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The Out-of-Thin-Air Problem

* Everything initialized to O
* Loads & stores on x & y are C++ relaxed atomics
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Causality Cycles
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e Causality cycle
— a store causes itself to happen!
— makes reasoning difficult
* Hardware forbids causality cycles
— respects a notion of syntactic dependency
 Compiler optimizations + relaxed hardware implementation
- challenging to precisely disallow OOTA executions



In Our Paper

* Two approaches

— enforce slightly stronger memory models to
forbid OOTA results

* LLVM-based implementations

e |nitial evaluations on their runtime overheads



Dependency-Preserving Approach

* Targeted towards Java-like languages
— supposed to run untrusted code
— Mmay have data races
- Mmust define semantics for racy programs
e Data races in normal accesses

— must forbid OOTA results produced by normal
accesses



Dependency-Preserving Approach

* Core idea (borrowed from hardware)
— define a notion of dependency at the language level
- If aload L may cause a store S to happen, L ger, s
— require dependency U rf is acyclic
— our dependency is close to hardware dependency
- only need to preserve dependencies in compilers

dep U rf cycle, r1=r2=42 x



Example of Dependency Notion

/| T2
r MT_»r2=Yy; Sdata
. ooy &
SQ(Q——Q)
X =42 & ctrl

rl=r2=42x

* More detalls in our paper
— when the address of a store depends on some load
— when a store Is conditionally executed...



An LLVM-Based Implementation
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Preserving Dependencies at IR Level

* Focus on a select set of 35 IR passes

— overhead with only these passes enabled is only
1.8% (over -O3)

* Our Implementation

— disable all other IR passes
— audit selected passes

— modify those that can break dependencies



Modified IR Pass

* Modified instcombine, simplifycfg, loop-unrolling...

— also modified passes that perform store-store
reordering, e.g.,dead store elimination...

— more details in our paper
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Preserve Backend Dependencies

* AArch64 backend
— more relevant than x86 (relatively strong memory model)
* Modifications
— data dependencies
— SelectionDAG-based instruction selection pass (modified)
— control dependencies
— codegenprepare (modified)
— branchfolding (disabled)



Dependency-Preserving Evaluation

Benchmarks

— SPEC CPU2006 C/C++ programs

Baseline

— stock LLVM 3.8 with O3 option enabled

Processor

— Cortex-A72 core (ARMvS8) on a Firefly RK3399 board
Compiler configurations

— partial optimization (unmodified LLVM with only the selected 35
IR passes enabled)

— our dependency-preserving compiler



Single-Threaded Runs
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* Dependency Preserving — 3.1% on average & 17.6% maximum
 Partial Optimization — 1.8% on average (room for optimizations)
* Speedup on some benchmarks

— disabling “BranchFolding” pass alone --1.5% ~ 1.5%



Load-Store-Order-Preserving
Approach



Load-Store-Order-Preserving
Approach

e Targeted towards C/C++-like languages

— racy operations are labeled as atomics

— racy non-atomic accesses - undefined semantics
— OOTA Involves racy operations
— already exclude OOTA for non-atomic accesses

* Only atomics can produce OOTA results

— relatively rare (especially relaxed atomics)



Load-Store-Order-Preserving
Approach
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* Core idea: preserve load-store ordering for atomics
— forbid sb U rf cycle
- effectively forbid dep U rf cycle

— does not affect normal accesses & single-threaded code



Load-Store-Order-Preserving
Implementation

* |R-level passes
— NO atomic load-store reordering

 AArch64 backend

— need to add sufficient constraints to enforce load-
store ordering

r1 = x.load(relaxed); Idr w1, [x8] )‘/
y.store(0, relaxed); Str wzr, [x9]



Preserving Load-Store Ordering In
ARMvS8

* 6 alternative strategies
— relaxed loads - acquire loads
— relaxed stores - release stores
—insert “DMB LD” fence before relaxed stores
— add a bogus conditional branch after relaxed loads
— add a bogus load after relaxed loads

— taint existing the address of existing stores if any, otherwise
add bogus conditional branch



Load-Store-Order-Preserving
Evaluation

* Benchmarks
— 43 concurrent data structures
— from C++ Libcds library, Facebook Folly library...
— concurrent queues, hashtables, synchronization...
* Baseline
— stock LLVM 3.8 with O3 option enabled
* Processor
— two Cortex-A72 cores on Firefly RK3399 board



Overhead on Multi-Threaded Runs

Strategy Average Maximum
Acquire Load 0.4% 27.5%
Release Store 3.6% 82.6%
DMB LD Fence -0.1% 32.0%
Bogus Conditional Branch | -0.3% 6.3%
Bogus Load 2.6% 42.9%
Extra Dependencies to Store | 1.3% 23.2%

* Run with two threads
— each thread In a single core
* “Bogus Conditional Branch”
— no overhead on average
e Speedup in some benchmarks
— possibly due to contention




Conclusion

* Initial evaluation on runtime overheads
— two approaches that can disallow OOTA results
* Further evaluation needed

— results generalize across different CPUs, e.g., ARMV7,
Power, etc?

— any applications that make more extensive use of relaxed
atomics than concurrent data structures?

— do full applications change the results for bogus branches
by putting additional pressure on branch predictor?



Questions?
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