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Abstract
Many concurrent data structures are initially designed for
the sequential consistency (SC) memory model. Developers
often implement these data structures on real-world systems
with weaker memory models by adding sufficient fences to
ensure that their implementation on the weak memory model
exhibits the same executions as on the SC memory model.

Recently, the C11 and C++11 standards have added a weak
memory model to the C and C++ languages. Developing and
debugging code for weak memory models can be extremely
challenging. We present AutoMO, a framework to support
porting data structures designed for the SC memory model
to the C/C++11 memory model. AutoMO provides support
across the porting process: (1) it automatically infers initial
settings for the memory order parameters, (2) it detects
whether a C/C++11 execution is equivalent to some SC
execution, and (3) it simplifies traces to make them easier
to understand. We have used AutoMO to successfully infer
memory order parameters for a range of data structures and to
check whether executions of several concurrent data structure
implementations are SC.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programing; D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords Relaxed Memory Model; Sequential Consis-
tency

1. Introduction
With the wide scale deployment of multi-core processors,
software developers must write parallel software to leverage

the benefits provided by additional cores. While it is rela-
tively straightforward to use locks to protect concurrent data
accesses, locks are often an impediment to writing code that
effectively scales to many cores. Careful data structure design
can improve scalability by supporting multiple simultaneous
operations and by reducing the time taken by individual oper-
ations. Researchers and practitioners have developed a wide
range of concurrent data structures designed to meet these
goals [12, 27, 30, 36–38, 48].

Concurrent data structures often use a number of sophisti-
cated techniques including the careful use of low-level atomic
instructions (e.g. compare and swap (CAS), atomic increment,
etc.), careful orderings of loads and stores, and fine-grained
locking. For example, while the standard Java hash table
can limit program scalability to a handful of processor cores,
carefully designed concurrent hash tables can scale to hun-
dreds of cores [30]. Traditionally, developers had to target
their implementations to a specific platform and compiler as
the implementations relied on low-level platform details and
often required writing assembly code.

In 2011, the C/C++ standardization committees extended
the C/C++ language standards with support for low-level
atomic operations [2, 3, 13], which allow experts to craft
efficient concurrent data structures that avoid the overheads
of locks. The new C/C++ memory model provides memory
operations with weaker semantics than the sequential consis-
tency (SC) memory model to support real-world processors
and compiler optimizations.1

1.1 Implementing Data Structures
Designing data structures directly for a weak memory model
is extremely difficult. Weak memory models admit a number
of surprising and non-intuitive behaviors [10]. A number of
researchers have hypothesized that the predominant develop-
ment model for concurrent data structures on weak memory
models is that experts first design data structures for the much
stronger, more intuitive SC memory model [14, 17]. Develop-
ers then implement the SC data structure design on a weaker
memory model by adding sufficient fences or memory order

1 We are somewhat relaxed in our usage of the abbreviation SC and also use
it to mean sequentially consistent.
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constraints to ensure that behaviors that arise from relaxed
memory models do not break the data structure.

We expect that developers will commonly use the follow-
ing development methodology:

1. Developers will find an already existing concurrent data
structure design that solves the problem at hand or design
one based on their intuitions. Note that such designs often
assume the SC memory model.

2. The developers may make minor adaptations to the basic
design to fulfill their needs.

3. The developers then attempts to tune the memory order
parameters to ensure that their implementation only ad-
mits the SC executions assumed in the original design.
Although C++11 makes atomics SC by default (memory
orderings default to memory_order_seq_cst), overly re-
strictive memory order constraints can incur significant
performance overheads, and thus it is typically preferable
to use the weakest constraints that guarantees correctness.

A key challenge is avoiding mistakes in Step 3. There
is anecdotal evidence that getting Step 3 correct is difficult
(while optimizing for performance). Solving the problem in
Step 3 for the Chase-Lev deque was a subject of an academic
paper [28], and the published code in that paper for the
C11 memory model contained errors in the memory order
constraints [40].

We present an algorithm that takes as input a data structure
implementation and a set of test cases and then automatically
infers memory order parameters for the data structure that
ensure that all executions of these test cases are equivalent to
executions under the SC memory model.

1.2 Debugging Data Structures
The C/C++ memory model is formalized in terms of a reads-
from (rf ) relation that maps stores to the loads that read from
them [2, 3, 9]. The reads-from relation is then constrained by
a number of constraints that ensure cache coherence, define
the semantics of synchronization, and implement various
memory order constraints.

Researchers have developed a range of testing tools for
exploring the behaviors of code under the C/C++ mem-
ory model including CDSChecker [40], CPPMEM [9], and
Relacy [49]. These tools dump execution traces2 that list the
memory operations and tell which store each load reads from.
These traces can be very difficult to understand as they con-
tain non-intuitive behaviors including (1) loads that read from
stores older than the last store to the location and (2) loads
that read from stores that appear after the load.

When a bug is discovered in a data structure implemen-
tation, these tools provide the developer with an execution
trace that exposes the bug. To debug the implementation, it
is often important to understand whether the buggy behavior

2 We use trace to informally refer to the order in which these tools print out
memory operations. The C/C++ memory model does not define a trace.

arises because of the relaxed memory model or the trace is
allowed by the SC memory model. Moreover, if the developer
ported a data structure designed for the SC memory model,
the presence of any execution that is not allowed by the SC
memory model is worth further investigation.

Unfortunately, it can be surprisingly difficult to figure out
whether a given trace (even a relatively short one with tens
of operations) is allowed by the SC memory model. Even if
loads read from stores other than the last prior store to the
same location, it may be possible to permute the operations
such that the trace is consistent with the SC memory model
while maintains the same reads-from relation.

Even when parts of a trace are prohibited by the SC
memory model, rewriting the trace to be mostly SC with
only a few violations eliminates the need to jump all over the
trace when examining which store a load reads from.

The problem of checking whether an execution is SC even
when the reads-from mapping is given is NP-complete[24,
25], and hence the complexity of checking whether a C/C++
trace is allowed by the SC memory model is NP-complete if
the order of stores to a given location is not known.

We present an algorithm that efficiently solves the problem
for traces produced by real-world concurrent data structures.
We prove the correctness of our algorithm and evaluate it on
a number of C/C++ data structure implementations.

Our SC checking approach is not specific to the C/C++
memory model — we essentially check whether there exists
an SC trace that is consistent with the reads-from relation.
Therefore, our approach generalizes to all axiomatic memory
models that are formalized in terms of a reads-from relation.
Of course, for stronger memory models it may be possible to
lower the complexity bound of checking whether a trace is
allowed by the SC memory model.

1.3 Contributions
This paper makes the following contributions:

• Memory Order Parameter Inference: It presents an ap-
proach that automatically infers memory order parameters,
automating one of the more difficult aspects of using the
C/C++ memory model.

• Sequential Consistency Trace Checking: It presents a
new technique that checks whether a given trace under the
C/C++ memory model is consistent with the SC memory
model. It primarily targets unit testing and debugging
concurrent data structures implementations.

• Formalization: It proves the correctness of the SC trace
checking algorithm.

• Trace Simplification: It explores several approaches for
reordering traces to make it easier for developers to
understand an execution. When a trace is not allowed
by the SC memory model, our algorithm prints a more
readable trace with fewer gratuitous SC violations and
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guarantees that the SC violations are not flagged in an
obviously wrong place.

• Evaluation: It presents an evaluation of AutoMO on sev-
eral real-world data structures. It found two bugs that it
automatically corrected in one benchmark, one incorrect
claim in a paper, and it infers no worse and sometimes bet-
ter memory order parameters than the original manually-
developed versions for most benchmarks (9 out of 11).

2. Overview
Choosing memory order parameters often involves trading off
weaker semantics for improved performance. For example, a
wide range of C/C++ data structures implementations admit
some behaviors that are prohibited by the sequentially con-
sistent memory model. For example, queue implementations
often only provide release/acquire synchronization between
the enqueuing and dequeuing threads. Non-SC behaviors can
be observed in test cases involving multiple such queues.

A key observation of this work is that although many data
structure implementations do admit non-SC executions, this
often arises only when the data structures are composed with
others. Many practical data structure implementations are in-
ternally SC — such data structure implementations can view
their internal behavior as sequentially consistent and blame
any non-SC behaviors that are exposed by compositions on
the external data structures.

All executions involving a single instance of an internally
SC data structure in isolation are equivalent to SC executions.
The key insight is that internally SC suffices to avoid breaking
the internals of a data structure design.

2.1 Inference of Memory Order Parameters
Developers often have given some thought to the corner cases
for their implementations. They know that resizing concurrent
data structures, dequeuing the last element, or dequeuing
from an empty queue are all cases that must be given careful
consideration. They sometime even write unit tests to cover
such corner cases.

However, many developers do not understand the sub-
tleties of the C/C++ memory model. Reading developer blogs
or StackOverflow threads regarding the topic reveals numer-
ous examples of sophisticated developers who do not under-
stand key elements of the C/C++ memory model.

We have designed AutoMO to address this issue. AutoMO
takes as input a data structure and a set of unit tests. It then
outputs a set of assignments to the memory order parameters
that make all of the test case executions SC.

Figure 1 presents AutoMO’s basic approach. The approach
taken is structured as follows:

1. Initialize the memory order parameters using the input
parameter assignments generated from the previous test
case. If this is the first test case, then AutoMO initializes
the memory order parameters to relaxed.

CDSChecker
model-checking

framework

Parameter
Inferring Analyzer

AutoMO framework

Input:
test case 1
test case 2

…
test case n

Optional input:
parameter

assignments

Output:
final

parameter
assignments

SC Analyzer

Non-SC Trace
Reordering AnalyzerIn

iti
al

ize
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er

s

Blame correct

operations

Run test cases
iteratively 

Check SC

Reorder

non-SC tra
ce

Finish exploring
all test cases

Temporary output,
input for next test case

Figure 1. AutoMO system overview

2. Run the unit test using the CDSChecker model checking
tool to exhaustively explore the legal executions of the
test case.

