Document ADT/PackedVector.h in "Programmer's Manual" doc.
[oota-llvm.git] / docs / ProgrammersManual.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
6   <title>LLVM Programmer's Manual</title>
7   <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
9 <body>
10
11 <h1>
12   LLVM Programmer's Manual
13 </h1>
14
15 <ol>
16   <li><a href="#introduction">Introduction</a></li>
17   <li><a href="#general">General Information</a>
18     <ul>
19       <li><a href="#stl">The C++ Standard Template Library</a></li>
20 <!--
21       <li>The <tt>-time-passes</tt> option</li>
22       <li>How to use the LLVM Makefile system</li>
23       <li>How to write a regression test</li>
24
25 --> 
26     </ul>
27   </li>
28   <li><a href="#apis">Important and useful LLVM APIs</a>
29     <ul>
30       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
32       <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
33 and <tt>Twine</tt> classes)</a>
34         <ul>
35           <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36           <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37         </ul>
38       </li>
39       <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
40 option</a>
41         <ul>
42           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43 and the <tt>-debug-only</tt> option</a> </li>
44         </ul>
45       </li>
46       <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
47 option</a></li>
48 <!--
49       <li>The <tt>InstVisitor</tt> template
50       <li>The general graph API
51 --> 
52       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
53     </ul>
54   </li>
55   <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56     <ul>
57     <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58     <ul>
59       <li><a href="#dss_arrayref">llvm/ADT/ArrayRef.h</a></li>
60       <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
61       <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
62       <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
63       <li><a href="#dss_vector">&lt;vector&gt;</a></li>
64       <li><a href="#dss_deque">&lt;deque&gt;</a></li>
65       <li><a href="#dss_list">&lt;list&gt;</a></li>
66       <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
67       <li><a href="#dss_packedvector">llvm/ADT/PackedVector.h</a></li>
68       <li><a href="#dss_other">Other Sequential Container Options</a></li>
69     </ul></li>
70     <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
71     <ul>
72       <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
73       <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
74       <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
75       <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
76       <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
77       <li><a href="#dss_set">&lt;set&gt;</a></li>
78       <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
79       <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
80       <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
81     </ul></li>
82     <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
83     <ul>
84       <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
85       <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
86       <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
87       <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
88       <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
89       <li><a href="#dss_intervalmap">"llvm/ADT/IntervalMap.h"</a></li>
90       <li><a href="#dss_map">&lt;map&gt;</a></li>
91       <li><a href="#dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a></li>
92       <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
93     </ul></li>
94     <li><a href="#ds_string">String-like containers</a>
95     <!--<ul>
96        todo
97     </ul>--></li>
98     <li><a href="#ds_bit">BitVector-like containers</a>
99     <ul>
100       <li><a href="#dss_bitvector">A dense bitvector</a></li>
101       <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
102       <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
103     </ul></li>
104   </ul>
105   </li>
106   <li><a href="#common">Helpful Hints for Common Operations</a>
107     <ul>
108       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
109         <ul>
110           <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
111 in a <tt>Function</tt></a> </li>
112           <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
113 in a <tt>BasicBlock</tt></a> </li>
114           <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
115 in a <tt>Function</tt></a> </li>
116           <li><a href="#iterate_convert">Turning an iterator into a
117 class pointer</a> </li>
118           <li><a href="#iterate_complex">Finding call sites: a more
119 complex example</a> </li>
120           <li><a href="#calls_and_invokes">Treating calls and invokes
121 the same way</a> </li>
122           <li><a href="#iterate_chains">Iterating over def-use &amp;
123 use-def chains</a> </li>
124           <li><a href="#iterate_preds">Iterating over predecessors &amp;
125 successors of blocks</a></li>
126         </ul>
127       </li>
128       <li><a href="#simplechanges">Making simple changes</a>
129         <ul>
130           <li><a href="#schanges_creating">Creating and inserting new
131                  <tt>Instruction</tt>s</a> </li>
132           <li><a href="#schanges_deleting">Deleting              <tt>Instruction</tt>s</a> </li>
133           <li><a href="#schanges_replacing">Replacing an                 <tt>Instruction</tt>
134 with another <tt>Value</tt></a> </li>
135           <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
136         </ul>
137       </li>
138       <li><a href="#create_types">How to Create Types</a></li>
139 <!--
140     <li>Working with the Control Flow Graph
141     <ul>
142       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
143       <li>
144       <li>
145     </ul>
146 --> 
147     </ul>
148   </li>
149
150   <li><a href="#threading">Threads and LLVM</a>
151   <ul>
152     <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
153         </a></li>
154     <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
155     <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
156     <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
157     <li><a href="#jitthreading">Threads and the JIT</a></li>
158   </ul>
159   </li>
160
161   <li><a href="#advanced">Advanced Topics</a>
162   <ul>
163   <li><a href="#TypeResolve">LLVM Type Resolution</a>
164   <ul>
165     <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
166     <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
167     <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
168     <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
169   </ul></li>
170
171   <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes</a></li>
172   <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
173   </ul></li>
174
175   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
176     <ul>
177       <li><a href="#Type">The <tt>Type</tt> class</a> </li>
178       <li><a href="#Module">The <tt>Module</tt> class</a></li>
179       <li><a href="#Value">The <tt>Value</tt> class</a>
180       <ul>
181         <li><a href="#User">The <tt>User</tt> class</a>
182         <ul>
183           <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
184           <li><a href="#Constant">The <tt>Constant</tt> class</a>
185           <ul>
186             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
187             <ul>
188               <li><a href="#Function">The <tt>Function</tt> class</a></li>
189               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
190             </ul>
191             </li>
192           </ul>
193           </li>
194         </ul>
195         </li>
196         <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
197         <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
198       </ul>
199       </li>
200     </ul>
201   </li>
202 </ol>
203
204 <div class="doc_author">    
205   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>, 
206                 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, 
207                 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>, 
208                 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
209                 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
210                 <a href="mailto:owen@apple.com">Owen Anderson</a></p>
211 </div>
212
213 <!-- *********************************************************************** -->
214 <h2>
215   <a name="introduction">Introduction </a>
216 </h2>
217 <!-- *********************************************************************** -->
218
219 <div>
220
221 <p>This document is meant to highlight some of the important classes and
222 interfaces available in the LLVM source-base.  This manual is not
223 intended to explain what LLVM is, how it works, and what LLVM code looks
224 like.  It assumes that you know the basics of LLVM and are interested
225 in writing transformations or otherwise analyzing or manipulating the
226 code.</p>
227
228 <p>This document should get you oriented so that you can find your
229 way in the continuously growing source code that makes up the LLVM
230 infrastructure. Note that this manual is not intended to serve as a
231 replacement for reading the source code, so if you think there should be
232 a method in one of these classes to do something, but it's not listed,
233 check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
234 are provided to make this as easy as possible.</p>
235
236 <p>The first section of this document describes general information that is
237 useful to know when working in the LLVM infrastructure, and the second describes
238 the Core LLVM classes.  In the future this manual will be extended with
239 information describing how to use extension libraries, such as dominator
240 information, CFG traversal routines, and useful utilities like the <tt><a
241 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
242
243 </div>
244
245 <!-- *********************************************************************** -->
246 <h2>
247   <a name="general">General Information</a>
248 </h2>
249 <!-- *********************************************************************** -->
250
251 <div>
252
253 <p>This section contains general information that is useful if you are working
254 in the LLVM source-base, but that isn't specific to any particular API.</p>
255
256 <!-- ======================================================================= -->
257 <h3>
258   <a name="stl">The C++ Standard Template Library</a>
259 </h3>
260
261 <div>
262
263 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
264 perhaps much more than you are used to, or have seen before.  Because of
265 this, you might want to do a little background reading in the
266 techniques used and capabilities of the library.  There are many good
267 pages that discuss the STL, and several books on the subject that you
268 can get, so it will not be discussed in this document.</p>
269
270 <p>Here are some useful links:</p>
271
272 <ol>
273
274 <li><a href="http://www.dinkumware.com/manuals/#Standard C++ Library">Dinkumware
275 C++ Library reference</a> - an excellent reference for the STL and other parts
276 of the standard C++ library.</li>
277
278 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
279 O'Reilly book in the making.  It has a decent Standard Library
280 Reference that rivals Dinkumware's, and is unfortunately no longer free since the
281 book has been published.</li>
282
283 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
284 Questions</a></li>
285
286 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
287 Contains a useful <a
288 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
289 STL</a>.</li>
290
291 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
292 Page</a></li>
293
294 <li><a href="http://64.78.49.204/">
295 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
296 the book).</a></li>
297
298 </ol>
299   
300 <p>You are also encouraged to take a look at the <a
301 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
302 to write maintainable code more than where to put your curly braces.</p>
303
304 </div>
305
306 <!-- ======================================================================= -->
307 <h3>
308   <a name="stl">Other useful references</a>
309 </h3>
310
311 <div>
312
313 <ol>
314 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
315 static and shared libraries across platforms</a></li>
316 </ol>
317
318 </div>
319
320 </div>
321
322 <!-- *********************************************************************** -->
323 <h2>
324   <a name="apis">Important and useful LLVM APIs</a>
325 </h2>
326 <!-- *********************************************************************** -->
327
328 <div>
329
330 <p>Here we highlight some LLVM APIs that are generally useful and good to
331 know about when writing transformations.</p>
332
333 <!-- ======================================================================= -->
334 <h3>
335   <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
336   <tt>dyn_cast&lt;&gt;</tt> templates</a>
337 </h3>
338
339 <div>
340
341 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
342 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
343 operator, but they don't have some drawbacks (primarily stemming from
344 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
345 have a v-table). Because they are used so often, you must know what they
346 do and how they work. All of these templates are defined in the <a
347  href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
348 file (note that you very rarely have to include this file directly).</p>
349
350 <dl>
351   <dt><tt>isa&lt;&gt;</tt>: </dt>
352
353   <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
354   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
355   a reference or pointer points to an instance of the specified class.  This can
356   be very useful for constraint checking of various sorts (example below).</p>
357   </dd>
358
359   <dt><tt>cast&lt;&gt;</tt>: </dt>
360
361   <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
362   converts a pointer or reference from a base class to a derived class, causing
363   an assertion failure if it is not really an instance of the right type.  This
364   should be used in cases where you have some information that makes you believe
365   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
366   and <tt>cast&lt;&gt;</tt> template is:</p>
367
368 <div class="doc_code">
369 <pre>
370 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
371   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
372     return true;
373
374   // <i>Otherwise, it must be an instruction...</i>
375   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
376 }
377 </pre>
378 </div>
379
380   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
381   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
382   operator.</p>
383
384   </dd>
385
386   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
387
388   <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
389   It checks to see if the operand is of the specified type, and if so, returns a
390   pointer to it (this operator does not work with references). If the operand is
391   not of the correct type, a null pointer is returned.  Thus, this works very
392   much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
393   used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
394   operator is used in an <tt>if</tt> statement or some other flow control
395   statement like this:</p>
396
397 <div class="doc_code">
398 <pre>
399 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
400   // <i>...</i>
401 }
402 </pre>
403 </div>
404    
405   <p>This form of the <tt>if</tt> statement effectively combines together a call
406   to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
407   statement, which is very convenient.</p>
408
409   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
410   <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
411   abused.  In particular, you should not use big chained <tt>if/then/else</tt>
412   blocks to check for lots of different variants of classes.  If you find
413   yourself wanting to do this, it is much cleaner and more efficient to use the
414   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
415
416   </dd>
417
418   <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
419   
420   <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
421   <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
422   argument (which it then propagates).  This can sometimes be useful, allowing
423   you to combine several null checks into one.</p></dd>
424
425   <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
426
427   <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
428   <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
429   as an argument (which it then propagates).  This can sometimes be useful,
430   allowing you to combine several null checks into one.</p></dd>
431
432 </dl>
433
434 <p>These five templates can be used with any classes, whether they have a
435 v-table or not.  To add support for these templates, you simply need to add
436 <tt>classof</tt> static methods to the class you are interested casting
437 to. Describing this is currently outside the scope of this document, but there
438 are lots of examples in the LLVM source base.</p>
439
440 </div>
441
442
443 <!-- ======================================================================= -->
444 <h3>
445   <a name="string_apis">Passing strings (the <tt>StringRef</tt>
446 and <tt>Twine</tt> classes)</a>
447 </h3>
448
449 <div>
450
451 <p>Although LLVM generally does not do much string manipulation, we do have
452 several important APIs which take strings.  Two important examples are the
453 Value class -- which has names for instructions, functions, etc. -- and the
454 StringMap class which is used extensively in LLVM and Clang.</p>
455
456 <p>These are generic classes, and they need to be able to accept strings which
457 may have embedded null characters.  Therefore, they cannot simply take
458 a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
459 clients to perform a heap allocation which is usually unnecessary.  Instead,
460 many LLVM APIs use a <tt>StringRef</tt> or a <tt>const Twine&amp;</tt> for
461 passing strings efficiently.</p>
462
463 <!-- _______________________________________________________________________ -->
464 <h4>
465   <a name="StringRef">The <tt>StringRef</tt> class</a>
466 </h4>
467
468 <div>
469
470 <p>The <tt>StringRef</tt> data type represents a reference to a constant string
471 (a character array and a length) and supports the common operations available
472 on <tt>std:string</tt>, but does not require heap allocation.</p>
473
474 <p>It can be implicitly constructed using a C style null-terminated string,
475 an <tt>std::string</tt>, or explicitly with a character pointer and length.
