
136

Towards Understanding the Costs of Avoiding
Out-of-Thin-Air Results

PEIZHAO OU, University of California, Irvine, USA

BRIAN DEMSKY, University of California, Irvine, USA

Eliminating so-called “out-of-thin-air” (OOTA) results is an open problem with many existing programming

language memory models including Java, C, and C++. OOTA behaviors are problematic in that they break

both formal and informal modular reasoning about program behavior. Defining memory model semantics

that are easily understood, allow existing optimizations, and forbid OOTA results remains an open problem.

This paper explores two simple solutions to this problem that forbid OOTA results. One solution is targeted

towards C/C++-like memory models in which racing operations are explicitly labeled as atomic operations

and a second solution is targeted towards Java-like languages in which all memory operations may create

OOTA executions. Our solutions provide a per-candidate execution criterion that makes it possible to examine

a single execution and determine whether the memory model permits the execution. We implemented and

evaluated both solutions in the LLVM compiler framework. Our results show that on an ARMv8 processor the

first solution has no overhead on average and a maximum overhead of 6.3% on 43 concurrent data structures,

and that the second solution has an average overhead of 3.1% and a maximum overhead of 17.6% on the SPEC

CPU2006 C/C++ benchmarks.

CCS Concepts: • Software and its engineering→ Concurrent programming languages; Compilers;

Additional Key Words and Phrases: concurrency, memory models, compilers

1 INTRODUCTION
Programming language memory models define the semantics of loads and stores in a multi-threaded

program. Most programming language memory models guarantee sequential consistency for race

free programs [Adve andHill 1990]. This guarantee is fragile — a single data race voids the sequential

consistency guarantee for the entire program. Indeed, programs with data races have undefined

semantics under the C/C++11 memory model. While researchers have explored providing stronger

guarantees to racy programs [Marino et al. 2011; Singh et al. 2012], these approaches may require

hardware support to achieve competitive performance.

Memory models assign undefined semantics to racy programs as data races violate assumptions

made by compiler optimizations. For existing compilers, assigning meaningful semantics to racy

programs is extremely complicated. The language semantics must capture behaviors that arise

from both compiler and processor optimizations. While the C and C++ memory models do not

even attempt to assign semantics to such programs, Java is intended to support the safe execution

of untrusted code. Thus, Java must ensure safety for racy programs and the Java Memory Model

attempts to assign semantics to such programs.

A similar situation exists in C andC++.While the C andC++ languages do not define the behaviors

of racy programs, they do include support for special atomic operations. These atomic operations

Authors’ addresses: Peizhao Ou, Electrical Engineering and Computer Science, University of California, Irvine, USA,

peizhaoo@uci.edu; Brian Demsky, Electrical Engineering and Computer Science, University of California, Irvine, USA,

bdemsky@uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART136

https://doi.org/10.1145/3276506

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

https://doi.org/10.1145/3276506

136:2 Peizhao Ou and Brian Demsky

provide support for developers to make tradeoffs between the ordering guarantees provided and the

overhead incurred. The weakest guarantee provided is specified using the memory_order_relaxed
memory order. Such operations only enforce coherency and cannot be used to implement synchro-

nization. Effects of compiler optimizations can in some cases be visible to relaxed atomics. Relaxed

atomics in C and C++ have qualitatively similar behaviors to memory accesses in Java.

1.1 The Problem

Thread 1 Thread 2

r1 = x; r2 = y;
y = r1; x = 42;

Fig. 1. “Real Example”. With x=y=0 initially, can
r1=r2=42?

Thread 1 Thread 2

r1 = x; r2 = y;
y = r1; x = r2;

Fig. 2. Canonical Out-of-Thin-Air Example. With
x=y=0 initially, can r1=r2=42?

A key challenge in programming language memory models is prohibiting out-of-thin-air behav-

iors or satisfaction cycles. This problem is well known [Batty et al. 2013, 2015a; Manson et al. 2005;

Pichon-Pharabod and Sewell 2016] and has been described in detail [Boehm and Demsky 2014].

Figure 1 presents an execution that real processors produce. A processor might reorder the store of

42 to x in Thread 2, Thread 1 can then read the value 42 from x and store it in y, and finally Thread

2 can load 42 from y.
Figure 2 presents an out-of-thin-air example with the same reads-from

1
relationship between

loads and stores as the previous example. If both loads read from the subsequent stores, the C

and C++ memory model formalism admits an execution in which r1=r2=42 (or any other value),

conjuring the value of 42 “out of thin air”. The key difference between these two examples is that

in the problematic example, the stores depend on the previous loads.

Note that if we directly write these examples in assembly, no processor will produce the prob-

lematic results in Figure 2. Processors preserve a notion of dependency — a processor core will not

make a speculative store visible to other cores. Compilers in general do not preserve dependencies

— compiler optimizations can easily optimize away dependencies (e.g., an if statement in which

both branches store the same value to the same variable). Compiler optimizations conspire with

relaxed hardware implementations to create the problem.

Although there is agreement that Figure 2 represents OOTA behavior, the precise definition of

OOTA is disputed. Consider the example (from Boehm and Demsky [2014]) shown in Figure 3. An

optimizing compiler may discover that the load r1=x in Thread 1 will always return the value of 42
no matter whether the conditional branch is taken or not. Hence it can replace the store y=r1 with

y=422, and then through the same reads-from relationship between loads and stores as Figure 2, the

execution in which r1=r2=42 is allowed. While some researchers argue that this is OOTA behavior

and should be disallowed, other researchers may argue that this is legitimate behavior because the

value of 42 in this example arises from the untaken branch.

1.2 Consequences
As previously noted [Batty et al. 2013; Boehm and Demsky 2014], allowing out-of-thin-air results

is disastrous. Serious issues of allowing OOTA results include:

(1) OOTAResults Break Formal Modular Reasoning: As noted by Batty et al. [2013], OOTA
executions can break certain types of compositional reasoning about programs. In particular,

1
We use the term reads-from or rf hereafter to refer to the relation that maps stores to the loads that retrieve the stored

value. For example, “(s, l) ∈ r f ” means that load l reads its value from store s .
2
In fact, this optimization is implemented in GCC and Clang/LLVM for non-atomic memory accesses.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:3

Thread 1 Thread 2

r3 = x; r2 = y;
if (r3 != 42) x = r2;
x = 42;
r1 = x;
y = r1;

Fig. 3. With x=y=0 initially, can r1=r2=42? While there seems to be general consensus that the execution
shown in Figure 1 is not OOTA behavior and that the execution shown in Figure 2 is OOTA behavior,
researchers may not have consensus on whether the execution in this example is OOTA behavior.

even if the guarantees provided by each component satisfy the assumptions of all other

components, OOTA results allow executions in which two components mutually violate

their own guarantees and thus violate the assumptions of the other component (circularly

justifying their violation of their guarantees).

In languages that allowOOTA results, compositionality requires proving that each component

in a composition is non-interfering (i.e., that it does not write to the memory locations of other

components). Indeed, some analyses and tools that are based on the C/C++ memory model

either simply assume the non-existence of OOTA behavior or require a stronger version

of the C/C++ memory model that prohibits OOTA behavior [Kokologiannakis et al. 2017;

Meshman et al. 2015; Norris and Demsky 2013; Ou and Demsky 2015].

(2) OOTA Results Break Informal Modular Reasoning: While developers rarely formally

prove their software correct, OOTA results can even break informal reasoning about programs.

Indeed, for many programs it may be necessary to avoid including accesses to relaxed atomics

in the code base. For example, simply exposing an interface to relaxed stores to a virtual

machine interpreter is likely sufficient to allow OOTA results that can produce arbitrary

executions.

(3) OOTA Results Can Affect Race-Free Computations: OOTA results can induce race-free

computations to produce surprising results. The following example is courtesy of Sarita Adve:

Thread 1 Thread 2

if (x) y=1; if (y) x=1;

Even with x=y=0 initially, OOTA results allow this computation to set both x and y to 1.

1.3 Potential Solutions
Researchers have proposed several different basic approaches to solving the out-of-thin-air problem.

We next discuss the different basic approaches. These approaches fall into two primary categories.

The first category attempts to eliminate the problem by changing the memory model specification

without significant changes to the compiler and the second category attempts to eliminate the

problem by providing stronger guarantees.

1.3.1 Approaches that Primarily Affect the Language Specification.

Precisely Specifying the Effects of Existing Optimizations: Forbidding OOTA behaviors by precisely

specifying the effects of existing optimizations is one potential solution. This approach is tempting

as it incurs no runtime overheads and requires no modifications to either compilers or processors.

Researchers have proposed event-structures-based memory models [Jeffrey and Riely 2016; Pichon-

Pharabod and Sewell 2016] that were later shown not to be compiled to ARM without additional

fences in some cases [Kang et al. 2017].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:4 Peizhao Ou and Brian Demsky

Attempts at forbidding OOTA executions by precisely specifying the effects of optimizations

have to date yielded complicated memory models. Indeed, Batty et al. [2015b] show that there is

no per-candidate-execution solution to the problem. For example, Kang et al. [2017] propose a

memory model based on a semantics that claims to resolve the OOTA problem, and the proof of

its compilation correctness has been shown by Podkopaev et al. [2017]. While this approach can

potentially solve the OOTA problem, a less complex but slightly stronger memory model may still

be desirable if the overhead is acceptably small.

The Java Memory Model also attempted this approach [Manson et al. 2005], but the approach has

since shown to be unsound with respect to standard compiler optimizations [Ševčík and Aspinall

2008]. Moreover, the JMM is extremely complicated for both compiler developers and application

developers to understand. It is also complicated to use the constraints placed on OOTA executions

by the JMM to prove correctness properties for concurrent programs. Indeed, merely verifying

whether the JMM allows a given concrete execution is undecidable [Botinčan et al. 2010].

Case-Based Approaches: Another approach is to constrain the usage of atomics to specific cases

and then provide simple semantics for those cases. The most well known example of this approach

is the classic “data race freedom implies sequential consistency” memory model used by most multi-

threaded programming languages [Adve and Hill 1990]. In this model, if there is no sequentially

consistent execution with a data race, then the system guarantees that all executions are sequentially

consistent. Other work enumerates common use cases for relaxed atomics and provides semantics

for those use cases [Sinclair et al. 2017].

There are two basic challenges with this approach: (1) memory model developers must ensure

that the cases handled cover the important usage scenarios and (2) bugs can produce behaviors that

fall outside the well defined cases and then the memory model may provide little or no guarantees

as to the program’s behaviors.

1.3.2 Approaches that Provide Stronger Guarantees.

Approach 1: Forbid Load-Store Reordering: A conceptually simple approach to forbidding

OOTA executions is to forbid load-store reordering [Boehm and Demsky 2014; Lahav et al. 2017].

Precisely, the memory model requires that sequence-before∪ reads-from is acyclic. This greatly

simplifies the memory model for both compiler and application developers, but can potentially

incur significant runtime costs.

Implementing this approach requires changes to compiler optimizations and the potential gener-

ation of a fence-like operation. The cost of this approach depends on both the details of the memory

model and the hardware architecture. While x86 processors already provide this behavior without

requiring fences, architectures like ARM or PowerPC may incur higher overheads. We believe that

this approach is likely to be acceptable for memory models like C/C++11 as it only affects relaxed

loads and stores
3
. However, this approach affects all loads and stores in Java programs, and thus is

likely to be less acceptable in the context of Java.

Approach 2: Preserve Dependencies: Earlier work suggested but did not implement one

potential approach to forbidding OOTA executions — require the compiler to preserve a simple,

syntactic notion of dependency [Boehm and Demsky 2014]. Effectively, this approach provides a syn-

tactic definition for a dependency relationship and then requires that dependency∪ reads-from
is acyclic. This is a strictly weaker guarantee than the previous approach. It is worth noting that

the Linux kernel memory model does not have out-of-thin-air values because it essentially respects

3
Under C/C++11, non-atomic loads and stores cannot race, or the program has no semantics. Thus, reordering cannot be

observed.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:5

syntactic dependencies as hardware does [Alglave et al. 2018]. McKenney et al. [2016] have pro-

posed an approach based on preserving semantic dependencies rather than syntactic dependencies.

For example, they allow reducing an expression with syntactic dependency to a constant if it is

known to always result in that constant value (e.g., reducing “r1=x*0” to “r1=0”). This trades off
the simplicity of the memory model specification for the degree of compiler optimizations that are

allowed. In this paper, we explore an approach of preserving syntactic dependencies.

While this approach does not require the addition of any extra fence instructions, it does constrain

the optimizations performed by the compiler. The primary concern with this approach is that the

overheads were previously unknown and feared to be high.

1.4 Contributions
This paper makes the following contributions:

• A dependency-based approach to forbidding OOTA: It presents a dependency-

preserving approach to forbid out-of-thin-air executions.

• An approach to preserving load-store ordering to forbid OOTA: It presents an ap-

proach to preserving load-store ordering to extend C/C++-like language memory models to

forbid out-of-thin-air executions.

• Implementations of both approaches in the LLVM compiler: It presents implementa-

tions of both approaches to forbidding OOTA in the LLVM compiler.

• Evaluation: It evaluates the overhead of both approaches on an ARMv8 processor. It shows

that the average overhead of preserving dependencies relative to compiling with full opti-

mizations (-O3) is 3.1% on the SPEC CPU benchmarks for a prototype implementation that

is likely amenable to further optimizations. It shows that under our experimental setting

preserving load-store ordering has no overhead on average and worst-case overhead of 6.3%

on concurrent data structure benchmarks.

The remainder of this paper is structured as follows: Section 2 presents our extensions to the

programming language memory model. Section 3 describes our approach to extending the LLVM

compiler to preserve our dependency notion. Section 4 presents our approach to extending the

LLVM compiler to preserve load-store ordering. Section 5 evaluates both approaches. Section 6

presents related work and Section 7 concludes.

2 MEMORY MODEL EXTENSIONS THAT DISALLOWOOTA BEHAVIORS
In this section, we first discuss a dependency-preserving memory model that disallows out-of-thin-

air behaviors by defining a notion of dependency and preserving it. While it is desirable that we

formalize this memory model in the context of an existing programming language, e.g., C/C++

or Java, both the C/C++ and Java languages are complex and the formalization would exceed the

scope of this paper. Therefore, we introduce a simple language that captures the core features of an

imperative programming language in Section 2.1. Then, we define the notion of dependency based

on this language and describe how we preserve such dependencies in Section 2.2. Last, we discuss

a load-store-order-preserving memory model that prevents out-of-thin-air behaviors in Section 2.3.

