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The Out-of-Thin-Air Problem

r1 = r2 = 42 ✔

Load Buffering// T1                                         // T2
r1 = x;                                      r2 = y;
y = r1;                                      x = 42;

● Everything initialized to 0
● Loads & stores on x & y are C++ relaxed atomics



  

r1 = r2 = 42 ✔

r1 = r2 = 42??

Load Buffering

OOTA Example

The Out-of-Thin-Air Problem

// T1                                         // T2
r1 = x;                                      r2 = y;
y = r1;                                      x = 42;

// T1                                         // T2
r1 = x;                                      r2 = y;
y = r1;                                      x = r2;

● Everything initialized to 0
● Loads & stores on x & y are C++ relaxed atomics



  

// T1                                         // T2
r1 = x;                                      r2 = y;
y = r1;                                      x = 42;

r1=x

y=42

r2=y

x=42

sb
rf

● Everything initialized to 0
● Loads & stores on x & y are C++ relaxed atomics

The Out-of-Thin-Air Problem

// T1                                         // T2
r1 = x;                                      r2 = y;
y = r1;                                      x = r2;

rf
sb



  

Causality Cycles

// T1                                          // T2
r1 = x;                                       r2 = y;
y = r1;                                       x = r2;

● Causality cycle

 – a store causes itself to happen!

 – makes reasoning difficult
● Hardware forbids causality cycles

 – respects a notion of syntactic dependency
● Compiler optimizations + relaxed hardware implementation

 → challenging to precisely disallow OOTA executions

dep dep

r1=r2=42

rfrf



  

In Our Paper

● Two approaches

 – enforce slightly stronger memory models to 
forbid OOTA results

● LLVM-based implementations

● Initial evaluations on their runtime overheads



  

● Targeted towards Java-like languages

 – supposed to run untrusted code

    → may have data races

    → must define semantics for racy programs
● Data races in normal accesses

→must forbid OOTA results produced by normal           
    accesses

Dependency-Preserving Approach



  

Dependency-Preserving Approach

● Core idea (borrowed from hardware)

 – define a notion of dependency at the language level

   →if a load L may cause a store S to happen, L         S 

 – require dependency U rf is acyclic

 – our dependency is close to hardware dependency

   →only need to preserve dependencies in compilers

dep

dep U rf cycle, r1=r2=42 ✗

// T1                                          // T2
r1 = x;                                       r2 = y;
y = r1;                                       x = r2;

dep dep
rfrf



  

Example of Dependency Notion

 // T1                                          // T2
 r1 = x;                                       r2 = y;

 y = r1*0 + 42;                            if (r2==r2)

                                                      x = 42;

data data

ctrl

r1=r2=42✗

rf rf

● More details in our paper

– when the address of a store depends on some load

– when a store is conditionally executed...



  

An LLVM-Based Implementation

Input:
C/C++ Source

Code
1. Clang Front End

3. LLVM  Backend
Code Generator

2. LLVM IR
Optimizer

Output:
Object Code

Generate
Unoptimized IR

Optimize
IR

Generate
Machine Code



  

Preserving Dependencies at IR Level

● Focus on a select set of 35 IR passes

 – overhead with only these passes enabled is only    
    1.8%  (over -O3)

● Our implementation

 – disable all other IR passes

 – audit selected passes

 – modify those that can break dependencies



  

Modified IR Pass

● Modified instcombine, simplifycfg, loop-unrolling…

 – also modified passes that perform store-store 
reordering, e.g.,dead store elimination…

 – more details in our paper

r2 = (r1 == r1);
if (r2) ...

r2 = true;
if (true) ...

✗

r1 = x;
if (r1)  y = 1;
else  y = 1;

r1 = x;
y = 1;

✗



  

Preserve Backend Dependencies

● AArch64 backend

 – more relevant than x86 (relatively strong memory model)
● Modifications

 – data dependencies

     – SelectionDAG-based instruction selection pass (modified)

 – control dependencies

     – codegenprepare (modified)

     – branchfolding (disabled)



  

Dependency-Preserving Evaluation

● Benchmarks

 – SPEC CPU2006 C/C++ programs
● Baseline

 – stock LLVM 3.8 with O3 option enabled
● Processor

 – Cortex-A72 core (ARMv8) on a Firefly RK3399 board
● Compiler configurations

 – partial optimization (unmodified LLVM with only the selected 35 
IR passes enabled)

 – our dependency-preserving compiler



  

Single-Threaded Runs

● Dependency Preserving –– 3.1% on average & 17.6% maximum
● Partial Optimization –– 1.8% on average (room for optimizations)
● Speedup on some benchmarks

 – disabling “BranchFolding” pass alone →-1.5% ~ 1.5%
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Load-Store-Order-Preserving 
Approach



  

Load-Store-Order-Preserving 
Approach

● Targeted towards C/C++-like languages

 – racy operations are labeled as atomics

 – racy non-atomic accesses→undefined semantics

      – OOTA involves racy operations

      – already exclude OOTA for non-atomic accesses

● Only atomics can produce OOTA results

  – relatively rare (especially relaxed atomics)



  

Load-Store-Order-Preserving 
Approach

● Core idea: preserve load-store ordering for atomics
  – forbid sb U rf cycle 
     → effectively forbid dep U rf cycle

  – does not affect normal accesses & single-threaded code

r1 = x.load(relaxed);
T1

y.store(r1, relaxed); r2 = y.load(relaxed);

x.store(r2, relaxed);

T2

rf

✗

sb

sb
rf



  

Load-Store-Order-Preserving 
Implementation

● IR-level passes

 – NO atomic load-store reordering
● AArch64 backend

 – need to add sufficient constraints to enforce load-
store ordering

ldr w1, [x8]
str wzr, [x9]

r1 = x.load(relaxed);
y.store(0, relaxed); ✔



  

Preserving Load-Store Ordering in 
ARMv8

● 6 alternative strategies

– relaxed loads→acquire loads

– relaxed stores→release stores

– insert “DMB LD” fence before relaxed stores

– add a bogus conditional branch after relaxed loads

– add a bogus load after relaxed loads

– taint existing the address of existing stores if any, otherwise 
add bogus conditional branch



  

Load-Store-Order-Preserving 
Evaluation

● Benchmarks

 – 43 concurrent data structures

 – from C++ Libcds library, Facebook Folly library...

 – concurrent queues, hashtables, synchronization...
● Baseline

 – stock LLVM 3.8 with O3 option enabled
● Processor

 – two Cortex-A72 cores on Firefly RK3399 board



  

Overhead on Multi-Threaded Runs

Strategy Average Maximum

Acquire Load 0.4% 27.5%

Release Store 3.6% 82.6%

DMB LD Fence -0.1% 32.0%

Bogus Conditional Branch -0.3% 6.3%

Bogus Load 2.6% 42.9%

Extra Dependencies to Store 1.3% 23.2%

● Run with two threads
  – each thread in a single core

● “Bogus Conditional Branch”
  – no overhead on average

● Speedup in some benchmarks
  – possibly due to contention



  

Conclusion

● Initial evaluation on runtime overheads

 – two approaches that can disallow OOTA results

● Further evaluation needed

 – results generalize across different CPUs, e.g., ARMv7, 
Power, etc?

 – any applications that make more extensive use of relaxed 
atomics than concurrent data structures?

 – do full applications change the results for bogus branches 
by putting additional pressure on branch predictor?



  

Questions?
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