Documentation: cleanup
[oota-llvm.git] / docs / LinkTimeOptimization.rst
1 .. _lto:
2
3 ======================================================
4 LLVM Link Time Optimization: Design and Implementation
5 ======================================================
6
7 .. contents::
8    :local:
9
10 Description
11 ===========
12
13 LLVM features powerful intermodular optimizations which can be used at link
14 time.  Link Time Optimization (LTO) is another name for intermodular
15 optimization when performed during the link stage. This document describes the
16 interface and design between the LTO optimizer and the linker.
17
18 Design Philosophy
19 =================
20
21 The LLVM Link Time Optimizer provides complete transparency, while doing
22 intermodular optimization, in the compiler tool chain. Its main goal is to let
23 the developer take advantage of intermodular optimizations without making any
24 significant changes to the developer's makefiles or build system. This is
25 achieved through tight integration with the linker. In this model, the linker
26 treates LLVM bitcode files like native object files and allows mixing and
27 matching among them. The linker uses `libLTO`_, a shared object, to handle LLVM
28 bitcode files. This tight integration between the linker and LLVM optimizer
29 helps to do optimizations that are not possible in other models. The linker
30 input allows the optimizer to avoid relying on conservative escape analysis.
31
32 .. _libLTO-example:
33
34 Example of link time optimization
35 ---------------------------------
36
37 The following example illustrates the advantages of LTO's integrated approach
38 and clean interface. This example requires a system linker which supports LTO
39 through the interface described in this document.  Here, clang transparently
40 invokes system linker.
41
42 * Input source file ``a.c`` is compiled into LLVM bitcode form.
43 * Input source file ``main.c`` is compiled into native object code.
44
45 .. code-block:: c++
46
47   --- a.h ---
48   extern int foo1(void);
49   extern void foo2(void);
50   extern void foo4(void);
51
52   --- a.c ---
53   #include "a.h"
54
55   static signed int i = 0;
56
57   void foo2(void) {
58     i = -1;
59   }
60
61   static int foo3() {
62     foo4();
63     return 10;
64   }
65
66   int foo1(void) {
67     int data = 0;
68
69     if (i < 0) 
70       data = foo3();
71
72     data = data + 42;
73     return data;
74   }
75
76   --- main.c ---
77   #include <stdio.h>
78   #include "a.h"
79
80   void foo4(void) {
81     printf("Hi\n");
82   }
83
84   int main() {
85     return foo1();
86   }
87
88 To compile, run:
89
90 .. code-block:: console
91
92   % clang -emit-llvm -c a.c -o a.o   # <-- a.o is LLVM bitcode file
93   % clang -c main.c -o main.o        # <-- main.o is native object file
94   % clang a.o main.o -o main         # <-- standard link command without modifications
95
96 * In this example, the linker recognizes that ``foo2()`` is an externally
97   visible symbol defined in LLVM bitcode file. The linker completes its usual
98   symbol resolution pass and finds that ``foo2()`` is not used
99   anywhere. This information is used by the LLVM optimizer and it
100   removes ``foo2()``.
101
102 * As soon as ``foo2()`` is removed, the optimizer recognizes that condition ``i
103   < 0`` is always false, which means ``foo3()`` is never used. Hence, the
104   optimizer also removes ``foo3()``.
105
106 * And this in turn, enables linker to remove ``foo4()``.
107
108 This example illustrates the advantage of tight integration with the
109 linker. Here, the optimizer can not remove ``foo3()`` without the linker's
110 input.
111
112 Alternative Approaches
113 ----------------------
114
115 **Compiler driver invokes link time optimizer separately.**
116     In this model the link time optimizer is not able to take advantage of
117     information collected during the linker's normal symbol resolution phase.
118     In the above example, the optimizer can not remove ``foo2()`` without the
119     linker's input because it is externally visible. This in turn prohibits the
120     optimizer from removing ``foo3()``.
121
122 **Use separate tool to collect symbol information from all object files.**
123     In this model, a new, separate, tool or library replicates the linker's
124     capability to collect information for link time optimization. Not only is
125     this code duplication difficult to justify, but it also has several other
126     disadvantages.  For example, the linking semantics and the features provided
127     by the linker on various platform are not unique. This means, this new tool
128     needs to support all such features and platforms in one super tool or a
129     separate tool per platform is required. This increases maintenance cost for
130     link time optimizer significantly, which is not necessary. This approach
131     also requires staying synchronized with linker developements on various
132     platforms, which is not the main focus of the link time optimizer. Finally,
133     this approach increases end user's build time due to the duplication of work
134     done by this separate tool and the linker itself.
135
136 Multi-phase communication between ``libLTO`` and linker
137 =======================================================
138
139 The linker collects information about symbol defininitions and uses in various
140 link objects which is more accurate than any information collected by other
141 tools during typical build cycles.  The linker collects this information by
142 looking at the definitions and uses of symbols in native .o files and using
143 symbol visibility information. The linker also uses user-supplied information,
144 such as a list of exported symbols. LLVM optimizer collects control flow
145 information, data flow information and knows much more about program structure
146 from the optimizer's point of view.  Our goal is to take advantage of tight
147 integration between the linker and the optimizer by sharing this information
148 during various linking phases.
149
150 Phase 1 : Read LLVM Bitcode Files
151 ---------------------------------
152
153 The linker first reads all object files in natural order and collects symbol
154 information. This includes native object files as well as LLVM bitcode files.