2.1 The Language
Figure 4 presents the core syntax of our language

4
. To simplify the illustration, we only support

one value type — numerals. When we read from or write to a global variable/memory location, we

explicitly use the load or store keywords to distinguish them from assignments to local variables.

Our language is based on the static single assignment (SSA) form [Rosen et al. 1988], where we can

4
The toy language here is purely for the purpose of simplifying illustration, and our actual implementation is for C/C++.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:6 Peizhao Ou and Brian Demsky

have phi functions (ϕ) at the end of an if/else block or in the beginning of a while loop’s header.

The syntax starts with Program, which has an optional declaration of global variables followed by

a list of function definitions. Figure 5 shows an example code snippet written in our language. In

this example, we declare three global variables x, y, and z and perform load/store from/to these

global locations in line 3, 6 and 10, respectively. Line 9 is the ϕ function for the if/else conditional
branch, meaning that if the condition “r2==0” is true, local variable r5 will be assigned with r3;
otherwise, it will be assigned with r4.

Var ::= Variable Names

Func ::= Function Names

Num ::= Constant Numerals

opb ::= C-like binary operators

opu ::= C-like unary operators

Expr ::= Num | Var | FuncCall | Expr opb Expr

| opuExpr | load Expr

VarList ::= Var (“,” Var)∗

ExprList ::= Expr (“,” Expr)∗

Phi ::= Var “=” “ϕ” “(” Var “,” Var “)”

PhiList ::= (Phi (“;” Phi)∗)?

Stmt ::= skip | Stmt “;” Stmt | Var “=” Expr |

store Expr “,” Expr | FuncCall |
return Expr? |

if Expr then Stmt else Stmt fi PhiList |

while PhiList Expr do Stmt od
FuncDef ::= Func “(” (VarList)? “)”

begin Stmt “;” end
FuncCall ::= Func “(” ExprList? “)”

Program ::= (VarList “;”)? FuncDef+

Fig. 4. The core syntax of our language

1: x, y, z;
2: main() begin
3: r1 = load &x;
4: r2 = r1 * 0;
5: if r2 == 0 then
6: store &y, 1;
7: r3 = 0
8: else r4 = 1 fi
9: r5 = ϕ(r3, r4);
10: store &z, r5;
11:end

Fig. 5. An example code
snippet written in our lan-
guage

2.2 Language-Level Dependency Notion

(a) Data dependency (b) Explicit control

dependency

(c) Address depen-

dency

(d) Implicit control

dependency

r1 = load &x; r1 = load &x; r1 = load &x; r1 = load &x;
r2 = r1 * 0; if r1 != 0 then store r1, 0; if r1 != 0 then
store &y, r2; store &y, 1 r2 = load &z; store &y, 1

else store &y, r2; else
skip store &z, 0
fi; fi;

r2 = load &z;
store &y, r2;

Fig. 6. Does the last store to y depend on the first load “r1 = load &x” in each of theses examples? Assume
z=1 before each execution.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:7

While there is general agreement about extreme examples that conjure new values and exhibit

out-of-thin-air behavior (e.g., the example shown in Figure 2), there is no consensus on the exact

definition of an out-of-thin-air execution. In this paper, we broadly define an out-of-thin-air

execution to be any execution in which the behavior of an operation is circularly involved in

causally justifying its own behavior. To prohibit such executions, we define a conservative syntax-

based notion of dependency that maps loads in a thread to all stores in the thread whose behavior

the loads may affect. We also provide a proof sketch of a theorem about the causality of executions

in our memory model in Appendix C. The precise definition of the notion of dependency for our

language with the operational semantics is shown below:

Const.Expr:

⟨const, V , dep, D, PC, FD⟩ → ⟨⟨const, ∅⟩, V ′, dep′, D′, PC ′, FD′⟩

Var.Expr:

⟨var, V , dep, D, PC, FD⟩ → ⟨⟨V [var], D[var]⟩, V ′, dep′, D′, PC ′, FD′⟩

Unary.Expr:

⟨E, V , dep, D, PC, FD⟩ → ⟨⟨V, D⟩, V ′, dep′, D′, PC ′, FD′⟩

⟨opu E, V , dep, D, PC, FD⟩ → ⟨⟨opu V, D⟩, V ′, dep′, D′, PC ′, FD′⟩

Binary.Expr:

⟨E1, V , dep, D, PC, FD⟩ → ⟨⟨V1, D1⟩, V ′, dep′, D′, PC ′, FD′⟩
⟨E2, V ′, dep′, D′, PC ′, FD′⟩ → ⟨⟨V2, D2⟩, V ′′, dep′′, D′′, PC ′′, FD′′⟩

⟨E1 opb E2, V , dep, D, PC, FD⟩ → ⟨⟨V1 opb V2, D1 ∪ D2⟩, V ′′, dep′′, D′′, PC ′′, FD′′⟩

Load.Expr:

⟨Addr, V , dep, D, PC, FD⟩ → ⟨⟨VAddr, D⟩, V ′, dep′, D′, PC ′, FD′⟩ Vload = load(VAddr)

⟨load Addr, V , dep, D, PC, FD⟩ → ⟨⟨Vload, D ∪ {f r esh_load }⟩, V ′, dep′, D′, PC ′, FD′⟩

Assignment:

⟨E, V , dep, D, PC, FD⟩ → ⟨⟨V, D⟩, V ′, dep′, D′, PC ′, FD′⟩

⟨var = E, V , dep, D, PC, FD⟩ → ⟨skip, V ′[var := V], dep′, D′[var := D], PC ′, FD′⟩

Store:

⟨Addr, V , dep, D, PC, FD⟩ → ⟨⟨VAddr, DAddr⟩, V ′, dep′, D′, PC ′, FD′⟩
⟨Val, V ′, dep′, D′, PC ′, FD′⟩ → ⟨⟨VVal, DVal⟩, V ′′, dep′′, D′′, PC ′′, FD′′⟩ s := store(VAddr, VVal)

⟨store Addr, Val, V , dep, D, PC, FD⟩ →
⟨skip, V ′′, dep′′ ∪ ((DAddr ∪ DVal ∪ PC ′′ ∪ FD′′) × {s }), D′′, PC ′′, FD′′ ∪ DAddr⟩

Composition.Skip:

⟨skip; S, V , dep, D, PC, FD⟩ → ⟨S, V ′, dep′, D′, PC ′, FD′⟩

Composition.Left

⟨S1, V , dep, D, PC, FD⟩ → ⟨S ′
1
, V ′, dep′, D′, PC ′, FD′⟩

⟨S1; S2, V , dep, D, PC, FD⟩ → ⟨S ′
1
; S2, V ′, dep′, D′, PC ′, FD′⟩

Phi.Taint:

⟨⟨v, D⟩, V , dep, D, PC, FD⟩ → ⟨skip, V , dep, D[v := (D[v] ∪ D)], PC, FD⟩

assign_phi(v = ϕ (v0,v1);phiList ,VP) ⇒ v = vVP ; assign_phi(phiList ,Vp)

assign_phi(ϵ,VP) ⇒ ϵ assign_phi(; ,VP) ⇒ ϵ

taint_phi(v = ϕ (v0,v1);phiList ,D) ⇒ ⟨v,D⟩; taint_phi(phiList ,D)

taint_phi(ϵ,VP) ⇒ ϵ taint_phi(; ,VP) ⇒ ϵ

If.True:

⟨cond, V , dep, D, PC, FD⟩ → ⟨⟨true, D⟩, V ′, dep′, D′, PC ′, FD′⟩
⟨S1, V ′, dep′, D′, PC ′ ∪ D, FD′⟩ → ⟨skip, V ′′, dep′′, D′′, PC ′′, FD′′⟩

⟨if cond then S1 else S2 fi phi, V , dep, D, PC, FD⟩ →
⟨assign_phi(phi ; , 0) taint_phi(phi ; , D) skip, V ′′, dep′′, D′′, PC,
FD′ ∪ {l | l ∈ D ∧ hasReachableStore(S2) }⟩

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:8 Peizhao Ou and Brian Demsky

If.False:

⟨cond, V , dep, D, PC, FD⟩ → ⟨⟨false, D⟩, V ′, dep′, D′, PC ′, FD′⟩
⟨S2, V ′, dep′, D′, PC ′ ∪ D, FD′⟩ → ⟨skip, V ′′, dep′′, D′′, PC ′′, FD′′⟩

⟨if cond then S1 else S2 fi phi, V , dep, D, PC, FD⟩ →
⟨assign_phi(phi ; , 1) taint_phi(phi ; , D) skip, V ′′, dep′′, D′′, PC,
FD′′ ∪ {l | l ∈ D ∧ hasReachableStore(S1) }⟩

While.Taken:

⟨assign_phi(phi ; , 0) skip, V , dep, D, PC, FD⟩ → ⟨skip, V ′, dep′, D′, PC ′, FD′⟩
⟨cond, V ′, dep′, D′, PC ′, FD′⟩ → ⟨⟨true, D⟩, V ′′, dep′′, D′′, PC ′′, FD′′⟩
⟨S, V ′′, dep′′, D′′, PC ′′ ∪ D, FD′′⟩ → ⟨skip, V ′′′, dep′′′, D′′′, PC ′′′, FD′′′⟩

⟨while phi cond do S od, V , dep, D, PC, FD⟩ → ⟨⟨loop phi cond do S od, PC⟩,
V ′′′, dep′′′, D′′′, PC ′′′, FD′′′⟩

While.Untaken:

⟨assign_phi(phi ; , 0) skip, V , dep, D, PC, FD⟩;→ ⟨skip, V ′, dep′, D′, PC ′, FD′⟩
⟨cond, V ′, dep′, D′, PC ′, FD′⟩ → ⟨⟨false, D⟩, V ′′, dep′′, D′′, PC ′′, FD′′⟩

⟨taint_phi(phi ; , D) skip, V ′′, dep′′, D′′, PC ′′, FD′′⟩ → ⟨skip, V ′′′, dep′′′, D′′′, PC ′′′, FD′′′⟩

⟨while phi cond do S od, V , dep, D, PC, FD⟩ →
⟨skip, V ′′′, dep′′′, D′′′, PC, FD′′′ ∪ {l | l ∈ D ∧ hasReachableStore(S) }⟩

Loop.Taken:

⟨assign_phi(phi ; , 1) skip, V , dep, D, PC, FD⟩ → ⟨skip, V ′, dep′, D′, PC ′, FD′⟩
⟨cond, V ′, dep′, D′, PC ′, FD′⟩ → ⟨⟨true, D⟩, V ′′, dep′′, D′′, PC ′′, FD′′⟩
⟨S, V ′′, dep′′, D′′, PC ′′ ∪ D, FD′′⟩ → ⟨skip, V ′′′, dep′′′, D′′′, PC ′′′, FD′′′⟩

⟨⟨loop phi cond do S od, PCold ⟩, V , dep, D, PC, FD⟩ →
⟨⟨loop phi cond do S od, PCold ⟩, V ′′′, dep′′′, D′′′, PC ′′′, FD′′′⟩

Loop.Untaken:

⟨assign_phi(phi ; , 1) skip, V , dep, D, PC, FD⟩ → ⟨skip, V ′, dep′, D′, PC ′, FD′⟩
⟨cond, V ′, dep′, D′, PC ′, FD′⟩ → ⟨⟨false, D⟩, V ′′, dep′′, D′′, PC ′′, FD′′⟩

⟨taint_phi(phi ; , D) skip, V ′′, dep′′, D′′, PC ′′, FD′′⟩ → ⟨skip, V ′′′, dep′′′, D′′′, PC ′′′, FD′′′⟩

⟨⟨loop phi cond do S od, PCold ⟩, V , dep, D, PC, FD⟩ →
⟨skip, V ′′′, dep′′′, D′′′, PCold , FD′′′ ∪ {l | l ∈ D ∧ hasReachableStore(S) }⟩

We formalize the program execution state as the tuple δ = ⟨N ,V ,dep,D, PC, FD⟩, where N
represents a computational node (e.g., an expression or statement),V represents a mapping from an

expression to its concrete value, dep represents a dependency set, which is a subset of the Cartesian

product of the load set and store set in an execution. For example, “(l , s) ∈ dep” means that store

s depends on load l ; D represents a dependency mapping from an expression to the set of loads

the expression depends on, PC represents the set of loads on which the current instruction has

explicit control dependency, and FD represents the set of loads on which future stores should

depend. Essentially, the rules of our semantics focus on recording which loads an expression or

statement depends on in each step of the execution, and when we finish executing the program,

the final result is recorded in dep — the complete dependency relation between loads and stores in

the execution. The details of dependency rules follow:

(1) Expressions: In general, an expression has data dependency on its subexpressions, meaning

that the expression depends on whatever loads its subexpressions depend on. In our opera-

tional semantics, an expression E can be reduced to a pair ⟨V,D⟩, in whichV represents the

concrete value to which E is evaluated, and D represents the set of loads E depends on. The

Const.Expr rule means a constant numeral is evaluated to itself and does not depend on any

loads; the Var.Expr rule means a variable var retrieves its concrete value recorded in V and

its dependency set recorded in D; the Unary.Expr and Binary.Expr rules are specifically for

unary and binary expressions, respectively; the Load.Expr rule means that a load expression

has data dependency on its address. It is important to note that in the dependency relation

we define, loads are the sources and stores are the sinks. More specifically, given a load

instruction l and its address Addr (which depends on D), l depends on the union of D and l
itself, denoted as f resh_load (since l becomes the source in the dependency relation after

we execute the load). In the Load.Expr rule, “Vload = load(VAddr)” means reading the value

from addressVAddr and assigning it toVload .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:9

(2) Assignments: For an assignment statement “var = E”, the left-hand side variable var has
data dependency on the right-hand side expression E. Thus, the Assignment rule assigns the
concrete value of E to var and also passes the dependencies of E to var .