3. Check each execution to detect whether the execution is
equivalent to some SC execution.

4. If the execution is not equivalent to some SC execution,
determine one or more memory operations to blame
for the non-SC behavior. While AutoMO is not always
guaranteed to blame the correct memory operation, it
is guaranteed to blame a memory operation that can be
repaired. Blaming a set of memory operations that are
already specified to be memory_order_seq_cst is not
helpful as they cannot be strengthened.

5. Leverage repair patterns to strengthen memory order pa-
rameter assignments to fix the problem. In general, prob-
lematic executions cannot always be fixed with a single
repair action. However, AutoMO repair actions guarantee
that they will eventually ensure that the same memory
operations cannot be blamed again in the future. This suf-
fices to guarantee that AutoMO will always converge on a
repair for a given execution.

6. After a given test case only exhibits SC executions, move
to the next test case.

7. When all test cases are completed, AutoMO outputs the
final parameter assignments.

A key challenge behind AutoMO was developing an analy-
sis that can quickly check whether an execution is SC, reorga-
nize non-SC executions to be mostly-SC, and automatically
discover operations that are likely to be responsible for in-
troducing non-SC behaviors into an execution. These core
technologies also have the potential to be useful for debug-
ging or understanding concurrent data structures. Checking
SC can identify executions that may be worth more careful
inspection and presenting non-SC executions as mostly SC
(plus blaming the appropriate operations) can greatly simplify
understanding executions under weak memory models.
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3. Definitions
We begin with a brief summary of the relations that comprise
the formalization of the C/C++ memory model. We then con-
tinue with several definitions that we make use of throughout
the paper.

3.1 Summary of C/C++ Memory Model
The C/C++ memory model describes a series of atomic oper-
ations and the corresponding allowed behaviors of programs
that utilize them. Note that throughout this paper, we primar-
ily discuss atomic memory operations that perform either a
write (referred to as a store or modification operation) or a
read (referred to as a load operation). The discussion gen-
eralizes to operations that perform both a read and a write
(read-modify-write, or RMW, operations). Any operation on
an atomic object will have one of six memory orders, each of
which falls into one or more of the following categories.

seq-cst: memory_order_seq_cst – strongest memory or-
dering, there exists a total order of all operations with this
memory ordering. Loads that are seq_cst either read from
the last store in the seq_cst order or from some store that
is not part of seq_cst total order.

release: memory_order_release, memory_order_acq_
rel, and memory_order_seq_cst – a store-release may
form release/consume or release/acquire synchronization.
When a load-acquire reads from a store-release, it estab-
lishes a happens-before relation between the store and the
load.

consume: memory_order_consume – a load-consume may
form release/consume synchronization.

acquire: memory_order_acquire, memory_order_acq_
rel, and memory_order_seq_cst – a load-acquire may
form release/acquire synchronization.

relaxed: memory_order_relaxed – weakest memory or-
dering. The only constraints for relaxed memory opera-
tions are a per-location modification order total ordering
that is equivalent to cache coherence.

The C/C++ memory model expresses program behavior
in the form of binary relations or orderings. We briefly
summarize the relations:

• Sequenced-Before: The evaluation order within a pro-
gram establishes an intra-thread sequenced-before (sb)
relation—a strict preorder of the atomic operations over
the execution of a single thread.

• Reads-From: The reads-from (rf ) relation consists of
store-load pairs (X,Y ) such that Y takes its value from
X—or X

rf−→ Y . In the C/C++ memory model, this
relation is non-trivial, as a given load operation may read
from one of many potential stores in the execution.

• Synchronizes-With: The synchronizes-with (sw) relation
captures the synchronization that occurs when certain
atomic operations interact across threads.

• Happens-Before: In the absence of memory operations
with the consume memory ordering, the happens-before
relation is the transitive closure of the union of the
sequenced-before and the synchronizes-with relations.

• Sequentially Consistent: All operations that declare the
memory_order_seq_cst memory order have a total or-
dering (sc) in the program execution.

• Modification Order: Each atomic object in a program
has an associated modification order (mo)—a total order
of all stores to that object—which informally represents
an ordering in which those stores may be observed by the
rest of the program.

Program executions directly observe the reads-from
relation by observing the values that loads return. The
synchronizes-with, happens-before, sequentially consistent,
and modification order orderings constrain the reads-from
relation and are only indirectly observable by the effect that
they have on the reads-from relation. As the SC memory
model is strictly stronger than the C/C++ memory model, if
we can find an SC execution trace that is consistent with both
the reads-from relation and the sequenced-before relation of
a C11 trace, then any constraints related to the remaining
relations will also be satisfied.

Specifically, the synchronizes-with and happens-before re-
lations are trivially satisfied by any SC trace as executions in
the SC memory model essentially behave as if every load syn-
chronizes with the store from which it reads. The sequentially
consistent relation is satisfied because the SC trace requires
all operations to have a total order that is consistent with
the reads-from and sequenced-before relations. A consistent
modification ordering exists for each memory location as the
SC trace ensures that a total ordering exists for all operations.
Thus, the subsequence of the SC total ordering containing
all operations for a given memory location gives a consistent
modification order for that memory location. Hence, this pa-
per can focus on the problem of finding an SC ordering that
is consistent with just the sequenced-before ordering and the
reads-from relation.

3.2 Formalizing Traces
Figure 2 presents a simplified version of the memory oper-
ations that can appear in the input C/C++ execution traces.
C/C++ traces have two basic types of operations: StoreOps
and LoadOps. It is possible for a single atomic operation to
perform both a load and store — such RMW operations are
members of both sets. The input trace τ specifies both the
intrathread sb partial order and the reads-from rf partial order.
We can safely assume that the order of operations in the input
trace τ is consistent with the intrathread ordering sb, but in
general it may not at the same time be consistent with the
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s ∈ StoreOps = {store} × Address× Value ∪
{rmw} × Address× Value

l ∈ LoadOps = {load} × Address ∪
{rmw} × Address× Value

op ∈ Ops = StoreOps ∪ LoadOps

Figure 2. Sets of memory operations in the input trace

sb : Ops× Ops

rf : StoreOps× LoadOps

τ = τ(1); ...; τ(i); ...; τ(n),

where τ(i) ∈ Ops and the trace τ is consistent with the

intrathread execution order.

Figure 3. Relationships that define the input trace

SC(τ) = ∀i, s, 1 ≤ i, s ≤ n,
(〈τ(s), τ(i)〉 ∈ rf⇒ s < i) ∧
(∀j.s < j < i, τ(j) /∈ StoreOps ∨
address(τ(j)) 6= address(τ(i))))

preserves_sb(τ) = ∀i, j, 1 ≤ i, j ≤ n,
〈τ(i), τ(j)〉 ∈ sb⇒ i < j

Figure 4. Trace predicates. The first predicate checks that
each loads reads from a store that precedes the load and that
there are no stores to the same address between the original
load and the store. The second predicates checks that the
reordering preserves the intrathread ordering.

reads-from rf ordering. Figure 3 presents these two partial
orders along with the trace τ . The notation τ(i) indicates the
ith operation in the trace τ .

The output of the algorithm is an execution trace τisc
that totally orders the Ops to be consistent with the SC
memory model and the intrathread sb ordering. The algorithm
functions by inferring a partial order isc, which is denoted as
the ordering constraints that the SC memory model places on
the operations and shown in Figure 8. Note that the order isc
is distinct from the sc order defined by the C/C++11 memory
model. Figure 4 presents the predicate SC that checks that
each load in the trace reads from the last prior store to the
same memory location and hence that trace is consistent with
the SC memory model.

3.3 Checking Sequential Consistency
A key component of AutoMO is checking whether there
exists a reordering φ of the operations in a C/C++ trace that
is consistent with the sb relation such that the SC predicate is
true for the reordered trace τφ. If such an ordering exists, we
define the trace τ to be sequentially consistent.

Definition 3.1. (Reordering) A reordering of a trace τ is
a permutation φ on {1, ..., n} and the reordered trace τφ is
τ(φ(i)).

Definition 3.2. (SC) A trace τ is sequentially consistent
(SC) if there exists a reordering φ such that SC(τφ) and τφ

is consistent with the original intrathread ordering sb (i.e.,
satisfies the predicate preserves_sb).

4. Example
Figure 5 presents a single-producer single-consumer queue
that we will use to illustrate our approach. Lines 1 through 8
define a node struct with an atomic field index that holds
the node’s value and an atomic field next that references the
next node. Lines 10 through 32 define the spsc_queue class
to contain both a head and a tail pointer. The enqueue()
method initializes a new node, reads the tail pointer, stores
the new node to the tail’s next field, and updates the tail
pointer. The dequeue() method reads the head, reads its
next field, and if it is not NULL, updates the head and returns
the value of the index field.

This data structure is trivially correct under the SC mem-
ory model, however, it is buggy under C/C++11 with the
memory order parameters from the figure. Consider the test
case from Lines 34 through 44. This test case has two threads.
One thread updates an array element and enqueues an index
of 0, and the other thread tries to dequeue an item, and if
successful, loads the array element of the dequeued index.

Without establishing proper synchronization, this imple-
mentation can exhibit non-SC behaviors and lead to the buggy
behavior of reading uninitialized values. We use this as a run-
ning example throughout the paper to present how AutoMO
checks whether traces are SC, simplifies non-SC traces, and
then automatically infers memory order parameters.

5. SC Analysis Algorithm
Our algorithm takes as input a C/C++11 execution trace and
determines (1) whether the trace is SC and if so (2) generates
a reordered trace that satisfies the SC predicate.

As an example, Figure 6 presents a trace of one of the exe-
cutions of the test case shown in Figure 5. In this trace, while
the atomic load in Operation 2 (from Line 25) reads from the
atomic store in Operation 7 (from Line 19), the atomic load
in Operation 5 (from Line 28) reads from an uninitialized
value instead of from the atomic store in Operation 4 (from
Line 4). We denote Operation 0 as a special store of uninitial-
ized values, and we assign 0 by default to uninitialized values.
While Operation 2 (reads from a later store) and Operation 5
(reads from an old store) obviously violate the SC predicate
in this trace, we cannot rely on this fact to trivially decide
whether the execution is SC or not since in general it might
be possible to shuffle the order of the statements such that
their behavior is consistent with the SC memory model while
maintaining the same reads-from relation.