476 For example, the <tt>StringRef</tt> find function is declared as:</p>
477
478 <pre class="doc_code">
479   iterator find(StringRef Key);
480 </pre>
481
482 <p>and clients can call it using any one of:</p>
483
484 <pre class="doc_code">
485   Map.find("foo");                 <i>// Lookup "foo"</i>
486   Map.find(std::string("bar"));    <i>// Lookup "bar"</i>
487   Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
488 </pre>
489
490 <p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
491 instance, which can be used directly or converted to an <tt>std::string</tt>
492 using the <tt>str</tt> member function.  See 
493 "<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
494 for more information.</p>
495
496 <p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
497 pointers to external memory it is not generally safe to store an instance of the
498 class (unless you know that the external storage will not be freed). StringRef is
499 small and pervasive enough in LLVM that it should always be passed by value.</p>
500
501 </div>
502
503 <!-- _______________________________________________________________________ -->
504 <h4>
505   <a name="Twine">The <tt>Twine</tt> class</a>
506 </h4>
507
508 <div>
509
510 <p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
511 strings.  For example, a common LLVM paradigm is to name one instruction based on
512 the name of another instruction with a suffix, for example:</p>
513
514 <div class="doc_code">
515 <pre>
516     New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
517 </pre>
518 </div>
519
520 <p>The <tt>Twine</tt> class is effectively a
521 lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
522 which points to temporary (stack allocated) objects.  Twines can be implicitly
523 constructed as the result of the plus operator applied to strings (i.e., a C
524 strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>).  The twine delays the
525 actual concatenation of strings until it is actually required, at which point
526 it can be efficiently rendered directly into a character array.  This avoids
527 unnecessary heap allocation involved in constructing the temporary results of
528 string concatenation. See
529 "<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
530 for more information.</p>
531
532 <p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
533 and should almost never be stored or mentioned directly.  They are intended
534 solely for use when defining a function which should be able to efficiently
535 accept concatenated strings.</p>
536
537 </div>
538
539 </div>
540
541 <!-- ======================================================================= -->
542 <h3>
543   <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
544 </h3>
545
546 <div>
547
548 <p>Often when working on your pass you will put a bunch of debugging printouts
549 and other code into your pass.  After you get it working, you want to remove
550 it, but you may need it again in the future (to work out new bugs that you run
551 across).</p>
552
553 <p> Naturally, because of this, you don't want to delete the debug printouts,
554 but you don't want them to always be noisy.  A standard compromise is to comment
555 them out, allowing you to enable them if you need them in the future.</p>
556
557 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
558 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
559 this problem.  Basically, you can put arbitrary code into the argument of the
560 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
561 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
562
563 <div class="doc_code">
564 <pre>
565 DEBUG(errs() &lt;&lt; "I am here!\n");
566 </pre>
567 </div>
568
569 <p>Then you can run your pass like this:</p>
570
571 <div class="doc_code">
572 <pre>
573 $ opt &lt; a.bc &gt; /dev/null -mypass
574 <i>&lt;no output&gt;</i>
575 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
576 I am here!
577 </pre>
578 </div>
579
580 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
581 to not have to create "yet another" command line option for the debug output for
582 your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
583 so they do not cause a performance impact at all (for the same reason, they
584 should also not contain side-effects!).</p>
585
586 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
587 enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
588 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
589 program hasn't been started yet, you can always just run it with
590 <tt>-debug</tt>.</p>
591
592 <!-- _______________________________________________________________________ -->
593 <h4>
594   <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
595   the <tt>-debug-only</tt> option</a>
596 </h4>
597
598 <div>
599
600 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
601 just turns on <b>too much</b> information (such as when working on the code
602 generator).  If you want to enable debug information with more fine-grained
603 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
604 option as follows:</p>
605
606 <div class="doc_code">
607 <pre>
608 #undef  DEBUG_TYPE
609 DEBUG(errs() &lt;&lt; "No debug type\n");
610 #define DEBUG_TYPE "foo"
611 DEBUG(errs() &lt;&lt; "'foo' debug type\n");
612 #undef  DEBUG_TYPE
613 #define DEBUG_TYPE "bar"
614 DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
615 #undef  DEBUG_TYPE
616 #define DEBUG_TYPE ""
617 DEBUG(errs() &lt;&lt; "No debug type (2)\n");
618 </pre>
619 </div>
620
621 <p>Then you can run your pass like this:</p>
622
623 <div class="doc_code">
624 <pre>
625 $ opt &lt; a.bc &gt; /dev/null -mypass
626 <i>&lt;no output&gt;</i>
627 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
628 No debug type
629 'foo' debug type
630 'bar' debug type
631 No debug type (2)
632 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
633 'foo' debug type
634 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
635 'bar' debug type
636 </pre>
637 </div>
638
639 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
640 a file, to specify the debug type for the entire module (if you do this before
641 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
642 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
643 "bar", because there is no system in place to ensure that names do not
644 conflict. If two different modules use the same string, they will all be turned
645 on when the name is specified. This allows, for example, all debug information
646 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
647 even if the source lives in multiple files.</p>
648
649 <p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
650 would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
651 statement. It takes an additional first parameter, which is the type to use. For
652 example, the preceding example could be written as:</p>
653
654
655 <div class="doc_code">
656 <pre>
657 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
658 DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
659 DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
660 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
661 </pre>
662 </div>
663
664 </div>
665
666 </div>
667
668 <!-- ======================================================================= -->
669 <h3>
670   <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
671   option</a>
672 </h3>
673
674 <div>
675
676 <p>The "<tt><a
677 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
678 provides a class named <tt>Statistic</tt> that is used as a unified way to
679 keep track of what the LLVM compiler is doing and how effective various
680 optimizations are.  It is useful to see what optimizations are contributing to
681 making a particular program run faster.</p>
682
683 <p>Often you may run your pass on some big program, and you're interested to see
684 how many times it makes a certain transformation.  Although you can do this with
685 hand inspection, or some ad-hoc method, this is a real pain and not very useful
686 for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
687 keep track of this information, and the calculated information is presented in a
688 uniform manner with the rest of the passes being executed.</p>
689
690 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
691 it are as follows:</p>
692
693 <ol>
694     <li><p>Define your statistic like this:</p>
695
696 <div class="doc_code">
697 <pre>
698 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
699 STATISTIC(NumXForms, "The # of times I did stuff");
700 </pre>
701 </div>
702
703   <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
704     specified by the first argument.  The pass name is taken from the DEBUG_TYPE
705     macro, and the description is taken from the second argument.  The variable
706     defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
707
708     <li><p>Whenever you make a transformation, bump the counter:</p>
709
710 <div class="doc_code">
711 <pre>
712 ++NumXForms;   // <i>I did stuff!</i>
713 </pre>
714 </div>
715
716     </li>
717   </ol>
718
719   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
720   statistics gathered, use the '<tt>-stats</tt>' option:</p>
721
722 <div class="doc_code">
723 <pre>
724 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
725 <i>... statistics output ...</i>
726 </pre>
727 </div>
728
729   <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
730 suite, it gives a report that looks like this:</p>
731
732 <div class="doc_code">
733 <pre>
734    7646 bitcodewriter   - Number of normal instructions
735     725 bitcodewriter   - Number of oversized instructions
736  129996 bitcodewriter   - Number of bitcode bytes written
737    2817 raise           - Number of insts DCEd or constprop'd
738    3213 raise           - Number of cast-of-self removed
739    5046 raise           - Number of expression trees converted
740      75 raise           - Number of other getelementptr's formed
741     138 raise           - Number of load/store peepholes
742      42 deadtypeelim    - Number of unused typenames removed from symtab
743     392 funcresolve     - Number of varargs functions resolved
744      27 globaldce       - Number of global variables removed
745       2 adce            - Number of basic blocks removed
746     134 cee             - Number of branches revectored
747      49 cee             - Number of setcc instruction eliminated
748     532 gcse            - Number of loads removed
749    2919 gcse            - Number of instructions removed
750      86 indvars         - Number of canonical indvars added
751      87 indvars         - Number of aux indvars removed
752      25 instcombine     - Number of dead inst eliminate
753     434 instcombine     - Number of insts combined
754     248 licm            - Number of load insts hoisted
755    1298 licm            - Number of insts hoisted to a loop pre-header
756       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
757      75 mem2reg         - Number of alloca's promoted
758    1444 cfgsimplify     - Number of blocks simplified
759 </pre>
760 </div>
761
762 <p>Obviously, with so many optimizations, having a unified framework for this
763 stuff is very nice.  Making your pass fit well into the framework makes it more
764 maintainable and useful.</p>
765
766 </div>
767
768 <!-- ======================================================================= -->
769 <h3>
770   <a name="ViewGraph">Viewing graphs while debugging code</a>
771 </h3>
772
773 <div>
774
775 <p>Several of the important data structures in LLVM are graphs: for example
776 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
777 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
778 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
779 DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
780 nice to instantly visualize these graphs.</p>
781
782 <p>LLVM provides several callbacks that are available in a debug build to do
783 exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
784 the current LLVM tool will pop up a window containing the CFG for the function
785 where each basic block is a node in the graph, and each node contains the
786 instructions in the block.  Similarly, there also exists 
787 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
788 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
789 and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
790 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
791 up a window.  Alternatively, you can sprinkle calls to these functions in your
792 code in places you want to debug.</p>
793
794 <p>Getting this to work requires a small amount of configuration.  On Unix
795 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
796 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
797 Mac OS/X, download and install the Mac OS/X <a 
798 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
799 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
800 it) to your path.  Once in your system and path are set up, rerun the LLVM
801 configure script and rebuild LLVM to enable this functionality.</p>
802
803 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
804 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
805 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
806 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
807 specified color (choices of colors can be found at <a
808 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
809 complex node attributes can be provided with <tt>call
810 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
811 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
812 Attributes</a>.)  If you want to restart and clear all the current graph
813 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
814
815 <p>Note that graph visualization features are compiled out of Release builds
816 to reduce file size.  This means that you need a Debug+Asserts or 
817 Release+Asserts build to use these features.</p>
818
819 </div>
820
821 </div>
822
823 <!-- *********************************************************************** -->
824 <h2>
825   <a name="datastructure">Picking the Right Data Structure for a Task</a>
826 </h2>
827 <!-- *********************************************************************** -->
828
829 <div>
830
831 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
832  and we commonly use STL data structures.  This section describes the trade-offs
833  you should consider when you pick one.</p>
834
835 <p>
836 The first step is a choose your own adventure: do you want a sequential
837 container, a set-like container, or a map-like container?  The most important
838 thing when choosing a container is the algorithmic properties of how you plan to
839 access the container.  Based on that, you should use:</p>
840
841 <ul>
842 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
843     of an value based on another value.  Map-like containers also support
844     efficient queries for containment (whether a key is in the map).  Map-like
845     containers generally do not support efficient reverse mapping (values to
846     keys).  If you need that, use two maps.  Some map-like containers also
847     support efficient iteration through the keys in sorted order.  Map-like
848     containers are the most expensive sort, only use them if you need one of
849     these capabilities.</li>
850
851 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
852     stuff into a container that automatically eliminates duplicates.  Some
853     set-like containers support efficient iteration through the elements in
854     sorted order.  Set-like containers are more expensive than sequential
855     containers.
856 </li>
857
858 <li>a <a href="#ds_sequential">sequential</a> container provides
859     the most efficient way to add elements and keeps track of the order they are
860     added to the collection.  They permit duplicates and support efficient
861     iteration, but do not support efficient look-up based on a key.
862 </li>
863
864 <li>a <a href="#ds_string">string</a> container is a specialized sequential
865     container or reference structure that is used for character or byte
866     arrays.</li>
867
868 <li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
869     perform set operations on sets of numeric id's, while automatically
870     eliminating duplicates.  Bit containers require a maximum of 1 bit for each
871     identifier you want to store.
872 </li>
873 </ul>
874
875 <p>
876 Once the proper category of container is determined, you can fine tune the
877 memory use, constant factors, and cache behaviors of access by intelligently
878 picking a member of the category.  Note that constant factors and cache behavior
879 can be a big deal.  If you have a vector that usually only contains a few
880 elements (but could contain many), for example, it's much better to use
881 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
882 .  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
883 cost of adding the elements to the container. </p>
884
885 <!-- ======================================================================= -->
886 <h3>
887   <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
888 </h3>
889
890 <div>
891 There are a variety of sequential containers available for you, based on your
892 needs.  Pick the first in this section that will do what you want.
893
894 <!-- _______________________________________________________________________ -->
895 <h4>
896   <a name="dss_arrayref">llvm/ADT/ArrayRef.h</a>
897 </h4>
898
899 <div>
900 <p>The llvm::ArrayRef class is the preferred class to use in an interface that
901    accepts a sequential list of elements in memory and just reads from them.  By
902    taking an ArrayRef, the API can be passed a fixed size array, an std::vector,
903    an llvm::SmallVector and anything else that is contiguous in memory.
904 </p>
905 </div>
906
907
908   
909 <!-- _______________________________________________________________________ -->
910 <h4>
911   <a name="dss_fixedarrays">Fixed Size Arrays</a>
912 </h4>
913
914 <div>
915 <p>Fixed size arrays are very simple and very fast.  They are good if you know
916 exactly how many elements you have, or you have a (low) upper bound on how many
917 you have.</p>
918 </div>
919
920 <!-- _______________________________________________________________________ -->
921 <h4>
922   <a name="dss_heaparrays">Heap Allocated Arrays</a>
923 </h4>
924
925 <div>
926 <p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
927 the number of elements is variable, if you know how many elements you will need
928 before the array is allocated, and if the array is usually large (if not,
929 consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
930 allocated array is the cost of the new/delete (aka malloc/free).  Also note that
931 if you are allocating an array of a type with a constructor, the constructor and
932 destructors will be run for every element in the array (re-sizable vectors only
933 construct those elements actually used).</p>
934 </div>
935
936 <!-- _______________________________________________________________________ -->
937 <h4>
938   <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
939 </h4>
940
941 <div>
942 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
943 just like <tt>vector&lt;Type&gt;</tt>:
944 it supports efficient iteration, lays out elements in memory order (so you can
945 do pointer arithmetic between elements), supports efficient push_back/pop_back
946 operations, supports efficient random access to its elements, etc.</p>
947
948 <p>The advantage of SmallVector is that it allocates space for
949 some number of elements (N) <b>in the object itself</b>.  Because of this, if
950 the SmallVector is dynamically smaller than N, no malloc is performed.  This can
951 be a big win in cases where the malloc/free call is far more expensive than the
952 code that fiddles around with the elements.</p>
953
954 <p>This is good for vectors that are "usually small" (e.g. the number of
955 predecessors/successors of a block is usually less than 8).  On the other hand,
956 this makes the size of the SmallVector itself large, so you don't want to
957 allocate lots of them (doing so will waste a lot of space).  As such,
958 SmallVectors are most useful when on the stack.</p>
959
960 <p>SmallVector also provides a nice portable and efficient replacement for
961 <tt>alloca</tt>.</p>
962
963 </div>
964
965 <!-- _______________________________________________________________________ -->
966 <h4>
967   <a name="dss_vector">&lt;vector&gt;</a>
968 </h4>
969
970 <div>
971 <p>
972 std::vector is well loved and respected.  It is useful when SmallVector isn't:
973 when the size of the vector is often large (thus the small optimization will
974 rarely be a benefit) or if you will be allocating many instances of the vector
975 itself (which would waste space for elements that aren't in the container).
976 vector is also useful when interfacing with code that expects vectors :).
977 </p>
978
979 <p>One worthwhile note about std::vector: avoid code like this:</p>
980
981 <div class="doc_code">
982 <pre>
983 for ( ... ) {
984    std::vector&lt;foo&gt; V;
985    use V;
986 }
987 </pre>
988 </div>
989
990 <p>Instead, write this as:</p>
991
992 <div class="doc_code">
993 <pre>
994 std::vector&lt;foo&gt; V;
995 for ( ... ) {
996    use V;
997    V.clear();
998 }
999 </pre>
1000 </div>
1001
1002 <p>Doing so will save (at least) one heap allocation and free per iteration of
1003 the loop.</p>
1004
1005 </div>
1006
1007 <!-- _______________________________________________________________________ -->
1008 <h4>
1009   <a name="dss_deque">&lt;deque&gt;</a>
1010 </h4>
1011
1012 <div>
1013 <p>std::deque is, in some senses, a generalized version of std::vector.  Like
1014 std::vector, it provides constant time random access and other similar
1015 properties, but it also provides efficient access to the front of the list.  It
1016 does not guarantee continuity of elements within memory.</p>
1017
1018 <p>In exchange for this extra flexibility, std::deque has significantly higher
1019 constant factor costs than std::vector.  If possible, use std::vector or
1020 something cheaper.</p>
1021 </div>
1022
1023 <!-- _______________________________________________________________________ -->
1024 <h4>
1025   <a name="dss_list">&lt;list&gt;</a>
1026 </h4>
1027
1028 <div>
1029 <p>std::list is an extremely inefficient class that is rarely useful.
