
Goal-Directed Reasoning for
Specification-Based Data Structure Repair

Brian Demsky and Martin C. Rinard

Abstract—Software errors and hardware failures can cause data structures in running programs to violate key data structure

consistency properties. As a result of this violation, the program may produce unacceptable results or even fail. We present a new data

structure repair system. This system accepts a specification of data structure consistency properties stated in terms of an abstract set-

and relation-based model of the data structures in the running program. It then automatically generates a repair algorithm that, during

the execution of the program, detects and repairs any violations of these constraints. The goal is to enable the program to continue to

execute acceptably in the face of otherwise crippling data structure corruption errors. We have applied our system to repair

inconsistent data structures in five applications: CTAS (an air traffic control system), AbiWord (an open source word processing

program), Freeciv (an interactive multiplayer game), a parallel x86 emulator, and a simplified Linux file system. Our results indicate that

the generated repair algorithms can effectively repair inconsistent data structures in these applications to enable the applications to

continue to operate successfully in cases where the original application would have failed. Without repair, all of the applications fail.

Index Terms—Testing and debugging, language constructs and features.

Ç

1 INTRODUCTION

MAINTAINING data structure consistency is a fundamen-
tal prerequisite for the acceptable execution of most

software systems. Data structures that violate key consis-
tency constraints can lead the software down unexpected
execution paths, potentially causing the system to behave
unacceptably or even fail. Unfortunately, there are many
sources of inconsistent data structures—single event upsets
that flip the values of bits in memory [37], unexpected
interference from outside a given component of the
software system, and overt errors such as data races, early
exits from complex data structure updates, algorithmic
oversights, and simple coding mistakes. The problem can be
especially severe for data structures that persist across
program executions—a single inconsistency in this kind of
data structure can deny access to all of the information
stored in the data structure.

The standard approach to dealing with data structure
inconsistency is to work hard to prevent any inconsistencies
from occurring in the first place. Approaches such as
extensive testing, static analysis [21], [53], software model
checking [14], error correction codes [45], and software
isolation mechanisms [6] are all designed, in part, to
eliminate as many potential data structure corruption errors
as possible.

This paper presents a different and complementary
approach for dealing with the data structure inconsistency
problem. Instead of trying to eliminate all potential sources

of corruption, our approach accepts the inevitability of
some sources of data structure corruption. It therefore
focuses on repairing corrupted data structures to restore
acceptable system behavior. A developer using our ap-
proach first provides a specification of the data structure
consistency constraints that the software relies on for its
acceptable execution. Our compiler then processes this
specification to automatically generate the detection and
repair algorithms. The detection algorithm traverses the data
structures to locate any violations of the consistency
specification. The repair algorithm accepts as input an
arbitrary data structure that violates the specification. It
produces as output a repaired data structure that 1) is
guaranteed to satisfy its specification and 2) is heuristically
close to the original inconsistent data structure.

It is important to note that the goal of data structure
repair is not to produce the same data structure that a
(hypothetical) correct program would have produced. The
goal is instead to produce a repaired data structure that
enables the program to continue to execute acceptably. In
our experience using data structure repair on a range of
data structure corruption errors in our benchmark set of
software systems, the repaired data structure always
enabled the system to continue to execute acceptably. In
the absence of data structure repair, the data structure
corruption errors almost always caused the systems to fail.

Despite these results, there is no guarantee that the
program will, in fact, continue to execute acceptably after
the repair—the repair algorithm is guaranteed only to
produce a data structure that satisfies its consistency
specification, not a data structure that will always cause
the program to continue to execute successfully. Any
decision to use data structure repair should therefore take
into account a comparative analysis of the consequences of
simply halting the program as opposed to using data
structure repair to enable continued execution. In general,
these consequences will depend on the context into which

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006 931

. B. Demsky is with the Department of Electrical Engineering and Computer
Science, University of California, Irvine, Irvine, CA 92697.
E-mail: bdemsky@uci.edu.

. M.C. Rinard is with the MIT Computer Science and Artificial Intelligence
Laboratory, The Stata Center, Building 32-G744, 32 Vassar Street,
Cambridge, MA 02139. E-mail: rinard@lcs.mit.edu.

Manuscript received 16 Mar. 2006; revised 7 June 2006; accepted 28 Sept.
2006; published online 14 Nov. 2006.
Recommended for acceptance by W. Griswold and B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0068-0306.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

the program is deployed. Halting eliminates the possibility
of any further error propagation or damage caused by
unacceptable program actions but also denies access to the
functionality of the program and may lose the data in the
damaged data structure. Data structure repair, on the other
hand, may salvage much of the data in the damaged data
structure and leave the functionality of the program
available. Continued execution may be especially valuable
for programs that control unstable physical phenomena
—the Ariane 5 crash, for example, was caused by the
guidance computer halting due to a failed integer conver-
sion in the computation of an unused value [34].

1.1 Model-Based Approach

Our technique adopts a model-based approach with two
views: a concrete view of the data structures as they are
represented in the memory and an abstract view that (like
object modeling formalisms such as UML [42] and Alloy
[31]) models the data structures as sets of objects and
relations between objects. A set of model definition rules
translates the concrete data structures to the sets and
relations in the abstract model. The key consistency
constraints are expressed using the sets and relations in
this model. The model definition rules encapsulate the data
structure representation complexity and the consistency
constraints encapsulate the complexity inherent in the
consistency property.

Our approach provides several key benefits: 1) it
provides a mechanism for separating objects that play
different conceptual roles in a computation into different
sets, allowing the developer to easily specify different
constraints that apply to each of these different sets, 2) the
model definition rules provide a clean, simple mechanism
to specify data structure traversals, and 3) it provides a
means to manage the complexity of data structure con-
sistency properties.

1.2 Repair Algorithm

Each model definition rule consists of a quantifier, a guard,
and an inclusion constraint that specifies an object (or a
tuple) to include in a set (or relation). These rules place
objects into sets based on criteria such as the values of the
fields in the object and the reachability of the object from
other objects. The key consistency constraints are expressed
using the sets and relations in the abstract model. Our
specification language supports constraints on the values of
variables and object fields, on the potential referencing
relationships between objects, and on the absence or
presence of certain objects in a set. It also supports Boolean
combinations of these constraints.

During the repair process, the repair algorithm may be
forced to choose between several alternatives—in general,
there may be several distinct sets of repair actions that cause
a given violated constraint to become satisfied, several
distinct sets of data structure updates that implement a
given model repair action, and several different ways to
eliminate any undesirable side effects of the data structure
updates. A naive repair strategy may fail to terminate—it
may enter a loop in which it repeatedly repairs a violated
constraint, only to have the constraint repeatedly invali-
dated as a side effect of a subsequent action taken to repair

another constraint violated as a side effect of the first repair
action.

Our compiler uses a repair dependence graph to reason
about the termination of the generated repair algorithm. The
nodes in this graph represent constraints, repair actions, and
changes to the sets and relations in the abstract model. The
edges capture dependences between the constraints, repair
actions, and the abstract model. The absence of certain kinds
of cycles in the graph ensures that all repairs will terminate.
In addition to analyzing the graph to determine termination,
our compiler uses reasoning and search to remove (subject
to certain structural requirements that the graph must
satisfy) certain nodes, which correspond to possible ways
that a constraint could be satisfied, to eliminate undesirable
cycles. These removals further constrain the actions of the
generated repair algorithm and ensure that the repair
algorithm will never choose a repair strategy that leads to
an infinite repair loop. The absence of infinite repair loops
implies that the repair algorithm will successfully repair any
violation of the consistency constraints.