Therefore, we need a systematic approach to check
whether traces are SC. We begin by computing the partial
order isc−→ as the union of the reads-from partial order

rf−→, the
sequenced-before partial order sb−→, and the synchronization
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1 struct node {
2 node(int idx) {
3 next.store(NULL , memory_order_relaxed);
4 index.store(idx , memory_order_relaxed);
5 }
6 atomic <node*> next;
7 atomic <int > index;
8 };
9

10 class spsc_queue {
11 node *head , *tail;
12 public:
13 spsc_queue () {
14 head = tail = new node(-1);
15 }
16 void enqueue(int idx) {
17 node* n = new node(idx);
18 // Store of next field should be release
19 tail ->next.store(n, memory_order_relaxed);
20 tail = n;
21 }
22 bool dequeue(int *idx) {
23 node *tmp = head;
24 // Load of next field should be acquire
25 node *n = tmp ->next.load(memory_order_relaxed←↩

);

26 if (NULL == n) return false;
27 head = n;
28 *idx = n->index.load(memory_order_relaxed);
29 delete (tmp);
30 return true;
31 }
32 };
33

34 spsc_queue *q;
35 atomic_int arr [2];
36 void thrd1() { // Thread 1
37 arr [1]. store(1, memory_order_relaxed);
38 q->enqueue (1); // Enqueue index 1
39 }
40 void thrd2() { // Thread 2
41 int idx;
42 if (q->dequeue (&idx))
43 arr[idx].load(memory_order_relaxed);
44 }

Figure 5. A buggy single-producer single-consumer queue

# Thread Operation Order Addr Value rf
1 1 atomic store relaxed 0x2080 0x1
2 2 atomic load relaxed 0x5c08 0x6020 7
3 1 atomic store relaxed 0x6020 0
4 1 atomic store relaxed 0x6028 0x1
5 2 atomic load relaxed 0x5c08 0 0
6 2 atomic load relaxed 0x2078 0 0
7 1 atomic store relaxed 0x5c08 0x6020

Figure 6. Original execution trace for example test case

created by thread starts and joins. We then use a fixed-point
algorithm combined with inference rules to infer additional
edges in the partial order isc−→.

We use the partial order isc−→ to reorder the trace of memory
operations. Figure 7 presents the edges that comprise the isc−→
relation for the example. Note that the load in Operation 5
should have an isc−→ edge to the store in Operation 4 because
SC constrains the load to read from the last store. In this graph,
there exists a cycle (4→ 7→ 2→ 5→ 4), meaning that this

0. Uninitialized values

1. T1: arr[1].store

hb

2. T2: tmp->next.load

hb

5. T2: n->index.load

rf

6. T2: arr[0].load

rf

3. T1: next.store

sb

4. T1: index.store

sb

7. T1: tail->next.store

sb

rf

sb

isc sb

Figure 7. Edges in the isc−→ relation for the example test case

execution is non-SC because it is impossible to generate a
total order that is consistent with the isc−→ relation when there
exist a cycle.

5.1 Algorithm
The first component of the algorithm is a set of inference
rules that build up the partial order isc−→. Figure 8 presents
these inference rules. The sequenced-before inference rule
ensures that the isc partial order is consistent with sb. The
reads-from inference rule and the write ordering inference
rule together ensure that a load reads from the latest store
to the given location. The join rule ensures that the end of a
thread happens before the join operation returns. The thread
creation rule ensures that creation of a new thread occurs
before the new thread starts execution. Notably, for tools
such as CDSChecker, CppMem, and Relacy, the reads-from
information is provided and need not be extracted.

A simple topological sort of the isc−→ relation generated by
the inference rules in Figure 8 is not sufficient to compute a
total SC execution order as the inference rules may not have
established a total order on all of the stores to a given location.
Figure 9 presents an example where the inference rules do
not establish an ordering between the stores to z, yet ordering
the store to z in Line 1 first yields traces that do not satisfy
the predicate SC.

Figure 10 presents our algorithm for checking whether an
execution trace is allowed by SC and, if so, reordering the
trace to be SC while maintaining the same intrathread order
(sb). The algorithm begins by initializing a set of actions and
then calling the SEARCHSC procedure to check whether the
trace is SC. The SEARCHSC procedure begins by calling the
UPDATESC procedure in Line 6 using the inference rules
to compute the partial order isc−→. In Line 10, those actions
that are not ordered after any other actions in isc−→ form a set
(searchset) of candidate actions to incrementally build up
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Sequence-Before

X

Y

sb =⇒

X

Y

isc

Reads-From

W: x.store()

R: x.load()

rf =⇒

W: x.store()

R: x.load()

isc

Read Before Write

W1: x.store()

W2: x.store()

isc

R: x.load()

rf =⇒

W1: x.store()

R: x.load()

isc

Write Ordering

W1: x.store()

R: x.load()

isc

W2: x.store()

rf =⇒

W1: x.store()

W2: x.store()

isc

Join

F: t1.finish()

J: t1.join()

=⇒

F: t1.finish()

J: t1.join()

isc

Thread Creation

C: t1=create()

S: t1.start()

=⇒

C: t1=create()

S: t1.start()

isc

Figure 8. Implications for constructing the partial order isc−→

the execution trace τSC in seq. If it selects a store operation,
Lines 15 through 19 add edges to the isc−→ relation between
the current store operation a and all other store operations
to the same location in the actions set. These edges may
cause other inference rules to add additional edges to the
isc−→ relation. Line 21 then recursively calls the SEARCHSC

procedure to reorder the remainder of the trace. If at any point,
the isc−→ relation contains a cycle the search backtracks.

If the isc−→ relation does not uniquely specify the next
operation to add to seq, the algorithm uses backtracking-

Initially x=y=z=0.
T1:

1: z.store(1, relaxed);
2: x.store(1, relaxed);
3: y.store(1, relaxed);
4: r1=z.load(relaxed);//Reads from Line 1

T2:
5: z.store(2, relaxed);
6: x.store(2, relaxed);
7: r2=x.load(relaxed); //Reads from Line 2

T3:
8: z.store(2, relaxed);
9: y.store(2, relaxed);

10: r3=y.load(relaxed); //Reads from Line 3

Figure 9. Example of a trace where search is required

based search to explore all possibilities for the next operation
using the loop in Line 11.3

The partial order isc−→ can be implemented using clock
vectors for efficiency [34]. Our implementation takes this
approach. A clock vector is a map from threads to the
operation identifiers. More precisely, if the clock vector for
operation o contains the operation identifier ot for thread t,
then ot appears before o in the isc−→ relation. We prove the
correctness of the algorithm in Appendix A.

5.2 Discussion
The constructions used for complexity proofs in [24, 25] are
somewhat contrived in that they blindly perform stores to the
same memory location without any mechanism to prevent
conflicts that cause backtracking. Real-world concurrent data
structures often either: (1) use RMW operations to update a
single location thus implicitly ordering the RMW operations
or (2) use another mechanism typically involving a load to
make sure that no other thread will perform a conflicting store
and thereby establish an order for the stores. Thus our rules
for generating the isc−→ relation were able to infer a strong
enough ordering to avoid backtracking for our benchmark
concurrent data structures.

6. Simplifying Non-SC Traces
In previous sections, we have described an algorithm for
checking whether a trace is SC and proved its correctness.
However, in addition to checking whether a trace is SC,
it can be helpful to present a non-SC trace as mostly SC
and then mark the parts of the trace that violate SC. In our
experience, understanding a trace with a handful of reads
that violate SC is far easier than understanding a trace where
loads appear to read from almost arbitrary stores (e.g. the raw
traces produced by CDSChecker) because simplified traces
can save developers from jumping all over the traces while
reasoning about the cause of the SC violations.

3 Note that the algorithm can be further optimized to prune from the search
(1) all loads and (2) stores that are ordered before all other stores to the same
location.
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1: procedure CHECKSC
2: isc := {}
3: seq := {}
4: actions := Ops
5: return SEARCHSC(isc, seq, actions)
6: end procedure
1: function SEARCHSC(isc, seq, actions)
2: if actions = {} then
3: Output(seq)
4: return true
5: end if
6: isc=UPDATESC(isc)
7: if isc = NULL then
8: return false
9: end if

10: searchset = {a′ ∈ actions | ¬∃a′′ ∈ actions.〈a′′, a′〉 ∈ isc}
11: for all a ∈ searchset do
12: seq’ := seq ; a
13: isc’ := isc
14: if a ∈ StoreOp then
15: for all a′′ ∈ actions ∩ StoreOp do
16: if address(a) = address(a′′) then
17: isc’ := isc’ ∪ {〈a, a′′〉}
18: end if
19: end for
20: end if
21: if SEARCHSC(isc’,seq’,actions \{a}) then
22: return true
23: end if
24: end for
25: return false
26: end function
1: function UPDATESC(isc)
2: while ∃ a rule application r that adds a new edge e to isc do
3: if adding e to isc does not create a cycle then
4: isc := isc ∪ {e}
5: else
6: return NULL
7: end if
8: end while
9: return isc

10: end function

Figure 10. Algorithm for checking whether a trace is SC

Recall the example trace and the isc−→ graph from Figure 6
and Figure 7. Although there exists a cycle in the isc−→
partial order, if we reorder the original trace by dropping
the isc−→ edge from Operation 5 to Operation 4, we produce
an execution trace in which only Operation 5 reads from
an old value (showed in Figure 11). We can see that such a
reordered trace can be easier to understand than the original
trace with two messy violations (Operation 2 and 5). More
importantly, by simplifying the trace, we can see that it now
blames only one SC violation (Operation 5) which is the
correct SC violation in the trace.