1030 It performs a heap allocation for every element inserted into it, thus having an
1031 extremely high constant factor, particularly for small data types.  std::list
1032 also only supports bidirectional iteration, not random access iteration.</p>
1033
1034 <p>In exchange for this high cost, std::list supports efficient access to both
1035 ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
1036 addition, the iterator invalidation characteristics of std::list are stronger
1037 than that of a vector class: inserting or removing an element into the list does
1038 not invalidate iterator or pointers to other elements in the list.</p>
1039 </div>
1040
1041 <!-- _______________________________________________________________________ -->
1042 <h4>
1043   <a name="dss_ilist">llvm/ADT/ilist.h</a>
1044 </h4>
1045
1046 <div>
1047 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
1048 intrusive, because it requires the element to store and provide access to the
1049 prev/next pointers for the list.</p>
1050
1051 <p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1052 requires an <tt>ilist_traits</tt> implementation for the element type, but it
1053 provides some novel characteristics.  In particular, it can efficiently store
1054 polymorphic objects, the traits class is informed when an element is inserted or
1055 removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1056 constant-time splice operation.</p>
1057
1058 <p>These properties are exactly what we want for things like
1059 <tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1060 <tt>ilist</tt>s.</p>
1061
1062 Related classes of interest are explained in the following subsections:
1063     <ul>
1064       <li><a href="#dss_ilist_traits">ilist_traits</a></li>
1065       <li><a href="#dss_iplist">iplist</a></li>
1066       <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
1067       <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
1068     </ul>
1069 </div>
1070
1071 <!-- _______________________________________________________________________ -->
1072 <h4>
1073   <a name="dss_packedvector">llvm/ADT/PackedVector.h</a>
1074 </h4>
1075
1076 <div>
1077 <p>
1078 Useful for storing a vector of values using only a few number of bits for each
1079 value. Apart from the standard operations of a vector-like container, it can
1080 also perform an 'or' set operation. 
1081 </p>
1082
1083 <p>For example:</p>
1084
1085 <div class="doc_code">
1086 <pre>
1087 enum State {
1088     None = 0x0,
1089     FirstCondition = 0x1,
1090     SecondCondition = 0x2,
1091     Both = 0x3
1092 };
1093
1094 State get() {
1095     PackedVector&lt;State, 2&gt; Vec1;
1096     Vec1.push_back(FirstCondition);
1097
1098     PackedVector&lt;State, 2&gt; Vec2;
1099     Vec2.push_back(SecondCondition);
1100
1101     Vec1 |= Vec2;
1102     return Vec1[0]; // returns 'Both'.
1103 }
1104 </pre>
1105 </div>
1106
1107 </div>
1108
1109 <!-- _______________________________________________________________________ -->
1110 <h4>
1111   <a name="dss_ilist_traits">ilist_traits</a>
1112 </h4>
1113
1114 <div>
1115 <p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1116 mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1117 publicly derive from this traits class.</p>
1118 </div>
1119
1120 <!-- _______________________________________________________________________ -->
1121 <h4>
1122   <a name="dss_iplist">iplist</a>
1123 </h4>
1124
1125 <div>
1126 <p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
1127 supports a slightly narrower interface. Notably, inserters from
1128 <tt>T&amp;</tt> are absent.</p>
1129
1130 <p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1131 used for a wide variety of customizations.</p>
1132 </div>
1133
1134 <!-- _______________________________________________________________________ -->
1135 <h4>
1136   <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
1137 </h4>
1138
1139 <div>
1140 <p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1141 that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1142 in the default manner.</p>
1143
1144 <p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
1145 <tt>T</tt>, usually <tt>T</tt> publicly derives from
1146 <tt>ilist_node&lt;T&gt;</tt>.</p>
1147 </div>
1148
1149 <!-- _______________________________________________________________________ -->
1150 <h4>
1151   <a name="dss_ilist_sentinel">Sentinels</a>
1152 </h4>
1153
1154 <div>
1155 <p><tt>ilist</tt>s have another specialty that must be considered. To be a good
1156 citizen in the C++ ecosystem, it needs to support the standard container
1157 operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1158 <tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1159 case of non-empty <tt>ilist</tt>s.</p>
1160
1161 <p>The only sensible solution to this problem is to allocate a so-called
1162 <i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1163 iterator, providing the back-link to the last element. However conforming to the
1164 C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1165 also must not be dereferenced.</p>
1166
1167 <p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1168 how to allocate and store the sentinel. The corresponding policy is dictated
1169 by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1170 whenever the need for a sentinel arises.</p>
1171
1172 <p>While the default policy is sufficient in most cases, it may break down when
1173 <tt>T</tt> does not provide a default constructor. Also, in the case of many
1174 instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1175 is wasted. To alleviate the situation with numerous and voluminous
1176 <tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1177 sentinels</i>.</p>
1178
1179 <p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1180 which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1181 arithmetic is used to obtain the sentinel, which is relative to the
1182 <tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1183 extra pointer, which serves as the back-link of the sentinel. This is the only
1184 field in the ghostly sentinel which can be legally accessed.</p>
1185 </div>
1186
1187 <!-- _______________________________________________________________________ -->
1188 <h4>
1189   <a name="dss_other">Other Sequential Container options</a>
1190 </h4>
1191
1192 <div>
1193 <p>Other STL containers are available, such as std::string.</p>
1194
1195 <p>There are also various STL adapter classes such as std::queue,
1196 std::priority_queue, std::stack, etc.  These provide simplified access to an
1197 underlying container but don't affect the cost of the container itself.</p>
1198
1199 </div>
1200
1201 </div>
1202
1203 <!-- ======================================================================= -->
1204 <h3>
1205   <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1206 </h3>
1207
1208 <div>
1209
1210 <p>Set-like containers are useful when you need to canonicalize multiple values
1211 into a single representation.  There are several different choices for how to do
1212 this, providing various trade-offs.</p>
1213
1214 <!-- _______________________________________________________________________ -->
1215 <h4>
1216   <a name="dss_sortedvectorset">A sorted 'vector'</a>
1217 </h4>
1218
1219 <div>
1220
1221 <p>If you intend to insert a lot of elements, then do a lot of queries, a
1222 great approach is to use a vector (or other sequential container) with
1223 std::sort+std::unique to remove duplicates.  This approach works really well if
1224 your usage pattern has these two distinct phases (insert then query), and can be
1225 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1226 </p>
1227
1228 <p>
1229 This combination provides the several nice properties: the result data is
1230 contiguous in memory (good for cache locality), has few allocations, is easy to
1231 address (iterators in the final vector are just indices or pointers), and can be
1232 efficiently queried with a standard binary or radix search.</p>
1233
1234 </div>
1235
1236 <!-- _______________________________________________________________________ -->
1237 <h4>
1238   <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1239 </h4>
1240
1241 <div>
1242
1243 <p>If you have a set-like data structure that is usually small and whose elements
1244 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
1245 has space for N elements in place (thus, if the set is dynamically smaller than
1246 N, no malloc traffic is required) and accesses them with a simple linear search.
1247 When the set grows beyond 'N' elements, it allocates a more expensive representation that
1248 guarantees efficient access (for most types, it falls back to std::set, but for
1249 pointers it uses something far better, <a
1250 href="#dss_smallptrset">SmallPtrSet</a>).</p>
1251
1252 <p>The magic of this class is that it handles small sets extremely efficiently,
1253 but gracefully handles extremely large sets without loss of efficiency.  The
1254 drawback is that the interface is quite small: it supports insertion, queries
1255 and erasing, but does not support iteration.</p>
1256
1257 </div>
1258
1259 <!-- _______________________________________________________________________ -->
1260 <h4>
1261   <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1262 </h4>
1263
1264 <div>
1265
1266 <p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is 
1267 transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators.  If
1268 more than 'N' insertions are performed, a single quadratically
1269 probed hash table is allocated and grows as needed, providing extremely
1270 efficient access (constant time insertion/deleting/queries with low constant
1271 factors) and is very stingy with malloc traffic.</p>
1272
1273 <p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
1274 whenever an insertion occurs.  Also, the values visited by the iterators are not
1275 visited in sorted order.</p>
1276
1277 </div>
1278
1279 <!-- _______________________________________________________________________ -->
1280 <h4>
1281   <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1282 </h4>
1283
1284 <div>
1285
1286 <p>
1287 DenseSet is a simple quadratically probed hash table.  It excels at supporting
1288 small values: it uses a single allocation to hold all of the pairs that
1289 are currently inserted in the set.  DenseSet is a great way to unique small
1290 values that are not simple pointers (use <a 
1291 href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
1292 the same requirements for the value type that <a 
1293 href="#dss_densemap">DenseMap</a> has.
1294 </p>
1295
1296 </div>
1297
1298 <!-- _______________________________________________________________________ -->
1299 <h4>
1300   <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1301 </h4>
1302
1303 <div>
1304
1305 <p>
1306 FoldingSet is an aggregate class that is really good at uniquing
1307 expensive-to-create or polymorphic objects.  It is a combination of a chained
1308 hash table with intrusive links (uniqued objects are required to inherit from
1309 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1310 its ID process.</p>
1311
1312 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
1313 a complex object (for example, a node in the code generator).  The client has a
1314 description of *what* it wants to generate (it knows the opcode and all the
1315 operands), but we don't want to 'new' a node, then try inserting it into a set
1316 only to find out it already exists, at which point we would have to delete it
1317 and return the node that already exists.
1318 </p>
1319
1320 <p>To support this style of client, FoldingSet perform a query with a
1321 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1322 element that we want to query for.  The query either returns the element
1323 matching the ID or it returns an opaque ID that indicates where insertion should
1324 take place.  Construction of the ID usually does not require heap traffic.</p>
1325
1326 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1327 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1328 Because the elements are individually allocated, pointers to the elements are
1329 stable: inserting or removing elements does not invalidate any pointers to other
1330 elements.
1331 </p>
1332
1333 </div>
1334
1335 <!-- _______________________________________________________________________ -->
1336 <h4>
1337   <a name="dss_set">&lt;set&gt;</a>
1338 </h4>
1339
1340 <div>
1341
1342 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1343 many things but great at nothing.  std::set allocates memory for each element
1344 inserted (thus it is very malloc intensive) and typically stores three pointers
1345 per element in the set (thus adding a large amount of per-element space
1346 overhead).  It offers guaranteed log(n) performance, which is not particularly
1347 fast from a complexity standpoint (particularly if the elements of the set are
1348 expensive to compare, like strings), and has extremely high constant factors for
1349 lookup, insertion and removal.</p>
1350
1351 <p>The advantages of std::set are that its iterators are stable (deleting or
1352 inserting an element from the set does not affect iterators or pointers to other
1353 elements) and that iteration over the set is guaranteed to be in sorted order.
1354 If the elements in the set are large, then the relative overhead of the pointers
1355 and malloc traffic is not a big deal, but if the elements of the set are small,
1356 std::set is almost never a good choice.</p>
1357
1358 </div>
1359
1360 <!-- _______________________________________________________________________ -->
1361 <h4>
1362   <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1363 </h4>
1364
1365 <div>
1366 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1367 a set-like container along with a <a href="#ds_sequential">Sequential 
1368 Container</a>.  The important property
1369 that this provides is efficient insertion with uniquing (duplicate elements are
1370 ignored) with iteration support.  It implements this by inserting elements into
1371 both a set-like container and the sequential container, using the set-like
1372 container for uniquing and the sequential container for iteration.
1373 </p>
1374
1375 <p>The difference between SetVector and other sets is that the order of
1376 iteration is guaranteed to match the order of insertion into the SetVector.
1377 This property is really important for things like sets of pointers.  Because
1378 pointer values are non-deterministic (e.g. vary across runs of the program on
1379 different machines), iterating over the pointers in the set will
1380 not be in a well-defined order.</p>
1381
1382 <p>
1383 The drawback of SetVector is that it requires twice as much space as a normal
1384 set and has the sum of constant factors from the set-like container and the 
1385 sequential container that it uses.  Use it *only* if you need to iterate over 
1386 the elements in a deterministic order.  SetVector is also expensive to delete
1387 elements out of (linear time), unless you use it's "pop_back" method, which is
1388 faster.
1389 </p>
1390
1391 <p>SetVector is an adapter class that defaults to using std::vector and std::set
1392 for the underlying containers, so it is quite expensive.  However,
1393 <tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1394 defaults to using a SmallVector and SmallSet of a specified size.  If you use
1395 this, and if your sets are dynamically smaller than N, you will save a lot of 
1396 heap traffic.</p>
1397
1398 </div>
1399
1400 <!-- _______________________________________________________________________ -->
1401 <h4>
1402   <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1403 </h4>
1404
1405 <div>
1406
1407 <p>
1408 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1409 retains a unique ID for each element inserted into the set.  It internally
1410 contains a map and a vector, and it assigns a unique ID for each value inserted
1411 into the set.</p>
1412
1413 <p>UniqueVector is very expensive: its cost is the sum of the cost of
1414 maintaining both the map and vector, it has high complexity, high constant
1415 factors, and produces a lot of malloc traffic.  It should be avoided.</p>
1416
1417 </div>
1418
1419
1420 <!-- _______________________________________________________________________ -->
1421 <h4>
1422   <a name="dss_otherset">Other Set-Like Container Options</a>
1423 </h4>
1424
1425 <div>
1426
1427 <p>
1428 The STL provides several other options, such as std::multiset and the various 
1429 "hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1430 never use hash_set and unordered_set because they are generally very expensive 
1431 (each insertion requires a malloc) and very non-portable.
1432 </p>
1433
1434 <p>std::multiset is useful if you're not interested in elimination of
1435 duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
1436 don't delete duplicate entries) or some other approach is almost always
1437 better.</p>
1438
1439 </div>
1440
1441 </div>
1442
1443 <!-- ======================================================================= -->
1444 <h3>
1445   <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1446 </h3>
1447
1448 <div>
1449 Map-like containers are useful when you want to associate data to a key.  As
1450 usual, there are a lot of different ways to do this. :)
1451
1452 <!-- _______________________________________________________________________ -->
1453 <h4>
1454   <a name="dss_sortedvectormap">A sorted 'vector'</a>
1455 </h4>
1456
1457 <div>
1458
1459 <p>
1460 If your usage pattern follows a strict insert-then-query approach, you can
1461 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1462 for set-like containers</a>.  The only difference is that your query function
1463 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
1464 the key, not both the key and value.  This yields the same advantages as sorted
1465 vectors for sets.
1466 </p>
1467 </div>
1468
1469 <!-- _______________________________________________________________________ -->
1470 <h4>
1471   <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1472 </h4>
1473
1474 <div>
1475
1476 <p>
1477 Strings are commonly used as keys in maps, and they are difficult to support
1478 efficiently: they are variable length, inefficient to hash and compare when
1479 long, expensive to copy, etc.  StringMap is a specialized container designed to
1480 cope with these issues.  It supports mapping an arbitrary range of bytes to an
1481 arbitrary other object.</p>
1482
1483 <p>The StringMap implementation uses a quadratically-probed hash table, where
1484 the buckets store a pointer to the heap allocated entries (and some other
1485 stuff).  The entries in the map must be heap allocated because the strings are
1486 variable length.  The string data (key) and the element object (value) are
1487 stored in the same allocation with the string data immediately after the element
1488 object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1489 to the key string for a value.</p>
1490
1491 <p>The StringMap is very fast for several reasons: quadratic probing is very
1492 cache efficient for lookups, the hash value of strings in buckets is not
1493 recomputed when looking up an element, StringMap rarely has to touch the
1494 memory for unrelated objects when looking up a value (even when hash collisions
1495 happen), hash table growth does not recompute the hash values for strings
1496 already in the table, and each pair in the map is store in a single allocation
1497 (the string data is stored in the same allocation as the Value of a pair).</p>
1498
1499 <p>StringMap also provides query methods that take byte ranges, so it only ever
1500 copies a string if a value is inserted into the table.</p>
1501 </div>
1502
1503 <!-- _______________________________________________________________________ -->
1504 <h4>
1505   <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1506 </h4>
1507
1508 <div>
1509 <p>
1510 IndexedMap is a specialized container for mapping small dense integers (or
1511 values that can be mapped to small dense integers) to some other type.  It is
1512 internally implemented as a vector with a mapping function that maps the keys to
1513 the dense integer range.