Fig. 1 presents a graphical overview of the repair
process. The square boxes in the figure correspond to
concrete data structures. The rounded boxes correspond to
abstract models. The arrows from the square boxes to the
rounded boxes map a concrete data structure to the
corresponding abstract model. When invoked, the gener-
ated repair algorithm constructs the abstract model and
examines it to find any inconsistencies. The arrow labeled
“Model Construction” in Fig. 1 shows this step. Whenever
the repair algorithm discovers an inconsistency, it selects an
appropriate model repair action to repair the inconsistency
in the model. The arrow labeled “Model Repair Action A”
in the figure shows the model repair action step.

The compiler uses goal-directed reasoning to statically
map model repair actions to data structure updates. To
implement a model repair that removes an object from a
given set, for example, the compiler analyzes the model
definition rules to find all the rules whose inclusion
constraint may cause the object to be inserted into the set.
The compiler then analyzes the guards and the quantifiers
of the rules to extract a set of data structure properties
whose satisfaction ensures that no rule specifies that the
object should be a member of that set. Finally, the compiler
generates code to apply (as necessary) a set of data structure

932 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 1. Overview of repair process.

updates that force all of these properties to hold. The effect

is to remove the object from the set.
After performing the model repair action, the repair

algorithm performs the corresponding data structure

update. The arrow labeled “Data Structure Update A” in

the figure shows this step. Note that there may also be

potentially undesirable side effects which cause additional

inconsistencies. To ensure that the model reflects these side
effects, the repair algorithm must rebuild the abstract

model. In Fig. 1, the curved arrow labeled “Model

Reconstruction” illustrates this model reconstruction. The

generated repair algorithm repeats this process to repair all

of the inconsistencies.

1.3 Expectations and Scope

The dependable computing community has developed a

taxonomy of basic concepts in dependable and secure
systems [9], and it is possible to analyze our approach in the

context of this taxonomy. Data structure repair becomes

relevant when a fault (such as an incorrect piece of code) is

activated (by executing the incorrect code), leaving the data

structures in an inconsistent state. This inconsistent state is
an error which, unless corrected, may cause the program to

observably deviate from its correct behavior. This deviation

from correct behavior is called a failure.
In general, the inconsistent state may be any state that

violates the system’s specification. We distinguish two

kinds of inconsistent states: 1) those that violate the data
structure invariants and 2) those that satisfy the data

structure invariants but are inconsistent with the input that

the system has processed. Data structure repair, as im-

plemented in our current system, is relevant only for

inconsistent states that violate the data structure invariants.
It is possible to increase the scope of our approach to record

information about the input and include that information in

the detection and repair of inconsistent data structures.
The goal of data structure repair is to ameliorate the

effect of the errors by updating the data structures to

eliminate any inconsistencies that the corresponding faults

introduced. There are several possibilities:

. Correction. In some cases, the repair may leave the
data structures in the same correct state as a
(hypothetical) correct program would have left them
when presented with the same input. In these cases,
the repair makes it possible for the program to
continue correctly (until it encounters another fault).
This kind of correction is, in general, possible only
when the data structure contains enough redundant
information to successfully reconstruct any missing
or corrupted parts of the data structure.

. Restoration. In other cases, the repair may leave the
data structures in the same state as a (hypothetical)
correct program would have left them, but only
when presented with a different input. This may
occur if the fault destroyed data, leaving the repair
algorithm without enough information to correct the
error. In these cases, the repair makes it possible for
the program to continue to execute, with the
continued execution producing outputs that would

be correct for the different inputs but potentially not
correct for the actual input.

. Patching. In yet other cases, the repair may leave the
data structures in a state that satisfies the precondi-
tions of the various software components that will
access the data structures, but that no execution of
the (hypothetical) correct program would ever
produce. In these cases, the system will continue to
execute but may produce outputs that no correct
execution would ever produce. Note that this
phenomenon can occur only when the consistency
specification is incomplete in the sense that it is
missing some constraints that all correct states
satisfy. These constraints may be missing because
the developer did not state the constraints explicitly
or because the specification language was not
expressive enough to state the constraint.

. Updating. If the consistency specification lacks
certain crucial constraints, the repair may leave the
data structures in a state that fails to satisfy some of
the preconditions that must hold for components
that access the data structures to execute success-
fully. In these cases, the system may encounter a
fatal error. The constraints may be missing either
because the developer failed to state the constraint or
because the specification language was not expres-
sive enough to state the constraint.

. Overcorrection. It is also possible for the consistency
specification to contain constraints that some correct
states violate. In these cases, the repair algorithm
will update the data structures so that they satisfy
these constraints, potentially interfering with the
correct execution of the program.

As this discussion indicates, it is possible to view data
structure repair as a specific instance of software fault
tolerance in which the error detection phase consists of
examining the data structures for inconsistencies and the
recovery phase consists of updating the data structures to
eliminate the inconsistencies. It differs from many software
fault tolerance approaches in that the goal of the recovery
phase is not necessarily to completely eliminate the error.
Instead, one of the primary goals is to eliminate fatal errors
that would otherwise cause the system to simply terminate
and fail to deliver any service whatsoever.

There are obviously some situations in which users
would prefer fail-stop behavior in which the system simply
stops and awaits external intervention at the first sign of a
fault. The choice of whether to stop or to repair and
continue depends, in large part, on the context in which the
system is used. Aspects that may play an important role
include the feasibility and cost of providing external
intervention, the acceptability of partially or even comple-
tely incorrect outputs, and the severity of the consequences
of terminating the execution of the system. Consider, for
example, a real-time or safety-critical system that controls
unstable physical phenomena and whose termination
therefore results in a disaster. If timely external intervention
to recover from fatal errors is not feasible, the use of data
structure repair (and other techniques designed to keep
systems executing through otherwise fatal errors) may well

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 933

be justified even in the absence of any expectation that it

will deliver correct execution. If, on the other hand, it is safe

for the system to terminate and either external intervention

is available or it is preferable to do without the service that

the system provides rather than risk the potential con-

sequences of incorrect execution, termination in the face of

data structure corruption may be more appropriate.

1.4 Consequences of Faults, Errors, and Failures

It is important to separate the concepts of correctness and

acceptability—in many situations a system with faults,

errors, and even failures may very well be acceptable to its

users. A system may be acceptable, for example, as long as

the time between failures is sufficiently long or the number

of failures in a given time frame is sufficiently small [22]. Or

users may accept a system with failures if the cost or

severity of the failures is small enough [52]. In practice,

given the difficulty of delivering failure-free systems, the

important distinctions and concerns often focus not on

ensuring correctness, but on trade-offs between the en-

gineering effort required to discover and eliminate faults

and the consequences of leaving faults in place. Most

software development organizations acknowledge this

reality by prioritizing known faults, in many cases choosing

to release a system with known low-priority or low-cost

failures rather than investing the engineering effort re-

quired to eliminate the corresponding faults. Data structure

repair may be useful in such efforts if it can convert high-

priority or high-cost failures (such as a system crash) into

low-priority or low-cost failures (such as continued execu-

tion with some anomalies). Of course, in some situations, it

may even eliminate the failure completely.
Finally, we note that in some domains (such as scientific

computing), it may be more productive to evaluate software

from the perspective of accuracy rather than correctness.

The key issue is not the presence or absence of faults, but

the accuracy of the result that the program produces.

Indeed, the program may (for reasons such as floating point

rounding errors) be inherently incapable of producing a

result that is completely accurate. In some situations, it is

possible to exploit the additional flexibility that an

accuracy-based perspective provides to trade off acceptable

accuracy losses in return for other benefits, such as

increased performance or fault tolerance [43].