(3) Stores: For a store statement s , “store Addr, Val”, where the address Addr has dependency
on load set DAddr and the storing value has dependency on load set DVal , s has data depen-
dency onDAddr ∪DVal . For example, in 6 (a), since the storing value r2 has data dependency
on “r1 = load &x”, so store “store &y, r2” depends on “r1 = load &x”. In addition, s
should depend on the set of loads on which it has explicit control dependency, which in our

operational semantics is recorded in PC . For example, in 6 (b), store “store &y, 1” depends
on “r1 = load &x” because of explicit control dependency.
However, it is not sufficient to only consider explicit data and control dependencies. Con-

sider the question of whether the last store “store &y, r2” depends on the first load

“r1 = load &x” in Figure 6 (c). At first glance, it may appear to be that “store &y, r2” only
depends on “r2 = load &z” but is independent of “r1 = load &x” since “store &y, r2”
does not have an explicit data dependency or control dependency on “r1 = load &x”. How-
ever, if we consider the question of what value the memory location y will hold at the end of

the execution (assuming z=1 before each execution), we can see that the answer becomes

either the value 1 or 0 depending on whether r1 points to the memory address of z, which
means “store &y, r2” actually depends on “r1 = load &x”. Technically speaking, if we

can tell by some static analysis (e.g., some sort of points-to analysis) that r1 always points to a
different memory address than z, then “store &y, r2” does not depend on “r1 = load &x”.
However, if we rely on such analysis in our rules, we will end up with an extremely com-

plicated dependency notion; moreover, the fact that C/C++ allows pointer arithmetics and

pointer conversions would further complicate the dependency notion because the precise

addresses of loads and stores may not be always known. Hence, instead of incorporating the

details of the points-to analysis in our definition of dependency, we take a very conservative

approach. In our semantics, if the address of a store depends on some load, then we require

that all subsequent stores also depend on that load. We refer to this type of dependency as an

address dependency. Back to the example shown in Figure 6 (c), we simply conservatively say

that the store “store &y, r2” depends on the load “r1 = load &x”, even if the compiler

knows r1 will never point to the address of z. As a result, in our implementation, if the com-

piler wishes to reorder a store s ′ (“store &y, r2” in this example) up above another store s
(“store r1, 0” in this example), it has to make s ′ depend on any loads that the address of

s depends on (“r1 = load &x” in this example). Appendix A also shows an out-of-thin-air

example which involves address dependencies.

Consider the example shown in Figure 6 (d), in which we need to answer the same question of

whether the last store “store &y, r2” depends on the first load “r1 = load &x”. Similar to

the example shown in Figure 6 (c), the store “store &y, r2” does not have a data dependency
or explicit control dependency on “r1 = load &x”; however, given z=1 initially, the value
that the memory location y will hold can actually be value 1 or 0, depending on whether

the condition “r1 != 0” is true. The essential reason why we have such dependency is that

in an untaken branch there exists a store (i.e., “store &z, 0” in the else branch) which

overwrites a memory location that is later read. Similar to address dependency, a fine-grained

definition of this type of dependency would require the introduction of a program analysis

and complicate our dependence notion. Instead, we take a conservative approach by stating

that if the condition of a control flow block (i.e., an if/else block or while loop) depends on
a load, and the untaken branch has a syntactically reachable store, then all subsequent stores

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:10 Peizhao Ou and Brian Demsky

after the conditional branch also depend on that load. We refer to this type of dependency as

implicit control dependency.
We can see that the address dependency set and implicit control dependency set share two

commonalities: (1) along with the execution of a program, both dependency sets will only

be augmented by adding more loads; and (2) whenever a future store statement is executed,

we must ensure that the future store depends on the loads in these two sets. Hence, our

operational semantics uses FD to record the union of address dependency and implicit control

dependency, on which all future stores depend.

(4) Phi (ϕ) functions: A phi function “v=ϕ(v0,v1)” with respect to condition cond is essentially

an assignment statement that selects its right-hand side value associated with cond , whether
cond is from an if/else branch or a while loop. For an if/else branch, v0 comes from the

if branch, and v1 comes from the else branch. For a while loop, v0 comes from outside the

loop, and v1 comes from inside the loop. For example, if the phi function is associated with

an if/else branch, and condition cond is true, then the phi function effectively becomes

“v=v0” with an extra (explicit) control dependency on cond . Thus, the phi variable v depends

on whatever loads v0 and cond depend on. In our rules, the assign_phi function transform

phi functions to assignments so that we can apply the Assignment rule for data dependency,
and the taint_phi function and the Phi.Taint rule together taint the phi variables with the

explicit control dependency on the condition. For example, the phi variable r5 in line 9 in

Figure 5 has an explicit control dependency on the if condition, which depends on the

load “r1 = load &x”. As a result, by the Store rule, the store “store &z, r5” in line 10 also

depends the “r1 = load &x”.
(5) If/else branches: An if/else branch can potentially introduce explicit and implicit control de-

pendencies, as shown in Figure 6 (b) and (d). In addition, we must ensure that the phi variables

associated with the branch also have dependencies on the appropriate right-hand side vari-

able and a dependency on the if condition as discussed above. The If.True and If.False rules
are applied when the if condition is true or false, respectively. The hasReachableStore()
function returns true or false for whether or not a given block of statements has a syntacti-

cally reachable store (i.e., potential store). Note that the explicit control dependency set PC
returns to its original state after we execute the if/else branch, and we track implicit control

dependencies by applying the hasReachableStore() function on the untaken branch.

(6) While loops: In our dependency rules, a while loop can be unrolled indefinitely and viewed

as if they were nested if/else branches. However, in terms of formalization, unlike normal

if/else branches, we need to distinguish the first time we enter the while loop from

later loop continuations for two reasons: (1) we need to assign the phi functions differently

depending on whether we enter the loop for the first time or not; and (2) when we finish

executing a loop, since we need to recover the explicit control dependency set PC , we need
to record the old PC set based on the two different cases. Thus, we define theWhile.Taken
rule for cases where we enter the loop for the first time and the loop condition is true, and
the While.Untaken rule for those where we enter the loop for the first time and the loop

condition is false. Note that once a while loop is taken for the first time, we change the

loop keyword from while to loop as an indicator that the loop has been taken at least once.

Also, when a while loop is taken for the first time, we record the old PC so that we can

recover the PC status when we finish executing the loop. We then define the Loop.Taken rule

for cases where a loop is taken after the first time, and the Loop.Untaken rule for cases where

a loop is finished after being executed at least once. Note that applying any of these four

rules has an effect on the explicit control dependency set PC and future store dependency

FD similar to that of the conditional branch rules.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:11

(7) Function calls: Since we only have function calls in which the functions are pre-defined and

have a definite function name, a function call can be viewed as an inlined block of statements

with extra data dependencies from the actual parameters to the formal parameters and from

the return value to the actual function call result. Hence, to simplify the presentation and

focus on the core problem, we omit the dependency rule involving function calls in the

operational semantics shown above.

However, this is not sufficient for real-world programming languages, which can have func-

tion pointers (e.g., C/C++) or virtual dispatch mechanisms (e.g., object-oriented programming

languages). The essential problem is that when the address of a function call depends on

some load l , we should conservatively assume that the function call could potentially have

stores that write to any possible memory location and thus must ensure that any future store

from the point of the function call also depends on load l . We refer to this type of dependency

as a function dependency. It is important to note that the implementation of our dependency-

preserving compiler shown in Section 3 effectively enforces function dependencies.

2.3 A Load-Store-Order-Preserving Memory Model
An alternative approach to eliminating out-of-thin-air behaviors is to strengthen the existing C/C++

memory model by requiring sequence-before ∪ reads-from to be acyclic. This well-known C/C++

memory model variant has been proposed by researchers [Batty et al. 2013; Boehm and Demsky

2014; Vafeiadis and Narayan 2013] as one of the possible approaches to forbidding out-of-thin-

air behaviors. Note that this is not the “perfect” fix to the problem since it forbids not just the

problematic out-of-thin-air executions (e.g., Figure 2) but also some legitimate executions such

as the load buffering example shown in Figure 1. This approach is less likely to be acceptable for

Java-like memory models that must describe the behavior of all loads because it is likely to incur a

much higher cost.

3 DEPENDENCY-PRESERVING COMPILER
This section describes the design and implementation of our approach to preserving our extended

memory model in the LLVM compiler infrastructure [Lattner and Adve 2004]. We target the LLVM

compiler in this paper for two reasons: (1) LLVM is widely supported and considered by many as

the state-of-the-art compiler framework; and (2) LLVM is not just adopted as a C/C++ compiler but

is also adopted in the context of a commercial JVM, e.g., Azul’s Falcon compiler [Azul 2017].

3.1 Design
The LLVM compiler infrastructure is designed to compile source code and generate optimized

library or executable files in a modular and reusable fashion. The standard LLVM compilation

pipeline is shown in Figure 7, and we illustrate the workflow as follows:

(1) Given C/C++ source code files, the Clang front end translates them into a type of target-

independent intermediate representation (IR), i.e., the LLVM Bitcode or the LLVM IR. The

LLVM IR generated in this step has not been optimized yet, and hence it preserves all the trivial

computations and control flows except very obvious constant folding, etc. For example, the

statement “x = 2 * 2” in the source code will be translated into “store 4, x” in the unoptimized

IR; however, the statement “x = r1 * 0” will be preserved. It is important to note that such

trivial constant folding does not break dependencies.

(2) The unoptimized LLVM IR generated in step 1 will then go through the LLVM IR optimizer,

which performs a list of target-independent LLVM IR transformation passes to generate

optimized LLVM IR. In the LLVM tool chain, the LLVM optimizer — opt — can perform these

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:12 Peizhao Ou and Brian Demsky

Input:
C/C++ Source
Files (*.c/*.cpp)

1. Clang Front EndGenerate unoptimized
LLVM IR (Bitcode)

Generate final
output

3. LLVM Backend
Code Generator

4. System Linker

Optim
ize

LLVM IR

Generate
machine code

2. LLVM IR
optimizer

Output:
Library/

Executable
(*.a/*.so/*.dll/...)

Link m
ultip

le

binary fil
es

Fig. 7. The standard LLVM compilation workflow for C/C++

optimizations. Note that these transformation passes can potentially change the IR and break

dependencies.

(3) The optimized LLVM IR generated in step 2 will then be passed to the LLVM backend code

generator, which performs instruction selection, register allocation, peephole optimizations,

etc., and finally generates optimized binary object files. In the LLVM tool chain, the LLVM

static compiler — llc — implements this step. Note that the backend transformations are

implemented as a list of code generation passes (LLVM machine passes performed in some

machine code representations), and these passes can also potentially break dependencies. In

general, the LLVM infrastructure supports multiple backend code generators for different

architectures. In our work, we use the AArch64 (ARM’s 64-bit architecture) backend as a case

study and thus will focus on the code generation passes for AArch64 hardware. Our case

study explore ARM 64 because it is the most relevant mainstream processor that implements

a memory model that does not preserve load-store ordering. Intel processors implement the

TSO memory model which by default preserves load-store ordering, and thus are expected to

incur significantly less overhead to implement our memory model.

(4) Finally, the system linker will link the optimized object files and generate optimized library

or executable files. Note that on a Linux machine, it is a common case to use the GNU linker

as the default system linker.

As shown in the above pipeline, in order to ensure that dependencies are preserved down

to the generated binary code, we must make sure the transformations in step 2 and 3 preserve

the dependencies. Ideally, we should review each transformation pass. If it can potentially break

dependencies, we should modify the optimization to retain most of the benefits of the optimization

while preserving dependencies; otherwise, we should leave the pass unchanged. However, for our

research project, this incurs too much manual effort. There are more than 50 LLVM transformation

passes in step 2. Fortunately, a preliminary result shows that if we run only a select set of 35 IR-to-IR

passes alone in step 2, the performance loss over running the standard set of IR-to-IR passes (as

called in “opt -O3”) is only 1.8%. As a result, we disable all other IR-to-IR passes and focus our

efforts on the select set of passes. We show the set of IR passes that we enable in Appendix B.

3.2 Implementation
Several important compiler optimization passes are inherently dependency-preserving and require

either no changes or only minor changes. We first discuss those that require no changes and then

discuss how we modify/disable the remaining passes to preserve dependencies.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:13

3.2.1 Unmodified Passes.
Function inlining: This optimization expands specific function call sites in the body of the

caller functions, potentially reducing function call overhead and introducing more opportunities for

later optimizations. Our preliminary result shows that turning off inlining incurs an overhead of 26%

on AArch64 targets. Fortunately, no change is required for this pass as long as we conservatively

preserve the syntactic dependencies in all functions. For example, Figure 8 shows a function foo
that internally calls another function bar. The third column shows that as long as we preserve

the dependency between the argument arg and the return statement “return arg * 0”, the foo
function after inlining still preserves the dependency between the load from x and the store to y.

Original foo() Original bar() Inlined foo()
void foo() { int bar(int arg) { void foo() {
r1 = x; return arg * 0; r1 = x;
y = bar(r1); } y = r1 * 0;

} }

Fig. 8. Function inlining does not break the dependency between the load from x and the store to y as long
as function bar preserves its internal dependencies, as shown in the third column.

Common subexpression elimination: Common subexpression elimination (CSE) replaces

a redundant expression with the value of a pre-computed common expression. For example, it

will transform the instructions “z=x*y; t=x*y” to “r1=x*y; z=r1; t=r1”. We can see that the

dependency from x and y to t is preserved because it is carried by the intermediate value r1. In
LLVM, the global value numbering (gvn) pass can perform redundant load elimination that has

similar effect to CSE.

Dead code elimination: Dead code elimination in general eliminates the instructions that are

unreachable or have no visible effects to the program, and does not break dependencies. In LLVM,

this corresponds to adce (aggressive dead code elimination) and dce (dead code elimination).

3.2.2 Modified Passes. To preserve a simple notion of syntactic dependency, we must consider

both data dependencies and control dependencies. For example, as shown in Figure 9, the original

LLVM optimizations (-O3) recognize that the expression “r1*0” will always generate the value 0
and will transform the store instruction to “y=0”, which no longer depends on the load from x. In
the other example shown in Figure 10, the original LLVM optimizations (-O3) determine that no

matter which branch the program takes, it will execute the same store instruction, so it merges the

two stores to y and later eliminates the empty control blocks. Hence, this breaks the dependency

from “y=1” to the load from x.

Unoptimized code Optimized code

r1 = x; r1 = x;
y = r1 * 0; y = 0;

Fig. 9. LLVM optimizations (-O3) can break data
dependencies.

Unoptimized code Optimized code

if (x > 0) y = 1; y = 1;
else y = 1;

Fig. 10. LLVM optimizations (-O3) can break con-
trol dependencies.

We next outline the important optimization passes that we have modified to preserve dependen-

cies:

Combining redundant instructions (instcombine): This pass combines instructions to fewer

and simpler ones and does not modify the control flow graph. For example, it performs simple

constant folding, dead code elimination, algebraic simplification, and reordering of operands to

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:14 Peizhao Ou and Brian Demsky

expose more common subexpression elimination opportunities, etc. To preserve dependencies, we

modify this pass to disable the transformations that can potentially break dependencies. Figure 11

shows examples of our modification to the instruction simplification optimization in order to

preserve dependency. More specifically, Figure 11(a) shows an example in which we prevent it

from simplifying the condition “r2=(r1==r1)” to “r2=true”. At the same time, we still allow those

dependency-preserving transformations and also perform a limited form of strength reduction on

algebraic instructions when the original simplification would break dependencies. For example,

Figure 11(b) shows that although we cannot completely simplify the three AND instructions to the

value 0, we can still perform partial simplification and eliminate two redundant AND instructions;
Figure 11(c) shows that while we cannot transform “r1*0” to the value 0, we can transform it to a

potentially less expensive AND instruction.