1514 </p>
1515
1516 <p>
1517 This is useful for cases like virtual registers in the LLVM code generator: they
1518 have a dense mapping that is offset by a compile-time constant (the first
1519 virtual register ID).</p>
1520
1521 </div>
1522
1523 <!-- _______________________________________________________________________ -->
1524 <h4>
1525   <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1526 </h4>
1527
1528 <div>
1529
1530 <p>
1531 DenseMap is a simple quadratically probed hash table.  It excels at supporting
1532 small keys and values: it uses a single allocation to hold all of the pairs that
1533 are currently inserted in the map.  DenseMap is a great way to map pointers to
1534 pointers, or map other small types to each other.
1535 </p>
1536
1537 <p>
1538 There are several aspects of DenseMap that you should be aware of, however.  The
1539 iterators in a densemap are invalidated whenever an insertion occurs, unlike
1540 map.  Also, because DenseMap allocates space for a large number of key/value
1541 pairs (it starts with 64 by default), it will waste a lot of space if your keys
1542 or values are large.  Finally, you must implement a partial specialization of
1543 DenseMapInfo for the key that you want, if it isn't already supported.  This
1544 is required to tell DenseMap about two special marker values (which can never be
1545 inserted into the map) that it needs internally.</p>
1546
1547 </div>
1548
1549 <!-- _______________________________________________________________________ -->
1550 <h4>
1551   <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
1552 </h4>
1553
1554 <div>
1555
1556 <p>
1557 ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1558 Value*s (or subclasses) to another type.  When a Value is deleted or RAUW'ed,
1559 ValueMap will update itself so the new version of the key is mapped to the same
1560 value, just as if the key were a WeakVH.  You can configure exactly how this
1561 happens, and what else happens on these two events, by passing
1562 a <code>Config</code> parameter to the ValueMap template.</p>
1563
1564 </div>
1565
1566 <!-- _______________________________________________________________________ -->
1567 <h4>
1568   <a name="dss_intervalmap">"llvm/ADT/IntervalMap.h"</a>
1569 </h4>
1570
1571 <div>
1572
1573 <p> IntervalMap is a compact map for small keys and values. It maps key
1574 intervals instead of single keys, and it will automatically coalesce adjacent
1575 intervals. When then map only contains a few intervals, they are stored in the
1576 map object itself to avoid allocations.</p>
1577
1578 <p> The IntervalMap iterators are quite big, so they should not be passed around
1579 as STL iterators. The heavyweight iterators allow a smaller data structure.</p>
1580
1581 </div>
1582
1583 <!-- _______________________________________________________________________ -->
1584 <h4>
1585   <a name="dss_map">&lt;map&gt;</a>
1586 </h4>
1587
1588 <div>
1589
1590 <p>
1591 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1592 a single allocation per pair inserted into the map, it offers log(n) lookup with
1593 an extremely large constant factor, imposes a space penalty of 3 pointers per
1594 pair in the map, etc.</p>
1595
1596 <p>std::map is most useful when your keys or values are very large, if you need
1597 to iterate over the collection in sorted order, or if you need stable iterators
1598 into the map (i.e. they don't get invalidated if an insertion or deletion of
1599 another element takes place).</p>
1600
1601 </div>
1602
1603 <!-- _______________________________________________________________________ -->
1604 <h4>
1605   <a name="dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a>
1606 </h4>
1607
1608 <div>
1609
1610 <p>IntEqClasses provides a compact representation of equivalence classes of
1611 small integers. Initially, each integer in the range 0..n-1 has its own
1612 equivalence class. Classes can be joined by passing two class representatives to
1613 the join(a, b) method. Two integers are in the same class when findLeader()
1614 returns the same representative.</p>
1615
1616 <p>Once all equivalence classes are formed, the map can be compressed so each
1617 integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
1618 is the total number of equivalence classes. The map must be uncompressed before
1619 it can be edited again.</p>
1620
1621 </div>
1622
1623 <!-- _______________________________________________________________________ -->
1624 <h4>
1625   <a name="dss_othermap">Other Map-Like Container Options</a>
1626 </h4>
1627
1628 <div>
1629
1630 <p>
1631 The STL provides several other options, such as std::multimap and the various 
1632 "hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1633 never use hash_set and unordered_set because they are generally very expensive 
1634 (each insertion requires a malloc) and very non-portable.</p>
1635
1636 <p>std::multimap is useful if you want to map a key to multiple values, but has
1637 all the drawbacks of std::map.  A sorted vector or some other approach is almost
1638 always better.</p>
1639
1640 </div>
1641
1642 </div>
1643
1644 <!-- ======================================================================= -->
1645 <h3>
1646   <a name="ds_string">String-like containers</a>
1647 </h3>
1648
1649 <div>
1650
1651 <p>
1652 TODO: const char* vs stringref vs smallstring vs std::string.  Describe twine,
1653 xref to #string_apis.
1654 </p>
1655
1656 </div>
1657
1658 <!-- ======================================================================= -->
1659 <h3>
1660   <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1661 </h3>
1662
1663 <div>
1664 <p>Unlike the other containers, there are only two bit storage containers, and 
1665 choosing when to use each is relatively straightforward.</p>
1666
1667 <p>One additional option is 
1668 <tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1669 implementation in many common compilers (e.g. commonly available versions of 
1670 GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1671 deprecate this container and/or change it significantly somehow.  In any case,
1672 please don't use it.</p>
1673
1674 <!-- _______________________________________________________________________ -->
1675 <h4>
1676   <a name="dss_bitvector">BitVector</a>
1677 </h4>
1678
1679 <div>
1680 <p> The BitVector container provides a dynamic size set of bits for manipulation.
1681 It supports individual bit setting/testing, as well as set operations.  The set
1682 operations take time O(size of bitvector), but operations are performed one word
1683 at a time, instead of one bit at a time.  This makes the BitVector very fast for
1684 set operations compared to other containers.  Use the BitVector when you expect
1685 the number of set bits to be high (IE a dense set).
1686 </p>
1687 </div>
1688
1689 <!-- _______________________________________________________________________ -->
1690 <h4>
1691   <a name="dss_smallbitvector">SmallBitVector</a>
1692 </h4>
1693
1694 <div>
1695 <p> The SmallBitVector container provides the same interface as BitVector, but
1696 it is optimized for the case where only a small number of bits, less than
1697 25 or so, are needed. It also transparently supports larger bit counts, but
1698 slightly less efficiently than a plain BitVector, so SmallBitVector should
1699 only be used when larger counts are rare.
1700 </p>
1701
1702 <p>
1703 At this time, SmallBitVector does not support set operations (and, or, xor),
1704 and its operator[] does not provide an assignable lvalue.
1705 </p>
1706 </div>
1707
1708 <!-- _______________________________________________________________________ -->
1709 <h4>
1710   <a name="dss_sparsebitvector">SparseBitVector</a>
1711 </h4>
1712
1713 <div>
1714 <p> The SparseBitVector container is much like BitVector, with one major
1715 difference: Only the bits that are set, are stored.  This makes the
1716 SparseBitVector much more space efficient than BitVector when the set is sparse,
1717 as well as making set operations O(number of set bits) instead of O(size of
1718 universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1719 (either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1720 </p>
1721 </div>
1722
1723 </div>
1724
1725 </div>
1726
1727 <!-- *********************************************************************** -->
1728 <h2>
1729   <a name="common">Helpful Hints for Common Operations</a>
1730 </h2>
1731 <!-- *********************************************************************** -->
1732
1733 <div>
1734
1735 <p>This section describes how to perform some very simple transformations of
1736 LLVM code.  This is meant to give examples of common idioms used, showing the
1737 practical side of LLVM transformations.  <p> Because this is a "how-to" section,
1738 you should also read about the main classes that you will be working with.  The
1739 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1740 and descriptions of the main classes that you should know about.</p>
1741
1742 <!-- NOTE: this section should be heavy on example code -->
1743 <!-- ======================================================================= -->
1744 <h3>
1745   <a name="inspection">Basic Inspection and Traversal Routines</a>
1746 </h3>
1747
1748 <div>
1749
1750 <p>The LLVM compiler infrastructure have many different data structures that may
1751 be traversed.  Following the example of the C++ standard template library, the
1752 techniques used to traverse these various data structures are all basically the
1753 same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1754 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1755 function returns an iterator pointing to one past the last valid element of the
1756 sequence, and there is some <tt>XXXiterator</tt> data type that is common
1757 between the two operations.</p>
1758
1759 <p>Because the pattern for iteration is common across many different aspects of
1760 the program representation, the standard template library algorithms may be used
1761 on them, and it is easier to remember how to iterate. First we show a few common
1762 examples of the data structures that need to be traversed.  Other data
1763 structures are traversed in very similar ways.</p>
1764
1765 <!-- _______________________________________________________________________ -->
1766 <h4>
1767   <a name="iterate_function">Iterating over the </a><a
1768   href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1769   href="#Function"><tt>Function</tt></a>
1770 </h4>
1771
1772 <div>
1773
1774 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1775 transform in some way; in particular, you'd like to manipulate its
1776 <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
1777 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1778 an example that prints the name of a <tt>BasicBlock</tt> and the number of
1779 <tt>Instruction</tt>s it contains:</p>
1780
1781 <div class="doc_code">
1782 <pre>
1783 // <i>func is a pointer to a Function instance</i>
1784 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1785   // <i>Print out the name of the basic block if it has one, and then the</i>
1786   // <i>number of instructions that it contains</i>
1787   errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1788              &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1789 </pre>
1790 </div>
1791
1792 <p>Note that i can be used as if it were a pointer for the purposes of
1793 invoking member functions of the <tt>Instruction</tt> class.  This is
1794 because the indirection operator is overloaded for the iterator
1795 classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
1796 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1797
1798 </div>
1799
1800 <!-- _______________________________________________________________________ -->
1801 <h4>
1802   <a name="iterate_basicblock">Iterating over the </a><a
1803   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1804   href="#BasicBlock"><tt>BasicBlock</tt></a>
1805 </h4>
1806
1807 <div>
1808
1809 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1810 easy to iterate over the individual instructions that make up
1811 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1812 a <tt>BasicBlock</tt>:</p>
1813
1814 <div class="doc_code">
1815 <pre>
1816 // <i>blk is a pointer to a BasicBlock instance</i>
1817 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1818    // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1819    // <i>is overloaded for Instruction&amp;</i>
1820    errs() &lt;&lt; *i &lt;&lt; "\n";
1821 </pre>
1822 </div>
1823
1824 <p>However, this isn't really the best way to print out the contents of a
1825 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
1826 anything you'll care about, you could have just invoked the print routine on the
1827 basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1828
1829 </div>
1830
1831 <!-- _______________________________________________________________________ -->
1832 <h4>
1833   <a name="iterate_institer">Iterating over the </a><a
1834   href="#Instruction"><tt>Instruction</tt></a>s in a <a
1835   href="#Function"><tt>Function</tt></a>
1836 </h4>
1837
1838 <div>
1839
1840 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1841 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1842 <tt>InstIterator</tt> should be used instead. You'll need to include <a
1843 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1844 and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
1845 small example that shows how to dump all instructions in a function to the standard error stream:<p>
1846
1847 <div class="doc_code">
1848 <pre>
1849 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1850
1851 // <i>F is a pointer to a Function instance</i>
1852 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1853   errs() &lt;&lt; *I &lt;&lt; "\n";
1854 </pre>
1855 </div>
1856
1857 <p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
1858 work list with its initial contents.  For example, if you wanted to
1859 initialize a work list to contain all instructions in a <tt>Function</tt>
1860 F, all you would need to do is something like:</p>
1861
1862 <div class="doc_code">
1863 <pre>
1864 std::set&lt;Instruction*&gt; worklist;
1865 // or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1866
1867 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1868    worklist.insert(&amp;*I);
1869 </pre>
1870 </div>
1871
1872 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
1873 <tt>Function</tt> pointed to by F.</p>
1874
1875 </div>
1876
1877 <!-- _______________________________________________________________________ -->
1878 <h4>
1879   <a name="iterate_convert">Turning an iterator into a class pointer (and
1880   vice-versa)</a>
1881 </h4>
1882
1883 <div>
1884
1885 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1886 instance when all you've got at hand is an iterator.  Well, extracting
1887 a reference or a pointer from an iterator is very straight-forward.
1888 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1889 is a <tt>BasicBlock::const_iterator</tt>:</p>
1890
1891 <div class="doc_code">
1892 <pre>
1893 Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
1894 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1895 const Instruction&amp; inst = *j;
1896 </pre>
1897 </div>
1898
1899 <p>However, the iterators you'll be working with in the LLVM framework are
1900 special: they will automatically convert to a ptr-to-instance type whenever they
1901 need to.  Instead of dereferencing the iterator and then taking the address of
1902 the result, you can simply assign the iterator to the proper pointer type and
1903 you get the dereference and address-of operation as a result of the assignment
1904 (behind the scenes, this is a result of overloading casting mechanisms).  Thus
1905 the last line of the last example,</p>
1906
1907 <div class="doc_code">
1908 <pre>
1909 Instruction *pinst = &amp;*i;
1910 </pre>
1911 </div>
1912
1913 <p>is semantically equivalent to</p>
1914
1915 <div class="doc_code">
1916 <pre>
1917 Instruction *pinst = i;
1918 </pre>
1919 </div>
1920
1921 <p>It's also possible to turn a class pointer into the corresponding iterator,
1922 and this is a constant time operation (very efficient).  The following code
1923 snippet illustrates use of the conversion constructors provided by LLVM
1924 iterators.  By using these, you can explicitly grab the iterator of something
1925 without actually obtaining it via iteration over some structure:</p>
1926
1927 <div class="doc_code">
1928 <pre>
1929 void printNextInstruction(Instruction* inst) {
1930   BasicBlock::iterator it(inst);
1931   ++it; // <i>After this line, it refers to the instruction after *inst</i>
1932   if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
1933 }
1934 </pre>
1935 </div>
1936
1937 <p>Unfortunately, these implicit conversions come at a cost; they prevent
1938 these iterators from conforming to standard iterator conventions, and thus
1939 from being usable with standard algorithms and containers. For example, they
1940 prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
1941 from compiling:</p>
1942
1943 <div class="doc_code">
1944 <pre>
1945   llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
1946 </pre>
1947 </div>
1948
1949 <p>Because of this, these implicit conversions may be removed some day,
1950 and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
1951
1952 </div>
1953
1954 <!--_______________________________________________________________________-->
1955 <h4>
1956   <a name="iterate_complex">Finding call sites: a slightly more complex
1957   example</a>
1958 </h4>
1959
1960 <div>
1961
1962 <p>Say that you're writing a FunctionPass and would like to count all the
1963 locations in the entire module (that is, across every <tt>Function</tt>) where a
1964 certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
1965 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1966 much more straight-forward manner, but this example will allow us to explore how
1967 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1968 is what we want to do:</p>
1969
1970 <div class="doc_code">
1971 <pre>
1972 initialize callCounter to zero
1973 for each Function f in the Module
1974   for each BasicBlock b in f
1975     for each Instruction i in b
1976       if (i is a CallInst and calls the given function)
1977         increment callCounter
1978 </pre>
1979 </div>
1980
1981 <p>And the actual code is (remember, because we're writing a
1982 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1983 override the <tt>runOnFunction</tt> method):</p>
1984
1985 <div class="doc_code">
1986 <pre>
1987 Function* targetFunc = ...;
1988
1989 class OurFunctionPass : public FunctionPass {
1990   public:
1991     OurFunctionPass(): callCounter(0) { }
1992
1993     virtual runOnFunction(Function&amp; F) {
1994       for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
1995         for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
1996           if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1997  href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1998             // <i>We know we've encountered a call instruction, so we</i>
1999             // <i>need to determine if it's a call to the</i>
2000             // <i>function pointed to by m_func or not.</i>
2001             if (callInst-&gt;getCalledFunction() == targetFunc)
2002               ++callCounter;
2003           }
2004         }
2005       }
2006     }
2007
2008   private:
2009     unsigned callCounter;
2010 };
2011 </pre>
2012 </div>
2013
2014 </div>
2015
2016 <!--_______________________________________________________________________-->
2017 <h4>
2018   <a name="calls_and_invokes">Treating calls and invokes the same way</a>
2019 </h4>
2020
2021 <div>
2022
2023 <p>You may have noticed that the previous example was a bit oversimplified in
2024 that it did not deal with call sites generated by 'invoke' instructions. In
2025 this, and in other situations, you may find that you want to treat
2026 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
2027 most-specific common base class is <tt>Instruction</tt>, which includes lots of
2028 less closely-related things. For these cases, LLVM provides a handy wrapper
2029 class called <a
2030 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
2031 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
2032 methods that provide functionality common to <tt>CallInst</tt>s and
2033 <tt>InvokeInst</tt>s.</p>
2034
2035 <p>This class has "value semantics": it should be passed by value, not by
2036 reference and it should not be dynamically allocated or deallocated using
2037 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
2038 assignable and constructable, with costs equivalents to that of a bare pointer.