1.5 Contributions

This paper makes the following contributions:

. Basic Repair Approach. It presents an approach that
uses an abstract model to express important data
structure consistency properties. Violations of these
properties are repaired by automatically translating
abstract model repairs back through the model
definition rules to automatically derive a set of
concrete data structure updates that implement the
repair.

. Repair Translation. It presents an algorithm that
uses goal-directed reasoning to derive a set of data
structure updates that implement the repair.

. Repair Dependence Graph. It introduces the repair
dependence graph, which captures dependences
between consistency constraints, repair actions, and
the abstract model. This graph supports formal
reasoning about the effect of repairs on both the
model and the data structures. It also presents a set
of conditions on the repair dependence graph. These
conditions forbid certain kinds of cycles that would
cause the repair algorithm to loop forever. It also
presents an algorithm that removes nodes in the
graph to eliminate problematic cycles. These re-
movals prevent the repair algorithm from choosing
repair strategies that may not terminate.

. Experience. It presents our experience using data
structure repair on several applications. Our experi-
ence indicates that data structure repair enables our
applications to successfully recover from data
structure corruption errors.

2 FILE SYSTEM EXAMPLE

We next present a simple file system example that

illustrates the operation of our repair algorithm. Fig. 2

presents a graphical representation of the file system in our

example. The file system consists of an array of disk blocks.

In order to quickly allocate new blocks, the file system

keeps a table of which blocks are in use. The file system

reserves a block, the bitmap block, for storing this table. The

file system reserves another block to store the inode table,

which keeps track of which blocks store the information for

a particular directory or a file. Finally, the first block in the

file system is reserved for the superblock, which is a special

934 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 2. Inconsistent file system.

block that stores critical file system configuration informa-
tion. For example, it stores the size of the blocks in the file
system, which block contains the block bitmap, and which
block contains the inode table.

The particular file system shown in Fig. 2 has an
inconsistency. As indicated by the “X,” the bitmap block
location stored in the superblock has been corrupted and no
longer stores the correct location of the bitmap block. As a
result, future block allocations will fail.

2.1 Consistency Specification

The data structure consistency specification consists of two
parts: a part that specifies a translation from the concrete
data structures into an abstract model and a part that
specifies consistency constraints that this abstract model
must satisfy. The translation part of the specification
consists of the data structure declarations in Fig. 3 (these
declarations specify the physical layout of the data

structures that comprise the file system), and the model

definition, which consists of the set and relation definitions

in Fig. 4 (these definitions specify the sets and relations in

the model of the file system) and the model definition rules

in Fig. 5 (these rules specify how to construct the abstract

model from the data structures).

2.1.1 Structure Declaration

The first part of the translation specification says how the

data structures are physically laid out in memory. This part

of the specification uses a structure definition language that

is similar to C structure definitions with a few extensions.

One of these extensions allows the developer to specify

variable length arrays in which the length is stored in a data

structure. We now examine the data structure definitions in

Fig. 3 in more detail.
The file system consists of an array of Block objects. The

first line in the Disk structure definition declares that the

Disk object contains this array of blocks. The second line

declares a label s for the first block in the file system and

that this block has the type Superblock. Note also that the

size of the array of blocks is given by the expression

d.s.numberofblocks. The d variable in this expression

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 935

Fig. 3. Structure definitions.

Fig. 4. Set and relation declarations.

Fig. 5. Model definition rules.

refers to the Disk �d; declaration at the bottom of the figure.
This declaration says that the variable d points to a Disk

object and that this value is provided to the repair algorithm
from the underlying application.1 Note that, even though d

is declared as a pointer, our specification language uses the
notation d.s to access the member s. The s refers to the
label s in the Disk type declaration, and the numberof-

blocks refers to the numberofblocks field in the
SuperBlock type declaration.

The Block structure definition says that a block is
d.s.blocksize bytes long, indicating that the block
length is stored in the SuperBlock of the file system.
The reserved keyword indicates that the Block structure
doesn’t define how this space is used.

The SuperBlock stores the basic layout parameters for
the file system: It stores the number of blocks and inodes,
the size of the blocks, the inode that contains the root
directory, and the locations of the block bitmap and the
inode table. Note that the first line of the Superblock

declaration structure SuperBlock subtype of Block

says that the SuperBlock type structurally inherits from
the Block type. This indicates that the fields declared in the
SuperBlock declaration can refine the reserved space in
the Block declaration and that objects of the SuperBlock
type have the same size as objects of the Block type.

The BlockBitmap contains an array of bits: one bit for
each block in the file system. If the block is used, the
corresponding bit is set to true. Otherwise, if the block is
free, the corresponding bit is set to false. This array of bits
enables the file system to efficiently allocate unused blocks.

The DirectoryBlock contains an array of directory
entries. Each DirectoryEntry contains the name of a file
and a reference to the file’s inode.

The InodeTable contains the array of inodes in the file
system. Each Inode stores references to the blocks that
contain the file’s data and a reference count. This reference
count stores a count of how many directory entries
reference the inode.

2.1.2 Model Definition

The next part of the translation specification says how to
construct the sets and relations in the model from the
objects discussed in the previous section. This part of the
specification first declares the sets and relations in the
abstract model and then specifies how to construct the sets
and relations in the abstract model from the concrete data
structure. The model construction phase places objects in
the data structure into the appropriate sets and constructs
the relations.

Fig. 4 presents the set and relation declarations for our
abstract model of the file system example. The declaration
set AllBlocks of Block : UsedBlock | FreeBlock

says that the set AllBlocks contains data structures of
type Block and contains two subsets: UsedBlock and
FreeBlock. We have omitted the declarations of sets that
are already declared as a subset of another set and

contain no further subsets. In general, the set declarations
in Fig. 4 are of the form set S of T : S1j . . . jSn. Such a
declaration specifies that the set S in the model contains
objects of type T (these types are either base types such as
int or structures) and that the sets S1; . . . ; Sn are subsets
of the set S. If a set has no subsets, the declaration has the
form set S of T . The declaration relation InodeOf:

DirectoryEntry X UsedInode says that the relation
InodeOf relates objects in the set DirectoryEntry to
objects in the set UsedInode. In general, the relation
declarations in Fig. 4 are of the form relation R : S1 � S2.
Such a declaration says that the relation R relates the objects
in set S1 to the objects in set S2.

We have discussed how the sets and relations in the
abstract model are declared. We next discuss how the
developer specifies the translation between the concrete data
structures and the sets and relations in the abstract model.
Conceptually, the model definition rules in Fig. 5 specify how
to traverse the data structures to build the sets and relations
in the abstract model. The model definition rules are of the
form Quantifiers, Guard ¼> Inclusion Condition. Each
rule specifies quantifiers that identify the scope of the
variables in the body. The inclusion condition specifies an
object (or tuple) that must be in a specific set (or relation)
if the guard is true. The repair algorithm evaluates the
model definition rules on the concrete data structure to
generate the abstract model. Fig. 5 presents the model
definition rules for the file system example.

The first model definition rule places the first block in
the file system in the SuperBlock set. The next two
model definition rules place the d.s.blockbitmap and
d.s.inodetable elements of the block array into the
BlockBitmap and InodeTable sets, respectively. The
as keyword in these two model definition rules tells the
compiler to view the Block data structure as a
BlockBitmap or InodeTable data structure, both of
which structurally inherit from the Block structure
definition. These three model definition rules identify
key blocks in the file system and place them into sets.

The rootdirectoryinode field of the SuperBlock

stores the index of the root directory in the inode table. The
fourth model definition rule places this inode in the
RootDirectoryInode set. The fifth model definition rule
states that objects that are not in the UsedBlock set should
be placed in the FreeBlock set.