Unoptimized code Dependency-preserving code

(a) r2 = (r1 == r1); ⇒ r2 = (r1 == r1);
if (r2)... if (r2)...

(b) r2 = r1 & 0xffff; ⇒ r4 = r1 & 0;
r3 = r1 & 0xffff0000;
r4 = r2 & r3;

(c) r2 = r1 * 0; ⇒ r2 = r1 & 0;

Fig. 11. Examples of how the dependency-preserving instcombine pass transforms the code.

Simplify the CFG (simplifycfg): This pass simplifies control flows, which includes a form of

dead code elimination with respect to control flows (e.g., removing unreachable basic blocks and

basic blocks that contain only an unconditional branch), basic block merging, and hoisting common

code outside of control flow blocks. Since we disable dependency-breaking algebraic simplifications

in the instcombine pass, the simplifycfg pass cannot eliminate control flows by statically calculating

the value of conditions. For example, in Figure 12 (a), since we disable simplifying the condition

“r1 == r1” to the value true, the transformation shown in the middle column cannot happen, and

thus the control flow dependency is preserved.

However, transformations that involve moving stores out of the control flow blocks are generally

problematic and should be prohibited. Figure 10 shows such an example in which the pass first

hoists the common stores “y=1” out of the if/else branch and then eliminates the if/else
blocks, which breaks the dependency of “y=1” on the load from x. Figure 12 (b) shows an even

more problematic example. Before the transformation, the store “y=1” depends on the load “r1=x”,
and the store “*addr=2” also depends on “r1=x” because of the conditional store “y=1” that is
sequenced-before it (i.e., implicit control dependency). After the original transformation, although

the new unconditional store “y=r1?1:0” still depends on “r1=x”, the later store “*addr=2” no longer
depends on “r1=x”. Our dependency-preserving transformation preserves this missing dependency

by adding redundant computations that require the value of the condition (i.e., “(&y)|(r1&0)”) to
compute the address of the new unconditional store (i.e., “*r2=r1?1:0”) so that all later stores still

depend on the old condition r1.
We also disable the elimination of control flow blocks in some cases even when there is no store

within the control flow blocks. For example, in Figure 12 (c), we can see in the unoptimized code

that the store to z syntactically depends on the load from x even though r1 is a local variable.

However, before LLVM runs the simplifycfg pass, it runs a pass that transforms the LLVM IR to

static single assignment (SSA) form, which simplifies the instruction “z=r1” to “z=1” and makes

the if/else blocks empty. This step alone preserves the control dependency because it does not

modify the control flow. However, after that, the simplifycfg pass will eliminate the empty if/else

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:15

blocks and transform it to the code shown in the middle, in which “z=1” does not depend on the

load from x anymore. Our dependency-preserving transformation on the right keeps the empty

conditional branch.

This shows that multiple dependency-preserving passes combined together can break dependen-

cies. The fundamental problem that causes this is the poorly defined notion of dependency in the

IR. In the example in Figure 12 (c), the later simplifycfg pass has no information about whether the

empty conditional branch carries a dependency to later stores, thus eliminating it can potentially

break a dependency, as shown in this case. Ideally, if the IR was augmented with extra dependency

edges between statements, we could use that information to ensure that a specific transformation

does not break existing dependency edges. In practice, to make our approach simpler to imple-

ment in the existing LLVM framework without requiring large changes to LLVM’s IR, we adopt

a coarse-grained extension to the IR such that basic blocks contain extra information indicating

whether some other statements may or may not depend on them. In this case, when we construct

the SSA form and encounter a PHI node that has the same value from multiple basic blocks, we

conservatively mark the incoming blocks as unremovable to preserve such control flow blocks

even if they are empty.

Unoptimized Original transformation Dependency-preserving

transformation

(a) r1 = x; r1 = x; r1 = x;
if (r1 == r1) y = 1; y = 1; if (r1 == r1) y = 1;
else y = 2; else y = 2;

(b) r1 = x; r1 = x; r1 = x;
y = 0; y = r1 ? 1 : 0; r2 = (&y) | (r1 & 0);
if (r1) y = 1; *addr = 2; *r2 = r1 ? 1 : 0;
*addr = 2; *addr= 2;

(c) r1 = 0; z = 1; // Keep empty blocks
if (x > 0) r1 = 1; if (x > 0) ;
else r1 = 1; else ;
z = r1; z = 1;

Fig. 12. Examples of how the simplifycfg pass can potentially break dependencies.

Passes that potentially reorder stores: According to our dependency notion, reordering an

earlier store s1 and a later store s2 can potentially break address dependencies if the address of s1
depends on some load that s2 does not depend on. We list the passes that can reorder stores and

our corresponding strategies as follows:

(1) Dead store elimination pass (dse): This pass looks for stores that have no visible side effects and
eliminates them. Figure 13 (a) is an example in which the first store in the unoptimized code

“arr[r1]=0” is a dead store since there are no loads after it until the last store “arr[r1]=1”.
In addition, store “y=1” depends on load “r1=x” because the address of “arr[r1]=0” depends
on “r1=x” (i.e., address dependency). After the original transformation, this pass eliminates

the store “arr[r1]=0”, which breaks the dependency from store “y=1” to load “r1=x”. Our
solution is to add redundant computations involving the address arr[r1] to the store to y,
which ensures that the dependency on “r1=x” is passed to the store “*r2=1”.

(2) Loop invariant code motion (licm): This pass optimizes loops by moving loop invariant code

outside of the loop. In general, it hoists load instructions out of the loop body and sinks

store instructions to the end of the loop. Figure 13 (b) shows an example that illustrates why

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:16 Peizhao Ou and Brian Demsky

this can be problematic. In the unoptimized code, all stores “arr[i++]=1” depend on the

load from x, but the original transformation breaks this dependency by sinking the store

“addr[x]=0”. We disable such transformations.

(3) SLP (superword-level parallelization) vectorization (slp-vectorizer): This pass can combine

similar independent instructions into vector instructions. Figure 13 (c) shows how it can

effectively reorder stores by combining adjacent stores. We modify this pass to prohibit the

original transformation shown in Figure 13 (c).

(4) Memory copy optimization (memcpyopt): This pass performs optimization related to memset,

memcpy, and memmove calls, and we disable this pass.

Unoptimized Original transformation Dependency-preserving

transformation

(a) r1 = x; r1 = x; r1 = x;
arr[r1] = 0; y = 1; r2 =(&y)|((arr+r1)&0);
y = 1; arr[r1] = 1; *r2 = 1; // y = 1
arr[r1] = 1; arr[r1] = 1;

(b) do { do { do {
addr[x] = 0; arr[i++] = 1; addr[x] = 0;
arr[i++] = 1; } while (i < 100); arr[i++] = 1;

} while (i < 100); addr[x] = 0; } while (i < 100);
(c) arr[x&0] = 0; y = 1; arr[x&0] = 0;

y = 1; arr[0..3] = {0..3}; y = 1;
arr[1] = 1; arr[1] = 1;
arr[2] = 2; arr[2] = 2;
arr[3] = 3; arr[3] = 3;

Fig. 13. Examples of how reordering stores can potentially break dependencies.

Loop unrolling This pass performs loop unrolling, which expands the loop body across multiple

iterations, reducing the overhead of checking the loop condition and updating the trip count,

and expose further optimization opportunities (e.g., vectorization). Similar to if/else control

dependencies, the loop body generally depends on the loop condition, and thus a full unrolling (i.e.,

expanding the loop body completely) can potentially break dependencies. Hence, we modify this

pass such that it does not statically reason about the trip count of a loop and fully unroll the loop

when its trip count is not an explicit constant, as shown in Figure 14 (a). However, if the trip count

of a loop is specified as a constant, as shown in Figure 14 (b), we allow full unrolling because the

loop condition does not depend on any loads.

Before transformation After transformation

(a) for (int i = 0; i < (x*0 + 2); i++) ⇒ arr[0] = 0;
arr[i] = i; arr[1] = 1;

(b) for (int i = 0; i < 2; i++) ⇒ arr[0] = 0;
arr[i] = i; arr[1] = 1;

Fig. 14. Examples of loop unrolling. (a) statically computing the trip count and unrolling the loop potentially
breaks control dependencies; (b) unrolling loops with explicit constant trip count does not break dependencies.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:17

Backend passes that can break dependencies: Given a dependency-preserving LLVM IR, the

LLVM backend generates object code by passing the IR through a sequence of backend passes,

which can also potentially break dependencies in the following ways:

(1) Data dependencies: The major backend pass that breaks data dependencies is the

SelectionDAG-based instruction selection pass. To generate machine code, the LLVM backend

first builds a per basic block structure called a selection DAG, which is a directed acyclic graph

that represents the order of instruction within a basic block. It then goes through several

rounds of node combining, which effectively performs a form of algebraic simplification,

common subexpression elimination, constant folding, and strength reduction, etc. Similar to

the modifications we made to the instcombine pass, we disable algebraic simplifications that

can break dependencies.

(2) Control dependencies: In addition to the IR-level control flow simplification, the LLVM back-

end can further simplify control dependencies, e.g., merging branches and eliminating empty

blocks, including those conditional branches on which we potentially rely to preserve depen-

dencies. We modify the code generation preparation (codegenprepare) pass and completely

disable the control flow optimizer (branchfolding) pass to preserve control dependencies.

4 LOAD-STORE-ORDER-PRESERVING COMPILER
This section describes the implementation of our approach to preserving atomic load-store

ordering in the LLVM compiler for AArch64 targets. In LLVM IR, atomic load/store oper-

ations are special load/store operations with memory ordering parameters similar to their

C/C++ counterparts (e.g., memory_order_acquire), and atomic read-modify-write operations (e.g.,

compare_exchange_strong and fetch_add) are represented as atomicrmw or cmpxchg. Similar to

the dependency-preserving approach, we need to ensure that both IR-level optimizations and the

backend generate code that preserves load-store ordering for atomic operations.

4.1 Target-Independent Optimizations
For IR optimization passes, we only need to focus on those passes that can potentially perform

load-store reordering to atomic load/store operations, which fortunately is a small subset of the IR

optimization passes. For example, these passes include the loop invariant code motion pass (licm),

the memory copy optimization pass (memcpyopt), the dead store elimination pass (dse), the SLP
vectorization pass, etc. We carefully reviewed these passes and found that they do not perform

load-store reordering for atomic operations by design. The reasons include: (1) the semantics of

atomic operations disallow the optimization (e.g., atomic operations cannot be optimized into a

memcpy/memset operation since it can potentially reorder the atomic operations and change the

visible side effect) or (2) it is tricky to reason about the correctness of optimizations of atomic

operations, and the optimization is not especially important in most cases. For example, the licm
pass will optimize normal loads/store out of a loop but is conservative with atomic operations. As

a result, we can enable all the original IR-level passes.

4.2 Backend Optimizations for AArch64
4.2.1 LLVM AArch64 Backend for C/C++ Atomics. Figure 15 shows how the LLVM backend

compiles C++ atomics to assembly for AArch64 targets. In example (a), an atomic load/store with

memory_order_relaxed ordering parameter is compiled to a normal load/store instruction, while

an atomic load with memory_order_acquire5 or store with memory_order_release is compiled

5memory_order_consume is not broadly supported by compilers due to challenges associated with preserving data depen-

dencies. LLVM effectively converts it to the stronger ordering parameter memory_order_acquire.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:18 Peizhao Ou and Brian Demsky

to a load-acquire (ldar) or store-release (stlr), respectively, which are load and store instructions

in AArch64 with implicit one-way barrier semantics. For example, the normal load and store in

line 2 and 3 can be reordered by the processor at runtime, while the ldar in line 1 guarantees

that loads/stores after it cannot be reordered before the load. Similarly, all loads/stores before the

stlr in line 5 cannot be reordered after it. In example (b), a fetch_add operation is compiled to a

loop that continuously attempts to atomically fetch and add one to the memory location. It takes

advantage of the exclusive load/store (ldxr/stxr) pair, which has exclusive locking semantics on

the load/store address to guarantee the read-modify-write is atomic. It is important to note that

in the ARMv8 architecture, the success bit (w10 in this example) of a successful store-exclusive is

not supposed to introduce any dependency from the load-exclusive it is paired with [Pulte et al.

2018]. As a result, the store in line 6 does not have a dependency on the load in line 2 and thus can

be reordered before it. In example (c), a compare-and-swap operation is compiled to a conditional

branch that compares the load value with the expected value and then decides whether or not it

should store the new value to the memory. Since there is a control dependency (line 3) from the

load part (line 2) to any stores after the compare-and-swap operation, those subsequent stores

cannot be reordered before the load part. The conclusions from these three examples are (1) that

atomic loads that have a stronger ordering parameter than memory_order_relaxed and atomic

compare-and-swap operations already have an ordering constraint relative to subsequent stores,

and (2) that we only need to preserve the ordering from the relaxed load and those fetch_add-like
read-modify-write operations (with ordering parameters that do not have acquire semantics) to

subsequent stores.

C++ code AArch64 assembly

(a) r1 = arr[0].load(acquire); ⇒ 1: ldar w1, [x8]
r2 = arr[1].load(relaxed); 2: ldr w2, [x8, #4]
arr[2].store(0, relaxed); 3: str wzr, [x8, #8]
arr[3].store(0, release); 4: add x8, x8, #12

5: stlr wzr, [x8]
(b) r1 = arr[0].fetch_add(1, relaxed); ⇒ 1:.BB_1:

arr[1].store(0, relaxed); 2: ldxr w9, [x8]
3: add w9, w9, #1
4: stxr w10, w9, [x8]
5: cbnz w10, .BB_1
6: str wzr, [x8, #4]

(c) int expected = 0; ⇒ 1:.BB_1:
r1 = arr[0].compare_exchange_weak(2: ldxr w9, [x8]
expected, 1, relaxed, relaxed); 3: cbz w9, .BB_2
return; 4: clrex

5: ret
6:.BB_2:
7: orr w9, wzr, #0x1
8: stxr w10, w9, [x8]
9: ret

Fig. 15. Examples of how LLVM backend compiles C++ atomic operations to assembly code for AArch64
targets. In each example, variable arr is an array of atomic_int, and register x8 contains the base address of
array arr.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:19

4.2.2 Forbidding Reordering of Loads and Stores in AArch64. To forbid a normal load from being

reordered with subsequent stores in AArch64 targets, Boehm and Demsky [2014] propose that one

could add either a fence or a bogus conditional branch after the load (i.e., adding control dependency

from the load to subsequent stores). For cases in which a load is followed by a store, one could

alternatively add a bogus address dependency [Maranget et al. 2012] from the load to the store

to guarantee the ordering. Also, a similar strategy with respect to adding address dependency to

insert (between the target relaxed load and subsequent stores) a bogus load whose address depends

on the target relaxed load. To better understand the performance characteristics of these options,

we use micro-benchmarks written in assembly to benchmark the performance overhead of these

options on an ARM Cortex-A72 core.