2039 If you look at its definition, it has only a single pointer member.</p>
2040
2041 </div>
2042
2043 <!--_______________________________________________________________________-->
2044 <h4>
2045   <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
2046 </h4>
2047
2048 <div>
2049
2050 <p>Frequently, we might have an instance of the <a
2051 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
2052 determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
2053 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
2054 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
2055 particular function <tt>foo</tt>. Finding all of the instructions that
2056 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
2057 of <tt>F</tt>:</p>
2058
2059 <div class="doc_code">
2060 <pre>
2061 Function *F = ...;
2062
2063 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
2064   if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
2065     errs() &lt;&lt; "F is used in instruction:\n";
2066     errs() &lt;&lt; *Inst &lt;&lt; "\n";
2067   }
2068 </pre>
2069 </div>
2070
2071 <p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
2072 operation. Instead of performing <tt>*i</tt> above several times, consider
2073 doing it only once in the loop body and reusing its result.</p>
2074
2075 <p>Alternatively, it's common to have an instance of the <a
2076 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
2077 <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
2078 <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
2079 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
2080 all of the values that a particular instruction uses (that is, the operands of
2081 the particular <tt>Instruction</tt>):</p>
2082
2083 <div class="doc_code">
2084 <pre>
2085 Instruction *pi = ...;
2086
2087 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
2088   Value *v = *i;
2089   // <i>...</i>
2090 }
2091 </pre>
2092 </div>
2093
2094 <p>Declaring objects as <tt>const</tt> is an important tool of enforcing
2095 mutation free algorithms (such as analyses, etc.). For this purpose above
2096 iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
2097 and <tt>Value::const_op_iterator</tt>.  They automatically arise when
2098 calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
2099 <tt>const User*</tt>s respectively.  Upon dereferencing, they return
2100 <tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
2101
2102 </div>
2103
2104 <!--_______________________________________________________________________-->
2105 <h4>
2106   <a name="iterate_preds">Iterating over predecessors &amp;
2107 successors of blocks</a>
2108 </h4>
2109
2110 <div>
2111
2112 <p>Iterating over the predecessors and successors of a block is quite easy
2113 with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
2114 this to iterate over all predecessors of BB:</p>
2115
2116 <div class="doc_code">
2117 <pre>
2118 #include "llvm/Support/CFG.h"
2119 BasicBlock *BB = ...;
2120
2121 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2122   BasicBlock *Pred = *PI;
2123   // <i>...</i>
2124 }
2125 </pre>
2126 </div>
2127
2128 <p>Similarly, to iterate over successors use
2129 succ_iterator/succ_begin/succ_end.</p>
2130
2131 </div>
2132
2133 </div>
2134
2135 <!-- ======================================================================= -->
2136 <h3>
2137   <a name="simplechanges">Making simple changes</a>
2138 </h3>
2139
2140 <div>
2141
2142 <p>There are some primitive transformation operations present in the LLVM
2143 infrastructure that are worth knowing about.  When performing
2144 transformations, it's fairly common to manipulate the contents of basic
2145 blocks. This section describes some of the common methods for doing so
2146 and gives example code.</p>
2147
2148 <!--_______________________________________________________________________-->
2149 <h4>
2150   <a name="schanges_creating">Creating and inserting new
2151   <tt>Instruction</tt>s</a>
2152 </h4>
2153
2154 <div>
2155
2156 <p><i>Instantiating Instructions</i></p>
2157
2158 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
2159 constructor for the kind of instruction to instantiate and provide the necessary
2160 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2161 (const-ptr-to) <tt>Type</tt>. Thus:</p> 
2162
2163 <div class="doc_code">
2164 <pre>
2165 AllocaInst* ai = new AllocaInst(Type::Int32Ty);
2166 </pre>
2167 </div>
2168
2169 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
2170 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
2171 subclass is likely to have varying default parameters which change the semantics
2172 of the instruction, so refer to the <a
2173 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
2174 Instruction</a> that you're interested in instantiating.</p>
2175
2176 <p><i>Naming values</i></p>
2177
2178 <p>It is very useful to name the values of instructions when you're able to, as
2179 this facilitates the debugging of your transformations.  If you end up looking
2180 at generated LLVM machine code, you definitely want to have logical names
2181 associated with the results of instructions!  By supplying a value for the
2182 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2183 associate a logical name with the result of the instruction's execution at
2184 run time.  For example, say that I'm writing a transformation that dynamically
2185 allocates space for an integer on the stack, and that integer is going to be
2186 used as some kind of index by some other code.  To accomplish this, I place an
2187 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2188 <tt>Function</tt>, and I'm intending to use it within the same
2189 <tt>Function</tt>. I might do:</p>
2190
2191 <div class="doc_code">
2192 <pre>
2193 AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
2194 </pre>
2195 </div>
2196
2197 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
2198 execution value, which is a pointer to an integer on the run time stack.</p>
2199
2200 <p><i>Inserting instructions</i></p>
2201
2202 <p>There are essentially two ways to insert an <tt>Instruction</tt>
2203 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2204
2205 <ul>
2206   <li>Insertion into an explicit instruction list
2207
2208     <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2209     <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2210     before <tt>*pi</tt>, we do the following: </p>
2211
2212 <div class="doc_code">
2213 <pre>
2214 BasicBlock *pb = ...;
2215 Instruction *pi = ...;
2216 Instruction *newInst = new Instruction(...);
2217
2218 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
2219 </pre>
2220 </div>
2221
2222     <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2223     the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2224     classes provide constructors which take a pointer to a
2225     <tt>BasicBlock</tt> to be appended to. For example code that
2226     looked like: </p>
2227
2228 <div class="doc_code">
2229 <pre>
2230 BasicBlock *pb = ...;
2231 Instruction *newInst = new Instruction(...);
2232
2233 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
2234 </pre>
2235 </div>
2236
2237     <p>becomes: </p>
2238
2239 <div class="doc_code">
2240 <pre>
2241 BasicBlock *pb = ...;
2242 Instruction *newInst = new Instruction(..., pb);
2243 </pre>
2244 </div>
2245
2246     <p>which is much cleaner, especially if you are creating
2247     long instruction streams.</p></li>
2248
2249   <li>Insertion into an implicit instruction list
2250
2251     <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2252     are implicitly associated with an existing instruction list: the instruction
2253     list of the enclosing basic block. Thus, we could have accomplished the same
2254     thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2255     </p>
2256
2257 <div class="doc_code">
2258 <pre>
2259 Instruction *pi = ...;
2260 Instruction *newInst = new Instruction(...);
2261
2262 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2263 </pre>
2264 </div>
2265
2266     <p>In fact, this sequence of steps occurs so frequently that the
2267     <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2268     constructors which take (as a default parameter) a pointer to an
2269     <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2270     precede.  That is, <tt>Instruction</tt> constructors are capable of
2271     inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2272     provided instruction, immediately before that instruction.  Using an
2273     <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2274     parameter, the above code becomes:</p>
2275
2276 <div class="doc_code">
2277 <pre>
2278 Instruction* pi = ...;
2279 Instruction* newInst = new Instruction(..., pi);
2280 </pre>
2281 </div>
2282
2283     <p>which is much cleaner, especially if you're creating a lot of
2284     instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
2285 </ul>
2286
2287 </div>
2288
2289 <!--_______________________________________________________________________-->
2290 <h4>
2291   <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
2292 </h4>
2293
2294 <div>
2295
2296 <p>Deleting an instruction from an existing sequence of instructions that form a
2297 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward: just
2298 call the instruction's eraseFromParent() method.  For example:</p>
2299
2300 <div class="doc_code">
2301 <pre>
2302 <a href="#Instruction">Instruction</a> *I = .. ;
2303 I-&gt;eraseFromParent();
2304 </pre>
2305 </div>
2306
2307 <p>This unlinks the instruction from its containing basic block and deletes 
2308 it.  If you'd just like to unlink the instruction from its containing basic
2309 block but not delete it, you can use the <tt>removeFromParent()</tt> method.</p>
2310
2311 </div>
2312
2313 <!--_______________________________________________________________________-->
2314 <h4>
2315   <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2316   <tt>Value</tt></a>
2317 </h4>
2318
2319 <div>
2320
2321 <p><i>Replacing individual instructions</i></p>
2322
2323 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2324 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2325 and <tt>ReplaceInstWithInst</tt>.</p>
2326
2327 <h5><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h5>
2328
2329 <ul>
2330   <li><tt>ReplaceInstWithValue</tt>
2331
2332     <p>This function replaces all uses of a given instruction with a value,
2333     and then removes the original instruction. The following example
2334     illustrates the replacement of the result of a particular
2335     <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2336     pointer to an integer.</p>
2337
2338 <div class="doc_code">
2339 <pre>
2340 AllocaInst* instToReplace = ...;
2341 BasicBlock::iterator ii(instToReplace);
2342
2343 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2344                      Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
2345 </pre></div></li>
2346
2347   <li><tt>ReplaceInstWithInst</tt> 
2348
2349     <p>This function replaces a particular instruction with another
2350     instruction, inserting the new instruction into the basic block at the
2351     location where the old instruction was, and replacing any uses of the old
2352     instruction with the new instruction. The following example illustrates
2353     the replacement of one <tt>AllocaInst</tt> with another.</p>
2354
2355 <div class="doc_code">
2356 <pre>
2357 AllocaInst* instToReplace = ...;
2358 BasicBlock::iterator ii(instToReplace);
2359
2360 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2361                     new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
2362 </pre></div></li>
2363 </ul>
2364
2365 <p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2366
2367 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
2368 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
2369 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2370 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2371 information.</p>
2372
2373 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2374 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2375 ReplaceInstWithValue, ReplaceInstWithInst -->
2376
2377 </div>
2378
2379 <!--_______________________________________________________________________-->
2380 <h4>
2381   <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2382 </h4>
2383
2384 <div>
2385
2386 <p>Deleting a global variable from a module is just as easy as deleting an 
2387 Instruction. First, you must have a pointer to the global variable that you wish
2388  to delete.  You use this pointer to erase it from its parent, the module.
2389  For example:</p>
2390
2391 <div class="doc_code">
2392 <pre>
2393 <a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2394
2395 GV-&gt;eraseFromParent();
2396 </pre>
2397 </div>
2398
2399 </div>
2400
2401 </div>
2402
2403 <!-- ======================================================================= -->
2404 <h3>
2405   <a name="create_types">How to Create Types</a>
2406 </h3>
2407
2408 <div>
2409
2410 <p>In generating IR, you may need some complex types.  If you know these types
2411 statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
2412 in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them.  <tt>TypeBuilder</tt>
2413 has two forms depending on whether you're building types for cross-compilation
2414 or native library use.  <tt>TypeBuilder&lt;T, true&gt;</tt> requires
2415 that <tt>T</tt> be independent of the host environment, meaning that it's built
2416 out of types from
2417 the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2418 namespace and pointers, functions, arrays, etc. built of
2419 those.  <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
2420 whose size may depend on the host compiler.  For example,</p>
2421
2422 <div class="doc_code">
2423 <pre>
2424 FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
2425 </pre>
2426 </div>
2427
2428 <p>is easier to read and write than the equivalent</p>
2429
2430 <div class="doc_code">
2431 <pre>
2432 std::vector&lt;const Type*&gt; params;
2433 params.push_back(PointerType::getUnqual(Type::Int32Ty));
2434 FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2435 </pre>
2436 </div>
2437
2438 <p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2439 comment</a> for more details.</p>
2440
2441 </div>
2442
2443 </div>
2444
2445 <!-- *********************************************************************** -->
2446 <h2>
2447   <a name="threading">Threads and LLVM</a>
2448 </h2>
2449 <!-- *********************************************************************** -->
2450
2451 <div>
2452 <p>
2453 This section describes the interaction of the LLVM APIs with multithreading,
2454 both on the part of client applications, and in the JIT, in the hosted
2455 application.
2456 </p>
2457
2458 <p>
2459 Note that LLVM's support for multithreading is still relatively young.  Up 
2460 through version 2.5, the execution of threaded hosted applications was
2461 supported, but not threaded client access to the APIs.  While this use case is
2462 now supported, clients <em>must</em> adhere to the guidelines specified below to
2463 ensure proper operation in multithreaded mode.
2464 </p>
2465
2466 <p>
2467 Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2468 intrinsics in order to support threaded operation.  If you need a
2469 multhreading-capable LLVM on a platform without a suitably modern system
2470 compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and 
2471 using the resultant compiler to build a copy of LLVM with multithreading
2472 support.
2473 </p>
2474
2475 <!-- ======================================================================= -->
2476 <h3>
2477   <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
2478 </h3>
2479
2480 <div>
2481
2482 <p>
2483 In order to properly protect its internal data structures while avoiding 
2484 excessive locking overhead in the single-threaded case, the LLVM must intialize
2485 certain data structures necessary to provide guards around its internals.  To do
2486 so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2487 making any concurrent LLVM API calls.  To subsequently tear down these
2488 structures, use the <tt>llvm_stop_multithreaded()</tt> call.  You can also use
2489 the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2490 mode.
2491 </p>
2492
2493 <p>
2494 Note that both of these calls must be made <em>in isolation</em>.  That is to
2495 say that no other LLVM API calls may be executing at any time during the 
2496 execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2497 </tt>.  It's is the client's responsibility to enforce this isolation.