The bitmap array in the BlockBitmap object records
whether blocks in the file system are in use. The sixth model
definition rule uses this array to construct the BlockStatus
relation, which maps blocks to Boolean values that indicate
whether the blocks are in use.

The remaining model definition rules are, in order,
construct a set of directory entries; decode these entries to
construct a set of file inodes; construct the relation
InodeOf, which maps directory entries to the correspond-
ing inodes; construct the relation ReferenceCount, which
maps inodes to the corresponding reference counts; decode
the inodes to construct the set of blocks in files; and
construct the relation Contents, which maps inodes to the
blocks that store the contents.

936 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

1. In practice, the repair algorithm requires primitive actions to read and
write the disk blocks. Our implementation uses the memory mapping
facility of the UNIX operating system to map the disk data structure into
memory. Then, the repair algorithm can read and write to this structure as it
would to any other data structure in memory.

In general, we intend that developers will use the sets in
the abstract model to group together all the objects with the
same consistency properties. For example, the 11th model
definition rule places all of the blocks that store the contents
of files in the FileBlock set. We intend that developers
will use relations to map these objects to primitive values
(or other objects) with which these objects are conceptually
associated.

2.1.3 Consistency Constraints

Consistency constraints specify the data structure consis-
tency properties that should hold for the abstract model.
Consistency constraints are specified using the consistency
constraint language. The specification language allows the
developer to use the logical connectives (and, or, not) to
assemble the body of a constraint out of atomic proposi-
tions. These atomic propositions express basic properties on
the sets and relations. Our consistency constraint language
includes universal quantifiers that can quantify over the
objects in the sets or the tuples in the relations. The
consistency constraints in Fig. 6 identify the consistency
properties that the file system model must satisfy.

The first pair of constraints uses the size predicate to
specify that the BlockBitmap and InodeTable sets must
contain exactly one object. Because the model definition
rules place specific disk structures into these sets, the
consistency constraints function to ensure that these disk
structures exist.

The next constraints specify properties that all objects in
a given set must satisfy. The third constraint ensures that
the BlockStatus relation maps blocks in the UsedBlock
set to the Boolean value true, and the fourth consistency
constraint ensures that the BlockStatus relation maps
blocks in the FreeBlock set to the Boolean value false.
The combined effect of these two constraints is to ensure
that the BlockStatus relation correctly records whether
blocks are in use or free. Note that these constraints use the
BlockStatus relation as a function. Our system allows
such uses, provided either that the compiler can determine
that such a relation is a function by construction or a second
constraint ensures that the relation is a function.

The fifth consistency constraint specifies that the reference
count for each used inode must reflect the number of
directory entries that refer to that inode.2 The final consis-
tency constraint ensures that each file or directory block is
referenced by at most one directory entry. Formally, this
constraint ensures that the inverse of the Contents relation
evaluated on a member of the FileDirectoryBlock set

contains exactly one object. In general, each consistency
constraint is a first-order logical formula consisting of a
sequence of quantifiers followed by a quantifier-free Boolean
formula of atomic propositions.

2.2 Repair Algorithm

The generated repair algorithm finds violations of the
consistency constraints in the model, synthesizes model
repairs that eliminate the consistency violations, and then
translates model repairs into concrete data structure
updates. Because there may be many constraint violations,
our repair algorithm then repeats the model construction,
the consistency violation detection phase, the model repair
phase, and the data structure update phase until all
constraints hold.

We illustrate the operation of the repair algorithm by
discussing the steps it takes to repair a file system whose
Superblock has an out-of-bounds bitmap block index. At
the end of the model construction process, the repair
algorithm constructs the abstract model shown in Fig. 7.

Notice that the BlockBitmap set in Fig. 7 is empty. This

occurs because the bitmap block index d.s.blockbitmap

is out-of-bounds, and therefore the second model definition

rule does not insert any blocks into the BlockBitmap set.

Since the BlockBitmap set is empty, the model violates the

first consistency constraint from Fig. 6. To repair this

violation, the repair algorithm performs a model repair that

adds a block from the FreeBlock set (the developer

specifies this set as the source of new Blocks to insert into

other sets as described in Section 4) to the BlockBitmap set.

At this point, the repair algorithm must translate this

model repair into an update on the concrete data structure. It

uses goal-directed reasoning to perform this translation as

follows. To generate an update that implements this

addition, the compiler finds the model definition rule that

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 937

2. The expression InodeOf.i denotes the image of i under the inverse
of the InodeOf relation—in other words, the set of all objects that InodeOf
relates to i.

Fig. 6. Consistency constraints.

Fig. 7. Broken model.

constructs the BlockBitmap set. The relevant model

definition rule from Fig. 5 is true ¼> d:b½d:s:blockbitmap�
as BlockBitmap in BlockBitmap. The compiler ana-

lyzes this model definition rule to determine that the

inclusion condition of this rule adds the block from the

array d.b at offset d.s.blockbitmap to the Block-

Bitmap set. As a result, the repair algorithm can make this

model definition rule add a block to the BlockBitmap set

by calculating the block’s index in d.b and setting

d.s.blockbitmap equal to this value. Notice that calcu-

lating the block’s index in d.b only works if the selected

block is a member of the array d.b. To ensure that the

selected block is a member of the array d.b, it suffices to

show that all members of the set from which the block was

selected, the FreeBlock set, are in this array. To check this

condition, the compiler analyzes the rule that constructs the

FreeBlock set to determine that all blocks in the Free-

Block set are from the array d.b, and therefore it can set

d.s.blockbitmap to the index j of the block d.b[j]. The

resulting file system is shown in Fig. 8a. An additional effect

of the data structure update is that the block becomes a

member of the set UsedBlock of used blocks and is

removed from the FreeBlock set.
After this update, the repair algorithm rebuilds the

abstract model. This rebuilt abstract model is given in Fig. 9.
Notice that, although the BlockStatus relation now maps
blocks to Boolean values, it does not correctly map blocks in
the FreeBlock set to the value 0 (representing false) nor
blocks in the UsedBlock set to the value 1 (representing
true). Therefore, when the repair algorithm checks the
consistency constraints, it discovers several violations of the
consistency constraints 3 and 4 in Fig. 6. These violations
occur because the bits in the new bitmap block do not
correctly reflect which blocks are free and which blocks are

in use. The repair algorithm repairs each of these violations

by repairing the incorrect tuples in the BlockStatus

relation to reflect the contents of the UsedBlock and

FreeBlock sets—if a block u is used, the repair algorithm

ensures that hu; truei (and no other tuple with u as its first

component) is in the BlockStatus relation, and if a block

u is free, the repair algorithm ensures that hu; falsei is in the

BlockStatus relation.

938 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 8. Repair sequence. (a) Allocated block bitmap. (b) Repaired file system.

Fig. 9. Model with a BlockBitmap.

As before, the compiler next finds the model definition

rule that constructs the BlockStatus relation. The

relevant model definition rule from Fig. 5 is

for j ¼ 0 to d:s:numberofblocks � 1;

for bbb in BlockBitmap;

true ¼> < d:b½j�; bbb:bitmap½j� > in BlockStatus:

Notice that this model definition rule contains the two

quantified variables j and bbb. To use this model definition

rule to modify the tuples in the BlockStatus relation, the

repair algorithm must determine the appropriate objects to

bind to these quantified variables. Since bbb quantifies over

the singleton set BlockBitmap, the compiler trivially

determines that the variable bbb must be bound to the only

object in the BlockBitmap set. However, it must still

determine what integer to bind to the quantified variable j.