6.1 Approach to Reordering Trace
Our first naïve approach to this problem was to modify the
algorithm to allow the isc−→ relation to contain cycles and then
topologically sort the isc−→ relation into strongly connected
components (SCCs). We initially attempted this approach

# Thread Operation Order Addr Value rf
1 1 atomic store relaxed 0x2080 0x1
3 1 atomic store relaxed 0x6020 0
4 1 atomic store relaxed 0x6028 0x1
7 1 atomic store relaxed 0x5c08 0x6020
2 2 atomic load relaxed 0x5c08 0x6020 7
5 2 atomic load relaxed 0x5c08 0 0
6 2 atomic load relaxed 0x2078 0 0

Figure 11. Reordered trace to be mostly SC.

and it has two problems: (1) the inference rules typically
expand the cycles in the isc−→ relation to cover operations
completely unrelated to the actual SC violation and (2) a
cyclic isc−→ relation does not provide any ordering between
operations in the same SCC leading to traces that arbitrarily
(and confusingly) order operations.

6.2 Forcing isc to be Acyclic
Our next refinement was to modify the basic algorithm from
Figure 10 to continue building the isc−→ relation even after
discovering that the isc−→ relation contains cycles if there are
no more backtracking points. However, the modified version
never actually adds an edge to the isc−→ relation to realize the
cycle. The algorithm then prints out the execution sequence
seq and flags any loads that read from a store other than the
last prior store to the given location.

This approach generates a mostly SC execution trace and
makes explicit the few violations of SC that are present. We
found these traces were easier to understand because we
could think of most of the trace as SC (i.e., most loads read
from the last store to the same location, and loads that violate
this property were clearly marked) and only focus on the few
operations that actually violate SC.

6.3 Preserving sc and hb
Although this refinement significantly improves the output, it
can still be confusing. Consider the store buffering example
code shown in Figure 12. In any SC execution, one of the
stores in either Line 3 or Line 1 must execute first, and the
load performed by the other thread must see the value of
that store. In the execution shown, both loads read from the
initial values, and therefore it cannot be represented as an SC
execution and the isc relation will contain a cycle.

If the algorithm breaks this cycle by dropping the isc
edge from the sequentially consistent load in Line 2 to the
sequentially consistent store in Line 3, it will generate the
reordered trace in Figure 13.

If a developer looks at this trace with the goal of making
the code only have SC executions, it can be very confusing
because it shows the sequentially consistent load from y in
Line 2 returning an old value. However, the load and store to
y already have the memory_order_seq_cst memory order
and the initial store to y happens before the load and the store.
So it is not possible to strengthen the operations on y and
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Initially x=y=0.
T1:

1: x.store(1, relaxed);
2: r1=y.load(seq_cst);//Reads from initial value.

T2:
3: y.store(1, seq_cst);
4: r2=x.load(relaxed);//Reads from initial value.

Figure 12. Code for confusing SC example (store buffering)

# Thread Operation Order Addr Value rf
3 2 atomic store seqcst 0x60a8 1
4 2 atomic load relaxed 0x60a0 0 init
1 1 atomic store relaxed 0x60a0 1
2 1 atomic load5 seqcst 0x60a8 0 init

Figure 13. A reordered trace for the confusing SC example

Initially x=y=0.
T1:

1: r1=x.fetch_add(2, relaxed);//Reads from Line 4
2: y.store(1, relaxed);

T2:
3: r2=y.load(relaxed);//Reads from Line 2
4: r3=x.fetch_add(2, relaxed);//Reads from Line 6

T3:
5: r4=x.load(acquire);//Reads from Line 1

T4:
6: x.store(1, release);

Figure 14. Code for confusing hb example

# Thread Operation Order Addr Value rf
1 1 atomic rmw5 relaxed 0x1060 3 4
6 3 atomic load acquire 0x1060 5 1
2 1 atomic store relaxed 0x1064 1
3 2 atomic load relaxed 0x1064 1 2
5 4 atomic store release 0x1060 1
4 2 atomic rmw relaxed 0x1060 1 5

Figure 15. A reordered trace for the confusing hb example

indeed the problematic behavior arises due to the operations
on the variable x.

Figure 14 presents an example involving happens before
that yields a confusing trace. The modification orders for the
add operations on x and the store and load operations on
y in Threads 1 and 2 are not compatible. The SC analysis
processes the operations on y first and adds a corresponding
isc edge. This prevents adding the isc edge to x. The end
result is the generation of the trace shown in Figure 15 that
does not respect happens-before — the load acquire appears
before the corresponding store release.

The problems in the two examples arise because the isc
relation does not necessarily contain all of the sc or hb edges
from the original execution. A key question is whether a
reordered SC trace will respect both the original sc and hb
edges. Since hb is a subset of the transitive closure of rf and

5 The highlighted row indicates that the load operation reads from a store
that was not the last store operation in the trace to that location.

sb (plus thread joins and mutexes), a successfully reordered
SC trace will respect hb.

The sc order presents a challenge — a reordered trace may
not always respect the sc order as non-sequentially consistent
loads and stores can interact with sequentially consistent
operations. However, since sc is only indirectly observable
via the rf behavior, there is no need for isc to be strictly
consistent with sc for SC traces because an alternative sc
order may produce a reordered trace that is consistent with
the observed rf behaviors. However, as shown in Figure 12,
if isc is cyclic we do not want to produce a trace where
SC operations are falsely blamed for the non-SC behavior.
Thus our approach is to allow traces that can be successfully
reordered to violate the sc relation. When we discover that an
execution is not SC, we require the isc relation for non-SC
traces to be consistent with both the hb and sc edges.

7. Inferring Memory Order Parameters
Inferring the order parameters to obtain SC behav-
iors is essentially a search problem. In the absence
of consume operations, memory order parameters for
atomic operations can be only one of the follow-
ing: memory_order_relaxed, memory_order_release,
memory_order_acquire, memory_order_acq_rel and
memory_order_seq_cst. A naïve approach that enumer-
ates all possible memory order parameters is guaranteed to
discover all the possible inferences of parameters that ensure
SC behaviors for a specific test case. However, this approach
leads to an impractically large search space. Fortunately, there
exist heuristics for strengthening parameters for the purpose
of only admitting SC behaviors. These heuristics may not
always achieve the optimal memory order parameters, but
they are guaranteed to repair any SC violation. AutoMO
uses a search-based approach combined with heuristics to fix
the non-SC behaviors to reduce the search space. Figure 16
shows the core search algorithm.

AutoMO iteratively infers parameters test case by test
case. It takes an optional input of parameter assignments. If
no input is provided, AutoMO begins the inference process
by setting all order parameters to memory_order_relaxed
(Line 4). For each test case, AutoMO maintains a set of pos-
sible inferences initialized by the input parameter assign-
ments (Line 7), and for each potential candidate, it uses
CDSChecker to explore traces and applies the SC analy-
sis algorithm to check whether there exists any non-SC
trace. If so, AutoMO calls the function StrengthenParam
(Line 13) to discover potential repairs and insert them in the
candidates set. It is possible for a given repair to be made
redundant. Thus, AutoMO calls the WeakenOrderParams
routine (Line 15) to discover potential weaker results. We
discuss later how AutoMO strengthens order parameters
(Line 24) in Section 7.1, and the WeakenOrderParams rou-
tine in Section 7.3. Note that AutoMO uses the temporary
output as the input for the next test case (Line 18). After
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exploring all test cases, AutoMO returns the final inference
results (Line 20).

1: function INFERPARAMS(testcases, initialParams)
2: inputParams := initialParams
3: if inputParams is empty then
4: inputParams := the weakest parameters
5: end if
6: for all test case t in testcases do
7: candidates := inputParams
8: results := {}
9: while candidates is not empty do

10: Candidate c := pop from candidates
11: run CDSChecker with c and check SC
12: if ∃ SC violation v then
13: STRENGTHENPARAM(v, c, candidates)
14: else
15: results += WEAKENORDERPARAMS(c)
16: end if
17: end while
18: inputParams := results
19: end for
20: return results
21: end function
22: procedure STRENGTHENPARAM(v, c, candidates)
23: while ∃ a fix f for violation v do
24: possible_repairs := strengthen c with fix f
25: candidates += possible_repairs
26: end while
27: end procedure

Figure 16. Algorithm for inferring order parameters

The challenge then becomes the following: given an SC
violation in a reordered trace, how can we discover potential
repairs that eliminate the violation? For example, with the
reordered trace in Figure 11, we can prevent the SC violation
in Operation 5 by specifying memory_order_release in
Line 19 and memory_order_acquire in Line 25 of the
SPSC example shown in Figure 5. Thus, when the load of
the next field reads its value from the corresponding store
of the next field, it establishes a happens-before relationship
(release/acquire synchronization), eliminating the possibility
of Operation 5 reading from an uninitialized value. We next
discuss how AutoMO strengthen parameters.

7.1 Inference Rules
As discussed above, when AutoMO discovers a non-SC trace
for a test case, the goal of the inference algorithm is to figure
out a weakest strengthening to the memory order parameters
that will disallow those traces. A weakest strengthening for a
test case is a strengthening of parameters that disallows the
non-SC behavior but will admit some non-SC behavior if any
parameter instance of that strengthening is weakened. Note
that since the parameter assignments are finite, a weakest
strengthening must exist but is not necessarily unique.

This problem can be viewed as detecting and eliminating
the cycles in isc−→. The first step is to discover which atomic
operations are responsible for cycles in isc−→. In Section 6,
we show that our analysis can reorder a non-SC trace to
preserve sc and hb while it indicates where a bad reads-from
edge happens, and hence we can use the simplified trace to
discover the non-SC violations in the original trace.

Figure 17 shows the two universal patterns that cover all
non-SC behavior in reordered traces. The Stale Read Pattern
covers the case in which a load takes its value from an old
store rather than the most recent store in the reordered trace.
The Future Read Pattern covers the case in which a load takes
its value from a store that is ordered after the load.