2498 </p>
2499
2500 <p>
2501 The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2502 failure of the initialization.  Failure typically indicates that your copy of
2503 LLVM was built without multithreading support, typically because GCC atomic
2504 intrinsics were not found in your system compiler.  In this case, the LLVM API
2505 will not be safe for concurrent calls.  However, it <em>will</em> be safe for
2506 hosting threaded applications in the JIT, though <a href="#jitthreading">care
2507 must be taken</a> to ensure that side exits and the like do not accidentally
2508 result in concurrent LLVM API calls.
2509 </p>
2510 </div>
2511
2512 <!-- ======================================================================= -->
2513 <h3>
2514   <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
2515 </h3>
2516
2517 <div>
2518 <p>
2519 When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
2520 to deallocate memory used for internal structures.  This will also invoke 
2521 <tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2522 As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2523 <tt>llvm_stop_multithreaded()</tt>.
2524 </p>
2525
2526 <p>
2527 Note that, if you use scope-based shutdown, you can use the
2528 <tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2529 destructor.
2530 </div>
2531
2532 <!-- ======================================================================= -->
2533 <h3>
2534   <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
2535 </h3>
2536
2537 <div>
2538 <p>
2539 <tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2540 initialization of static resources, such as the global type tables.  Before the
2541 invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy 
2542 initialization scheme.  Once <tt>llvm_start_multithreaded()</tt> returns,
2543 however, it uses double-checked locking to implement thread-safe lazy
2544 initialization.
2545 </p>
2546
2547 <p>
2548 Note that, because no other threads are allowed to issue LLVM API calls before
2549 <tt>llvm_start_multithreaded()</tt> returns, it is possible to have 
2550 <tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2551 </p>
2552
2553 <p>
2554 The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt> 
2555 APIs provide access to the global lock used to implement the double-checked
2556 locking for lazy initialization.  These should only be used internally to LLVM,
2557 and only if you know what you're doing!
2558 </p>
2559 </div>
2560
2561 <!-- ======================================================================= -->
2562 <h3>
2563   <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
2564 </h3>
2565
2566 <div>
2567 <p>
2568 <tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2569 to operate multiple, isolated instances of LLVM concurrently within the same
2570 address space.  For instance, in a hypothetical compile-server, the compilation
2571 of an individual translation unit is conceptually independent from all the 
2572 others, and it would be desirable to be able to compile incoming translation 
2573 units concurrently on independent server threads.  Fortunately, 
2574 <tt>LLVMContext</tt> exists to enable just this kind of scenario!
2575 </p>
2576
2577 <p>
2578 Conceptually, <tt>LLVMContext</tt> provides isolation.  Every LLVM entity 
2579 (<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
2580 in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>.  Entities in 
2581 different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2582 different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2583 to <tt>Module</tt>s in different contexts, etc.  What this means is that is is
2584 safe to compile on multiple threads simultaneously, as long as no two threads
2585 operate on entities within the same context.
2586 </p>
2587
2588 <p>
2589 In practice, very few places in the API require the explicit specification of a
2590 <tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2591 Because every <tt>Type</tt> carries a reference to its owning context, most
2592 other entities can determine what context they belong to by looking at their
2593 own <tt>Type</tt>.  If you are adding new entities to LLVM IR, please try to
2594 maintain this interface design.
2595 </p>
2596
2597 <p>
2598 For clients that do <em>not</em> require the benefits of isolation, LLVM 
2599 provides a convenience API <tt>getGlobalContext()</tt>.  This returns a global,
2600 lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2601 isolation is not a concern.
2602 </p>
2603 </div>
2604
2605 <!-- ======================================================================= -->
2606 <h3>
2607   <a name="jitthreading">Threads and the JIT</a>
2608 </h3>
2609
2610 <div>
2611 <p>
2612 LLVM's "eager" JIT compiler is safe to use in threaded programs.  Multiple
2613 threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
2614 <tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
2615 run code output by the JIT concurrently.  The user must still ensure that only
2616 one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
2617 might be modifying it.  One way to do that is to always hold the JIT lock while
2618 accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
2619 <tt>CallbackVH</tt>s).  Another way is to only
2620 call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
2621 </p>
2622
2623 <p>When the JIT is configured to compile lazily (using
2624 <tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
2625 <a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
2626 updating call sites after a function is lazily-jitted.  It's still possible to
2627 use the lazy JIT in a threaded program if you ensure that only one thread at a
2628 time can call any particular lazy stub and that the JIT lock guards any IR
2629 access, but we suggest using only the eager JIT in threaded programs.
2630 </p>
2631 </div>
2632
2633 </div>
2634
2635 <!-- *********************************************************************** -->
2636 <h2>
2637   <a name="advanced">Advanced Topics</a>
2638 </h2>
2639 <!-- *********************************************************************** -->
2640
2641 <div>
2642 <p>
2643 This section describes some of the advanced or obscure API's that most clients
2644 do not need to be aware of.  These API's tend manage the inner workings of the
2645 LLVM system, and only need to be accessed in unusual circumstances.
2646 </p>
2647
2648 <!-- ======================================================================= -->
2649 <h3>
2650   <a name="TypeResolve">LLVM Type Resolution</a>
2651 </h3>
2652
2653 <div>
2654
2655 <p>
2656 The LLVM type system has a very simple goal: allow clients to compare types for
2657 structural equality with a simple pointer comparison (aka a shallow compare).
2658 This goal makes clients much simpler and faster, and is used throughout the LLVM
2659 system.
2660 </p>
2661
2662 <p>
2663 Unfortunately achieving this goal is not a simple matter.  In particular,
2664 recursive types and late resolution of opaque types makes the situation very
2665 difficult to handle.  Fortunately, for the most part, our implementation makes
2666 most clients able to be completely unaware of the nasty internal details.  The
2667 primary case where clients are exposed to the inner workings of it are when
2668 building a recursive type.  In addition to this case, the LLVM bitcode reader,
2669 assembly parser, and linker also have to be aware of the inner workings of this
2670 system.
2671 </p>
2672
2673 <p>
2674 For our purposes below, we need three concepts.  First, an "Opaque Type" is 
2675 exactly as defined in the <a href="LangRef.html#t_opaque">language 
2676 reference</a>.  Second an "Abstract Type" is any type which includes an 
2677 opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
2678 Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32, 
2679 float }</tt>").
2680 </p>
2681
2682 <!-- ______________________________________________________________________ -->
2683 <h4>
2684   <a name="BuildRecType">Basic Recursive Type Construction</a>
2685 </h4>
2686
2687 <div>
2688
2689 <p>
2690 Because the most common question is "how do I build a recursive type with LLVM",
2691 we answer it now and explain it as we go.  Here we include enough to cause this
2692 to be emitted to an output .ll file:
2693 </p>
2694
2695 <div class="doc_code">
2696 <pre>
2697 %mylist = type { %mylist*, i32 }
2698 </pre>
2699 </div>
2700
2701 <p>
2702 To build this, use the following LLVM APIs:
2703 </p>
2704
2705 <div class="doc_code">
2706 <pre>
2707 // <i>Create the initial outer struct</i>
2708 <a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
2709 std::vector&lt;const Type*&gt; Elts;
2710 Elts.push_back(PointerType::getUnqual(StructTy));
2711 Elts.push_back(Type::Int32Ty);
2712 StructType *NewSTy = StructType::get(Elts);
2713
2714 // <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
2715 // <i>the struct and the opaque type are actually the same.</i>
2716 cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
2717
2718 // <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
2719 // <i>kept up-to-date</i>
2720 NewSTy = cast&lt;StructType&gt;(StructTy.get());
2721
2722 // <i>Add a name for the type to the module symbol table (optional)</i>
2723 MyModule-&gt;addTypeName("mylist", NewSTy);
2724 </pre>
2725 </div>
2726
2727 <p>
2728 This code shows the basic approach used to build recursive types: build a
2729 non-recursive type using 'opaque', then use type unification to close the cycle.
2730 The type unification step is performed by the <tt><a
2731 href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
2732 described next.  After that, we describe the <a
2733 href="#PATypeHolder">PATypeHolder class</a>.
2734 </p>
2735
2736 </div>
2737
2738 <!-- ______________________________________________________________________ -->
2739 <h4>
2740   <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
2741 </h4>
2742
2743 <div>
2744 <p>
2745 The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
2746 While this method is actually a member of the DerivedType class, it is most
2747 often used on OpaqueType instances.  Type unification is actually a recursive
2748 process.  After unification, types can become structurally isomorphic to
2749 existing types, and all duplicates are deleted (to preserve pointer equality).
2750 </p>
2751
2752 <p>
2753 In the example above, the OpaqueType object is definitely deleted.
2754 Additionally, if there is an "{ \2*, i32}" type already created in the system,
2755 the pointer and struct type created are <b>also</b> deleted.  Obviously whenever
2756 a type is deleted, any "Type*" pointers in the program are invalidated.  As
2757 such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
2758 live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
2759 types can never move or be deleted).  To deal with this, the <a
2760 href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
2761 reference to a possibly refined type, and the <a
2762 href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
2763 complex datastructures.
2764 </p>
2765
2766 </div>
2767
2768 <!-- ______________________________________________________________________ -->
2769 <h4>
2770   <a name="PATypeHolder">The PATypeHolder Class</a>
2771 </h4>
2772
2773 <div>
2774 <p>
2775 PATypeHolder is a form of a "smart pointer" for Type objects.  When VMCore
2776 happily goes about nuking types that become isomorphic to existing types, it
2777 automatically updates all PATypeHolder objects to point to the new type.  In the
2778 example above, this allows the code to maintain a pointer to the resultant
2779 resolved recursive type, even though the Type*'s are potentially invalidated.
2780 </p>
2781
2782 <p>
2783 PATypeHolder is an extremely light-weight object that uses a lazy union-find
2784 implementation to update pointers.  For example the pointer from a Value to its
2785 Type is maintained by PATypeHolder objects.
2786 </p>
2787
2788 </div>
2789
2790 <!-- ______________________________________________________________________ -->
2791 <h4>
2792   <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2793 </h4>
2794
2795 <div>
2796
2797 <p>
2798 Some data structures need more to perform more complex updates when types get
2799 resolved.  To support this, a class can derive from the AbstractTypeUser class.
2800 This class
2801 allows it to get callbacks when certain types are resolved.  To register to get
2802 callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2803 methods can be called on a type.  Note that these methods only work for <i>
2804   abstract</i> types.  Concrete types (those that do not include any opaque 
2805 objects) can never be refined.
2806 </p>
2807 </div>
2808
2809 </div>
2810
2811 <!-- ======================================================================= -->
2812 <h3>
2813   <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
2814    <tt>TypeSymbolTable</tt> classes</a>
2815 </h3>
2816
2817 <div>
2818 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2819 ValueSymbolTable</a></tt> class provides a symbol table that the <a
2820 href="#Function"><tt>Function</tt></a> and <a href="#Module">
2821 <tt>Module</tt></a> classes use for naming value definitions. The symbol table
2822 can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
2823 The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
2824 TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
2825 names for types.</p>
2826
2827 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
2828 by most clients.  It should only be used when iteration over the symbol table 
2829 names themselves are required, which is very special purpose.  Note that not 
2830 all LLVM
2831 <tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
2832 an empty name) do not exist in the symbol table.
2833 </p>
2834
2835 <p>These symbol tables support iteration over the values/types in the symbol
2836 table with <tt>begin/end/iterator</tt> and supports querying to see if a
2837 specific name is in the symbol table (with <tt>lookup</tt>).  The
2838 <tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2839 simply call <tt>setName</tt> on a value, which will autoinsert it into the
2840 appropriate symbol table.  For types, use the Module::addTypeName method to
2841 insert entries into the symbol table.</p>
2842
2843 </div>
2844
2845
2846
2847 <!-- ======================================================================= -->
2848 <h3>
2849   <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2850 </h3>
2851
2852 <div>
2853 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
2854 User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
2855 towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2856 Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
2857 Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
2858 addition and removal.</p>
2859
2860 <!-- ______________________________________________________________________ -->
2861 <h4>
2862   <a name="Use2User">
2863     Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects
2864   </a>
2865 </h4>
2866
2867 <div>
2868 <p>
2869 A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
2870 or refer to them out-of-line by means of a pointer. A mixed variant
2871 (some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2872 that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2873 </p>
2874
2875 <p>
2876 We have 2 different layouts in the <tt>User</tt> (sub)classes:
2877 <ul>
2878 <li><p>Layout a)
2879 The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2880 object and there are a fixed number of them.</p>
2881
2882 <li><p>Layout b)
2883 The <tt>Use</tt> object(s) are referenced by a pointer to an
2884 array from the <tt>User</tt> object and there may be a variable
2885 number of them.</p>
2886 </ul>
2887 <p>
2888 As of v2.4 each layout still possesses a direct pointer to the
2889 start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
2890 we stick to this redundancy for the sake of simplicity.
2891 The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
2892 has. (Theoretically this information can also be calculated
2893 given the scheme presented below.)</p>
2894 <p>
2895 Special forms of allocation operators (<tt>operator new</tt>)
2896 enforce the following memory layouts:</p>
2897
2898 <ul>
2899 <li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
2900
2901 <pre>
2902 ...---.---.---.---.-------...
2903   | P | P | P | P | User
2904 '''---'---'---'---'-------'''
2905 </pre>
2906
2907 <li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
2908 <pre>
2909 .-------...
2910 | User
2911 '-------'''
2912     |
2913     v
2914     .---.---.---.---...