It is possible to resolve the quantified variable bindings by

matching the expression in the inclusion condition to the

object (or tuple) to be added or removed to or from the set

(or relation). The generated repair code uses this strategy to

generate data structure updates for model repairs that add

objects (or tuples) to sets (or relations).

However, if the model repair removes an object (or

tuple) from a set or relation or if the model repair modifies a

preexisting tuple, the compiler can use a simpler strategy.

In these cases, it is not necessary to match the expressions in

the inclusion condition to the object (or tuple) to be

removed. Instead, the generated repair code can simply

rebuild the model to discover the quantifier bindings that

cause the model definition rule to add the object (or tuple)

to the set (or relation). It then uses these discovered

bindings to perform a data structure update that removes

the object (or tuple) or modifies the tuple. In effect, the

repair algorithm uses a lazy repair generation algorithm

that delays the application of the data structure update until

the next model reconstruction.

For example, to repair an incorrect tuple in the Block-

Status relation, the generated repair algorithm starts

rebuilding the model. Whenever model definition rule 6

in Fig. 5 attempts to add the incorrect tuple to the

BlockStatus relation, the repair algorithm stops the

model construction to repair this incorrect tuple. At this

point, the repair algorithm has the quantified variable

bindings that cause model definition rule 6 to add the

incorrect tuple and can use these variable bindings to

perform a data structure update that repairs the incorrect

tuple by setting the element (bbb.bitmap[j]) in the

concrete data structure to the value specified by the model

repair (0 for blocks in the FreeBlock set and 1 for blocks in

the UsedBlock set). Part B of Fig. 8 presents the repaired

file system after these updates have been performed.
Fig. 10 shows the rebuilt abstract model. The repair

algorithm checks the consistency constraints on this model

and finds that the repaired model satisfies all of the

consistency constraints. Therefore, the repair process is

complete and the repair algorithm exits.

In this case, the repair algorithm used the redundant

information in the file system to regenerate the bitmap

block without losing information. In general, the repair

algorithm will produce a consistent data structure that

satisfies the consistency constraints and is heuristically

close to the original inconsistent data structure. Of course,

the new consistent data structure may differ from the data

structure that a (hypothetical) correct application would

have produced, especially if the inconsistent data structure

contains less information.

2.3 Repair Dependence Graph

A basic issue in ensuring repair termination is that repairing

one constraint may cause the repair algorithm to violate

another constraint. If the repair of the newly violated

constraint, in turn, causes the originally repaired constraint

to become violated, there is an infinite repair loop. The

compiler uses a repair dependence graph to reason about

termination (see Section 5.3). The edges in this graph

capture any invalidation effects that the repair of one

constraint may have on other constraints; the absence of

cycles in this graph guarantees that all repairs will

terminate.
If this graph contains cycles, it may be possible to remove

these cycles by pruning nodes (and therefore the corre-

sponding repair actions) from the graph, provided that

other repair actions can be used to satisfy the corresponding

constraint. This pruning step potentially eliminates desir-

able repair actions in favor of less desirable repair actions

(that potentially delete objects). However, the developer

obtains a termination guarantee by pruning the repair

actions. We believe that this trade-off is worthwhile—

without a termination, guarantee the generated repair

algorithm may loop when it is deployed.

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 939

Fig. 10. Repaired model.

3 OVERVIEW OF REPAIR ALGORITHM

At this point, we have presented a file system example that
illustrates the operation of the repair algorithm. We next
present the repair algorithm in more detail. Our compiler
generates repair algorithms that use the following basic
repair strategy:

1. Initial Model Construction. The repair algorithm
constructs an abstract model.

2. Inconsistency Detection. The repair algorithm eval-
uates the consistency constraints. If the repair
algorithm finds a violation, it proceeds to the next
step. Otherwise, the data structure is consistent and
the repair process exits.

3. Conjunction Selection. The repair algorithm selects
one of the conjunctions in the disjunctive normal
form of the violated constraint. It will ensure that the
constraint holds by repairing the atomic proposi-
tions in this conjunction. The conjunction choice can
be controlled by the developer or by a cost function
that assigns a cost to the repair of each atomic
proposition.

4. Model Repair. For each violated atomic proposition
in the conjunction, the repair algorithm performs an
abstract repair on the model. These model repairs
either add or remove objects (or tuples) from sets (or
relations) to satisfy the violated atomic propositions.

5. Data Structure Updates. The repair algorithm
must perform data structure updates to implement
the model repair. If the repair algorithm performs
a model repair that adds an object (or tuple) to a
set (or relation), it immediately performs the
corresponding data structure update. If an update
removes an object (or tuple) from a set (or relation)
or atomically modifies a relation, the repair
algorithm records that this data structure update
should be performed when the model is rebuilt.
Delaying these data structure updates enables the
specification compiler to generate data structure
updates without knowing the specific quantifier
bindings for the model definition rules. Step 6
performs any delayed data structure updates as it
rebuilds the model.

6. Model Update. The repair algorithm performs the
model construction described in Step 1. Whenever
an object (or tuple) is added to a set (or relation), the
repair algorithm checks if the object (or tuple) was in
the set (or relation) in the previous version of the
model from Step 4. If the object (or tuple) was not in
the set (or relation), the repair algorithm checks if a
specific data structure update has been recorded for
the given object (or tuple) and set (or relation). If one
has, the repair algorithm performs that data struc-
ture update as described in Step 5. Otherwise, it
checks if a compensation update exists for the rule
responsible for the addition of the new object (or
tuple). Compensation updates are used to make data
structure updates more precisely implement the
corresponding model repair and are describe in
more detail in Section 3.3.4. If one exists, the repair
algorithm performs the compensation update in the

same manner as Step 5. If the repair algorithm
performs any updates, it recomputes the model.
Once the repair algorithm completes this recompu-
tation, it deletes the old model and deletes the
updates recorded for objects or tuples. Then, it
proceeds to Step 2.

The remainder of this section discusses this algorithm in
more detail. Section 3.1 discusses Step 1, Section 3.2
discusses Step 2, and Section 3.3 discusses Steps 3 through 6.

3.1 Model Construction

The model definition rules specify a translation from the
concrete data structures to an abstract model. The model
construction phase constructs the abstract model by
evaluating the model definition rules applied to the
concrete data structure.

In our experience, model definition rules sometimes
contain expressions that do not depend on the quantified
variables. A naive implementation would reevaluate these
expressions for each quantifier binding. Our specification
compiler implements the standard loop invariant hoisting
optimization. When the specification compiler determines
that an expression does not depend on a quantified
variable, it lifts the evaluation of that expression outside
of the given quantifier evaluation. For example, this
algorithm would hoist the evaluation of map.xsize out-
side of the quantifiers in the model definition rule

for t in GRID; for x ¼ 0 to map:xsize;

for y ¼ 0 to map:ysize� 1;

true ¼> t:grid½xþ ðy � map:xsize� in TILE:

This optimization corresponds to loop-invariant code
motion.

We next discuss how we address the two significant
complications in this process: the presence of negation in
the model definition rules and the possibility that pointers
to data structures may be corrupted.

3.1.1 Negation and the Rule Dependence Graph

Sometimes it is useful to construct a set of objects that do
not satisfy some property. For example, a developer may
define an active set of objects that participate in a given data
structure and then use negation to specify a free set that
contains objects that are not in the active set. Negation
complicates model construction because it may introduce a
nonmonotonicity into the fixed point computation that
constructs the relational model.