A: v.store(0)

B: v.store(1)

isc

C: v.load()

rf

isc

A: v.load()

B: v.store(1)

isc rf

Stale Read Pattern Future Read Pattern

Figure 17. Cycle patterns for non-SC behaviors

Fortunately, for either pattern of SC violation, two repair
approaches exist: 1) eliminating the reads-from edge; or 2)
strengthening memory order parameters to reorder the trace
in a new way.

Figure 18 presents a set of rules that we can use to
strengthen memory order parameters for memory accesses,
and Appendix B presents the rules to support fences. Each
row presents a condition on the left that if true ensures the
property on the right holds. We denote mo as the modification-
order relation, hb as the happens-before relation, sc as
the total order of operations with memory_order_seq_cst
order, rf as the reads-from relation, and isc as the reordered
trace order. For example, Rule 1 means that if: 1) operation
A is modification order before operation B, and operation B
happens before C; or 2) operation A happens before or is sc
before operation B, and operation B is sc before operation
C, then it ensures that operation C is not allowed to read
from operation A. Note that due to partial order reduction in
CDSChecker, the modification order relation is a subset of
the union of the happens-before and sc relation.

We present the detailed reasons why each rule holds. We
derive Rule 1 from §1.10p18 [3] (write-read coherence)
and §29.3p3 [3] (SC constraint on loads), Rule 2 from
§1.10p15 [3] (write-write coherence) and §29.3p3 [3] (SC
constraint on mo), and Rule 3 from §1.10p17 [3] (read-write
coherence) and §29.3p3 [3] (SC constraint on loads). For
Rule 4, the isc edge specifically means the order in the
reordered trace. As discussed in Section 6, if operation A is
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(1) Eliminate Reads-from I

A: v.store(0)

B: v.store(1)

mo||hb/sc

C: v.load()

hb||sc
=⇒

A: v.store(0)

C: v.load()

  ✘rf

(2) Impose Modification Order

A: v.store(0)

B: v.store(1)

hb/sc =⇒

A: v.store(0)

B: v.store(1)

mo

(3) Eliminate Reads-from II

A: v.load()

B: v.store(1)

hb/sc =⇒

A: v.load()

B: v.store(1)

  ✘rf

(4) Flip isc Order (Preserves hb & sc)

A: operation()

B: operation()

isc hb/sc =⇒

A: operation()

B: operation()

isc

Figure 18. Inference rules for non-SC traces

ordered before B in the reordered trace, and we can enforce
either hb or sc edge from B to A, AutoMO will flip the order
ofA andB since the reordered trace is guaranteed to preserve
hb and sc.

AutoMO searches on the rule applications to generate
memory order assignments that repair the SC violation. We
next explore some cases of how AutoMO can apply these
rules to iteratively eliminate the SC violations for the two
patterns shown in Figure 17.
Stale Read Pattern: For this pattern, we have a load operation
C that reads from the store operation A, and there exists at
least one store operation B that is between A and C in the
reordered trace. Note that A, B, and C are operations on
the same memory location. Thus, we can apply Rule 1 by
imposing mo from A to B and imposing either hb or sc
from B to C such that C is no longer allowed to read from
A. If A is not modification order before B, we then apply
Rule 2, which leads to imposing either hb or sc from A to B.
Therefore, we can end up imposing a combination of either
hb or sc from A to B and from B to C. If between A and C
there exist other store operations (B′) that are on the same
memory location as B, AutoMO applies the same rule on
them and potentially generate more possible repairs.
Future Read Pattern: For this pattern, we have a load opera-
tion A and a store operation B that is ordered after A in the

reordered trace, and A reads from B. AutoMO has two ways
to repair this violation: 1) eliminate the reads-from edge by
applying Rule 3, meaning that it imposes either hb or sc edge
from A to B if possible; 2) flip the order of A and B in the
reordered trace by applying Rule 4 such that the reordered
trace does not blame this exact same violation again. By flip-
ping the order of A and B, it can either repair the violation
or expose another new violation.

These rules boil down to strengthening specific isc edges
to either hb or sc. Without considering C/C++ fences, im-
posing sc requires both operations to have stronger param-
eters, i.e., memory_order_seq_cst, than imposing hb. Im-
posing hb between Operations A and B requires that there
exist a path in the graph of reads-from and sequence-before
edges from A to B. We then either 1) strengthen according
to the definition of release sequence (§1.10p7 [3]) if possible;
or 2) strengthen store and load operations along this path
to memory_order_release and memory_order_acquire.
Whenever not necessary, AutoMO does not impose the
stronger sc order between operations.

7.1.1 Correctness of Repair Approaches
Although our repair approach is limited to the test cases
provided by the user, it guarantees that the executions of the
given test cases are SC. Each time AutoMO detects an SC
violation, the violation is visible in the trace as one of the two
patterns shown in Figure 17.

For the Stale Read pattern, we have the blamed load
(operation C), the store it reads from (operation A), and
the last preceding store (operation B) to the same memory
location. According to the C/C++11 memory model, the
following two conditions cannot simultaneously hold: 1) A
is modification order before B; and 2) B is sc before C or
happens before C. If the first condition is false, the hb and
sc relation between A and B must not have been established
(since the modification order relation must be consistent with
the hb and sc relation), and thus AutoMO will be able to
apply Rule 2 to enforce the hb or sc relation between A and
B. If the second condition is false, AutoMO will be able to
apply Rule 1 to enforce hb or sc between B and C.

For the Future Read pattern, we have the blamed load (op-
eration A) and the future store (operation B). The semantics
of the C/C++11 memory model requires that A does not hap-
pen before B and that A is not sc before B. Thus, AutoMO
will be able to apply Rule 3 to enforce hb or sc between A
and B to eliminate that reads-from edge. As the reordered
trace preserves the hb and sc relation, B does not happen
before A and is not sc before A in such a trace. Therefore,
AutoMO will also be able to apply Rule 4 to enforce hb or sc
between A and B.

Since the reordered trace is consistent with both hb and
sc, the repair rules can always be applied to the memory
operations that have been blamed for the SC violation (and
that after the repair actions are fully performed that the
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same operations cannot be repetitively blamed for the SC
violation).

As a result, AutoMO’s repair actions will always
strengthen some memory order parameter in each rule ap-
plication. Since there are a finite number of memory or-
der strengthenings before all memory parameters become
memory_order_seq_cst (and the trace becomes trivially
SC), this process must terminate. Since the algorithm runs on
all provided test cases incrementally, it provides SC for all
provided test cases.

7.1.2 Different Parameter Assignments
As shown above, there can exist different parameter assign-
ments that provide SC for the given test cases. AutoMO keeps
track of the parameter assignments that can be generated by
applying the inference rules, and outputs those that are not
strictly stronger than others. The run-time effects of different
parameter choices may differ from platform to platform and
may even depend on the choice of compiler. For example,
under x86, operations naturally have the release/acquire se-
mantics, so a relaxed load has minimal advantage over an
acquire load.

7.2 Normal Memory Accesses
We use CDSChecker as the underlying model checker to
check for non-SC traces and it differentiates between nor-
mal memory access and atomic memory access. A key as-
pect of assigning memory orders to atomics is to ensure
that normal memory accesses do not race. As we do not
require any compiler frontend that could be used to in-
strument these accesses, we need the developer to man-
ually instrument the accesses. We solve the instrumenta-
tion problem as follows. Developers expose non-atomic
accesses to our inference tool by using special wrapper
functions, which are similar to C/C++11 atomic opera-
tions with a special parameter memory_order_normal. For
example, the statement “x = 1” would be rewritten as
“x.store(1, memory_order_normal)”. Our tool then en-
sures that we establish synchronization between conflicting
normal memory accesses. This instrumentation could concep-
tually be performed automatically at the cost of requiring the
developer to use a specific compiler frontend.

7.3 Weakening Memory Order Parameters
Although iteratively applying the inference rules to fix SC
violations eventually infers order parameters that guarantee
SC for the corresponding test case, we may end up inferring
overly strong parameters. This can happen if a later repair
attempt makes the initial repair unnecessary. We solve this
issue by introducing a routine to weaken order parameters.

More specifically, after inferring a preliminary result for
the test case, we explore all possible parameter assignments
that are strictly weaker than that result while no weaker
than the corresponding input parameter assignment for that
test case. If there exist any weaker parameter assignments

that are SC, we weaken the preliminary result. Note that
the complexity of the weakening process for a test case is
independent of the total number of parameters to be inferred
but only depends on the strengthened parameters, whose
number in our experience is small.

7.4 Allowing Non-SC Behaviors
While most data structures are internally SC, in some cases it
can be desirable to allow a few controlled SC violations. In
our experience, a few data structures have SC violations that
do not affect correctness because the data structures detect SC
violations and retry the operation. Such code snippets often
occur in spin loops that perform a CAS operation on exit. In
this case, we only need to check that the other operations
have SC behaviors to ensure correctness.

Therefore, we provide a simple annotation framework in
AutoMO that users can use to specify the region of code
that allows SC violations. We then extend the SC analysis
algorithm such that it does not infer isc−→ edges for load opera-
tions that are allowed to violate SC, and extend the parameter
inference algorithm such that it does not repair allowed SC
violations in the reordered trace. However, if those loads
can be strengthened to prevent other SC violations, namely
introducing cycles elsewhere, AutoMO may strengthen the
parameters of such loads to eliminate cycles. This mecha-
nism provides the means for more advanced users to provide
more information to obtain further optimizations. Novices
will likely not use this functionality and will simply obtain
an SC implementation.

7.5 Implementation of the Inference Framework
As discussed above, AutoMO requires a model checker
that can exhaustively enumerate executions allowed by the
C/C++11 memory model and output a trace with the reads-
from mapping and the sc and hb relations. We implemented
AutoMO as a backend analysis of CDSChecker. We extended
the memory order parameters to support special wildcard pa-
rameters to indicate which parameters AutoMO should infer.
To use AutoMO, instead of using a concrete memory order
parameter, a developer writes a C/C++ atomic operations with
a special wildcard memory order. For example, a load opera-
tion, which requires one actual memory order parameter, can
be written as “x.load(wildcard(1))”, to indicate the load
operation uses the first wildcard parameter. A given wildcard
parameter should only be used for one atomic operation, e.g.,
the next operation would use wildcard(2). After executing
given test cases, AutoMO outputs a set of assignments to
the wildcards that ensure all executions are equivalent to SC.
Developers can then run a script that automatically replaces
the wildcards with the corresponding inferred parameters.