The first option is to simply replace the normal load with a ldar load, which has implicit

acquire semantics. The second option is to replace the normal store with a stlr store, which has

implicit release semantics. The third option is to insert a “dmb ld” fence before a relaxed store so

that it waits for previous loads to finish. The fourth option is to add a bogus conditional branch

after the normal load such that the branch condition uses the result of the load
6
. The fifth is to

add a bogus load whose address depends on the target relaxed load. The sixth option is to add

an extra address/control dependency from the normal load to an existing subsequent store or

conditional branch instruction. Figure 16 shows the performance overhead of these strategies,

which is normalized to the performance of the micro-benchmarks without any load-store ordering

constraints. The “Store” column represents the scenario in which a load is followed by a store,

and the “Conditional Branch” column represents the scenario in which a load is followed by

a conditional branch. This result shows that using release stores is the most expensive option

and adding bogus conditional branches after relaxed loads is the least expensive option in either

scenario for the processor we used, and that adding fences (i.e., the first three options) is more

expensive than the other three alternatives. Given this preliminary result, we adopt the strategy

of adding bogus conditional branch in the implementation of our load-store-order-preserving

compiler. It is important to note that compared to adding bogus conditional branches, the strategies

of adding address dependencies to existing stores/branches or inserting bogus dependent loads

can be potential solutions for those processors that incur higher overheads from fake conditional

branches.

Strategy/Subsequent Instruction Store Conditional Branch

Acquire Load 500.1% 267.7%

Release Store 1095.1% 382.0%

DMB LD Fence 457.1% 238.3%

Bogus Conditional Branch 28.6% 26.2%

Bogus Load 50.0% 26.4%

Extra Dependencies to Existing Store/Branch 50.0% 28.8%

Fig. 16. Performance overhead incurred by different strategies of forbidding load-store reordering for micro-
benchmarks.

Figure 17 (a) and (b) show examples in which a relaxed load is followed by an existing subsequent

store or conditional branch in the same basic block, respectively. In both examples, we intentionally

add a bogus conditional branch that uses the result of the load, i.e., lines 2 to 4 in Figure 17 (a)

and lines 2 to 4 in Figure 17 (b). This intentional control dependency forces stores after the load

to be visible after the load. Note that we add an AND instruction (specifically AND with zero) in

6
At the time of writing this paper, there is still some uncertainty about what the branch target should look like. In this

paper, we evaluate this strategy based on Pulte et al. [2018]’s model, in which any instruction succeeding a conditional

branch in program order has control dependency on the loads that the branch has data dependency on.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:20 Peizhao Ou and Brian Demsky

C++ code AArch64 assembly

(a) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]
arr[0].store(0, relaxed); 2: and w2, w1, wzr

3: cbnz w2, .BB_1
4:.BB_1:
5: str wzr, [x8]

(b) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]
if (r2) 2: and w9, w1, wzr
arr[0].store(0, relaxed); 3: cbnz w9, .BB_1

4:.BB_1:
5: cbz w2, .BB_2
6: str wzr, [x8]
7:.BB_2:

(c) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]
if (r1) 2: cbz w1, .BB_1
arr[0].store(0, relaxed); 3: str wzr, [x8]

4:.BB_1:
(d) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]

arr[r1].store(0, relaxed); 2: str wzr, [x8, w1, sxtw #2]

Fig. 17. Our approach to imposing the ordering between relaxed loads and subsequent stores. Register
x8 contains the base address of array arr. Bogus conditional branches are added intentionally to impose
the load-store ordering in example (a) and (b), and example (c) and (d) do not require such extra ordering
constraints because the ordering constraints exist in the source code inherently.

lines 2 of both examples (a) and (b) to ensure that the conditional branch consistently takes the

same direction to avoid too many branch mispredictions.

Another important observation is that for some relaxed loads, there already exist reordering

constraints from the load to subsequent stores. For example, in the source code in Figure 17 (c), the

conditional branch after the relaxed load already depends on the result of the load, so any stores

after the load in the assembly naturally have a control dependency on the load and must be visible

after it without adding any redundant instructions. Similarly, Figure 17 (d) shows an example in

which a subsequent store naturally has an address dependency on the load and thus we do not

need to add extra reordering constraints. In order to optimize for these cases to avoid unnecessary

overheads, we implement a local analysis that conservatively checks whether the address of a

subsequent store or the condition of a subsequent branch depends on specific loads and use the

analysis result to decide whether we need to add a bogus conditional branch after the loads.

To implement our solution, we made two modifications to the LLVM AArch64 backend:

(1) Add extra ordering constraints for relaxed loads: We modify the code generation preparation

pass such that before LLVM lowers optimized IR to machine code, it collects the set of relaxed

loads that need extra ordering constraints (e.g., examples shown in Figure 17 (a) and (b)). We

then intentionally add bogus conditional branches after the collected relaxed loads. Note that

when there are multiple relaxed loads in a sequence, we only insert one bogus conditional

branch whose condition uses the result of all those loads.

(2) Preserving redundant data/control dependencies: After the above modification to the code

generation preparation pass, we still need to ensure that later backend passes (e.g., the

SelectionDAG-based instruction selection and control flow optimization pass) do not optimize

these instructions away, e.g., eliminating “and w2, w1, wzr”.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:21

5 EVALUATION
In this section, we evaluate the cost of the two approaches to avoiding out-of-thin-air behaviors

in C/C++ for AArch64 targets. In our evaluation, we report execution times on a Firefly-RK3399

board, which has a six-core 64-bit CPU (two ARM Cortex-A72 cores and four ARM Cortex-A53

cores), 4 GB memory, and runs Ubuntu 16.04.2. We have made both our compiler implementations

and benchmarks publicly available at http://plrg.eecs.uci.edu/oota-html. As Sullivan [2017] shows,

the performance results can vary depending on the processor in question. More specifically, their

results seem to suggest that dependencies and fences may exhibit less performance penalty in

ARMv8 than in ARMv7 and Power architectures. Ideally, the evaluation would have been more

complete if we also considered the ARMv7 and Power architectures; however, in LLVM, they use

different backends (which does require review and modifications) to generate architecture-specific

code, so this is a non-trivial effort. As a first-step, we believe that evaluating the approaches on a

relatively new version of 64-bit ARM processor could still be a useful indicator for future processors,

and decided to leave the evaluation on the ARMv7 and Power architectures as future work.

5.1 Cost of Preserving Dependencies
Although avoiding out-of-thin-air behaviors applies only to multi-threaded code, our dependency-

preserving approach incurs overhead for both single-threaded and multi-threaded programs. Single-

threaded code represents a worse case scenario—the memory system bandwidth is not utilized by

other cores and thus the extra instructions we add have a relatively higher cost. Thus, we measure

the overheads of our dependency-preserving optimizations on single-threaded code.

5.1.1 Single-Threaded Programs. We ran each C/C++ benchmark in SPEC CPU2006 [Henning

2006] under four compiler configurations. The configuration “Full Optimizations” is the stock

LLVM compiler with all optimizations enabled (-O3); the configuration “No Optimization” is

the stock LLVM compiler with all optimizations disabled (-O0); the configuration “Dependency-

preserving” is our dependency-preserving compiler. Due to the amount of engineering work needed

to review/modify each optimization pass, we only select a core set of IR-level optimization passes (35

out of 46) to carefully review and modify when necessary to implement the dependency-preserving

compiler. The configuration “Partial Optimization” is the stock LLVM compiler whose IR-level

optimizations only include the same core set of passes that are enabled in our dependency-preserving

compiler.

Note that the “No Optimization” configuration (-O0) naturally preserves dependencies; however,

the benchmarks under this configuration execute with an average (geometric mean) slowdown of

155.9% and a maximum slowdown of 580.9%. Figure 18 shows more detailed performance overhead

of each benchmark under configurations “Partial Optimization” and “Dependency Preserving”,

with each normalized to the performance under “Full Optimization” (-O3) configuration. Under the
“Partial Optimization” configuration, the benchmarks incur an average of 1.8% slowdown and a

maximum of 11.6% slowdown. Our dependency-preserving compiler has an average 3.1% slowdown

and a maximum of 17.6% slowdown. Given the fact that we completely turn off 11 IR-level passes in

our dependency-preserving compiler, which roughly accounts for the 1.8% overhead as shown under

the “Partial Optimization” configuration, it is likely that one could further reduce the overhead of

preserving dependencies by analyzing those optimization passes. There also remain opportunities

for further optimization of the passes that we modified for the dependency-preserving memory

model.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

http://plrg.eecs.uci.edu/oota-html

136:22 Peizhao Ou and Brian Demsky

-5

 0

 5

 10

 15

 20

400.perlbench

401.bzip2

403.gcc

429.m
cf

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

433.m
ilc

444.nam
d

447.dealII

450.soplex

453.povray

470.lbm

482.sphinx3

Average

1.8
3.1

11.6

17.6

S
lo

w
d
ow

n
 o

ve
r

"F
u
ll

O
p
ti
m

iz
at

io
n
"

(-
O

3
)

in
 p

er
ce

n
ta

g
e Partial Optimization

Dependency Preserving

Fig. 18. Performance overhead (in percentage) introduced by different compiler configurations compared to
the full optimization configuration (-O3) for C/C++ benchmarks in SPEC CPU2006.

Speedup in Single-Threaded Runs. As shown in Figure 18, we observe speedup in the single-

threaded runs for some benchmarks under our dependency-preserving compiler. A possible ex-

planation is the non-linear interaction between some optimization passes on some benchmarks.

In fact, researchers have shown that different compiler options or transformation combination

could have a significant impact on performance factors (e.g., cache accesses) [Cavazos et al. 2007;

Pan and Eigenmann 2006]. One supportive observation in our case is that some benchmarks

such as “401.bzip2” under the “Partial Optimization” configuration also have a speedup over the

baseline “Full Optimization” configuration. Moreover, our dependency-preserving compiler does

require modifying some backend passes such that they do not eliminate intentionally added AND
instructions or conditional branches; and we have observed that simply disabling the backend

control flow optimizer pass (i.e., BranchFolding) in the stock LLVM (“-O3”) yields speedups for some

single-threaded benchmarks. To give a more detailed comparison, for those benchmarks with a

speedup under the “Dependency Preserving” configuration over the baseline in the single-threaded

runs, we also list their overhead over the “Partial Optimization” configuration in Figure 19.

Benchmark Overhead over “Partial Optimization” (%)

401.bzip2 -0.2

473.astar 0.6

433.milc 0.3

444.namd -2.9

470.lbm 0.1

Fig. 19. Performance overhead of the “Dependency Preserving” configuration compared to the “Partial
Optimization” configuration in the single-threaded runs for the benchmarks that have a speedup under
“Dependency Preserving” configuration over baseline.

5.1.2 Multiple Copies of Single-Threaded Programs. To evaluate the performance overhead in a

multi-core environment, we ran two copies of each C/C++ benchmark in SPEC CPU2006 at the same

time, with each copy running on a Cortex-A72 core. We report the performance overhead of our

dependency-preserving compiler compared to the stock LLVM with all optimizations enabled (-O3)

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:23

in Figure 20. In this scenario, our dependency-preserving approach incurred an average slowdown

of 2.6% and a maximum slowdown of 13.7%, which is smaller than that of running in a single-copy

scenario in Section 5.1.1. A likely explanation is that our approach to preserving dependencies

increases the number of instructions that are executed but does not significantly increase the

number of memory accesses to data. As a result, when we run multiple copies of the same program

simultaneously, the memory bandwidth that is accessible to each copy is reduced, and hence the cost

of running the extra CPU instructions becomes relatively smaller (especially for memory-bounded

programs). This experimental result indicates that in multi-core environments in which more than

one core is used, the performance overhead incurred by our dependency-preserving compiler is

likely to be smaller than that incurred in the single-core scenario.

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

400.perlbench

401.bzip2

403.gcc

445.gobm
k

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

471.om
netpp

473.astar

483.xalancbm
k

433.m
ilc

444.nam
d

447.dealII

450.soplex

453.povray

470.lbm

482.sphinx3

Average

2.6

13.7

S
lo

w
d
ow

n
 o

ve
r

"F
u
ll

O
p
ti
m

iz
at

io
n
"

(-
O

3
)

in
 p

er
ce

n
ta

g
e Dependency Preserving

Fig. 20. Performance overhead (in percentage) introduced by our dependency-preserving compiler compared
to the full optimization configuration (-O3) for C/C++ benchmarks in SPEC CPU2006 with two copies of each
benchmark running at two cores simultaneously. We omit the “429.mcf” benchmark here because running
two copies at the same time requires more than 4 GB memory and thus causes out-of-memory error.

5.2 Cost of Forbidding Load-Store Reordering
Unlike the dependency-preserving approach, forbidding load-store reordering to avoid out-of-

thin-air behaviors only affects relaxed atomics in C/C++11. Hence, for example, the load-store-

order-preserving approach should impose no overhead on the SPEC CPU2006 benchmarks because

they do not use any C/C++ relaxed atomics. We believe that relaxed atomics will primarily appear

in concurrent data structure code, while most other program code would not be affected since

they would likely use other primitives that provide stronger semantics, e.g., locks and atomics

with memory_order_seq_cst. Hence, we focus on evaluating the performance overhead incurred

by forbidding load-store reordering for real-world concurrent data structures. The results can be

roughly viewed as the upper bound of the performance overhead of this approach. The performance

impact on full applications would depend on howmuch time those applications spend in concurrent

data structure code. Ideally, we would also like to benchmark full applications; however, many

existing multi-threaded applications that we have access to are not kept up-to-date with the C/C++

memory model, and porting them to use C/C++ atomics is a non-trivial effort. Hence we leave it as

future work.

5.2.1 Concurrent Data Structures with Multiple Threads. In this evaluation, we gather a total

set of 43 real-world concurrent data structures from several different sources, which range from

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:24 Peizhao Ou and Brian Demsky

basic synchronization primitive implementations, concurrent queues/stacks/deques to concurrent

maps. Most of these data structures are lock-free, and all of them intensively utilize C/C++11

atomics. In more details, among these concurrent data structures, we collect 18 of them from

the CDS C++ library [Khiszinsky 2017], 13 of them from the Folly library [Facebook 2018], 4

different implementations of concurrent maps from the Junction library [Preshing 2018], 2 queue

implementations by Rigtorp [2017a,b], and 6 benchmarks used in CDSSpec [Ou and Demsky 2017].