To address this issue, we allow negation only when a
model definition rule’s negated inclusion constraint does
not depend directly on the set or relation constructed by
that model definition rule or indirectly on this set or
relation through the actions of other model definition
rules. For example, this restriction would prevent a
developer from writing the model definition rule for s

in S, !ðs in TÞ ¼> s in T. For a given model definition rule
with negated dependences on sets and/or relations, this
restriction allows the model construction algorithm to
completely construct those sets and/or relations before
performing the fixed-point computation that evaluates the

940 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

given model definition rule. Because these sets and/or
relations are completely constructed, negation of inclusion
constraints that reference them does not affect the fixed
point computation.

We formalize this constraint using the concept of a rule
dependence graph. There is one node in this graph for each
rule in the set of model definition rules. There is a directed
edge between two rules if the inclusion constraint from the
first rule adds objects or tuples to a set or relation used in
the quantifiers or guard of the second rule. If the graph
contains a cycle involving a rule with a negated inclusion
constraint in the disjunctive normal form of its guard, the
set of model definition rules is not well-founded and we
reject it. Given a well-founded set of constraints, our model
construction algorithm performs one fixed point computa-
tion for each strongly connected component in the rule
dependence graph, with the computations executed in an
order compatible with the dependences between the
corresponding groups of rules.

3.1.2 Pointers

Depending on the declared type in the corresponding
structure declaration, an expression of the form E:f in a
model definition rule may be a primitive value (in which
case, E:f denotes the value), a nested struct contained
within E (in which case, E:f denotes a reference to the
nested struct), or a pointer (in which case, E:f denotes a
reference to the struct to which the pointer refers). It is, of
course, possible for the data structures to contain pointers
that reference unallocated memory or pointers that overlap
with other objects. We next describe how we extend the
model construction algorithm to deal with these invalid
pointers.

First, we instrument the memory management system to
produce a trace of operations that allocate and deallocate
memory (examples include malloc, free, mmap, and
munmap). We augment this trace with information about
the call stack and segments containing statically allocated
data, then construct a map that identifies valid and invalid
regions of the address space.

We next extend the model construction algorithm to
check that each struct accessed via a pointer is valid
before the model construction algorithm inserts the struct
into a set or a relation. All valid structs reside completely
in allocated memory. In addition, if two structs overlap,
one must be completely contained within the other and the
declarations of both structs must agree on the format of
the overlapping memory. This approach ensures that only
valid structs appear in the model. If two data structures
illegally overlap, the repair algorithm nullifies the reference
to one of the data structures. This guarantees that write
operations to one data structure will not corrupt the other
data structure and that the model construction algorithm is
deterministic.

We coded our model construction algorithm with
explicit pointer checks so that it can traverse arbitrarily
corrupted data structures without generating any illegal
accesses. It also uses a standard fixed point approach to
avoid becoming involved in an infinite data structure
traversal loop.

3.2 Consistency Checking

Once our tool has constructed an abstract model, it executes
the consistency checking algorithm on this model. For each

model constraint, the checking algorithm iterates through
the legal quantifier bindings. The checking algorithm then
evaluates the constraints. If the consistency checking
algorithm finds a constraint violation, the repair algorithm
performs repairs as described in Section 3.3.

3.3 Repairing a Single Constraint

The inconsistency detection algorithm iterates over all
values of the quantified variables in the consistency
constraints, evaluating the body of the constraint for each
possible combination of the values. If the body evaluates to

false, the algorithm has detected a violation and has
computed an explicit set of bindings for the quantified
variables that causes the constraint body to evaluate to false.
To generate a repair action for a constraint, the compiler
converts the constraint to disjunctive normal form (disjunc-

tions of conjunctions of atomic propositions) and then
generates code that performs steps 3 through 6 in the repair
algorithm description given in the beginning of Section 3.
The steps from repair algorithm that are used to repair a
single constraint violation are listed below:

1. Conjunction or Quantifier Selection. Satisfying all
of the atomic propositions in any of the constraint’s
conjunctions will ensure that the constraint is
satisfied. Alternatively, the repair algorithm may
remove an object (or tuple) from a set (or relation)
that the constraint is quantified over to eliminate the
quantifier binding that makes the constraint false.
The first step is therefore to either select a conjunc-
tion to satisfy or an object (or tuple) to remove from
a set (or relation) that the constraint quantifies over.

2. Model Repair. Each atomic proposition has a set of
model repair actions that, when performed, ensure
that the atomic proposition is satisfied. The next step
is therefore to perform these repair actions.

3. Data Structure Updates. The repair algorithm uses a
set of data structure updates to implement each
model repair action; the model definition rules
determine the specific set of updates.

4. Model Update and Compensation Updates. The
repair algorithm rebuilds the model as previously
described. While rebuilding the model, the repair
algorithm performs data structure updates that
remove objects (or tuples) from sets (or relations),
data structure updates that modify tuples, and any
compensation updates.

Data structure updates may have additional
effects beyond the desired model repair that cause

the model to change in undesirable ways, specifi-
cally by adding objects to sets or tuples to relations.
It is sometimes possible to generate updates that
prevent these additional effects by performing
additional compensation updates that falsify the
guards in the model definition rules that caused the

additions to take place. Such updates more precisely
implement the desired model repair.

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 941

At this point, the algorithm has repaired a particular
violated constraint. However, some constraints may still be
violated and the data structure updates may have violated
additional constraints. The repair algorithm therefore
rebuilds the model and repairs any new or remaining
violated constraints. We next discuss model repair actions
in more detail.

3.3.1 Model Repair Actions

The model repair action taken to repair a violated atomic
proposition depends on the form of the proposition. The
generated repair algorithm performs the following model
repairs for the atomic propositions:

. Size Propositions. For size propositions, such as
sizeðBlockBitmapÞ ¼ 1, the generated repair algo-
rithm simply adds or removes the minimal number
of objects (or tuples) to or from the appropriate set
(or relation) necessary to satisfy the proposition.

. Inequalities. For inequality propositions, such as
i:ReferenceCount ¼ sizeðInodeOf:iÞ, the generated
repair algorithm computes the right-hand side of the
inequality, adds or subtracts 1 if the comparison is a
greater than or less than comparison, and then assigns
this value to the left-hand side of the inequality. For
the not equals inequality, the specification compiler
currently generates code that adds one to the right-
hand side and assigns this value to the left-hand
side. Note that the compiler rewrites the compar-
ison operation of a negated inequality to remove
the negation.

In general, inequalities can be solved by modify-
ing the relations that appear on the right-hand side.
Our specification compiler does not currently gen-
erate such repair actions. However, the user can
always rewrite the constraint so that these relations
appear on the left-hand side instead.

. Inclusion Propositions. To make an inclusion
proposition true, the generated repair algorithm
adds the specified object (or tuple) to the specified
set (or relation). To make an inclusion proposition
false, the generated repair algorithm removes the
specified object (or tuple) from the specified set (or
relation).

We next discuss how the compiler uses goal-directed
reasoning to translate model repairs into actions that
correctly update the concrete data structures.

3.3.2 Updates that Add Objects or Tuples

Given a model repair that adds an object (or tuple) to a set
(or relation), the compiler finds all model definition rules
that contain an inclusion constraint that may cause the
object (or tuple) to be added to the set (or relation). The goal
is to synthesize a set of data structure updates that cause the
guard of one of these rules to be satisfied, which in turn
ensures that the object (or tuple) is in the set (or relation).

We normalize the guards to disjunctive normal form. For
each combination of model definition rule that may cause
an object (or tuple) to be added to a set (or relation) and
conjunction in the DNF form the rule’s guard, the compiler
matches the inclusion condition in the model definition rule

to the object (or tuple) to be added, then generates code that
performs updates to the data structure to ensure that all of
the propositions in the conjunction are true and that the
model definition rule’s inclusion condition is equal to the
object (or tuple) to be added. The specific update depends
on the form of the proposition; e.g., for inequality
propositions such as v:f < E, the update computes E,
subtracts 1 from E to generate a value that satisfies the
proposition, then assigns this value to v:f.