8. Evaluation
In this evaluation, we focus on three aspects of AutoMO:
1) how efficient is our algorithm? and 2) how do the results
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Benchmark # Wildcard Inference time (sec)
Chase-Lev 40 536.322
SPSC 7 0.015
Barrier 5 0.019
Dekker 12 396.756
MCS lock 9 4.056
MPMC 8 0.143
M&S queue 20 4.808
Linux RW lock 16 24.982
Seqlock 8 0.095
Concurrent hashtable 13 0.016
Treiber stack 8 0.018

Figure 19. Benchmark results of inference algorithm

compare to the manual versions of the data structures? and 3)
as a component of AutoMO, how efficient is the SC analysis
algorithm (since it can also be useful for debugging as a
separate part)?

We have implemented our algorithm as an analysis plugin
for the CDSChecker model checker, and ran our experiments
on an Ubuntu 14.04 Linux machine with an Intel Core i7
3770 processor.

To test our algorithm on real-world code, we used CD-
SChecker’s benchmark suite along with three additional
benchmarks. The benchmark suite includes six data struc-
ture implementations—a synchronization barrier, a mutual
exclusion algorithm, a contention-free lock, and two different
types of concurrent queues, and a work stealing deque [28].
Additionally, the benchmark suite contains a port of the Linux
kernel’s reader-writer spinlock from its architecture-specific
assembly implementation and the Michael and Scott queue
from its original C and MIPS source code [38]. We have
added three additional benchmarks — a seqlock, a concurrent
hashtable, and the Treiber stack.

8.1 Performance of Inference Algorithm
Figure 19 presents the results of the inference algorithm. The
second column shows the number of operations that required
inference, and the third column shows the time taken to finish
inference for each benchmark in seconds. We can see that 8
out of our 11 benchmarks finish within 5 seconds, and the
benchmark that takes the longest time (Chase-Lev Deque)
finishes in 536.322 seconds (less than 9 minutes). These
results show that AutoMO can infer memory order parameters
for real-world data structures in a reasonable amount of time.

8.2 Inference Results Compared to Manual Versions
In this section, we briefly describe each data structure, our
test clients for both the inference algorithm and the SC
analysis, and the inference results. Due to the absence of
formal techniques that can prove that the data structures
only exhibit SC behaviors under any execution, we manually
review the correctness of the inference results.

Chase-Lev Deque: This implementation was taken from
a peer-reviewed, published C11 adaptation of the Chase-
Lev deque [28]. It utilizes relaxed operations (for efficiency)

while utilizing fences and release/acquire synchronization
to establish order. While the paper proves that an ARM
implementation is correct, it does not contain a correctness
proof for its C11 implementation. A bug was discovered in the
published version in the deque resize implementation [40].

This benchmark has three API methods: push, take and
steal, and we use 6 test clients to infer the parameters as
follows: 1) there is a main thread with one push method call
and a stealing thread with one steal method call; 2) the
deque is initialized with three items, and a main thread (with
one take method call) and a stealing thread (with two steal
method calls) race for the elements; 3) the deque is initialized
with three items, and a main thread (with one take method
call) and two stealing threads (each with one steal method
call) race for the elements; 4) a main thread has three push
and two take method calls, and a stealing thread with one
steal method call; 5) the deque is initialized with one item,
and a main thread with one take method call and a stealing
thread with one steal method call race for it; and 6) the
deque is initialized with one element, and a main thread has
one take, push and another take method calls along with
two stealing threads that each have one steal method call.
We also use the fourth test client of the above six to test the
SC analysis for both the original buggy version and a bug
fixed version of the Chase-Lev Deque.

We ran AutoMO on these test clients. Upon manual
review, the inferred result appears to be correct. The
inference result requires three stronger parameters, one
load to be memory_order_acquire and two stores
to be memory_order_release. Our result also infers
two weaker parameters as memory_order_relaxed,
one is a load with memory_order_acquire and the
other is a CAS with memory_order_seq_cst in the
original paper. The interesting difference is that we
inferred that the load operation right before a fence
(memory_order_seq_cst) should be memory_order_
relaxed rather than memory_order_acquire. The
stronger memory_order_acquire parameter in [28] is
redundant because the fence already generates the necessary
synchronization. We contacted the paper’s authors and they
confirmed that the stronger parameter is not necessary and
that they believe AutoMO’s version to be correct.

This shows that AutoMO can be useful since in less than 9
minutes it can infer suitable assignments for a data structure
whose porting effort justified a research paper.

SPSC queue: The single-producer, single-consumer
queue allows concurrent access by one reader and one
writer [7]. In the CDSChecker’s benchmark suite, there are
two versions, a buggy version and a bug-fix version. Both
implementations utilize methods signal and wait to com-
municate between enqueuers and dequeuers, and the buggy
version can potentially miss a signal. We use a test client with
two threads—one to enqueue a single value and the other to
dequeue it and verify the value.
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We ran AutoMO on the buggy version, and AutoMO
inferred an assignment in which four operations were
memory_order_seq_cst. The bug-fix version fixed the bug
by changing a plain load with memory_order_relaxed to
a fetch_add operation with memory_order_seq_cst, and
it also has four operations with memory_order_seq_cst.
We reviewed the buggy version and found that our infer-
ence result is the optimal way to repair the bug without
changing the operations because the stronger parameters
(memory_order_seq_cst) are necessary to eliminate the
possibility of missing a signal.

Barrier: Barrier implements a synchronizing barrier [1],
where a given set of threads may wait on the barrier, only
continuing when all threads have reached the barrier. The
barrier should synchronize such that no memory operation
after the barrier may race with a memory operation placed
before the barrier. The test client utilizes two threads with a
non-atomic shared memory operation executed on either side
of the barrier, one in each thread.

This implementation utilizes memory_order_seq_cst
order for 5 operations. However, our results show that we
only need one operation to be memory_order_release, one
operation to be memory_order_acquire, and one operation
to be memory_order_acq_rel. After reviewing the code,
we found that the original manual choice of order parameters
were overly strong and our inference result is sufficient to
ensure the correctness property that the invocation of each
wait method happens before the response of any other wait
method. The reason is as follow:

The last thread synchronizes with all previous threads
because all threads perform a fetch_add on the variable
nwait (the number of currently waiting threads) with the
parameter memory_order_acq_rel. The last thread incre-
ments the variable step (the number of barrier synchro-
nizations completed so far) by performing a fetch_add
(memory_order_release) operation, and then the firstN−
1 threads leave the spin loop by loading the updated value
from step (memory_order_acquire). Therefore, the first
N − 1 threads synchronize with the last thread (and transi-
tively all other threads).

Dekker critical section: This implements a critical sec-
tion using Dekker’s algorithm [4], where a pair of non-atomic
data accesses are protected from concurrent data access. This
benchmark utilizes sequentially consistent, release, and ac-
quire fences to establish ordering and synchronization.

For the parameter inference, we used two clients: 1) two
identical threads that update a normal memory location once;
and 2) one thread updates a normal memory location once,
while the other thread updates that location twice. We also
used the first client to test the SC analysis. AutoMO infers the
exact same result as the manual version of this benchmark.

MCS lock: This contention-free lock implements the
Mellor-Crummey and Scott algorithm (known as an MCS
lock) [5, 36]. The lock queues waiting threads in a linked-list

fashion. In the test client, we use two threads, each of which
alternates between reading and writing the same variable,
releasing the lock in between operations. We use a test driver
with two threads, each of which alternates between reading
and writing the same variable, releasing the lock in between
operations.

AutoMO infers two strictly weaker parameter assignments
than the original manually-annotated benchmark. There are
two operations with memory_order_acquire in the origi-
nal parameter assignment, while our two inference results
only require one of the two parameters to be memory_order_
acquire. After careful review, we found both of our param-
eter assignments are correct, and the reason is as follows:

When a thread, followed by waiting threads, releases
the lock, it sets the gate field of the next waiting node
to let it acquire the lock. In order for that waiting thread
to see the the update-to-date value of the gate field, that
lock method must synchronize with the unlock method.
Our review discovered that in the unlock method, either
of the load of the m_tail variable or the load of the next
field can be assigned the memory_order_acquire order to
establish the synchronization. As a result, AutoMO infers
two parameter assignments—the manual version was overly
strong and AutoMO infers better results.

MPMC queue: This multiple-producer, multiple-
consumer queue allows concurrent access by multiple readers
and writers [6]. Note that the original implementation admits
non-SC traces due to retries. We use a test client that runs
two identical threads, each of which first enqueues an item
and then dequeues an item.

This benchmark has eight memory operations, and Au-
toMO infers stronger parameters (memory_order_seq_cst)
for four of them. Although our inferred parameters are not
ideal in this case, AutoMO can still help users who lack inti-
mate knowledge of the C/C++ memory model because com-
pared to the naïve approach of specifying memory_order_
seq_cst parameter for all operations, our inference result
infers four weaker parameters.

M&S queue: This benchmark implements the Michael
and Scott lock-free queue [38] for the C/C++ memory
model. We used the following 3 test clients for this bench-
mark: 1) two threads each with one enqueue method call
and one thread with one dequeue method call; 2) one
thread with one enqueue method call and two threads each
with one dequeue method call; and 3) one thread has one
enqueue method call while the other thread calls the meth-
ods enqueue, dequeue, and enqueue in order. The third test
client covers the scenario where a node is dequeued, recycled,
and enqueued back to the queue again. We used the first one
to evaluate the SC analysis.

We ran AutoMO with the above three test clients, and it
infers the same parameters as the manual version except that
two operations have stronger parameters, which are memory_
order_acquire and memory_order_release rather than
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the original memory_order_relaxed. After careful review,
we found that both are bugs in the original benchmark, and
our result repaired them by imposing the stronger parameters.
We briefly explain the two bugs as follows.

