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
2943 way as for other <a href="#User"><tt>User</tt></a>s (with the
2944 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
2945 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
2946 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
2947 file contains some meta-data about the various different types of instructions
2948 in LLVM.  It describes the enum values that are used as opcodes (for example
2949 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
2950 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
2951 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
2952 href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
2953 this file confuses doxygen, so these enum values don't show up correctly in the
2954 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
2955
2956 </div>
2957
2958 <!-- _______________________________________________________________________ -->
2959 <div class="doc_subsubsection">
2960   <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
2961   class</a>
2962 </div>
2963 <div class="doc_text">
2964   <ul>
2965     <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
2966     <p>This subclasses represents all two operand instructions whose operands
2967     must be the same type, except for the comparison instructions.</p></li>
2968     <li><tt><a name="CastInst">CastInst</a></tt>
2969     <p>This subclass is the parent of the 12 casting instructions. It provides
2970     common operations on cast instructions.</p>
2971     <li><tt><a name="CmpInst">CmpInst</a></tt>
2972     <p>This subclass respresents the two comparison instructions, 
2973     <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
2974     <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
2975     <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
2976     <p>This subclass is the parent of all terminator instructions (those which
2977     can terminate a block).</p>
2978   </ul>
2979   </div>
2980
2981 <!-- _______________________________________________________________________ -->
2982 <div class="doc_subsubsection">
2983   <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
2984   class</a>
2985 </div>
2986
2987 <div class="doc_text">
2988
2989 <ul>
2990   <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
2991     <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
2992 this  <tt>Instruction</tt> is embedded into.</p></li>
2993   <li><tt>bool mayWriteToMemory()</tt>
2994     <p>Returns true if the instruction writes to memory, i.e. it is a
2995       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
2996   <li><tt>unsigned getOpcode()</tt>
2997     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
2998   <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
2999     <p>Returns another instance of the specified instruction, identical
3000 in all ways to the original except that the instruction has no parent
3001 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3002 and it has no name</p></li>
3003 </ul>
3004
3005 </div>
3006
3007 <!-- ======================================================================= -->
3008 <div class="doc_subsection">
3009   <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3010 </div>
3011
3012 <div class="doc_text">
3013
3014 <p>Constant represents a base class for different types of constants. It
3015 is subclassed by ConstantInt, ConstantArray, etc. for representing 
3016 the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
3017 a subclass, which represents the address of a global variable or function.
3018 </p>
3019
3020 </div>
3021
3022 <!-- _______________________________________________________________________ -->
3023 <div class="doc_subsubsection">Important Subclasses of Constant </div>
3024 <div class="doc_text">
3025 <ul>
3026   <li>ConstantInt : This subclass of Constant represents an integer constant of
3027   any width.
3028     <ul>
3029       <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3030       value of this constant, an APInt value.</li>
3031       <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3032       value to an int64_t via sign extension. If the value (not the bit width)
3033       of the APInt is too large to fit in an int64_t, an assertion will result.
3034       For this reason, use of this method is discouraged.</li>
3035       <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3036       value to a uint64_t via zero extension. IF the value (not the bit width)
3037       of the APInt is too large to fit in a uint64_t, an assertion will result.
3038       For this reason, use of this method is discouraged.</li>
3039       <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3040       ConstantInt object that represents the value provided by <tt>Val</tt>.
3041       The type is implied as the IntegerType that corresponds to the bit width
3042       of <tt>Val</tt>.</li>
3043       <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
3044       Returns the ConstantInt object that represents the value provided by 
3045       <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3046     </ul>
3047   </li>
3048   <li>ConstantFP : This class represents a floating point constant.
3049     <ul>
3050       <li><tt>double getValue() const</tt>: Returns the underlying value of 
3051       this constant. </li>
3052     </ul>
3053   </li>
3054   <li>ConstantArray : This represents a constant array.
3055     <ul>
3056       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3057       a vector of component constants that makeup this array. </li>
3058     </ul>
3059   </li>
3060   <li>ConstantStruct : This represents a constant struct.