We ran each benchmark using 7 compiler configurations: (1) the stock LLVM compiler with all

optimizations enabled (-O3), i.e., Full Optimization; (2) our load-store-order-preserving compiler

which adds bogus conditional branches after relaxed loads (Bogus Conditional Branch); (3) a variant
of configuration 2 which adds address dependencies to existing stores rather than bogus conditional

branches if there is a subsequent store after a relaxed load (Address Dependency to Store); (4) a
modified compiler which adds address dependencies from relaxed loads to a subsequent load, which

can be an existing load if any or an intentionally inserted bogus load otherwise (Bogus Load). Note
that for a target relaxed load, we insert a bogus load whose address is the same as the relaxed load

to avoid cache misses; (5) a modified compiler which treats relaxed loads as acquire loads (Acquire
Load); (6) a modified compiler which treats relaxed stores as release stores (Release Store); and (7) a

modified compiler which inserts “dmb ld” fences before relaxed stores (DMB Fence).
Since the Firefly-RK3399 board has two faster ARM Cortex-A72 cores and four slower ARM

Cortex-A53 cores, it can potentially increase the noise in our performance evaluation if we run

the benchmarks with multiple threads across the two different types of cores. Hence, we ran each

of our benchmark with two threads, and each thread exclusively runs on a Cortex-A72 core. We

ran each benchmark test case for 5 times and use the average (arithmetic mean) of those 5 runs as

the execution time for each benchmark test case. For a benchmark in which there exist multiple

variants, we use the geometric mean of the execution time of all the variants as the execution time

of that benchmark. Although we ran the benchmarks with only two threads in this experiment, it

is important to note that the extra overhead (i.e., extra dependencies or fences) that we introduce

in this approach is local to each core and thus should not result in extra communication between

cores, and hence one would not expect scaling issues; moreover, if the processor has limited

memory bandwidth, as the number of cores utilized increases, the relative overhead of these extra

dependencies or fences should become smaller.

Multiple Threads Single Thread

Configurations/Overheads Average Maximum Average Maximum

Bogus Conditional Branch -0.3% 6.3% -0.0% 5.2%

Address Dependencies to Store 1.3% 23.2% 0.5% 8.7%

Bogus Load 2.6% 42.9% 2.8% 14.7%

Acquire Load 0.4% 27.5% 2.1% 42.7%

Release Store 3.6% 82.6% 6.8% 38.9%

DMB Fence -0.1% 32.0% 3.2% 25.9%

Fig. 21. Performance overheads (over full optimizations) incurred by different strategies of forbidding load-
store reordering for concurrent data structure benchmarks. The “Multiple Threads” columns show results
for benchmarks running with two threads, and the “Single Thread” columns show results for benchmarks
running with a single thread.

The performance overheads of different strategies to preserve load-store ordering (running with

two threads) over the performance under full optimizations are shown in the “Multiple Threads”

columns in Figure 21. The “Average” column shows the geometric mean of the execution time

of our benchmarks, and the “Maximum” column shows the maximum overhead incurred by the

corresponding strategy. We can see that the “Bogus Conditional Branch”, “Acquire Load” and “DMB

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:25

Fence” strategies incur an average overhead of less than 0.5% across the 43 benchmarks on average.

Notably, the “Bogus Conditional Branch” strategy does not incur an overhead on average and only

incurs a maximum of 6.3% overhead. All other strategies have higher maximum overhead than the

“Bogus Conditional Branch” strategy, indicating that they are less desirable approaches to preserving
load-store ordering in our experimental setting. We also show the performance results of each

benchmark for the Bogus Conditional Branch strategy in Appendix E and the optimizations for the

load-store-order-preserving approach in Appendix D.

Contention. Under this experimental setting, we found that some of our benchmarks have a

faster execution time under our load-store-order-preserving compilers over full optimizations

(-O3), such as the Folly UnorderedAtomicInsertMap implementation [Facebook 2018]. A possible

explanation is that there exists contention in the data structure, and adding extra instructions to

implement ordering constraints alleviates this contention. To better compare the performance of our

approach, we also run our benchmark in a single-threaded (contention-free) setting in Section 5.2.2.

5.2.2 Concurrent Data Structures with a Single Thread. We run our benchmarks in a single thread

on an ARM Cortex-A72 core in order to study the performance overhead of our approach without

the contention issue under the 7 compiler configurations described in Section 5.2.1. For example,

for a concurrent queue, we ran the queue with a single thread, which executes a certain number

of enqueue method calls and then a certain number of dequeue method calls. The results are

shown in the “Single Thread” columns in Figure 21. We can see that without contention, the “Bogus
Conditional Branch” strategy does not incur an overhead over full optimizations on average and only

incurs a maximum of 5.2% overhead. It also shows that the “Bogus Load”, “Acquire Load”, “Release
Store” and “DMB Fence” strategies are more expensive on average and in worst case, which agrees

with our micro-benchmarking results shown in Figure 16. Notably, even though the “Bogus Load”
strategy only adds address dependencies to existing or bogus loads (which may seem inexpensive),

it is still not desirable relative to the “Bogus Conditional Branch” strategy. A possible explanation is

that the added address dependencies can halt the execution of all future memory operations.

Thus, among the six strategies we implemented, when we consider both the multi-threaded and

single-threaded experiment results, the “Bogus Conditional Branch” strategy is the most desirable

under the processor we use because it has the lowest average overhead and worst-case overhead

in both the multi-threaded and single-threaded runs compared to all other strategies. Also, if we

consider the single-threaded runs, the “Address Dependencies to Store” strategy is only slightly less

desirable than the “Bogus Conditional Branch” strategy, and it may serve as a potential approach for

processors that incur higher overheads from fake conditional branches.

6 RELATEDWORK
In spite of much research on high-performance concurrent programming languages, we still do not

have a definitive solution to the out-of-thin-air problem.

The C/C++11 memory model [Batty et al. 2011; Becker 2011; Boehm and Adve 2008; JTC 2011]

does not forbid out-of-thin-air executions; and the C++14 memory model [?] does not clearly
define out-of-thin-air behaviors and only vaguely states that implementations should ensure that

out-of-thin-air values that circularly depend on their computations should be disallowed. In our

dependency-preserving approach, we formally define a notion of dependency and evaluate a

prototype implementation on widely deployed commercial hardware.

Boehm and Demsky [2014] propose the approach of ensuring that sb ∪ r f is acyclic for relaxed

atomics, but the actual overhead was unclear. Our work complements this by providing an initial

evaluation on the overhead of the approach for execution of real-world concurrent data structure

code on a mainstream processor.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:26 Peizhao Ou and Brian Demsky

The Java memory model [Manson et al. 2005; Shipilëv 2016a,b] disallows the canonical out-of-

thin-air example shown in Figure 2 by establishing a notion of causality and showing that there

cannot exist a justifying execution for r1=r2=42. However, the Java memory model was later found

unsound with respect to some common compiler optimizations [Cenciarelli et al. 2007; Ševčík

and Aspinall 2008] such as redundant read elimination. The fact that our dependency-preserving

approach supports normal memory accesses rather than just C/C++ atomics indicates that it is a

promising direction to explore for the Java memory model.

Dolan et al. [2018] have recently proposed a memory model that provides a property called

local data race freedom, which guarantees that all data-race-free portions of a program still have

sequential consistency semantics. They show that to implement their memory model, one would

need to preserve the ordering between loads and stores. They implement it on OCaml with similar

strategies that we use in our load-store-order-preserving compiler and show that the average

overhead over stock OCaml compiler for ARMv8 architecture with sequential programs is ∼0.6%.

Although both their results and ours suggest that the overhead of preserving load-store ordering is

relatively low on ARMv8 architecture, it is important to note the differences: (1) the primary goal

of their model is to provide the local DRF property but not to prohibit OOTA behavior, although

their model effectively disallows OOTA behavior; and (2) their results are based on OCaml, which

has a Java-like memory model, and thus they need to preserve load-store ordering for all normal

(non-atomic) accesses; while our approach targets the C/C++ memory model, which only affects

the C/C++ atomics.

Sullivan [2017] has proposed an approach called Relaxed Memory Calculus (RMC) that is funda-

mentally different from the C/C++ and Java memory models. In the RMC approach, programmers

essentially reason about the relative ordering of memory accesses in concurrent programs (in a

fashion close to hardware memory models) and explicitly specify the constraints on the execution

order and visibility of writes. Unfortunately, the RMC approach also suffers from OOTA behavior

and needs further fixes. It is important to note that Sullivan [2017] demonstrates that ARMv8 seems

to have a smaller overhead on dependencies/fences than ARMv7 and Power; more notably, SC

atomics perform nearly as well as C11 atomics on ARMv8. Hence, this encourages future work to

extend our evaluation to ARMv7 and Power architecture.

Researchers have also proposed memory models whose goal is to disallow out-of-thin-air behav-

iors while embracing compiler optimizations. Jeffrey and Riely [2016]; Pichon-Pharabod and Sewell

[2016] have proposed weak memory models based on event structures, which are sets of memory

access events with some causal order and conflict relationship. Instead of focusing on a candidate

execution, these approaches capture how different candidate executions relate to each other and

diverge. Kang et al. [2017] propose a memory model that forbids out-of-thin-air behaviors based on

operational semantics with timestamps and promises. Their approach introduces special reduction

steps to allow a thread to perform a write with a promise that can be locally certified. Jagadeesan

et al. [2010] propose an operational memory model for Java based on a notion of speculation to

forbid OOTA executions. Our approach takes a different direction to provide an initial study of the

runtime overhead of restricting compiler optimizations to eliminate out-of-thin-air behaviors.

Researchers [Marino et al. 2011; Singh et al. 2012] have suggested stronger memory models,

e.g., sequential consistency, in which out-of-thin-air behaviors are prohibited. They show that the

cost is low when they implement such memory models on specialized hardware. Our approaches

also explores stronger memory models than the existing C/C++ memory model; however, the

constraints we impose in general are much weaker than the sequential consistency memory model.

In addition, both of our approaches directly target existing widely-deployed commercial processor

designs that implemented a relaxed memory model. Liu et al. [2017] have proposed a stronger

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:27

Java memory model, which by default has sequential consistency semantics. They show that the

overhead is arguably acceptable for server-side applications running on Intel x86 architectures.

Zhang and Feng [2016] propose an operational memory model that is based on a replay mech-

anism to simulate speculation. Their model forbids some but not all OOTA behaviors. Demange

et al. [2013]; Ševčík et al. [2013] propose TSO for C and Java, which is strictly stronger than our

approach of preserving load-store ordering.

There is also work that benchmarks the performance of weak memory models. Ritson and Owens

[2016] focus on investigating the cost of prohibiting out-of-thin-air behaviors on the Linux kernel.

They inject identifiable assembly sequences into the compiler output and use binary rewriting

techniques to test different instruction sequences that may prevent out-of-thin-air behaviors. Our

work focuses on a more general-purpose approach which involves modifying existing compiler

code generation process and comparing the result with the original compiler.

Hardware memory models generally do not allow out-of-thin-air behaviors since they respect a

syntactic data and control dependencies, while traditional compiler optimizations could potentially

introduce such behaviors [Boehm and Demsky 2014]. Our dependency-preserving approach defines

a dependency notion that is close to that of the hardware and enforces the compiler to generate

code that respects such dependencies.

7 CONCLUSION
Restricting compiler optimizations is a promising solution to eliminate out-of-thin-air behaviors.

Our results show that on an ARMv8 processor the dependency-preserving approach has an average

overhead of 3.1% and a maximum overhead of 17.6% on the SPEC CPU2006 C/C++ benchmarks,

and that the load-store-order-preserving approach has no overhead on average and a maximum

overhead of 6.3% on 43 concurrent data structures, which indicates that the approach deserves

further consideration. There remain opportunities to further reduce overheads by implementing

more sophisticated optimizations and by carefully auditing the compiler optimization passes we

omitted.

ACKNOWLEDGMENTS
We thank Doug Lea, Viktor Vafeiadis, Paul McKenney, Olivier Giroux, Alan Stern, JF Bastien,

Will Deacon, Stephen Dolan, and Hans Boehm for their helpful comments or discussions. We

would also like to thank the anonymous reviewers for their helpful comments. This project was

partly supported by a Google Research Award and the National Science Foundation under grants

CCF-1319786, OAC-1740210 and CNS-1703598.

REFERENCES
Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering - A New Definition. In Proceedings of the 17th Annual International

Symposium on Computer Architecture.
Jade Alglave, Luc Maranget, Paul E McKenney, Andrea Parri, and Alan Stern. 2018. Frightening Small Children and

Disconcerting Grown-ups: Concurrency in the Linux Kernel. In 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems.

Azul. 2017. https://www.azul.com/press_release/falcon-jit-compiler/. (May 2017).

Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library Abstraction for C/C++ Concurrency. In Proceedings of the
Symposium on Principles of Programming Languages.

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015a. The Problem of

Programming Language Concurrency Semantics. In Proceedings of the 2015 European Symposium on Programming.
Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015b. The Problem of

Programming Language Concurrency Semantics. In Proceedings of the 24th European Symposium on Programming.
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In

Proceedings of the Symposium on Principles of Programming Languages.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

https://www.azul.com/press_release/falcon-jit-compiler/

136:28 Peizhao Ou and Brian Demsky

Pete Becker. 2011. ISO/IEC 14882:2011, Information Technology – Programming Languages – C++. (2011).

Hans Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-Thin-Air Results. In Proceedings of the 2014 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness.

Hans J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. In Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and Implementation.

Matko Botinčan, Paola Glavan, and Davor Runje. 2010. Verification of Causality Requirements in Java Memory Model is

Undecidable. In Proceedings of the 8th International Conference on Parallel Processing and Applied Mathematics.
John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael FP O’Boyle, and Olivier Temam. 2007. Rapidly Selecting

Good Compiler Optimizations Using Performance Counters. In Proceedings of the 5th Annual IEEE/ACM International
Symposium on Code Generation and Optimization.

Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. 2007. The Java Memory Model: Operationally, Denotationally,

Axiomatically. In Proceedings of the 2007 European Symposium on Programming.
Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagannathan, David Pichardie, and Jan Vitek. 2013. Plan B: A Buffered

Memory Model for Java. In Proceedings of the Symposium on Principles of Programming Languages.
Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding data races in space and time. In Proceedings

of the 2018 ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 242–255.

Facebook. 2018. https://github.com/facebook/folly. (Mar 2018).

