Towards Understanding the Costs
of Avoiding Out-of-Thin-Air Results

Peizhao Ou and Brian Demsky
University of California, Irvine

The Out-of-Thin-Air Problem

* Everything initialized to O
* Loads & stores on x & y are C++ relaxed atomics

/I T1 /| T2 Load Buffering
l — ' rl=r2=42V

The Out-of-Thin-Air Problem

* Everything initialized to O
* Loads & stores on x & y are C++ relaxed atomics

/I'T1 /] T2 Load Buffering
M =X <« 2 =,

— = - rl=r2=42
y=rtbo— ~ X = 42; v
JT1 /T2 OOTAExample
M =X, < _ 4>r2=yi 1 = (2 = 4997

The Out-of-Thin-Air Problem

* Everything initialized to O
* Loads & stores on x & y are C++ relaxed atomics

/] T1 [l T2
=X - 2=V ey r2=y
y=rty;—— —x=42; * yad

sb >< sb
** 42 /P
/] T1 /] T2 Y= *=
M =X, < 2 =Y,

Causality Cycles

/] T1 /] T2
1M1 =x < f_,r2=y
d ’ e * Yd
G P L
r1=r2=42

e Causality cycle
— a store causes itself to happen!
— makes reasoning difficult
* Hardware forbids causality cycles
— respects a notion of syntactic dependency
 Compiler optimizations + relaxed hardware implementation
- challenging to precisely disallow OOTA executions

In Our Paper

* Two approaches

— enforce slightly stronger memory models to
forbid OOTA results

* LLVM-based implementations

e |nitial evaluations on their runtime overheads

Dependency-Preserving Approach

* Targeted towards Java-like languages
— supposed to run untrusted code
— Mmay have data races
- Mmust define semantics for racy programs
e Data races in normal accesses

— must forbid OOTA results produced by normal
accesses

Dependency-Preserving Approach

* Core idea (borrowed from hardware)
— define a notion of dependency at the language level
- If aload L may cause a store S to happen, L ger, s
— require dependency U rf is acyclic
— our dependency is close to hardware dependency
- only need to preserve dependencies in compilers

dep U rf cycle, r1=r2=42 x

Example of Dependency Notion

/| T2
r MT_»r2=Yy; Sdata
. ooy &
SQ(Q——Q)
X =42 & ctrl

rl=r2=42x

* More detalls in our paper
— when the address of a store depends on some load
— when a store Is conditionally executed...

An LLVM-Based Implementation

Input:
C/C++ Source Generate >[1_ Clang Front End]
Code Unoptimized IR
Optimize
IR
Y

ootpUt | 3.LLVM Backend) . Generate [2. LLVM IRJ
ject Lode Code Generator | Machine Code|_Optimizer

Preserving Dependencies at IR Level

* Focus on a select set of 35 IR passes

— overhead with only these passes enabled is only
1.8% (over -O3)

* Our Implementation

— disable all other IR passes
— audit selected passes

— modify those that can break dependencies

Modified IR Pass

* Modified instcombine, simplifycfg, loop-unrolling...

— also modified passes that perform store-store
reordering, e.g.,dead store elimination...

— more details in our paper

TN T
if(r2) f(true) ..
- X o mM=x

Preserve Backend Dependencies

* AArch64 backend
— more relevant than x86 (relatively strong memory model)
* Modifications
— data dependencies
— SelectionDAG-based instruction selection pass (modified)
— control dependencies
— codegenprepare (modified)
— branchfolding (disabled)

Dependency-Preserving Evaluation

Benchmarks

— SPEC CPU2006 C/C++ programs

Baseline

— stock LLVM 3.8 with O3 option enabled

Processor

— Cortex-A72 core (ARMvS8) on a Firefly RK3399 board
Compiler configurations

— partial optimization (unmodified LLVM with only the selected 35
IR passes enabled)

— our dependency-preserving compiler

Single-Threaded Runs

N
o

17.6 Partial Optimization —=
Dependency Preserving s

=
Ul

=
o

(9,

o

Slowdown over baseline in percentage
o

b4)
Oy O, On D O B S s By 0 Oty D Dy % Sy On B Sy %
S, o Toe %, 7 78, 69 e M S O R Sy, %, 0, U, 4. %
7, 9, (S) C O) 6/ 7 7. 7 ()
%, ~ % o 0 %, % e 24 o Ry %, %%,
“6 % 0 %

* Dependency Preserving — 3.1% on average & 17.6% maximum
 Partial Optimization — 1.8% on average (room for optimizations)
* Speedup on some benchmarks

— disabling “BranchFolding” pass alone --1.5% ~ 1.5%

Load-Store-Order-Preserving
Approach

Load-Store-Order-Preserving
Approach

e Targeted towards C/C++-like languages

— racy operations are labeled as atomics

— racy non-atomic accesses - undefined semantics
— OOTA Involves racy operations
— already exclude OOTA for non-atomic accesses

* Only atomics can produce OOTA results

— relatively rare (especially relaxed atomics)

Load-Store-Order-Preserving
Approach

T1 T2
r1 = x.load(relaxed); < === ===t ===aae . .__ -“.er
Sb(f \'s\
4 |y.store(r1, relaxed); [» 2 = y.load(relaxed); ‘I
\sb)
x.store(r2, relaxed); [_..=*"
Y \

* Core idea: preserve load-store ordering for atomics
— forbid sb U rf cycle
- effectively forbid dep U rf cycle

— does not affect normal accesses & single-threaded code

Load-Store-Order-Preserving
Implementation

* |R-level passes
— NO atomic load-store reordering

 AArch64 backend

— need to add sufficient constraints to enforce load-
store ordering

r1 = x.load(relaxed); Idr w1, [x8])‘/
y.store(0, relaxed); Str wzr, [x9]

Preserving Load-Store Ordering In
ARMvS8

* 6 alternative strategies
— relaxed loads - acquire loads
— relaxed stores - release stores
—insert “DMB LD” fence before relaxed stores
— add a bogus conditional branch after relaxed loads
— add a bogus load after relaxed loads

— taint existing the address of existing stores if any, otherwise
add bogus conditional branch

Load-Store-Order-Preserving
Evaluation

* Benchmarks
— 43 concurrent data structures
— from C++ Libcds library, Facebook Folly library...
— concurrent queues, hashtables, synchronization...
* Baseline
— stock LLVM 3.8 with O3 option enabled
* Processor
— two Cortex-A72 cores on Firefly RK3399 board

Overhead on Multi-Threaded Runs

Strategy Average Maximum
Acquire Load 0.4% 27.5%
Release Store 3.6% 82.6%
DMB LD Fence -0.1% 32.0%
Bogus Conditional Branch | -0.3% 6.3%
Bogus Load 2.6% 42.9%
Extra Dependencies to Store | 1.3% 23.2%

* Run with two threads
— each thread In a single core
* “Bogus Conditional Branch”
— no overhead on average
e Speedup in some benchmarks
— possibly due to contention

Conclusion

* Initial evaluation on runtime overheads
— two approaches that can disallow OOTA results
* Further evaluation needed

— results generalize across different CPUs, e.g., ARMV7,
Power, etc?

— any applications that make more extensive use of relaxed
atomics than concurrent data structures?

— do full applications change the results for bogus branches
by putting additional pressure on branch predictor?

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