3061     <ul>
3062       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3063       a vector of component constants that makeup this array. </li>
3064     </ul>
3065   </li>
3066   <li>GlobalValue : This represents either a global variable or a function. In 
3067   either case, the value is a constant fixed address (after linking). 
3068   </li>
3069 </ul>
3070 </div>
3071
3072
3073 <!-- ======================================================================= -->
3074 <div class="doc_subsection">
3075   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3076 </div>
3077
3078 <div class="doc_text">
3079
3080 <p><tt>#include "<a
3081 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3082 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3083 Class</a><br>
3084 Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
3085 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3086
3087 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3088 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3089 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3090 Because they are visible at global scope, they are also subject to linking with
3091 other globals defined in different translation units.  To control the linking
3092 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3093 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3094 defined by the <tt>LinkageTypes</tt> enumeration.</p>
3095
3096 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3097 <tt>static</tt> in C), it is not visible to code outside the current translation
3098 unit, and does not participate in linking.  If it has external linkage, it is
3099 visible to external code, and does participate in linking.  In addition to
3100 linkage information, <tt>GlobalValue</tt>s keep track of which <a
3101 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3102
3103 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3104 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3105 global is always a pointer to its contents. It is important to remember this
3106 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3107 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3108 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3109 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3110 the address of the first element of this array and the value of the
3111 <tt>GlobalVariable</tt> are the same, they have different types. The
3112 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3113 is <tt>i32.</tt> Because of this, accessing a global value requires you to
3114 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3115 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3116 Language Reference Manual</a>.</p>
3117
3118 </div>
3119
3120 <!-- _______________________________________________________________________ -->
3121 <div class="doc_subsubsection">
3122   <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
3123   class</a>
3124 </div>
3125
3126 <div class="doc_text">
3127
3128 <ul>
3129   <li><tt>bool hasInternalLinkage() const</tt><br>
3130     <tt>bool hasExternalLinkage() const</tt><br>
3131     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3132     <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3133     <p> </p>
3134   </li>
3135   <li><tt><a href="#Module">Module</a> *getParent()</tt>
3136     <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3137 GlobalValue is currently embedded into.</p></li>
3138 </ul>
3139
3140 </div>
3141
3142 <!-- ======================================================================= -->
3143 <div class="doc_subsection">
3144   <a name="Function">The <tt>Function</tt> class</a>
3145 </div>
3146
3147 <div class="doc_text">
3148
3149 <p><tt>#include "<a
3150 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3151 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3152 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3153 <a href="#Constant"><tt>Constant</tt></a>, 
3154 <a href="#User"><tt>User</tt></a>, 
3155 <a href="#Value"><tt>Value</tt></a></p>
3156
3157 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
3158 actually one of the more complex classes in the LLVM heirarchy because it must
3159 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
3160 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
3161 <a href="#Argument"><tt>Argument</tt></a>s, and a 
3162 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3163
3164 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3165 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
3166 ordering of the blocks in the function, which indicate how the code will be
3167 layed out by the backend.  Additionally, the first <a
3168 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3169 <tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
3170 block.  There are no implicit exit nodes, and in fact there may be multiple exit
3171 nodes from a single <tt>Function</tt>.  If the <a
3172 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3173 the <tt>Function</tt> is actually a function declaration: the actual body of the
3174 function hasn't been linked in yet.</p>
3175
3176 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3177 <tt>Function</tt> class also keeps track of the list of formal <a
3178 href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
3179 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3180 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3181 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3182
3183 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3184 LLVM feature that is only used when you have to look up a value by name.  Aside
3185 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3186 internally to make sure that there are not conflicts between the names of <a
3187 href="#Instruction"><tt>Instruction</tt></a>s, <a
3188 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3189 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3190