2915     | P | P | P | P |
2916     '---'---'---'---'''
2917 </pre>
2918 </ul>
2919 <i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2920     is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
2921
2922 </div>
2923
2924 <!-- ______________________________________________________________________ -->
2925 <h4>
2926   <a name="Waymarking">The waymarking algorithm</a>
2927 </h4>
2928
2929 <div>
2930 <p>
2931 Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
2932 their <tt>User</tt> objects, there must be a fast and exact method to
2933 recover it. This is accomplished by the following scheme:</p>
2934
2935 A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
2936 start of the <tt>User</tt> object:
2937 <ul>
2938 <li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2939 <li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2940 <li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2941 <li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2942 </ul>
2943 <p>
2944 Given a <tt>Use*</tt>, all we have to do is to walk till we get
2945 a stop and we either have a <tt>User</tt> immediately behind or
2946 we have to walk to the next stop picking up digits
2947 and calculating the offset:</p>
2948 <pre>
2949 .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2950 | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2951 '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2952     |+15                |+10            |+6         |+3     |+1
2953     |                   |               |           |       |__>
2954     |                   |               |           |__________>
2955     |                   |               |______________________>
2956     |                   |______________________________________>
2957     |__________________________________________________________>
2958 </pre>
2959 <p>
2960 Only the significant number of bits need to be stored between the
2961 stops, so that the <i>worst case is 20 memory accesses</i> when there are
2962 1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
2963
2964 </div>
2965
2966 <!-- ______________________________________________________________________ -->
2967 <h4>
2968   <a name="ReferenceImpl">Reference implementation</a>
2969 </h4>
2970
2971 <div>
2972 <p>
2973 The following literate Haskell fragment demonstrates the concept:</p>
2974
2975 <div class="doc_code">
2976 <pre>
2977 > import Test.QuickCheck
2978
2979 > digits :: Int -> [Char] -> [Char]
2980 > digits 0 acc = '0' : acc
2981 > digits 1 acc = '1' : acc
2982 > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2983
2984 > dist :: Int -> [Char] -> [Char]
2985 > dist 0 [] = ['S']
2986 > dist 0 acc = acc
2987 > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2988 > dist n acc = dist (n - 1) $ dist 1 acc
2989
2990 > takeLast n ss = reverse $ take n $ reverse ss
2991
2992 > test = takeLast 40 $ dist 20 []
2993
2994 </pre>
2995 </div>
2996 <p>
2997 Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2998 <p>
2999 The reverse algorithm computes the length of the string just by examining
3000 a certain prefix:</p>
3001
3002 <div class="doc_code">
3003 <pre>
3004 > pref :: [Char] -> Int
3005 > pref "S" = 1
3006 > pref ('s':'1':rest) = decode 2 1 rest
3007 > pref (_:rest) = 1 + pref rest
3008
3009 > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
3010 > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
3011 > decode walk acc _ = walk + acc
3012
3013 </pre>
3014 </div>
3015 <p>
3016 Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
3017 <p>
3018 We can <i>quickCheck</i> this with following property:</p>
3019
3020 <div class="doc_code">
3021 <pre>
3022 > testcase = dist 2000 []
3023 > testcaseLength = length testcase
3024
3025 > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
3026 >     where arr = takeLast n testcase
3027
3028 </pre>
3029 </div>
3030 <p>
3031 As expected &lt;quickCheck identityProp&gt; gives:</p>
3032
3033 <pre>
3034 *Main> quickCheck identityProp
3035 OK, passed 100 tests.
3036 </pre>
3037 <p>
3038 Let's be a bit more exhaustive:</p>
3039
3040 <div class="doc_code">
3041 <pre>
3042
3043 > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
3044
3045 </pre>
3046 </div>
3047 <p>
3048 And here is the result of &lt;deepCheck identityProp&gt;:</p>
3049
3050 <pre>
3051 *Main> deepCheck identityProp
3052 OK, passed 500 tests.
3053 </pre>
3054
3055 </div>
3056
3057 <!-- ______________________________________________________________________ -->
3058 <h4>
3059   <a name="Tagging">Tagging considerations</a>
3060 </h4>
3061
3062 <div>
3063
3064 <p>
3065 To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
3066 never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
3067 new <tt>Use**</tt> on every modification. Accordingly getters must strip the
3068 tag bits.</p>
3069 <p>
3070 For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
3071 Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
3072 that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
3073 the LSBit set. (Portability is relying on the fact that all known compilers place the
3074 <tt>vptr</tt> in the first word of the instances.)</p>
3075
3076 </div>
3077
3078 </div>
3079
3080 </div>
3081
3082 <!-- *********************************************************************** -->
3083 <h2>
3084   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
3085 </h2>
3086 <!-- *********************************************************************** -->
3087
3088 <div>
3089 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
3090 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
3091
3092 <p>The Core LLVM classes are the primary means of representing the program
3093 being inspected or transformed.  The core LLVM classes are defined in
3094 header files in the <tt>include/llvm/</tt> directory, and implemented in
3095 the <tt>lib/VMCore</tt> directory.</p>
3096
3097 <!-- ======================================================================= -->
3098 <h3>
3099   <a name="Type">The <tt>Type</tt> class and Derived Types</a>
3100 </h3>
3101
3102 <div>
3103
3104   <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
3105   a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
3106   through its subclasses. Certain primitive types (<tt>VoidType</tt>,
3107   <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
3108   subclasses. They are hidden because they offer no useful functionality beyond
3109   what the <tt>Type</tt> class offers except to distinguish themselves from 
3110   other subclasses of <tt>Type</tt>.</p>
3111   <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
3112   named, but this is not a requirement. There exists exactly 
3113   one instance of a given shape at any one time.  This allows type equality to
3114   be performed with address equality of the Type Instance. That is, given two 
3115   <tt>Type*</tt> values, the types are identical if the pointers are identical.
3116   </p>
3117
3118 <!-- _______________________________________________________________________ -->
3119 <h4>
3120   <a name="m_Type">Important Public Methods</a>
3121 </h4>
3122
3123 <div>
3124
3125 <ul>
3126   <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
3127
3128   <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
3129   floating point types.</li>
3130
3131   <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
3132   an OpaqueType anywhere in its definition).</li>
3133
3134   <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
3135   that don't have a size are abstract types, labels and void.</li>
3136
3137 </ul>
3138 </div>
3139
3140 <!-- _______________________________________________________________________ -->
3141 <h4>
3142   <a name="derivedtypes">Important Derived Types</a>
3143 </h4>
3144 <div>
3145 <dl>
3146   <dt><tt>IntegerType</tt></dt>
3147   <dd>Subclass of DerivedType that represents integer types of any bit width. 
3148   Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
3149   <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
3150   <ul>
3151     <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
3152     type of a specific bit width.</li>
3153     <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
3154     type.</li>
3155   </ul>
3156   </dd>
3157   <dt><tt>SequentialType</tt></dt>
3158   <dd>This is subclassed by ArrayType and PointerType
3159     <ul>
3160       <li><tt>const Type * getElementType() const</tt>: Returns the type of each
3161       of the elements in the sequential type. </li>
3162     </ul>
3163   </dd>
3164   <dt><tt>ArrayType</tt></dt>
3165   <dd>This is a subclass of SequentialType and defines the interface for array 
3166   types.
3167     <ul>
3168       <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
3169       elements in the array. </li>
3170     </ul>
3171   </dd>
3172   <dt><tt>PointerType</tt></dt>
3173   <dd>Subclass of SequentialType for pointer types.</dd>
3174   <dt><tt>VectorType</tt></dt>
3175   <dd>Subclass of SequentialType for vector types. A 
3176   vector type is similar to an ArrayType but is distinguished because it is 
3177   a first class type whereas ArrayType is not. Vector types are used for 
3178   vector operations and are usually small vectors of of an integer or floating 
3179   point type.</dd>
3180   <dt><tt>StructType</tt></dt>
3181   <dd>Subclass of DerivedTypes for struct types.</dd>
3182   <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
3183   <dd>Subclass of DerivedTypes for function types.
3184     <ul>
3185       <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
3186       function</li>
3187       <li><tt> const Type * getReturnType() const</tt>: Returns the
3188       return type of the function.</li>
3189       <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3190       the type of the ith parameter.</li>
3191       <li><tt> const unsigned getNumParams() const</tt>: Returns the
3192       number of formal parameters.</li>
3193     </ul>
3194   </dd>
3195   <dt><tt>OpaqueType</tt></dt>
3196   <dd>Sublcass of DerivedType for abstract types. This class 
3197   defines no content and is used as a placeholder for some other type. Note 
3198   that OpaqueType is used (temporarily) during type resolution for forward 
3199   references of types. Once the referenced type is resolved, the OpaqueType 
3200   is replaced with the actual type. OpaqueType can also be used for data 
3201   abstraction. At link time opaque types can be resolved to actual types 
3202   of the same name.</dd>
3203 </dl>
3204 </div>
3205
3206 </div>
3207
3208 <!-- ======================================================================= -->
3209 <h3>
3210   <a name="Module">The <tt>Module</tt> class</a>
3211 </h3>
3212
3213 <div>
3214
3215 <p><tt>#include "<a
3216 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3217 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3218
3219 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
3220 programs.  An LLVM module is effectively either a translation unit of the
3221 original program or a combination of several translation units merged by the
3222 linker.  The <tt>Module</tt> class keeps track of a list of <a
3223 href="#Function"><tt>Function</tt></a>s, a list of <a
3224 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3225 href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
3226 helpful member functions that try to make common operations easy.</p>
3227
3228 <!-- _______________________________________________________________________ -->
3229 <h4>
3230   <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
3231 </h4>
3232
3233 <div>
3234
3235 <ul>
3236   <li><tt>Module::Module(std::string name = "")</tt></li>
3237 </ul>
3238
3239 <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3240 provide a name for it (probably based on the name of the translation unit).</p>
3241
3242 <ul>
3243   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3244     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3245
3246     <tt>begin()</tt>, <tt>end()</tt>
3247     <tt>size()</tt>, <tt>empty()</tt>
3248
3249     <p>These are forwarding methods that make it easy to access the contents of
3250     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3251     list.</p></li>
3252
3253   <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3254
3255     <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
3256     necessary to use when you need to update the list or perform a complex
3257     action that doesn't have a forwarding method.</p>
3258
3259     <p><!--  Global Variable --></p></li> 
3260 </ul>
3261
3262 <hr>
3263
3264 <ul>
3265   <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3266
3267     <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3268
3269     <tt>global_begin()</tt>, <tt>global_end()</tt>
3270     <tt>global_size()</tt>, <tt>global_empty()</tt>
3271
3272     <p> These are forwarding methods that make it easy to access the contents of
3273     a <tt>Module</tt> object's <a
3274     href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3275
3276   <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3277
3278     <p>Returns the list of <a
3279     href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
3280     use when you need to update the list or perform a complex action that
3281     doesn't have a forwarding method.</p>
3282
3283     <p><!--  Symbol table stuff --> </p></li>
3284 </ul>
3285
3286 <hr>
3287
3288 <ul>
3289   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3290
3291     <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3292     for this <tt>Module</tt>.</p>
3293
3294     <p><!--  Convenience methods --></p></li>
3295 </ul>
3296
3297 <hr>
3298
3299 <ul>
3300   <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3301   &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3302
3303     <p>Look up the specified function in the <tt>Module</tt> <a
3304     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3305     <tt>null</tt>.</p></li>
3306
3307   <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3308   std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3309
3310     <p>Look up the specified function in the <tt>Module</tt> <a
3311     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3312     external declaration for the function and return it.</p></li>
3313
3314   <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3315
3316     <p>If there is at least one entry in the <a
3317     href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3318     href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
3319     string.</p></li>
3320
3321   <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3322   href="#Type">Type</a> *Ty)</tt>
3323
3324     <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3325     mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3326     name, true is returned and the <a
3327     href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3328 </ul>
3329
3330 </div>
3331
3332 </div>
3333
3334 <!-- ======================================================================= -->
3335 <h3>
3336   <a name="Value">The <tt>Value</tt> class</a>
3337 </h3>
3338
3339 <div>
3340
3341 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3342 <br> 
3343 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
3344
3345 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
3346 base.  It represents a typed value that may be used (among other things) as an
3347 operand to an instruction.  There are many different types of <tt>Value</tt>s,
3348 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3349 href="#Argument"><tt>Argument</tt></a>s. Even <a
3350 href="#Instruction"><tt>Instruction</tt></a>s and <a
3351 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3352
3353 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3354 for a program.  For example, an incoming argument to a function (represented
3355 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3356 every instruction in the function that references the argument.  To keep track
3357 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3358 href="#User"><tt>User</tt></a>s that is using it (the <a
3359 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3360 graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
3361 def-use information in the program, and is accessible through the <tt>use_</tt>*
3362 methods, shown below.</p>
3363
3364 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3365 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3366 method. In addition, all LLVM values can be named.  The "name" of the
3367 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3368
3369 <div class="doc_code">
3370 <pre>
3371 %<b>foo</b> = add i32 1, 2
3372 </pre>
3373 </div>
3374
3375 <p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
3376 that the name of any value may be missing (an empty string), so names should
3377 <b>ONLY</b> be used for debugging (making the source code easier to read,
3378 debugging printouts), they should not be used to keep track of values or map
3379 between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
3380 <tt>Value</tt> itself instead.</p>
3381
3382 <p>One important aspect of LLVM is that there is no distinction between an SSA
3383 variable and the operation that produces it.  Because of this, any reference to
3384 the value produced by an instruction (or the value available as an incoming
3385 argument, for example) is represented as a direct pointer to the instance of
3386 the class that
3387 represents this value.  Although this may take some getting used to, it
3388 simplifies the representation and makes it easier to manipulate.</p>
3389
3390 <!-- _______________________________________________________________________ -->
3391 <h4>
3392   <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
3393 </h4>
3394
3395 <div>
3396
3397 <ul>
3398   <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3399 use-list<br>
3400     <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
3401 the use-list<br>
3402     <tt>unsigned use_size()</tt> - Returns the number of users of the
3403 value.<br>
3404     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
3405     <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3406 the use-list.<br>
3407     <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3408 use-list.<br>
3409     <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3410 element in the list.
3411     <p> These methods are the interface to access the def-use
3412 information in LLVM.  As with all other iterators in LLVM, the naming
3413 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
3414   </li>
3415   <li><tt><a href="#Type">Type</a> *getType() const</tt>
3416     <p>This method returns the Type of the Value.</p>
3417   </li>
3418   <li><tt>bool hasName() const</tt><br>
3419     <tt>std::string getName() const</tt><br>
3420     <tt>void setName(const std::string &amp;Name)</tt>
3421     <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3422 be aware of the <a href="#nameWarning">precaution above</a>.</p>
3423   </li>
3424   <li><tt>void replaceAllUsesWith(Value *V)</tt>
3425
3426     <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3427     href="#User"><tt>User</tt>s</a> of the current value to refer to
3428     "<tt>V</tt>" instead.  For example, if you detect that an instruction always
3429     produces a constant value (for example through constant folding), you can
3430     replace all uses of the instruction with the constant like this:</p>
3431
3432 <div class="doc_code">
3433 <pre>
3434 Inst-&gt;replaceAllUsesWith(ConstVal);
3435 </pre>
3436 </div>
3437
3438 </ul>
3439
3440 </div>
3441
3442 </div>
3443
3444 <!-- ======================================================================= -->
3445 <h3>
3446   <a name="User">The <tt>User</tt> class</a>
3447 </h3>
3448
3449 <div>
3450   
3451 <p>
3452 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
3453 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
3454 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3455
3456 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3457 refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
3458 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3459 referring to.  The <tt>User</tt> class itself is a subclass of
3460 <tt>Value</tt>.</p>
3461
3462 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
3463 href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
3464 Single Assignment (SSA) form, there can only be one definition referred to,
3465 allowing this direct connection.  This connection provides the use-def
3466 information in LLVM.</p>
3467
3468 <!-- _______________________________________________________________________ -->
3469 <h4>
3470   <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
3471 </h4>
3472
3473 <div>
3474
3475 <p>The <tt>User</tt> class exposes the operand list in two ways: through
3476 an index access interface and through an iterator based interface.</p>
3477
3478 <ul>
3479   <li><tt>Value *getOperand(unsigned i)</tt><br>
3480     <tt>unsigned getNumOperands()</tt>
3481     <p> These two methods expose the operands of the <tt>User</tt> in a
3482 convenient form for direct access.</p></li>
3483
3484   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3485 list<br>
3486     <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
3487 the operand list.<br>
3488     <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
3489 operand list.