One bug exists in the dequeue method, in which synchro-
nization is not established for the load of the tail so that the
load of the next field of the head can read an out-of-date
value (e.g. NULL), and that can potentially return arbitrary
values. Another bug is in the enqueue method, where an
initialized node is inserted into the queue without proper
synchronization on the next field (pointing to the next node).

Linux reader-writer lock: A reader-writer lock allows
either multiple readers or a single writer to hold the lock at
a given time—but no reader can share the lock with a writer.
The test client for the parameter inference has two threads
that use lock, trylock and unlock to protect the read/write
of normal memory accesses. Specifically, the test client for
the SC analysis has two threads where one reads the variable
under a reader lock, and the other writes to the variable under
the protection of a writer lock. AutoMO infers the exact same
result as the manual version for this benchmark.

Seqlock: Seqlocks are used in Linux to avoid writer
starvation. We implemented Seqlock with C/C++11 atomics
and utilized relaxed operations when possible. We run two
writing threads and one reading thread.

We then ran the inference algorithm on Seqlock and
obtained two possible inference results, and one has the exact
same parameters as the original. The other one has just one
different acquire load operation. After careful review, we
found that both results are correct for the following reason.
In the write method, it spins by loading from the seq
variable (the global sequence number) and tries to increment
it with a CAS operation if the value of the seq variable is
an even number. We can use either operation to establish
synchronization between write methods, and the manual
version is just one of the two options. However, AutoMO
provides both options.

Concurrent hashtable: We ported a concurrent hashtable
implemented in Java by Doug Lea to C/C++ [29]. We only
considered the fundamental primitive API methods put and
get. We use two test clients for the parameter inference: 1)
two threads update two different keys and then look up the
keys updated in another thread; and 2) same as the first test
client except that the updated keys have been initialized. We
use the first test client to test the SC analysis.

Initially, AutoMO infers stronger parameters than needed
for this benchmark. The result requires a stronger pa-
rameter (memory_order_seq_cst), while it only needs
memory_order_acquire to establish proper synchroniza-
tion to ensure it reads the entire list of entries for each bucket.
By reviewing the code, we found that even if the load of the
first element of the entry list reads an old value, it does not
affect correctness since it is fixed by a later clean-up routine.

We then added an annotation to allow this operation to have
an SC violation.

By adding this information, AutoMO can infer the weak-
est order parameters that guarantee correctness. It infers
memory_order_seq_cst for the load and store of the
value variable, ensuring that the clients observe SC behav-
iors when there are two threads that each update one key and
look up for the other key. It infers the acquire semantics for
the load of the first element of the list, ensuring that it obtains
an intact list. This shows that AutoMO can be useful for data
structures that allow non-SC behaviors if users specify which
SC violations are tolerable.

Treiber stack: The Treiber stack [47] allows concurrent
push/pop operations in a non-blocking fashion. We imple-
mented it in the C/C++11 memory model and tested it with
three threads, two of which push an item and one of which
pops an item. AutoMO infers the exact same result as the
manual version of this benchmark.

8.3 Writing Test Clients
To effectively use AutoMO, developers need to provide test
cases that fully exercise the data structure, and here we
discuss our insights for writing these test cases. In general
we started with clients that generate a variety of small normal
usage scenarios. We then examine the data structure to
determine potential corner cases (e.g., for a deque these might
include resizes, operations on empty deques, and operations
that race for the last element) and write test cases to exercise
these behaviors. Although writing test cases is not trivial,
developers often have to at least consider these cases in the
design of the original SC data structure and thus have a good
intuition for potential corner cases.

8.4 Performance of SC Analysis
As discussed above, the SC analysis alone can be useful for
helping developers understand traces. In order to evaluate
the performance of our SC analysis, we ran the SC checking
algorithm alone in AutoMO in this section.

8.4.1 Results
Figure 20 presents the results. For each benchmark, we record
the total number of executions whose behavior was consistent
with the memory model (# Feasible), the number of those
traces that were not SC, the time taken to run the SC analysis
for all feasible traces, the total model checking time, and the
average trace length. The key points are that the time taken
to check whether traces are SC is a small fraction of the total
model checking time for all of our benchmarks.

Although checking whether traces are allowed under the
SC memory model is NP-complete, in practice the algorithm
ran very fast. In fact the SC analysis never backtracked on
any of our benchmarks or our set of litmus tests. The only
code for which we have observed backtracking is a specific
test case that implements the variable setting component used
in a proof that the problem is NP-complete. It appears that
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Benchmark # Feasible # Non-SC SC Analysis Total Avg. Trace SC Analysis time
time (s) time (s) Length per trace (s)

Chase-Lev (buggy) 65 24 .0037 .11 68 5.7× 10−5

Chase-Lev (correct) 49 1 .0017 .04 75 3.5× 10−5

SPSC (buggy) 10 2 .0006 .01 26 5.7× 10−5

SPSC (correct) 15 0 .0008 .01 29 5.2× 10−5

Barrier 7 0 .0004 .01 23 5.8× 10−5

Dekker 2,313 0 .0756 8.27 52 3.3× 10−5

MCS lock 12,609 0 .5767 4.08 65 4.6× 10−5

MPMC queue 11,306 6,764 1.0497 9.09 49 9.3× 10−5

M&S queue 114 0 .0051 .06 55 4.4× 10−5

Linux RW lock 1,348 0 .0325 11.84 30 2.4× 10−5

Seqlock 9,124 0 .2669 2.91 38 2.9× 10−5

Concurrent hashtable 66 11 .0051 0.02 89 7.7× 10−5

Treiber stack 29 0 .0013 0.02 54 4.5× 10−5

Figure 20. Benchmark results. Note that all of the non-SC traces for MPMC are due to retries. When restricted to yield-free
executions, MPMC only exhibits SC executions.

for real-world code, the search component of the algorithm
(backtracking) is typically not utilized and hence the runtime
of the algorithm is typically polynomial.

8.4.2 Longer Traces
The benchmarks we exhaustively tested have fairly short
traces. Our algorithm primarily targets helping developers
unit test and debug concurrent data structures implementa-
tions and thus we only expect it to see relatively short traces.
To test our algorithm on longer traces, we modified CD-
SChecker to produce a fixed number of traces and modified
the SPSC queue to repeatedly enqueue and dequeue. We then
varied the number of repeats to generate traces of varying
lengths.

By performing 500 repeated enqueues and dequeues, we
generated traces with an average of 5,945 operations and the
SC analysis took an average of 0.0059 seconds per execution
(averaged over 500 executions). By performing 900 enqueues
and dequeues, we generated traces with an average of 10,645
operations and the SC analysis took an average of 0.0122
seconds per execution (averaged over 500 executions).

9. Related Work
Researchers have formalized the C++ memory model [9]. A
number of tools have been developed to test the behaviors of
C/C++ code under the C/C++ memory model. The CPPMEM
tool is built directly from the formalized specification with
the goal of allowing researchers to explore implications of the
memory model. It explores all legal modification orders and
reads-from relations and therefore must search a significantly
larger search space than CDSChecker which only explores
the space of legal reads-from relations. The Nitpick tool
translates the memory model constraints into SAT problems
and then uses a SAT solver to find legal executions [11].
The Relacy race detector [49] explores thread interleavings
and memory operation reorderings for C++11 code. The
CDSChecker tool [40] uses partial order reduction techniques
to unit test C/C++ code. All of these tools would benefit

from using the algorithm presented in this paper to present
traces to the user. MemSAT [46] is designed to help debug
and reason about relaxed memory models with axiomatic
specifications. However, we cannot use these techniques to
verify our inference results since they are also limited to the
provided test cases and cannot verify that the data structures
are robust under all executions.

A number of tools [20–22, 33, 45] have been developed
to detect data races for programs that use lock-based con-
currency, yet they do not extend to low-level atomics. As
a complement to these tools, our work ensures that it can
automatically infer memory order parameters that ensure
data-race-freedom for provided test cases when developers
provide sufficient atomic operations whose parameters can
be strengthened.

Researchers have designed useful techniques [16, 19,
31, 44] for automatic parallelization. These techniques are
primarily targeted to convert sequential code into parallel
(multi-threaded or vectorized) code with the purpose of
utilizing multiple processors. Our work is orthogonal in that
it seeks to automate the process of tuning memory order
parameters of C/C++11 data structures to provide SC.

Researchers have explored the complexity of checking
whether a trace is SC in the context of testing shared memory
implementations [18]. Earlier work established that the com-
plexity of checking SC under the assumption that the reads-
from mapping is known is NP-Complete [24]. Although our
algorithm has polynomial complexity for traces it can handle
without backtracking and we have not observed backtracking
for our benchmarks, this result shows that there exist traces
for which it has exponential time complexity.

Although the problem of verifying TSO is NP-hard, re-
searchers have developed polynomial time techniques for
approximately checking whether an execution is allowed by
the TSO memory model [43]. In the absence of the full al-
gorithm, the UPDATESC procedure presented in Figure 10
can be viewed as analogous polynomial-time algorithm for
approximately checking whether a trace is SC.
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Researchers have developed a nice property called
triangular-race freedom (TRF) [41] that can precisely charac-
terize programs with SC memory accesses on TSO. However,
TRF is built upon TSO which has a total store order and
allows only relatively few reorderings. The C/C++ memory
model is much weaker and allows more reorderings, making
an analogous result challenging. [8] has developed formal-
ization that checks SC assuming the modification order is
known, which our algorithm does not rely upon.

Researchers have built tools to verify executions against
axiomatic rules [26]. The approach taken by Gopalakrishnan
et al. is to translate memory model axioms into a SAT
problem instance and then to use a SAT solver to check
whether the execution is consistent with the memory model.

CheckFence [15] explores executions of relaxed memory
models. It does this by bounding loop iterations and translat-
ing the program’s behavior into a SAT formula and solving
the formula. This approach uses extensive static analysis of
code to simplify the SAT formula.