John L Henning. 2006. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH Computer Architecture News 34, 4 (2006),
1–17.

Radha Jagadeesan, Corin Pitcher, and James Riely. 2010. Generative Operational Semantics for Relaxed Memory Models. In

Proceedings of the 2010 European Symposium on Programming.
Alan Jeffrey and James Riely. 2016. On Thin Air Reads towards an Event Structures Model of Relaxed Memory. In Proceedings

of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science.
ISO JTC. 2011. ISO/IEC 9899:2011, Information Technology – Programming Languages – C. (2011).

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

Memory Concurrency. In Proceedings of the Symposium on Principles of Programming Languages.
Max Khiszinsky. 2017. https://github.com/khizmax/libcds. (Dec 2017).

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective Stateless Model Checking

for C/C++ Concurrency. In Proceedings of the Symposium on Principles of Programming Languages.
Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++ 11. In Proceedings of the 2017 ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 618–632.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization.

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2017. A Volatile-by-Default JVM for Server Applications. Proceedings of
the ACM on Programming Languages 1, OOPSLA (2017), 49.

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. In Proceedings of the Symposium on
Principles of Programming Languages.

Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A Tutorial Introduction to The ARM and POWER Relaxed Memory

Models. http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf. (2012).

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011. A Case for an

SC-Preserving Compiler. In Proceedings of the 2011 ACM SIGPLAN Conference on Programming Language Design and
Implementation.

Paul E. McKenney, Alan Jeffrey, Ali Sezgin, and Tony Tye. 2016. Out-of-Thin-Air Execution is Vacuous. http://www.open-std.

org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html. (Jul 2016).

Yuri Meshman, Noam Rinetzky, and Eran Yahav. 2015. Pattern-based Synthesis of Synchronization for the C++ Memory

Model. In Formal Methods in Computer-Aided Design.
Brian Norris and Brian Demsky. 2013. CDSChecker: Checking Concurrent Data Structures Written with C/C++ Atomics. In

Proceeding of the 28th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications.
Peizhao Ou and Brian Demsky. 2015. AutoMO: Automatic Inference of Memory Order Parameters for C/C++11. In Proceeding

of the 30th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications.
Peizhao Ou and Brian Demsky. 2017. Checking Concurrent Data Structures Under the C/C++11 Memory Model. In

Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
Zhelong Pan and Rudolf Eigenmann. 2006. Fast and Effective Orchestration of Compiler Optimizations for Automatic

Performance Tuning. In Proceedings of the 4th Annual IEEE/ACM International Symposium on Code Generation and
Optimization.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

https://github.com/facebook/folly
https://github.com/khizmax/libcds
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0422r0.html

extended version 136:29

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation

and Avoids Thin-air Executions. In Proceedings of the Symposium on Principles of Programming Languages.
Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2017. Promising Compilation to ARMv8 POP. In Proceedings of the 31st

European Conference on Object-Oriented Programming.
Jeff Preshing. 2018. https://github.com/preshing/junction. (Feb 2018).

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM Concur-

rency: Multicopy-atomic Axiomatic and Operational Models for ARMv8. In Proceedings of the Symposium on Principles of
Programming Languages.

David P Reed and Rajendra K Kanodia. 1979. Synchronization with eventcounts and sequencers. Commun. ACM 22, 2 (1979),

115–123.

Erik Rigtorp. 2017a. https://github.com/rigtorp/SPSCQueue. (Feb 2017).

Erik Rigtorp. 2017b. https://github.com/rigtorp/MPMCQueue. (Aug 2017).

Carl G Ritson and Scott Owens. 2016. Benchmarking Weak Memory Models. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.

Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global Value Numbers and Redundant Computations. In

Proceedings of the Symposium on Principles of Programming Languages.
Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-memory Concurrency. Journal of the ACM (JACM) 60, 3 (2013), 22.
Aleksey Shipilëv. 2016a. Java Memory Model Pragmatics. https://shipilev.net/blog/2014/jmm-pragmatics/. (Sep 2016).

Aleksey Shipilëv. 2016b. Java Memory Model Pragmatics. https://shipilev.net/. (Oct 2016).

Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. 2017. Chasing Away RAts: Semantics and Evaluation for Relaxed

Atomics on Heterogeneous Systems. In Proceedings of the 44th Annual International Symposium on Computer Architecture.
Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madanlal Musuvathi. 2012. End-to-end

Sequential Consistency. In Proceedings of the 39th Annual International Symposium on Computer Architecture.
Michael J Sullivan. 2017. Low-level Concurrent Programming Using the Relaxed Memory Calculus. Ph.D. Dissertation. Carnegie

Mellon University.

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: A Program Logic for C11 Concurrency. In Proceeding
of the 28th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications.

Momchil Velikov. 2012. http://stackoverflow.com/questions/8115267/writing-a-spinning-thread-barrier-using-c11-atomics.

(Oct 2012).

Jaroslav Ševčík and David Aspinall. 2008. On Validity of Program Transformations in the Java Memory Model. In Proceedings
of the 22th European Conference on Object-Oriented Programming (ECOOP ’08).

Yang Zhang and Xinyu Feng. 2016. An Operational Happens-before Memory Model. Frontiers of Computer Science 10, 1
(2016), 54–81.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

https://github.com/preshing/junction
https://github.com/rigtorp/SPSCQueue
https://github.com/rigtorp/MPMCQueue
https://shipilev.net/blog/2014/jmm-pragmatics/
https://shipilev.net/
http://stackoverflow.com/questions/8115267/writing-a-spinning-thread-barrier-using-c11-atomics

136:30 Peizhao Ou and Brian Demsky

A A POTENTIAL OOTA EXAMPLE WITH ADDRESS DEPENDENCIES
Figure 22 presents a dependency cycle example involving address dependencies. In this example,

global variables x and y are 0 and each element in the global array z is 0. For the problematic

execution in which r1=r2=1, the reason why r1=x can return value 1 is a chain of justifications that

start with the assumption that r1=x can return value 1. As a result, the load in line 3 of Thread 1

does not read from the store in line 2 of Thread 1. Note that the dependence is transmitted through

the absence of reading from the store in line 2. Rather than explicitly model the dependence from

the store to the load, our semantics leverages the fact that all dependency chains end with a store

and simply adds a dependency on the load “r1=x” to all stores after the store “z[r1]=1”, which in

our example is the store “y=1”. Our dependency-preserving memory model forbids this execution

because there exists a cycle in dep ∪ r f .

int x=y=0; // Initially 0
int z[2]; // Initially 0
// Thread 1 // Thread 2
1:r1 = x; 1:r2 = y;
2:z[r1] = 1; 2:x = r2;
3:if (!z[0])
4: y = 1;

Fig. 22. If x=y=0 and each element in array z is 0 initially, can r1=r2=1? Note that according to our dependency
notion, store “y=1” has an address dependency on load “r1=x” because the address of store “z[r1]=1” depend
on “r1=x”.

B THE SELECT SET OF IR-LEVEL PASSES ENABLED IN OUR
DEPENDENCY-PRESERVING COMPILER

Figure 23 presents the select set of IR-level passes that we enable in our dependency-preserving

compiler. Note that compared to the full set of IR-level passes enabled under full optimizations

(-O3), this is a relatively small set, which means that there remain opportunities to further reduce

the overhead by reviewing the disabled passes.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:31

Pass Name Is the Pass Modified

simplifycfg Modified

instcombine

dse

licm

slp-vectorizer

loop-unroll

gvn Unmodified

loop-rotate

mem2reg

globalopt

functionattrs

tailcallelim

lower-expect

sroa

inline

forceattrs

inferattrs

prune-eh

adce

rpo-functionattrs

elim-avail-extern

float2int

strip-dead-prototypes

globaldce

constmerge

deadargelim

argpromotion

early-cse

correlated-propagation

loop-unswitch

indvars

loop-idiom

loop-deletion

barrier

alignment-from-assumptions

Fig. 23. The select set of IR-level transformation passes that we enable in our dependency-preserving compiler.
Note that we globally modify the InstructionSimplify analysis to preserve data dependencies and to avoid phi
nodes merging, which can affect some of the unmodified passes that rely on it, e.g., the gvn pass.

C OUT-OF-THIN-AIR PROPERTIES OF THE DEPENDENCY-BASEDMEMORYMODEL
Since there is no agreed upon definition of out-of-thin-air executions, we provide a proof sketch

for a property about the causality of executions in our memory model.

Definition C.1. (Value independent semantics). A memory model has value-independent semantics
iff the semantics of the memory model do not depend on the value loaded or stored with the exception
of CAS. The C/C++ and Java memory models are both value independent.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:32 Peizhao Ou and Brian Demsky

Definition C.2. (Load available semantics). A memory model has load available semantics if a
load can always read from some value that will not affect which values later loads can read from. For
the C/C++ memory model, this is the earliest store in the modification order that is visible to the load.

Theorem C.1 (Dependency Theorem). For a memory model that has value-independent and load
available semantics and that ensures that dep ∪ rf is acyclic, then if a store s is not reachable from a
load l in the graph dep ∪ rf for an execution e , then for any value v that the load l returns there exist
an execution e ′ with an equivalent load which returns value v such that either: (1) e ′ has an error or
(2) e ′ has a store s ′ that writes the same value to the same address as s .

Proof Sketch.

Define A to be the part of the execution that can reach l in the dep ∪ rf graph. Define B to be the

part of the execution that l can reach in the dep ∪ rf graph. Define C to the part of the execution

that can reach s in the dep ∪ rf graph.

Then:

(1) Load dependencies for the address of a store sa or the condition of a branch with an untaken

store in B is not sb before anything in C . This is true by the definition of dependency.

(2) Load dependencies for the address of a store sa or the condition of a branch with an untaken

store in B is not sb before anything in A. This is true by the definition of dependency and by

the assumption that dep ∪ rf is acyclic.

(3) There is no load inC that reads from any store inB. This is true by the definition of dependency.
(4) Load dependencies for the address of a store sa or the condition of a branch with an untaken

store that are sb before A are in A. This is true by the definition of dependency.

(5) Load dependencies for the address of a store sa or the condition of a branch with an untaken

store that are sb before C are in C . This is true by the definition of dependency.

For any valuev that load l returns, we can construct an execution e ′ in which (1) every store that

is sb before A ∪C in the execution e ′ has an equivalent store in e that writes to the same address,

(2) every store in A ∪C in e is in e ′ and writes to the same address, and (3) every load that is sb
before A ∪C reads from the same store as it did in e (note that some loads than are sb, but not in
A ∪C may be missing) since all of the load dependencies for the conditional branches or addresses

of stores are in A ∪ C . The stores in execution e ′ that are sb before A ∪ C are a subset of stores

in execution e and they write to the same addresses so this is possible (loads in execution e ′ who
are missing their corresponding store are not in A ∪C and can simply be made to read from some

store without affecting other loads since we assume that the memory model has load available

semantics). Note that the stores may not write the same values, but the memory semantics are

value-independent and thus admit the same rf relation. Note that we may have new loads appear

that are sb before A ∪C , but such loads can always read from a value by the assumption that the

memory model has load available semantics.

The execution e ′ may throw an error in which case we trivially prove the property. Thus assume

that execution e ′ does not throw an error. Then by induction on dep ∪ rf and the definition of dep,
the store s ′ must store the same value as store s .

Theorem C.1 implies that executions with causality cycles or satisfaction cycles in which a store

s cyclically justifies the value it stores are not possible if dep ∪ rf is acyclic. Any load l that reads
from s cannot reach s in the dep ∪ rf graph since it is acyclic and the load l reads from s . Thus by
the theorem, the load l can return any value and store s will still store the same value.

D OPTIMIZATIONS FOR THE LOAD-STORE-ORDER-PRESERVING APPROACH
There are two core ideas behind our optimizations to alleviate the performance overhead of

enforcing the load-store ordering. One is to take advantage of existing ordering constraints that

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:33

are intrinsic to the source code to avoid adding unnecessary extra ordering constraints, and the

other one is to move the added ordering constraints out of the critical sections when possible. We

discuss them in more details as follows.

Avoid Unnecessary Ordering Constraints. As shown in Figure 17 (c) and (d), a relaxed load can

automatically have ordering constraints to subsequent stores because of existing control or address

dependencies, e.g., when the result of the load is used to compute the condition of an immediately

following conditional branch. Another scenario to optimize is when a relaxed load is followed by

fetch_add like atomic operations with acquire and release semantics and there does not exist any

atomic store in between. One notable real example is the synchronizing barrier implementation [Ve-

likov 2012], with an interesting code snippet shown in Figure 24. The fetch_add operation that

immediately follows the relaxed load on variable step_ has the memory_order_acq_rel memory

order, and the LLVM backend will transform this fetch_add operation to acquire load-exclusive

and release store-exclusive instructions. As a result, the fetch_add operation effectively acts as a

fence that forbids the relaxed load and any subsequent stores to be reordered across it. Another

such pattern is a relaxed load immediately followed by a CAS operation. In the implementation of

our load-store-order-preserving compiler, we have an analysis to identify these patterns for relaxed

loads to avoid adding unnecessary ordering constraints.

unsigned step = step_.load(relaxed);
if (nwait_.fetch_add(1, memory_order_acq_rel) == n_ - 1) {
// Subsequent stores...
}
// Other subsequent stores...

Fig. 24. A relaxed load followed by a fetch_add like read-modify-write operation (no other atomic store
in between) is naturally guaranteed to be ordered before subsequent stores after the read-modify-write
operation.

Move Added Ordering Constraints out of Critical Sections. If a relaxed load in the critical path

requires adding extra ordering constraints, we can potentially reduce the penalty if we can safely

move the intentionally added ordering constraints out of the critical path. Figure 25 shows the

code for the unlock method of the Ticket Lock [Reed and Kanodia 1979] implementation. This

lock data structure maintains a turn variable to indicate whose turn it is to take the lock. For a

thread that holds the lock, the unlock method simply increments the turn variable to allow the

next waiting thread to acquire the lock. Since the thread holding the lock has exclusive access

to the turn variable, it does not use an atomic fetch_add operation, which is potentially more

costly than a plain load and store. In this case, to ensure that the relaxed load is ordered before all

subsequent stores, a straightforward approach is to add a bogus conditional branch right after the

relaxed load and before the release store; however, this intentionally added control dependency

is in the critical section because the turn variable has not been incremented yet (so the waiting

thread potentially needs to wait for a longer time). One observation is that the store in this case has

release semantics, meaning that the load cannot be reordered across it. Hence, we can instead add

the bogus conditional branch after the release store. As a result, the critical section does not contain

any added control dependency that delays the process of releasing the lock. In our implementation,

for a relaxed load, we try to find the latest release store in the same basic block of that load and add

the bogus conditional branch after that last release store.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:34 Peizhao Ou and Brian Demsky

void unlock() {
unsigned my_turn = turn.load(std::memory_order_relaxed);
// Still in the critical section
turn.store(my_turn + 1, std::memory_order_release);
// Not in the critical section anymore

}

Fig. 25. Example of a relaxed load followed by a release store. Since the relaxed load cannot be reordered
across the release store, we can safely delay adding a bogus conditional branch till after the release store
rather than before the release store.