To generate code that performs an update that adds a
new object (or tuple) to a set (or relation) using a model
definition rule, the compiler needs to know what objects the
quantified variables should be bound to. The compiler
resolves these bindings using one of two different strategies:

. If a set (or relation) that the model definition rules
quantifies over contains at most one object (or tuple),
then the corresponding variable binding is trivially
equal to the only object (or tuple) in that set (or
relation).3

. The compiler can match expressions in the inclusion
condition of the model definition rule to the object
(or the appropriate half of the tuple) to be added.
This generates equations that may specify a quanti-
fied variable in terms of the object (or tuple) to be
added.4 For example, consider the task of using the
model definition rule for n in N, n:x > 0 ¼> <
n; n:x > in R to generate a data structure update that
adds the tuple ho; 3i to R. The compiler would match
the expressions in the inclusion condition of this rule
to the members of the tuple to be added to generate
the equations n ¼ o and n:x ¼ 3. Note that the first
equation provides the binding for the variable n in
terms of the tuple to be added.

Finally, it is possible for one operation in an update to
change state that is referenced by another operation in the
update. In principle, this interference could cause an update
to invalidate the change performed by another update. The
specification compiler handles this issue by constructing a
dependence graph between the various operations, then
topologically sorting this graph. If the graph contains cyclic
dependences, the specification compiler rejects the update.
Otherwise, the compiler generates code that performs the
operations in the update in the topological sort order. This
order ensures that the updated state correctly contains the
effects of all of the operations.

3.3.3 Updates that Remove Objects or Tuples

The compiler uses a similar strategy to implement repairs
that remove an object (or tuple) from a set (or relation),
with one major simplification: It is not necessary to match
the expressions in the inclusion condition to the object (or
tuple) to be removed or the tuple to be modified. Instead,
the generated repair code can simply rebuild the model
to discover the quantifier bindings that cause the model

942 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

3. If there is no other constraint that the given set (or relation) must
contain this element, the update may have to perform an abstract repair that
adds an object (or tuple) to the set (or relation).

4. Note that the compiler may need to generate additional model repairs
that ensure that the objects are included in the sets that the model definition
rule quantifies over.

definition rule to add the object (or tuple) to the set (or
relation). It then uses these discovered bindings to
perform a data structure update that removes the object
(or tuple) or modifies the tuple. In effect, the repair
algorithm uses a lazy repair generation algorithm that
delays the application of the data structure update until
the next model reconstruction.

To generate a data structure update that removes an
object (or tuple), the specification compiler chooses a set of
propositions that includes at least one proposition from
each conjunction of each rule that could cause the object (or
tuple) to appear in the set (or relation). It then generates
actions that falsify the propositions in this set. Finally, the
compiler checks that there is no dependence cycle between
propositions that use and define the same field or variable.
The compiler generates a data structure update that satisfies
the corresponding set of propositions in a dependence-
preserving order.

3.3.4 Compensation Updates

Consider a set of concrete data structure updates whose
intended effect is to add an object to a set in the abstract
model. These updates satisfy the guard of the model
definition rule that adds the object to the set. But these
updates may also have unintended side effects. For
example, they may affect the guards of other model
definition rules, which may in turn cause other undesirable
changes to the model. It is sometimes possible to generate
more precise updates that prevent these changes by
performing additional compensation updates that falsify
the guards in the model definition rules that caused the
additions to take place.

Therefore, we augment our translation algorithm to
analyze the model definition rules to, when possible,
automatically generate additional compensation updates
to eliminate the additional effects. When a model definition
rule may be affected by a data structure update, our
algorithm examines that rule to derive additional updates
that restore its original value. The net effect is to improve
the precision of the translation by synthesizing larger, more
precise data structure updates for each model repair.

4 DEVELOPER CONTROL OF REPAIRS

The repair algorithm often has multiple options for how to
satisfy a given constraint; these options may translate into
different repaired data structures. We recognize that some
repair actions may produce more desirable data structures
than other repair actions, and that the developer may wish
to influence the repair process. We have therefore provided
the developer with several mechanisms that he or she can
use to control how the repair algorithm chooses to repair an
inconsistent data structure.

4.1 Controlling the Repair Actions

The developer can specify that the repair algorithm should
not modify certain fields, sets, or relations. The repair
algorithm can then provide feedback that characterizes the
inconsistencies that can be repaired without modifying
these elements. The developer can provide hand-coded
routines to repair certain consistency violations.

4.2 New Objects

A repair action may need a source of new objects to add
to sets to bring them up to the specified size. As
illustrated in Section 2, other sets (as specified in the
set and relation definition) are one potential source. For
primitive types, such as integers, the action can simply
synthesize new values. For structs, memory allocation
primitives are a potential source of new objects. The
developer can specify the source of the object; a typical
source is a memory allocator or another set of objects. We
similarly allow the developer to control the source of
tuples added to relations. In the absence of such
guidance, the compiler uses heuristics to choose a source.

4.3 Invoking Check and Repair

Our system supports several mechanisms for invoking the
consistency check and repair algorithm. One issue is that
many correct data structure updates temporarily violate the
consistency properties, then restore the properties as they
complete. We must ensure that the check and repair does
not interfere with such correct updates.

Our first mechanism is simply to enable the programmer
to identify points in the program where he or she expects
the data structures to be consistent. At each such point, the
repair algorithm executes to find and repair any incon-
sistencies. An alternate mechanism augments the program
to catch signals from faults such as divide by zero and
segmentation fault violations. Because such faults are often
caused by inconsistent data structures, the signal handler
invokes the check and repair algorithm, then resumes the
execution at the nearest consistent point. It is of course
possible to use both of these mechanisms in the same
program.

For persistent data structures, we generate a stand-alone
version that reads in the data structure from persistent
storage, repairs any consistency violations, then writes the
data structure back out. This version can execute indepen-
dently of other applications that access the data structure, or
it can be integrated with these applications to perform the
check and repair immediately after a data structure is
written out or immediately before it is read back in.

5 THE REPAIR DEPENDENCE GRAPH

We have presented our core repair algorithm. However, we
have not yet discussed how our specification compiler
determines that a generated repair algorithm terminates.
The specification compiler constructs a repair dependence
graph hN;Ei to reason about the termination of the repair
algorithm. Nodes in this graph represent conjunctions in
the DNF of the consistency constraints, repair actions, and
model definition rules. One node has a dependence on a
second node if the repair algorithm may be required to
performed the event represented by the first node as a
result of the event represented by the second node, or if the
event represented by the first node may occurs as a result of
the event represented by the second node. For example, we
say that a data structure update depends on the corre-
sponding model repair, because the repair algorithm may
have to perform the data structure update to implement the
model repair. Note that events in an individual repair

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 943

follow paths on the graph. For example, the repair
algorithm decides to repair a conjunction; then it performs
a model repair; then it implements this model repair by
performing the corresponding data structure update, which
may change the scope of model definition rules; and finally
the repair algorithm may perform compensation updates to
counteract these scope changes. This chain of events
corresponds to the paths on the repair dependence graph
that start from the model conjunction.

Edges capture dependences between the consistency
constraints, repair actions, model definition rules, and
choices in the repair process. In particular, an edge may
denote that the repair of a constraint requires a given model
repair, that the implementation of a model repair requires a
given data structure update, that performing a repair action
may affect what objects (or tuples) model definition rules
add to sets (or relations), or that a repair action or change in
a model definition rule’s scope may violate a constraint. The
absence of cycles in the repair dependence graph ensures
that the corresponding repair algorithm will not perform
any infinite repair sequences and therefore terminates.