Researchers have developed verification techniques for
code that only admits SC executions under relaxed memory
models such as TSO and PSO [14, 17, 23, 32]. The basic idea
is to develop an execution monitor that can detect whether
non-SC executions exist by examining SC executions. Our
work differs from this work in two aspects: (1) it supports the
C/C++ memory model; (2) it can provide useful information
even for code that admits non-SC executions; and (3) it
automatically infers necessary order parameters to admit only
SC executions. Researchers have also developed hardware
support [35, 39, 42] for checking SC. Our approach differs
in that it can determine memory order parameters that suffice
to ensure that a data structure only exhibits SC behaviors.

DFENCE [32] is a framework which can test a program
on a given memory model to expose violations of a given
specification, and synthesize a set of ordering constraints that
prevent these violations. It only shows that its specification
language can specify hardware memory models (TSO and
PSO). The C/C++11 memory model is more complicated
than hardware models since it introduces more complex
ordering constraints (atomic operations and fences with
memory order parameters) and allows more reorderings. Our
work supports the C/C++ memory model, and also provides
useful information on non-SC traces for the purpose of
understanding and debugging.

10. Conclusion
The C/C++ memory model makes it possible to write efficient,
portable low-level concurrent data structure implementations.
Many concurrent data structures are initially designed for the
SC memory model, and porting them to the C/C++ memory
model can be extremely challenging. We present AutoMO, a
framework that provides support across the porting process:
(1) it automatically infers initial settings for the memory order
parameters, (2) it detects whether a C/C++11 execution is

equivalent to some SC execution, and (3) it simplifies traces to
make them easier to understand. We have evaluated AutoMO
by using it to successfully infer memory order parameters for
a range of data structures.
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A. Correctness of SC Analysis Algorithm
We next prove that our algorithm outputs that a trace is SC
iff the trace can be reordered to satisfy the SC predicate. We
begin the proof by showing in Lemma A.1 that the inference
rules for the isc−→ relation will not generate any cycles when
applied to an SC trace. This proof holds even when we
include the ordering of operations that the SC trace provides
into the isc−→ relation. We then combine this lemma with the
observation that our algorithm enumerates all orderings of
writes that are not already ordered by the isc−→ relation in
Theorem A.3. This suffices to show that if an input trace can
be shuffled to be SC, then our algorithm will generate an
acyclic isc−→ relation and thus output that the trace is SC.

Lemma A.1 (Acyclicity of the isc−→ relation for Sequentially
Consistent Executions). The isc−→ relation generated for a
sequentially consistent trace is acyclic.

Proof. We prove this property by showing that the isc−→ rela-
tion is a subset of the order of statements in the SC execution.

As the sb order is included in the SC execution order, all
edges added by the sequenced-before rule to the isc−→ relation
are trivially consistent with the SC order.

The reads from rule only adds edges to the isc−→ relation
that are already in the SC order as the SC constraint s < i
implies that loads always appear in SC after the stores that
they read from.

The read before write rule only adds edges to the isc−→
relation that are in the SC order as the SC constraint shows
that any operation that appears after W2 and before R must
either not be a store or have a different address than W2.
Therefore, W1 must appear after R in the SC order.

The write ordering rule only adds edges to the isc−→ relation
that are in the SC order as the SC constraint implies that any
operation that appears after W2 and before R must either not
be a store or have a different address than W2. Therefore, W1
must appear before W2 in the SC order.

We also need to show that if our algorithm outputs that a
trace is SC, then the trace really can be reordered to satisfy the
predicate SC. We begin by showing in Lemma A.2 that if the
isc−→ relation orders all writes to the same memory location and

the isc−→ relation is acyclic, then the execution can be shuffled
to satisfy the predicate SC. Theorem A.3 then observes that
our algorithm by construction ensures that the isc−→ relation
orders all writes to the same memory location. It then follows
directly from the lemma that if the algorithm outputs that
a trace is SC, that the trace can be reordered to satisfy the
predicate SC.

Lemma A.2 (Correspondence between the isc−→ relation and
Sequentially Consistent Executions). If all StoreOps to a
given location are totally ordered by the isc−→ relation, and
the isc−→ relation is acyclic, then a topological sort of the isc−→
relation produces a trace τSC that satisfies the predicate SC.

Proof. As the isc−→ relation is assumed to be a DAG, we know
that it has at least one topological sort. Take the topologically
sort of the isc−→ relation. Consider a store S with the index s in
the topological sort and a load L with the index i that reads
from S.

By the application of the reads-from rule, we know that
all loads must read from a store that appears earlier in the
topological sorted order and therefore s < i.

We next need to prove that ∀j.s < j < i, τ(j) /∈
StoreOps ∨ address(τ(j)) 6= address(τ(i)). We prove
this by contradiction. Consider an arbitrary operation O with
index j that is larger than s and smaller than i. If the operation
is not a store, the predicate is trivially true. Therefore, assume
that the operation is a store to the same location as S. Given
that we assumed that the isc−→ relation totally orders stores to
the same location, we have S isc−→ O. By the read before write
rule, we also haveR isc−→ O and therefore O must appear after
R in the topological sort. This contradicts j < i.

Theorem A.3 (Algorithm Correctness). The procedure
CHECKSC correctly checks whether a given execution is
allowed by SC.

Proof. We have to prove both: (1) that if the CHECKSC states
that an execution is in SC then the execution is SC and (2)
that if an execution is in SC, that CHECKSC returns true.

The procedure CHECKSC adds edges to the isc−→ relation
between all writes to the same location that are not already
ordered by the isc−→ relation. Therefore, by Lemma A.2, if
CHECKSC discovers that the isc−→ relation is acyclic, then the
trace in seq must satisfy the predicate SC.

If the execution trace is allowed by SC, then there must
exist a total ordering of writes such that the isc−→ relation is
acyclic by Lemma A.1. If the procedure CHECKSC orders
writes in the same order as in SC, then the isc−→ relation that
it computes will be acyclic and therefore it will identify the
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trace as SC. Consider two writes to the same location. If the
isc−→ relation orders them, by Lemma A.1 it must order them

in the same order as SC. The procedure CHECKSC will then
naturally process them in that order.

If the writes are not ordered by the isc−→ relation, then the
backtracking algorithm will try both orders and hence order
them in the same way as SC. Therefore, CHECKSC will
return that the execution is allowed by SC.

B. Memory Order Parameters Inference
Rules with Fence

In the body of this paper, we discuss a set of rules that can be
used to strengthen order parameters to memory accesses so
that the SC violations can be eliminated without considering
fences. C and C++ defines an atomic fence operation, which
loosely imitates the low-level fence instructions provided by
processors for ordering memory accesses and can in some
cases allow developers to write code more efficiently.

Fences may use the release, acquire, rel_acq, or
seq_cst memory orders (relaxed is a no-op and consume
is an alias for acquire, §29.8p5 [3]). Each memory order
imposes different modification order constraints and syn-
chronization properties. We will discuss the inference rules
involving fence operations to infer order parameters in this
appendix. When developers use AutoMO to infer parame-
ters for data structures that have fences, we assume that they
attach some wildcard order parameters to fence operations,
and then AutoMO figures out the proper parameters for each.
Figure 21 and Figure 22 together show the rules involving
fence operations that can be used to eliminate SC violations.
Eliminate Reads-From III: We derive these three rules
(Rule A, B and C) from §29.3p4, 29.3p5 and 29.3p6 [3].
To summarize, these rules require that operation C must
read from any operation that is later than operation A in
modification order, and thus the reads-from edge can be
eliminated.
Impose Modification Order (Fence): §29.3p7 [3] requires
explicitly that operation A will be later than operation B in
modification order.
Eliminate Reads-From IV: According to §29.3p3 [3], sc
order must be consistent with happens-before. In Rule E,
for example, if operation A reads from operation B, then
according to §29.8 fence Y happens before fence X , and it
has a conflict with the sc edge from X to Y . Therefore, A
is not allowed to read from B. Similar rules apply to Rule F
and Rule G.

To extend AutoMO to support inferring order parameters
for fences with the above discussed rules, we extended the
search for possible repairs such that it also searches for
repairs involving fence operations when possible. Since a
fence operation with memory_order_relaxed parameter
means a no-op, any inference results that have a relaxed fence
imply that a fence operation is not needed at that location.

Eliminate Reads-from III (A) (Fence)
A: v.store(0)

B: v.store(1)

mo

X: sc_fence()

sb

Y: sc_fence()
sc

C: v.load()

sb

=⇒

A: v.store(0)

C: v.load()

  ✘rf

Eliminate Reads-from III (B) (Fence)
A: v.store(0)

B: v.store(1)

mo

Y: sc_fence()
sc

C: v.load()

sb

=⇒

A: v.store(0)

C: v.load()

  ✘rf

Eliminate Reads-from III (C) (Fence)
A: v.store(0)

B: v.store(1)

mo

Y: sc_fence()
sb

C: v.load()

sc

=⇒

A: v.store(0)

C: v.load()

  ✘rf

Impose Modification Order (D) (Fence)
A: v.store(0)

X: sc_fence()

sb

B: v.store(1)

Y: sc_fence()
sc

sb

=⇒

A: v.store(0)

B: v.store(1)

mo

Figure 21. Fence inference rules for non-SC traces (part I)

Eliminate Reads-from IV (E) (Fence)
A: v.load()

X: sc_fence()

sb

B: v.store(1)

Y: sc_fence()
sc

sb

=⇒
A: v.load()

B: v.store(1)

  ✘rf

Eliminate Reads-from IV (F) (Fence)
A: v.load()

X: sc_fence()

sb

B: v.store(1)
sc

=⇒
A: v.load()

B: v.store(1)

  ✘rf

Eliminate Reads-from IV (G) (Fence)
A: v.load()

X: sc_fence()

sc

B: v.store(1)
sb

=⇒

A: v.load()

B: v.store(1)

  ✘rf

Figure 22. Fence inference rules for non-SC traces (part II)
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