3490     <p> Together, these methods make up the iterator based interface to
3491 the operands of a <tt>User</tt>.</p></li>
3492 </ul>
3493
3494 </div>    
3495
3496 </div>
3497
3498 <!-- ======================================================================= -->
3499 <h3>
3500   <a name="Instruction">The <tt>Instruction</tt> class</a>
3501 </h3>
3502
3503 <div>
3504
3505 <p><tt>#include "</tt><tt><a
3506 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
3507 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
3508 Superclasses: <a href="#User"><tt>User</tt></a>, <a
3509 href="#Value"><tt>Value</tt></a></p>
3510
3511 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
3512 instructions.  It provides only a few methods, but is a very commonly used
3513 class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
3514 opcode (instruction type) and the parent <a
3515 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3516 into.  To represent a specific type of instruction, one of many subclasses of
3517 <tt>Instruction</tt> are used.</p>
3518
3519 <p> Because the <tt>Instruction</tt> class subclasses the <a
3520 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3521 way as for other <a href="#User"><tt>User</tt></a>s (with the
3522 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3523 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3524 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3525 file contains some meta-data about the various different types of instructions
3526 in LLVM.  It describes the enum values that are used as opcodes (for example
3527 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
3528 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3529 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
3530 href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
3531 this file confuses doxygen, so these enum values don't show up correctly in the
3532 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
3533
3534 <!-- _______________________________________________________________________ -->
3535 <h4>
3536   <a name="s_Instruction">
3537     Important Subclasses of the <tt>Instruction</tt> class
3538   </a>
3539 </h4>
3540 <div>
3541   <ul>
3542     <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3543     <p>This subclasses represents all two operand instructions whose operands
3544     must be the same type, except for the comparison instructions.</p></li>
3545     <li><tt><a name="CastInst">CastInst</a></tt>
3546     <p>This subclass is the parent of the 12 casting instructions. It provides
3547     common operations on cast instructions.</p>
3548     <li><tt><a name="CmpInst">CmpInst</a></tt>
3549     <p>This subclass respresents the two comparison instructions, 
3550     <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3551     <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3552     <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3553     <p>This subclass is the parent of all terminator instructions (those which
3554     can terminate a block).</p>
3555   </ul>
3556   </div>
3557
3558 <!-- _______________________________________________________________________ -->
3559 <h4>
3560   <a name="m_Instruction">
3561     Important Public Members of the <tt>Instruction</tt> class
3562   </a>
3563 </h4>
3564
3565 <div>
3566
3567 <ul>
3568   <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3569     <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3570 this  <tt>Instruction</tt> is embedded into.</p></li>
3571   <li><tt>bool mayWriteToMemory()</tt>
3572     <p>Returns true if the instruction writes to memory, i.e. it is a
3573       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3574   <li><tt>unsigned getOpcode()</tt>
3575     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3576   <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3577     <p>Returns another instance of the specified instruction, identical
3578 in all ways to the original except that the instruction has no parent
3579 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3580 and it has no name</p></li>
3581 </ul>
3582
3583 </div>
3584
3585 </div>
3586
3587 <!-- ======================================================================= -->
3588 <h3>
3589   <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3590 </h3>
3591
3592 <div>
3593
3594 <p>Constant represents a base class for different types of constants. It
3595 is subclassed by ConstantInt, ConstantArray, etc. for representing 
3596 the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
3597 a subclass, which represents the address of a global variable or function.
3598 </p>
3599
3600 <!-- _______________________________________________________________________ -->
3601 <h4>Important Subclasses of Constant</h4>
3602 <div>
3603 <ul>
3604   <li>ConstantInt : This subclass of Constant represents an integer constant of
3605   any width.
3606     <ul>
3607       <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3608       value of this constant, an APInt value.</li>
3609       <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3610       value to an int64_t via sign extension. If the value (not the bit width)
3611       of the APInt is too large to fit in an int64_t, an assertion will result.
3612       For this reason, use of this method is discouraged.</li>
3613       <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3614       value to a uint64_t via zero extension. IF the value (not the bit width)
3615       of the APInt is too large to fit in a uint64_t, an assertion will result.
3616       For this reason, use of this method is discouraged.</li>
3617       <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3618       ConstantInt object that represents the value provided by <tt>Val</tt>.
3619       The type is implied as the IntegerType that corresponds to the bit width
3620       of <tt>Val</tt>.</li>
3621       <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
3622       Returns the ConstantInt object that represents the value provided by 
3623       <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3624     </ul>
3625   </li>
3626   <li>ConstantFP : This class represents a floating point constant.
3627     <ul>
3628       <li><tt>double getValue() const</tt>: Returns the underlying value of 
3629       this constant. </li>
3630     </ul>
3631   </li>
3632   <li>ConstantArray : This represents a constant array.
3633     <ul>
3634       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3635       a vector of component constants that makeup this array. </li>
3636     </ul>
3637   </li>
3638   <li>ConstantStruct : This represents a constant struct.
3639     <ul>
3640       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3641       a vector of component constants that makeup this array. </li>
3642     </ul>
3643   </li>
3644   <li>GlobalValue : This represents either a global variable or a function. In 
3645   either case, the value is a constant fixed address (after linking). 
3646   </li>
3647 </ul>
3648 </div>
3649
3650 </div>
3651
3652 <!-- ======================================================================= -->
3653 <h3>
3654   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3655 </h3>
3656
3657 <div>
3658
3659 <p><tt>#include "<a
3660 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3661 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3662 Class</a><br>
3663 Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
3664 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3665
3666 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3667 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3668 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3669 Because they are visible at global scope, they are also subject to linking with
3670 other globals defined in different translation units.  To control the linking
3671 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3672 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3673 defined by the <tt>LinkageTypes</tt> enumeration.</p>
3674
3675 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3676 <tt>static</tt> in C), it is not visible to code outside the current translation
3677 unit, and does not participate in linking.  If it has external linkage, it is
3678 visible to external code, and does participate in linking.  In addition to
3679 linkage information, <tt>GlobalValue</tt>s keep track of which <a
3680 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3681
3682 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3683 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3684 global is always a pointer to its contents. It is important to remember this
3685 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3686 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3687 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3688 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3689 the address of the first element of this array and the value of the
3690 <tt>GlobalVariable</tt> are the same, they have different types. The
3691 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3692 is <tt>i32.</tt> Because of this, accessing a global value requires you to
3693 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3694 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3695 Language Reference Manual</a>.</p>
3696
3697 <!-- _______________________________________________________________________ -->
3698 <h4>
3699   <a name="m_GlobalValue">
3700     Important Public Members of the <tt>GlobalValue</tt> class
3701   </a>
3702 </h4>
3703
3704 <div>
3705
3706 <ul>
3707   <li><tt>bool hasInternalLinkage() const</tt><br>
3708     <tt>bool hasExternalLinkage() const</tt><br>
3709     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3710     <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3711     <p> </p>
3712   </li>
3713   <li><tt><a href="#Module">Module</a> *getParent()</tt>
3714     <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3715 GlobalValue is currently embedded into.</p></li>
3716 </ul>
3717
3718 </div>
3719
3720 </div>
3721
3722 <!-- ======================================================================= -->
3723 <h3>
3724   <a name="Function">The <tt>Function</tt> class</a>
3725 </h3>
3726
3727 <div>
3728
3729 <p><tt>#include "<a
3730 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3731 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3732 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3733 <a href="#Constant"><tt>Constant</tt></a>, 
3734 <a href="#User"><tt>User</tt></a>, 
3735 <a href="#Value"><tt>Value</tt></a></p>
3736
3737 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
3738 actually one of the more complex classes in the LLVM hierarchy because it must
3739 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
3740 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
3741 <a href="#Argument"><tt>Argument</tt></a>s, and a 
3742 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3743
3744 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3745 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
3746 ordering of the blocks in the function, which indicate how the code will be
3747 laid out by the backend.  Additionally, the first <a
3748 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3749 <tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
3750 block.  There are no implicit exit nodes, and in fact there may be multiple exit
3751 nodes from a single <tt>Function</tt>.  If the <a
3752 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3753 the <tt>Function</tt> is actually a function declaration: the actual body of the
3754 function hasn't been linked in yet.</p>
3755
3756 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3757 <tt>Function</tt> class also keeps track of the list of formal <a
3758 href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
3759 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3760 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3761 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3762
3763 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3764 LLVM feature that is only used when you have to look up a value by name.  Aside
3765 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3766 internally to make sure that there are not conflicts between the names of <a
3767 href="#Instruction"><tt>Instruction</tt></a>s, <a
3768 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3769 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3770
3771 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3772 and therefore also a <a href="#Constant">Constant</a>. The value of the function
3773 is its address (after linking) which is guaranteed to be constant.</p>
3774
3775 <!-- _______________________________________________________________________ -->
3776 <h4>
3777   <a name="m_Function">
3778     Important Public Members of the <tt>Function</tt> class
3779   </a>
3780 </h4>
3781
3782 <div>
3783
3784 <ul>
3785   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3786   *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3787
3788     <p>Constructor used when you need to create new <tt>Function</tt>s to add
3789     the the program.  The constructor must specify the type of the function to
3790     create and what type of linkage the function should have. The <a 
3791     href="#FunctionType"><tt>FunctionType</tt></a> argument
3792     specifies the formal arguments and return value for the function. The same
3793     <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3794     create multiple functions. The <tt>Parent</tt> argument specifies the Module
3795     in which the function is defined. If this argument is provided, the function
3796     will automatically be inserted into that module's list of
3797     functions.</p></li>
3798
3799   <li><tt>bool isDeclaration()</tt>
3800
3801     <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
3802     function is "external", it does not have a body, and thus must be resolved
3803     by linking with a function defined in a different translation unit.</p></li>
3804
3805   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3806     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3807
3808     <tt>begin()</tt>, <tt>end()</tt>
3809     <tt>size()</tt>, <tt>empty()</tt>
3810
3811     <p>These are forwarding methods that make it easy to access the contents of
3812     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3813     list.</p></li>
3814
3815   <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3816
3817     <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
3818     is necessary to use when you need to update the list or perform a complex
3819     action that doesn't have a forwarding method.</p></li>
3820
3821   <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3822 iterator<br>
3823     <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3824
3825     <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3826     <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3827
3828     <p>These are forwarding methods that make it easy to access the contents of
3829     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3830     list.</p></li>
3831
3832   <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3833
3834     <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
3835     necessary to use when you need to update the list or perform a complex
3836     action that doesn't have a forwarding method.</p></li>
3837
3838   <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3839
3840     <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3841     function.  Because the entry block for the function is always the first
3842     block, this returns the first block of the <tt>Function</tt>.</p></li>
3843
3844   <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3845     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3846
3847     <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3848     <tt>Function</tt> and returns the return type of the function, or the <a
3849     href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3850     function.</p></li>
3851
3852   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3853
3854     <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3855     for this <tt>Function</tt>.</p></li>
3856 </ul>
3857
3858 </div>
3859
3860 </div>
3861
3862 <!-- ======================================================================= -->
3863 <h3>
3864   <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3865 </h3>
3866
3867 <div>
3868
3869 <p><tt>#include "<a
3870 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3871 <br>
3872 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3873  Class</a><br>
3874 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3875 <a href="#Constant"><tt>Constant</tt></a>,
3876 <a href="#User"><tt>User</tt></a>,
3877 <a href="#Value"><tt>Value</tt></a></p>
3878
3879 <p>Global variables are represented with the (surprise surprise)
3880 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3881 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3882 always referenced by their address (global values must live in memory, so their
3883 "name" refers to their constant address). See 
3884 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
3885 variables may have an initial value (which must be a 
3886 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
3887 they may be marked as "constant" themselves (indicating that their contents 
3888 never change at runtime).</p>
3889
3890 <!-- _______________________________________________________________________ -->
3891 <h4>
3892   <a name="m_GlobalVariable">
3893     Important Public Members of the <tt>GlobalVariable</tt> class
3894   </a>
3895 </h4>
3896
3897 <div>
3898
3899 <ul>
3900   <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3901   isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3902   *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3903
3904     <p>Create a new global variable of the specified type. If
3905     <tt>isConstant</tt> is true then the global variable will be marked as
3906     unchanging for the program. The Linkage parameter specifies the type of
3907     linkage (internal, external, weak, linkonce, appending) for the variable.
3908     If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3909     LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3910     global variable will have internal linkage.  AppendingLinkage concatenates
3911     together all instances (in different translation units) of the variable
3912     into a single variable but is only applicable to arrays.  &nbsp;See
3913     the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3914     further details on linkage types. Optionally an initializer, a name, and the
3915     module to put the variable into may be specified for the global variable as
3916     well.</p></li>
3917
3918   <li><tt>bool isConstant() const</tt>
3919
3920     <p>Returns true if this is a global variable that is known not to
3921     be modified at runtime.</p></li>
3922
3923   <li><tt>bool hasInitializer()</tt>
3924
3925     <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3926
3927   <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3928
3929     <p>Returns the initial value for a <tt>GlobalVariable</tt>.  It is not legal
3930     to call this method if there is no initializer.</p></li>
3931 </ul>
3932
3933 </div>
3934
3935 </div>
3936
3937 <!-- ======================================================================= -->
3938 <h3>
3939   <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3940 </h3>
3941
3942 <div>
3943
3944 <p><tt>#include "<a
3945 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3946 doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
3947 Class</a><br>
3948 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3949
3950 <p>This class represents a single entry single exit section of the code,
3951 commonly known as a basic block by the compiler community.  The
3952 <tt>BasicBlock</tt> class maintains a list of <a
3953 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3954 Matching the language definition, the last element of this list of instructions
3955 is always a terminator instruction (a subclass of the <a
3956 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3957
3958 <p>In addition to tracking the list of instructions that make up the block, the
3959 <tt>BasicBlock</tt> class also keeps track of the <a
3960 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3961
3962 <p>Note that <tt>BasicBlock</tt>s themselves are <a
3963 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3964 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3965 <tt>label</tt>.</p>
3966
3967 <!-- _______________________________________________________________________ -->
3968 <h4>
3969   <a name="m_BasicBlock">
3970     Important Public Members of the <tt>BasicBlock</tt> class
3971   </a>
3972 </h4>
3973
3974 <div>
3975 <ul>
3976
3977 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3978  href="#Function">Function</a> *Parent = 0)</tt>
3979
3980 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3981 insertion into a function.  The constructor optionally takes a name for the new
3982 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
3983 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3984 automatically inserted at the end of the specified <a
3985 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3986 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3987
3988 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3989 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3990 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3991 <tt>size()</tt>, <tt>empty()</tt>
3992 STL-style functions for accessing the instruction list.
3993
3994 <p>These methods and typedefs are forwarding functions that have the same
3995 semantics as the standard library methods of the same names.  These methods
3996 expose the underlying instruction list of a basic block in a way that is easy to
3997 manipulate.  To get the full complement of container operations (including
3998 operations to update the list), you must use the <tt>getInstList()</tt>
3999 method.</p></li>
4000
4001 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
4002
4003 <p>This method is used to get access to the underlying container that actually
4004 holds the Instructions.  This method must be used when there isn't a forwarding
4005 function in the <tt>BasicBlock</tt> class for the operation that you would like
4006 to perform.  Because there are no forwarding functions for "updating"
4007 operations, you need to use this if you want to update the contents of a
4008 <tt>BasicBlock</tt>.</p></li>
4009
4010 <li><tt><a href="#Function">Function</a> *getParent()</tt>
4011
4012 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
4013 embedded into, or a null pointer if it is homeless.</p></li>
4014
4015 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
4016
4017 <p> Returns a pointer to the terminator instruction that appears at the end of
4018 the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
4019 instruction in the block is not a terminator, then a null pointer is
4020 returned.</p></li>
4021
4022 </ul>
4023
4024 </div>
4025
4026 </div>
4027
4028 <!-- ======================================================================= -->
4029 <h3>
4030   <a name="Argument">The <tt>Argument</tt> class</a>
4031 </h3>
4032
4033 <div>
4034
4035 <p>This subclass of Value defines the interface for incoming formal
4036 arguments to a function. A Function maintains a list of its formal
4037 arguments. An argument has a pointer to the parent Function.</p>
4038
4039 </div>
4040
4041 </div>
4042
4043 <!-- *********************************************************************** -->
4044 <hr>
4045 <address>
4046   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4047   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
4048   <a href="http://validator.w3.org/check/referer"><img
4049   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
4050
4051   <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
4052   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
4053   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
4054   Last modified: $Date$
4055 </address>
4056
4057 </body>
4058 </html>