155 To minimize the cost to the linker in the case that all .o files are native
156 object files, the linker only calls ``lto_module_create()`` when a supplied
157 object file is found to not be a native object file.  If ``lto_module_create()``
158 returns that the file is an LLVM bitcode file, the linker then iterates over the
159 module using ``lto_module_get_symbol_name()`` and
160 ``lto_module_get_symbol_attribute()`` to get all symbols defined and referenced.
161 This information is added to the linker's global symbol table.
162
163
164 The lto* functions are all implemented in a shared object libLTO.  This allows
165 the LLVM LTO code to be updated independently of the linker tool.  On platforms
166 that support it, the shared object is lazily loaded.
167
168 Phase 2 : Symbol Resolution
169 ---------------------------
170
171 In this stage, the linker resolves symbols using global symbol table.  It may
172 report undefined symbol errors, read archive members, replace weak symbols, etc.
173 The linker is able to do this seamlessly even though it does not know the exact
174 content of input LLVM bitcode files.  If dead code stripping is enabled then the
175 linker collects the list of live symbols.
176
177 Phase 3 : Optimize Bitcode Files
178 --------------------------------
179
180 After symbol resolution, the linker tells the LTO shared object which symbols
181 are needed by native object files.  In the example above, the linker reports
182 that only ``foo1()`` is used by native object files using
183 ``lto_codegen_add_must_preserve_symbol()``.  Next the linker invokes the LLVM
184 optimizer and code generators using ``lto_codegen_compile()`` which returns a
185 native object file creating by merging the LLVM bitcode files and applying
186 various optimization passes.
187
188 Phase 4 : Symbol Resolution after optimization
189 ----------------------------------------------
190
191 In this phase, the linker reads optimized a native object file and updates the
192 internal global symbol table to reflect any changes. The linker also collects
193 information about any changes in use of external symbols by LLVM bitcode
194 files. In the example above, the linker notes that ``foo4()`` is not used any
195 more. If dead code stripping is enabled then the linker refreshes the live
196 symbol information appropriately and performs dead code stripping.
197
198 After this phase, the linker continues linking as if it never saw LLVM bitcode
199 files.
200
201 .. _libLTO:
202
203 ``libLTO``
204 ==========
205
206 ``libLTO`` is a shared object that is part of the LLVM tools, and is intended
207 for use by a linker. ``libLTO`` provides an abstract C interface to use the LLVM
208 interprocedural optimizer without exposing details of LLVM's internals. The
209 intention is to keep the interface as stable as possible even when the LLVM
210 optimizer continues to evolve. It should even be possible for a completely
211 different compilation technology to provide a different libLTO that works with
212 their object files and the standard linker tool.
213
214 ``lto_module_t``
215 ----------------
216
217 A non-native object file is handled via an ``lto_module_t``.  The following
218 functions allow the linker to check if a file (on disk or in a memory buffer) is
219 a file which libLTO can process:
220
221 .. code-block:: c
222
223   lto_module_is_object_file(const char*)
224   lto_module_is_object_file_for_target(const char*, const char*)
225   lto_module_is_object_file_in_memory(const void*, size_t)
226   lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
227
228 If the object file can be processed by ``libLTO``, the linker creates a
229 ``lto_module_t`` by using one of:
230
231 .. code-block:: c
232
233   lto_module_create(const char*)
234   lto_module_create_from_memory(const void*, size_t)
235
236 and when done, the handle is released via
237
238 .. code-block:: c
239
240   lto_module_dispose(lto_module_t)
241
242
243 The linker can introspect the non-native object file by getting the number of
244 symbols and getting the name and attributes of each symbol via:
245
246 .. code-block:: c
247
248   lto_module_get_num_symbols(lto_module_t)
249   lto_module_get_symbol_name(lto_module_t, unsigned int)
250   lto_module_get_symbol_attribute(lto_module_t, unsigned int)
251
252 The attributes of a symbol include the alignment, visibility, and kind.
253
254 ``lto_code_gen_t``
255 ------------------
256
257 Once the linker has loaded each non-native object files into an
258 ``lto_module_t``, it can request ``libLTO`` to process them all and generate a
259 native object file.  This is done in a couple of steps.  First, a code generator
260 is created with:
261
262 .. code-block:: c
263
264   lto_codegen_create()
265
266 Then, each non-native object file is added to the code generator with:
267
268 .. code-block:: c
269
270   lto_codegen_add_module(lto_code_gen_t, lto_module_t)
271
272 The linker then has the option of setting some codegen options.  Whether or not
273 to generate DWARF debug info is set with:
274   
275 .. code-block:: c
276
277   lto_codegen_set_debug_model(lto_code_gen_t)
278
279 Which kind of position independence is set with:
280
281 .. code-block:: c
282
283   lto_codegen_set_pic_model(lto_code_gen_t)
284   
285 And each symbol that is referenced by a native object file or otherwise must not
286 be optimized away is set with:
287
288 .. code-block:: c
289
290   lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
291
292 After all these settings are done, the linker requests that a native object file
293 be created from the modules with the settings using:
294
295 .. code-block:: c
296
297   lto_codegen_compile(lto_code_gen_t, size*)
298
299 which returns a pointer to a buffer containing the generated native object file.
300 The linker then parses that and links it with the rest of the native object
301 files.