3191 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3192 and therefore also a <a href="#Constant">Constant</a>. The value of the function
3193 is its address (after linking) which is guaranteed to be constant.</p>
3194 </div>
3195
3196 <!-- _______________________________________________________________________ -->
3197 <div class="doc_subsubsection">
3198   <a name="m_Function">Important Public Members of the <tt>Function</tt>
3199   class</a>
3200 </div>
3201
3202 <div class="doc_text">
3203
3204 <ul>
3205   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3206   *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3207
3208     <p>Constructor used when you need to create new <tt>Function</tt>s to add
3209     the the program.  The constructor must specify the type of the function to
3210     create and what type of linkage the function should have. The <a 
3211     href="#FunctionType"><tt>FunctionType</tt></a> argument
3212     specifies the formal arguments and return value for the function. The same
3213     <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3214     create multiple functions. The <tt>Parent</tt> argument specifies the Module
3215     in which the function is defined. If this argument is provided, the function
3216     will automatically be inserted into that module's list of
3217     functions.</p></li>
3218
3219   <li><tt>bool isDeclaration()</tt>
3220
3221     <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
3222     function is "external", it does not have a body, and thus must be resolved
3223     by linking with a function defined in a different translation unit.</p></li>
3224
3225   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3226     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3227
3228     <tt>begin()</tt>, <tt>end()</tt>
3229     <tt>size()</tt>, <tt>empty()</tt>
3230
3231     <p>These are forwarding methods that make it easy to access the contents of
3232     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3233     list.</p></li>
3234
3235   <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3236
3237     <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
3238     is necessary to use when you need to update the list or perform a complex
3239     action that doesn't have a forwarding method.</p></li>
3240
3241   <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3242 iterator<br>
3243     <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3244
3245     <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3246     <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3247
3248     <p>These are forwarding methods that make it easy to access the contents of
3249     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3250     list.</p></li>
3251
3252   <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3253
3254     <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
3255     necessary to use when you need to update the list or perform a complex
3256     action that doesn't have a forwarding method.</p></li>
3257
3258   <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3259
3260     <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3261     function.  Because the entry block for the function is always the first
3262     block, this returns the first block of the <tt>Function</tt>.</p></li>
3263
3264   <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3265     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3266
3267     <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3268     <tt>Function</tt> and returns the return type of the function, or the <a
3269     href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3270     function.</p></li>
3271
3272   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3273
3274     <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3275     for this <tt>Function</tt>.</p></li>
3276 </ul>
3277
3278 </div>
3279
3280 <!-- ======================================================================= -->
3281 <div class="doc_subsection">
3282   <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3283 </div>
3284
3285 <div class="doc_text">
3286
3287 <p><tt>#include "<a
3288 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3289 <br>
3290 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3291  Class</a><br>
3292 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3293 <a href="#Constant"><tt>Constant</tt></a>,
3294 <a href="#User"><tt>User</tt></a>,
3295 <a href="#Value"><tt>Value</tt></a></p>
3296
3297 <p>Global variables are represented with the (suprise suprise)
3298 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3299 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3300 always referenced by their address (global values must live in memory, so their
3301 "name" refers to their constant address). See 
3302 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
3303 variables may have an initial value (which must be a 
3304 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
3305 they may be marked as "constant" themselves (indicating that their contents 
3306 never change at runtime).</p>
3307 </div>
3308
3309 <!-- _______________________________________________________________________ -->
3310 <div class="doc_subsubsection">
3311   <a name="m_GlobalVariable">Important Public Members of the
3312   <tt>GlobalVariable</tt> class</a>
3313 </div>
3314
3315 <div class="doc_text">
3316
3317 <ul>
3318   <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3319   isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3320   *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3321
3322     <p>Create a new global variable of the specified type. If
3323     <tt>isConstant</tt> is true then the global variable will be marked as
3324     unchanging for the program. The Linkage parameter specifies the type of
3325     linkage (internal, external, weak, linkonce, appending) for the variable. If
3326     the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
3327     the resultant global variable will have internal linkage.  AppendingLinkage