E RESULTS FOR ADDING BOGUS CONDITIONAL BRANCHES
E.1 Running with a Single Thread
We first present detailed results for single-threaded execution for preserving load-store ordering

using bogus conditional branches. These results best capture the actual overhead that our compiler

adds to the code to preserve load-store ordering. The plots show percentage slowdown relative

to -O3 compilation. Positive numbers mean that the load-store order preserving version is slower

than the -O3 version while negative numbers mean that the load-store order preserving version is

faster than the -O3 version.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

Iterable_DHP_st_cm
p

Iterable_DHP_st_less

Iterable_HP_dyn_cm
p

Iterable_HP_dyn_less

Lazy_DHP_st_cm
p

Lazy_DHP_st_less

Lazy_HP_dyn_cm
p

Lazy_HP_dyn_less

Lazy_RCU_GPB_st_cm
p

Lazy_RCU_GPB_st_less

Lazy_RCU_GPI_dyn_cm
p

Lazy_RCU_GPI_dyn_less

M
ichael_DHP_st_cm

p

M
ichael_DHP_st_less

M
ichael_HP_dyn_cm

p

M
ichael_HP_dyn_cm

p_swar

M
ichael_HP_dyn_less

M
ichael_RCU_GPB_dyn_cm

p

M
ichael_RCU_GPB_dyn_cm

p_swar

M
ichael_RCU_GPB_st_cm

p

M
ichael_RCU_GPB_st_less

M
ichael_RCU_GPI_dyn_cm

p

M
ichael_RCU_GPI_dyn_less

S
lo

w
d
o
w

n
 o

v
e
r

"-
O

3
"

in
 p

e
rc

e
n
ta

g
e

BogusCondBranch

Fig. 26. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different split-ordered list variants from the CDS Library with a single thread.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:35

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

SkipListMap_dhp_cm
p_turbo32

SkipListMap_dhp_cm
p_xorshift32

SkipListMap_hp_less_turbo16

SkipListMap_hp_less_turbo24

SkipListMap_hp_less_turbo32

SkipListMap_hp_less_xorshift16

SkipListMap_hp_less_xorshift24

SkipListMap_hp_less_xorshift32

SkipListMap_rcu_gpb_cm
p_turbo32

SkipListMap_rcu_gpb_cm
p_xorshift32

SkipListMap_rcu_gpi_less_turbo32

SkipListMap_rcu_gpi_less_xorshift32

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 27. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different skip list map variants from the CDS Library with a single thread.

-3

-2

-1

 0

 1

 2

 3

 4

 5

MichaelMap_DHP_less

MichaelMap_HP_cm
p

MichaelMap_Iterable_DHP_less

MichaelMap_Iterable_HP_cm
p

MichaelMap_Lazy_DHP_less

MichaelMap_Lazy_HP_cm
p

MichaelMap_Lazy_RCU_GPB_less

MichaelMap_Lazy_RCU_GPI_cm
p

MichaelMap_RCU_GPB_less

MichaelMap_RCU_GPI_cm
p

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e BogusCondBranch

Fig. 28. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different Michael map variants from the CDS Library with a single thread.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:36 Peizhao Ou and Brian Demsky

-15

-10

-5

 0

 5

 10

VyukovMPMCCycleQueue_dyn

VyukovMPMCCycleQueue_dyn_ic

W
eakRingBuffer_void_dyn

BasketQueue_DHP

BasketQueue_HP

MoirQueue_DHP

MoirQueue_HP

MSQueue_DHP

MSQueue_HP

Optim
isticQueue_DHP

Optim
isticQueue_HP

RW
Queue_Spin

Segm
entedQueue_DHP_spin

Segm
entedQueue_HP_spin

Segm
entedQueue_HP_spin_padding

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 29. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different queue benchmarks/variants from the CDS Library with a single thread.

-10

-5

 0

 5

 10

 15

Elim
ination_DHP

Elim
ination_DHP_dyn

Elim
ination_HP

Elim
ination_HP_dyn

Treiber_DHP

Treiber_HP

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 30. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for the Treiber stack and elimination-backoff stack variants from the CDS Library with a single thread.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:37

 0

 2

 4

 6

 8

 10

EllenBinTreeMap_dhp

EllenBinTreeMap_hp

EllenBinTreeMap_rcu_gpb

Feldm
anHashMap_dhp_fixed

Feldm
anHashMap_hp_fixed

Feldm
anHashMap_rcu_gpb_fixed

Feldm
anHashMap_rcu_gpi_fixed

CachedFreeList

FreeList

put_get_single.CachedFreeList

put_get_single.FreeList

ReentrantLock32

ReentrantLock64

SpinLock

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 31. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for other benchmarks/variants from the CDS Library with a single thread.

-10

-5

 0

 5

 10

 15

FollyAtom
icHashMap

FollyAtom
icUnorderedInsertMap

FollyConcurrentHashMap

FollyAtom
icLinkedList

FollyDynam
icBoundedQueue_SPSC

FollyMPMCQueue

FollyUnboundedQueue_SPSC

FollyMicroLock

FollyMicroSpinLock

FollyPicoSpinLock

FollyRCU_NoSync

FollyRCU_ReaderOnly

FollyRCU_Sync

FollyRW
SpinLock

FollyRW
TicketSpinLock_32

FollyRW
TicketSpinLock_64

FollySharedMutex_ReadPriority

FollySharedMutex_W
ritePriority

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 32. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different benchmarks/variants from the Folly Library with a single thread.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:38 Peizhao Ou and Brian Demsky

-4

-2

 0

 2

 4

SpinningBarrier

ChaseLevDeque_push_steal

ChaseLevDeque_push_take

MCSLock

LinuxReaderW
riterLock

SeqLock

TicketLock

JunctionMapCrude

JunctionMapGram
pa

JunctionMapLeapfrog

JunctionMapLinear

RigtorpMPMCQueue

RigtorpSPSCQueue

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 33. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different benchmarks from CDSSpec, Rigtorp’s SPSC & MPMCQueues and the Junction Library with a
single thread.

E.2 Running with Multiple Threads
We next present detailed results for multiple-threaded execution for preserving load-store ordering

using bogus conditional branches for completeness. These results are significantly more challenging

to interpret as theoretically more efficient code can result in worse performance due to extra

contention. The results are also noisy — small differences in timing can result in large performance

differences. The plots show percentage slowdown relative to -O3 compilation. Positive numbers

mean that the load-store order preserving version is slower than the -O3 version while negative

numbers mean that the load-store order preserving version is faster than the -O3 version.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:39

-2

-1

 0

 1

 2

 3

 4

Iterable_DHP_st_cm
p

Iterable_DHP_st_less

Iterable_HP_dyn_cm
p

Iterable_HP_dyn_less

Lazy_DHP_st_cm
p

Lazy_DHP_st_less

Lazy_HP_dyn_cm
p

Lazy_HP_dyn_less

Lazy_RCU_GPB_st_cm
p

Lazy_RCU_GPB_st_less

Lazy_RCU_GPI_dyn_cm
p

Lazy_RCU_GPI_dyn_less

Lazy_RCU_GPT_dyn_cm
p

Lazy_RCU_GPT_dyn_less

M
ichael_DHP_st_cm

p

M
ichael_DHP_st_less

M
ichael_HP_dyn_cm

p

M
ichael_HP_dyn_cm

p_swar

M
ichael_HP_dyn_less

M
ichael_RCU_GPB_dyn_cm

p

M
ichael_RCU_GPB_dyn_cm

p_swar

M
ichael_RCU_GPB_st_cm

p

M
ichael_RCU_GPB_st_less

M
ichael_RCU_GPI_dyn_cm

p

M
ichael_RCU_GPI_dyn_less

M
ichael_RCU_GPT_dyn_less

S
lo

w
d

o
w

n
 o

v
e
r

"-
O

3
"

in
 p

e
rc

e
n
ta

g
e

BogusCondBranch

Fig. 34. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different split-ordered list variants from the CDS Library with multiple threads.

-4

-2

 0

 2

 4

SkipListMap_dhp_cm
p_turbo32

SkipListMap_dhp_cm
p_xorshift32

SkipListMap_hp_less_turbo16

SkipListMap_hp_less_turbo24

SkipListMap_hp_less_turbo32

SkipListMap_hp_less_xorshift16

SkipListMap_hp_less_xorshift24

SkipListMap_hp_less_xorshift32

SkipListMap_rcu_gpb_cm
p_turbo32

SkipListMap_rcu_gpb_cm
p_xorshift32

SkipListMap_rcu_gpi_less_turbo32

SkipListMap_rcu_gpi_less_xorshift32

SkipListMap_rcu_gpt_less_turbo32

SkipListMap_rcu_gpt_less_xorshift32

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 35. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different skip list map variants from the CDS Library with multiple threads.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:40 Peizhao Ou and Brian Demsky

-2

-1

 0

 1

 2

 3

MichaelMap_DHP_less

MichaelMap_HP_cm
p

MichaelMap_Iterable_DHP_less

MichaelMap_Iterable_HP_cm
p

MichaelMap_Lazy_DHP_less

MichaelMap_Lazy_HP_cm
p

MichaelMap_Lazy_RCU_GPB_less

MichaelMap_Lazy_RCU_GPI_cm
p

MichaelMap_Lazy_RCU_GPT_cm
p

MichaelMap_RCU_GPB_less

MichaelMap_RCU_GPI_cm
p

MichaelMap_RCU_GPT_cm
p

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e BogusCondBranch

Fig. 36. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different Michael map variants from the CDS Library with multiple threads.

-4

-2

 0

 2

 4

 6

 8

 10

VyukovMPMCCycleQueue_dyn

VyukovMPMCCycleQueue_dyn_ic

spsc.VyukovMPMCCycleQueue_dyn

spsc.VyukovMPMCCycleQueue_dyn_ic

BasketQueue_DHP

BasketQueue_HP

MoirQueue_DHP

MoirQueue_HP

MSQueue_DHP

MSQueue_HP

Optim
isticQueue_DHP

Optim
isticQueue_HP

RW
Queue_Spin

W
eakRingBuffer_void_dyn

W
eakRingBuffer_dyn

Segm
entedQueue_DHP_spin

Segm
entedQueue_HP_spin

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 37. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different queue benchmarks/variants from the CDS Library with multiple threads.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

extended version 136:41

-15

-10

-5

 0

 5

 10

 15

Elim
ination_DHP

Elim
ination_DHP_dyn

Elim
ination_DHP_exp

Elim
ination_DHP_pause

Elim
ination_HP

Elim
ination_HP_dyn

Elim
ination_HP_exp

Elim
ination_HP_pause

Treiber_DHP

Treiber_DHP_exp

Treiber_DHP_pause

Treiber_HP

Treiber_HP_exp

Treiber_HP_pause

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 38. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for the Treiber stack and elimination-backoff stack variants from the CDS Library with multiple threads.

-20

-10

 0

 10

 20

 30

EllenBinTreeMap_dhp

EllenBinTreeMap_hp

EllenBinTreeMap_rcu_gpb

EllenBinTreeMap_rcu_gpt

Feldm
anHashMap_dhp_fixed

Feldm
anHashMap_hp_fixed

Feldm
anHashMap_rcu_gpb_fixed

Feldm
anHashMap_rcu_gpi_fixed

Feldm
anHashMap_rcu_gpt_fixed

CachedFreeList

FreeList

put_get_single.CachedFreeList

put_get_single.FreeList

ReentrantLock32

ReentrantLock64

SpinLock

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 39. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for other benchmarks/variants from the CDS Library with multiple threads.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

136:42 Peizhao Ou and Brian Demsky

-10

-5

 0

 5

 10

 15

FollyAtom
icHashMap

FollyAtom
icUnorderedInsertMap

FollyConcurrentHashMap

FollyDynam
icBoundedQueue_SPSC

FollyMPMCQueue

FollyUnboundedQueue_SPSC

FollyMicroLock

FollyMicroSpinLock

FollyPicoSpinLock

FollyRCU_NonstopReaderNoSync

FollyRCU_NonstopW
riterNoSync

FollyRCU_NonstopW
riterSync

FollyRW
SpinLock

FollyRW
TicketSpinLock_32

FollyRW
TicketSpinLock_64

FollySharedMutex_ReadPriority

FollySharedMutex_W
ritePriority

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 40. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different benchmarks/variants from the Folly Library with multiple threads.

-20

-15

-10

-5

 0

 5

 10

SpinningBarrier

ChaseLevDeque

MCSLock

LinuxReaderW
riterLock

SeqLock

TicketLock

JunctionMapCrude

JunctionMapGram
pa

JunctionMapLeapfrog

JunctionMapLinear

RigtorpMPMC

RigtorpSPSC

S
lo

w
d
ow

n
 o

ve
r

"-
O

3
"

in
 p

er
ce

n
ta

g
e

BogusCondBranch

Fig. 41. Performance overhead (in percentage) of the Bogus Conditional Branch strategy over Full Optimizations
for different benchmarks from CDSSpec, Rigtorp’s SPSC & MPMCQueues and the Junction Library with
multiple threads.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 136. Publication date: November 2018.

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Consequences
	1.3 Potential Solutions
	1.4 Contributions

	2 Memory Model Extensions that Disallow OOTA Behaviors
	2.1 The Language
	2.2 Language-Level Dependency Notion
	2.3 A Load-Store-Order-Preserving Memory Model

	3 Dependency-Preserving Compiler
	3.1 Design
	3.2 Implementation

	4 Load-Store-Order-Preserving Compiler
	4.1 Target-Independent Optimizations
	4.2 Backend Optimizations for AArch64

	5 Evaluation
	5.1 Cost of Preserving Dependencies
	5.2 Cost of Forbidding Load-Store Reordering

	6 Related Work
	7 Conclusion
	References
	A A Potential OOTA Example with Address Dependencies
	B The Select Set of IR-Level Passes Enabled in Our Dependency-Preserving Compiler
	C Out-of-Thin-Air Properties of the Dependency-Based Memory Model
	D Optimizations for the Load-Store-Order-Preserving Approach
	E Results for Adding Bogus Conditional Branches
	E.1 Running with a Single Thread
	E.2 Running with Multiple Threads

