

Towards Understanding the Costs
of Avoiding Out-of-Thin-Air Results

Peizhao Ou and Brian Demsky
University of California, Irvine

The Out-of-Thin-Air Problem

r1 = r2 = 42 ✔

Load Buffering// T1 // T2
r1 = x; r2 = y;
y = r1; x = 42;

● Everything initialized to 0
● Loads & stores on x & y are C++ relaxed atomics

r1 = r2 = 42 ✔

r1 = r2 = 42??

Load Buffering

OOTA Example

The Out-of-Thin-Air Problem

// T1 // T2
r1 = x; r2 = y;
y = r1; x = 42;

// T1 // T2
r1 = x; r2 = y;
y = r1; x = r2;

● Everything initialized to 0
● Loads & stores on x & y are C++ relaxed atomics

// T1 // T2
r1 = x; r2 = y;
y = r1; x = 42;

r1=x

y=42

r2=y

x=42

sb
rf

● Everything initialized to 0
● Loads & stores on x & y are C++ relaxed atomics

The Out-of-Thin-Air Problem

// T1 // T2
r1 = x; r2 = y;
y = r1; x = r2;

rf
sb

Causality Cycles

// T1 // T2
r1 = x; r2 = y;
y = r1; x = r2;

● Causality cycle

 – a store causes itself to happen!

 – makes reasoning difficult
● Hardware forbids causality cycles

 – respects a notion of syntactic dependency
● Compiler optimizations + relaxed hardware implementation

 → challenging to precisely disallow OOTA executions

dep dep

r1=r2=42

rfrf

In Our Paper

● Two approaches

 – enforce slightly stronger memory models to
forbid OOTA results

● LLVM-based implementations

● Initial evaluations on their runtime overheads

● Targeted towards Java-like languages

 – supposed to run untrusted code

 → may have data races

 → must define semantics for racy programs
● Data races in normal accesses

→must forbid OOTA results produced by normal
 accesses

Dependency-Preserving Approach

Dependency-Preserving Approach

● Core idea (borrowed from hardware)

 – define a notion of dependency at the language level

 →if a load L may cause a store S to happen, L S

 – require dependency U rf is acyclic

 – our dependency is close to hardware dependency

 →only need to preserve dependencies in compilers

dep

dep U rf cycle, r1=r2=42 ✗

// T1 // T2
r1 = x; r2 = y;
y = r1; x = r2;

dep dep
rfrf

Example of Dependency Notion

 // T1 // T2
 r1 = x; r2 = y;

 y = r1*0 + 42; if (r2==r2)

 x = 42;

data data

ctrl

r1=r2=42✗

rf rf

● More details in our paper

– when the address of a store depends on some load

– when a store is conditionally executed...

An LLVM-Based Implementation

Input:
C/C++ Source

Code
1. Clang Front End

3. LLVM Backend
Code Generator

2. LLVM IR
Optimizer

Output:
Object Code

Generate
Unoptimized IR

Optimize
IR

Generate
Machine Code

Preserving Dependencies at IR Level

● Focus on a select set of 35 IR passes

 – overhead with only these passes enabled is only
 1.8% (over -O3)

● Our implementation

 – disable all other IR passes

 – audit selected passes

 – modify those that can break dependencies

Modified IR Pass

● Modified instcombine, simplifycfg, loop-unrolling…

 – also modified passes that perform store-store
reordering, e.g.,dead store elimination…

 – more details in our paper

r2 = (r1 == r1);
if (r2) ...

r2 = true;
if (true) ...

✗

r1 = x;
if (r1) y = 1;
else y = 1;

r1 = x;
y = 1;

✗

Preserve Backend Dependencies

● AArch64 backend

 – more relevant than x86 (relatively strong memory model)
● Modifications

 – data dependencies

 – SelectionDAG-based instruction selection pass (modified)

 – control dependencies

 – codegenprepare (modified)

 – branchfolding (disabled)

Dependency-Preserving Evaluation

● Benchmarks

 – SPEC CPU2006 C/C++ programs
● Baseline

 – stock LLVM 3.8 with O3 option enabled
● Processor

 – Cortex-A72 core (ARMv8) on a Firefly RK3399 board
● Compiler configurations

 – partial optimization (unmodified LLVM with only the selected 35
IR passes enabled)

 – our dependency-preserving compiler

Single-Threaded Runs

● Dependency Preserving –– 3.1% on average & 17.6% maximum
● Partial Optimization –– 1.8% on average (room for optimizations)
● Speedup on some benchmarks

 – disabling “BranchFolding” pass alone →-1.5% ~ 1.5%

-5

 0

 5

 10

 15

 20

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

433.m
ilc

444.nam
d

447.dealII

450.soplex

453.povray

470.lbm

482.sphinx3

Average

1.8
3.1

11.6

17.6
S
lo

w
d
o
w

n
 o

v
e
r

b
a
se

lin
e
 i
n
 p

e
rc

e
n
ta

g
e
Partial Optimization

Dependency Preserving

Load-Store-Order-Preserving
Approach

Load-Store-Order-Preserving
Approach

● Targeted towards C/C++-like languages

 – racy operations are labeled as atomics

 – racy non-atomic accesses→undefined semantics

 – OOTA involves racy operations

 – already exclude OOTA for non-atomic accesses

● Only atomics can produce OOTA results

 – relatively rare (especially relaxed atomics)

Load-Store-Order-Preserving
Approach

● Core idea: preserve load-store ordering for atomics
 – forbid sb U rf cycle
 → effectively forbid dep U rf cycle

 – does not affect normal accesses & single-threaded code

r1 = x.load(relaxed);
T1

y.store(r1, relaxed); r2 = y.load(relaxed);

x.store(r2, relaxed);

T2

rf

✗

sb

sb
rf

Load-Store-Order-Preserving
Implementation

● IR-level passes

 – NO atomic load-store reordering
● AArch64 backend

 – need to add sufficient constraints to enforce load-
store ordering

ldr w1, [x8]
str wzr, [x9]

r1 = x.load(relaxed);
y.store(0, relaxed); ✔

Preserving Load-Store Ordering in
ARMv8

● 6 alternative strategies

– relaxed loads→acquire loads

– relaxed stores→release stores

– insert “DMB LD” fence before relaxed stores

– add a bogus conditional branch after relaxed loads

– add a bogus load after relaxed loads

– taint existing the address of existing stores if any, otherwise
add bogus conditional branch

Load-Store-Order-Preserving
Evaluation

● Benchmarks

 – 43 concurrent data structures

 – from C++ Libcds library, Facebook Folly library...

 – concurrent queues, hashtables, synchronization...
● Baseline

 – stock LLVM 3.8 with O3 option enabled
● Processor

 – two Cortex-A72 cores on Firefly RK3399 board

Overhead on Multi-Threaded Runs

Strategy Average Maximum

Acquire Load 0.4% 27.5%

Release Store 3.6% 82.6%

DMB LD Fence -0.1% 32.0%

Bogus Conditional Branch -0.3% 6.3%

Bogus Load 2.6% 42.9%

Extra Dependencies to Store 1.3% 23.2%

● Run with two threads
 – each thread in a single core

● “Bogus Conditional Branch”
 – no overhead on average

● Speedup in some benchmarks
 – possibly due to contention

Conclusion

● Initial evaluation on runtime overheads

 – two approaches that can disallow OOTA results

● Further evaluation needed

 – results generalize across different CPUs, e.g., ARMv7,
Power, etc?

 – any applications that make more extensive use of relaxed
atomics than concurrent data structures?

 – do full applications change the results for bogus branches
by putting additional pressure on branch predictor?

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