3328     concatenates together all instances (in different translation units) of the
3329     variable into a single variable but is only applicable to arrays.  &nbsp;See
3330     the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3331     further details on linkage types. Optionally an initializer, a name, and the
3332     module to put the variable into may be specified for the global variable as
3333     well.</p></li>
3334
3335   <li><tt>bool isConstant() const</tt>
3336
3337     <p>Returns true if this is a global variable that is known not to
3338     be modified at runtime.</p></li>
3339
3340   <li><tt>bool hasInitializer()</tt>
3341
3342     <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3343
3344   <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3345
3346     <p>Returns the intial value for a <tt>GlobalVariable</tt>.  It is not legal
3347     to call this method if there is no initializer.</p></li>
3348 </ul>
3349
3350 </div>
3351
3352
3353 <!-- ======================================================================= -->
3354 <div class="doc_subsection">
3355   <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3356 </div>
3357
3358 <div class="doc_text">
3359
3360 <p><tt>#include "<a
3361 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3362 doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
3363 Class</a><br>
3364 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3365
3366 <p>This class represents a single entry multiple exit section of the code,
3367 commonly known as a basic block by the compiler community.  The
3368 <tt>BasicBlock</tt> class maintains a list of <a
3369 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3370 Matching the language definition, the last element of this list of instructions
3371 is always a terminator instruction (a subclass of the <a
3372 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3373
3374 <p>In addition to tracking the list of instructions that make up the block, the
3375 <tt>BasicBlock</tt> class also keeps track of the <a
3376 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3377
3378 <p>Note that <tt>BasicBlock</tt>s themselves are <a
3379 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3380 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3381 <tt>label</tt>.</p>
3382
3383 </div>
3384
3385 <!-- _______________________________________________________________________ -->
3386 <div class="doc_subsubsection">
3387   <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
3388   class</a>
3389 </div>
3390
3391 <div class="doc_text">
3392 <ul>
3393
3394 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3395  href="#Function">Function</a> *Parent = 0)</tt>
3396
3397 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3398 insertion into a function.  The constructor optionally takes a name for the new
3399 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
3400 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3401 automatically inserted at the end of the specified <a
3402 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3403 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3404
3405 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3406 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3407 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3408 <tt>size()</tt>, <tt>empty()</tt>
3409 STL-style functions for accessing the instruction list.
3410
3411 <p>These methods and typedefs are forwarding functions that have the same
3412 semantics as the standard library methods of the same names.  These methods
3413 expose the underlying instruction list of a basic block in a way that is easy to
3414 manipulate.  To get the full complement of container operations (including
3415 operations to update the list), you must use the <tt>getInstList()</tt>
3416 method.</p></li>
3417
3418 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3419
3420 <p>This method is used to get access to the underlying container that actually
3421 holds the Instructions.  This method must be used when there isn't a forwarding
3422 function in the <tt>BasicBlock</tt> class for the operation that you would like
3423 to perform.  Because there are no forwarding functions for "updating"
3424 operations, you need to use this if you want to update the contents of a
3425 <tt>BasicBlock</tt>.</p></li>
3426
3427 <li><tt><a href="#Function">Function</a> *getParent()</tt>
3428
3429 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3430 embedded into, or a null pointer if it is homeless.</p></li>
3431
3432 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3433
3434 <p> Returns a pointer to the terminator instruction that appears at the end of
3435 the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
3436 instruction in the block is not a terminator, then a null pointer is
3437 returned.</p></li>
3438
3439 </ul>
3440
3441 </div>
3442
3443
3444 <!-- ======================================================================= -->
3445 <div class="doc_subsection">
3446   <a name="Argument">The <tt>Argument</tt> class</a>
3447 </div>
3448
3449 <div class="doc_text">
3450
3451 <p>This subclass of Value defines the interface for incoming formal
3452 arguments to a function. A Function maintains a list of its formal
3453 arguments. An argument has a pointer to the parent Function.</p>
3454
3455 </div>
3456
3457 <!-- *********************************************************************** -->
3458 <hr>
3459 <address>
3460   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
3461   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
3462   <a href="http://validator.w3.org/check/referer"><img
3463   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
3464
3465   <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3466   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3467   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
3468   Last modified: $Date$
3469 </address>
3470
3471 </body>
3472 </html>