5.1 Nodes in Role Dependence Graph

The graph contains the following nodes:

. Model conjunction nodes. In disjunctive normal
form, each consistency constraint Ci is of the form

Ci ¼ Qi1; . . . ; Qim

_jmax

j
Cij;

where Qi1; . . .Qim are quantifiers. There is one
node Nij for each conjunction Cij in the model
constraint Ci and an additional node Nij0 , where j0 ¼
jmax þ l for each quantifier Qil in the consistency
constraint.

. Model repair nodes. For each atomic propositionCijk
in each conjunctionCij, there is a set of nodes

S
lfAijklg

corresponding to the model repair actions that the
repair algorithm may use to repair that atomic
proposition. There are also two model repair nodes
Ar for each set and relation, one to model insertions
and the other removals.

. Data structure update nodes. There is a set of data
structure update nodes

S
mfRijklmg for each model

repair node Aijkl in the graph. These update nodes
represent the concrete data structure updates that
implement the repair. There is also a similar set of
nodes

S
sfRrsg for each model repair node Ar.

. Increase and decrease scope nodes. For each model
definition ruleMw, there is an increase scope node Sw
and a decrease scope node Fw. These nodes represent
the side effects that an update has on the model
definition rules—in particular, that a data structure
update may increase the scope of a model definition
rule (i.e., cause the model definition rule to add a
new object to a set or a new tuple to a relation) or
decrease the scope of a model definition rule (i.e.,
cause the removal of an object from a set or a tuple
from relation).

. Consequence and compensation nodes. For each
model definition rule Mw, there is a pair of rule
consequence nodes CwT and CwF that represent the

consequences of increasing or decreasing the scope
of a given model definition rule. For each model
definition rule, there is a set of compensation update
nodes

S
zfRwzg that represent compensation updates

that may be used to prevent the undesired scope
increase of a model definition rule.

5.2 Edges in the Graph

This section provides only an overview of how the
specification compiler generates the edges in the repair
dependence graph. More details are provided in Demsky’s
thesis [15].

The edges E in the repair dependence graph represent
how the model and data structure repairs may affect other
parts of the model and data structures. The important
dependence chains flow

1. from repaired conjunctions to conjunctions that the
repairs may falsify,

2. from repaired conjunctions to quantifiers whose
scope the repair may increase or decrease,

3. from data structure updates to conjunctions that the
update may falsify, and

4. from data structure updates to quantifiers whose
scope the repair may increase or decrease.

For example, there is an edge hNij; Aijkli 2 E from each
model conjunction node Nij to each abstract repair node
Aijkl that may repair one of the atomic propositions in the
conjunction. There are other edges to capture dependences
between each of the different classes of nodes. The graph
contains edges to model the following dependences:

5.2.1 Model Repair Effects

There must be an edge from a model repair node to a
conjunction node if the model repair may falsify the
conjunction. The compiler uses a procedure that determines
if the repair of a first atomic proposition may falsify a
second atomic proposition (this proposition is taken from
the conjunction that the repair of the first proposition may
falsify).

5.2.2 Data Structure and Compensation Updates

Performing an update changes the concrete data structure.
This change may cause additional increases or decreases in
the scopes of the model definition rules. The repair
dependence graph must contain edges from data structure
update and compensation update nodes that reflect these
changes. The default rule is that updating a field f in the
concrete data structures may either decrease or increase the
scope of any model definition rule that uses f, requiring an
insertion of a corresponding edge in the repair dependence
graph. The algorithm implements exceptions to this rule
(and omits the corresponding edges in these cases) for
initial additions to a set, updates that effect only a single
binding of a model definition rule, and recursive data
structures.

5.2.3 Scope Increases and Decreases

Increases or decreases in the scope of a model definition
rule may change the abstract model. In particular, if the
change in scope of a model definition rule causes an object

944 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

(or tuple) to be added to or removed from a set (or relation),
the resulting change in the model may falsify consistency
constraints that depend on the set (or relation) or cause
additional changes in the scopes of other model definition
rules. The repair dependence graph contains edges that
account for these possibilities.

5.3 Termination

By construction, the edges in the graph capture all of the
repair dependences of the repair algorithm. As a result, the
transitive closure of the edges from a conjunction node
captures all of the possible effects of repairing that model
conjunction. Any infinite repair sequence therefore shows
up as a cycle.

The repair dependence graph must be acyclic with the
exception of cycles that contain scope decrease and
consequence nodes only, cycles that contain scope increase
and consequence nodes only, or cycles that are not reach-
able from the model conjunction nodes. Note that these
cycles do not affect termination as scope decrease cycles
have no work associated with them, scope increase cycles
can only discover as many objects as exist in the heap, and
the actions in unreachable cycles are never used. The repair
algorithm generator may remove model conjunction nodes,
data structure update nodes, and consequence/compensa-
tion update nodes to satisfy these cyclity constraints. The
generated repair algorithm never performs the repair
actions that correspond to the deleted nodes. The final
graph must satisfy the following conditions in order to
ensure that repairs exist for violated constraints: 1) There is
at least one model conjunction node for each constraint in
the model, 2) each abstract repair node has at least one edge
to a data structure update, and 3) each scope increase or
decrease node has at least one edge to a consequence or
compensation update node.

6 EXPERIENCE

We next discuss our experience using our repair tool to
detect and repair inconsistencies in data structures from
several applications: a word processor, a parallel x86
emulator, an air-traffic control system, a Linux file system,
and an interactive game.

6.1 Methodology

We implemented our data structure repair algorithm. This
implementation consists of approximately 20,800 lines of
Java code and C code; the implementation compiles
specifications into C code that performs the consistency
checks and (if necessary) repairs the data structures. The
source code for the tool and sample specifications are
available at http://www.cag.lcs.mit.edu/~bdemsky/
repair. We ran the applications (with the exception of the
parallel x86 emulator) on an IBM ThinkPad X23 with an
866 MHz Pentium III processor, 384 MB of RAM, and
RedHat Linux 8.0.

For each application, we identified important consis-
tency constraints and developed a specification that
captured these constraints. We also obtained a workload
that caused the application to generate corrupt data
structures. When possible, the workload triggered a known

programming error. In other cases, we used fault insertion
to mimic either the effect of a previously corrected
programming error or a common data structure incon-
sistency source. We then compared the results of running a
chosen workload with and without inconsistency detection
and repair.

6.2 AbiWord

AbiWord is a full-featured word processing program
available at www.abisource.com. It consists of over
360,000 lines of C++ code and can import and export many
file formats, including Microsoft Word documents. It uses a
piece table data structure to internally represent documents.
The piece table contains a doubly linked list of the
document fragments. A consistent piece table contains a
reference to both the head and the tail of the doubly linked
list of document fragments. A consistent fragment contains
a reference to the next fragment in the list and a reference to
the previous fragment in the list. Furthermore, a consistent
list of fragments contains both a section fragment and a
paragraph fragment. We developed a specification for the
piece table data structure. Our specification consists of
94 lines, of which 70 contain structure definitions.5

A bug in version 0.9.5 (and all previous versions) of
AbiWord causes AbiWord to attempt to append text to a
piece table which lacks a section fragment or a paragraph
fragment. This bug is triggered by importing certain valid
Microsoft Word documents, causing AbiWord to fail with a
segmentation violation when the user attempts to load the
document. We obtained such a document and used our
system to enhance AbiWord with data structure repair as
described in this paper. Our experimental results show that
data structure repair enables AbiWord to successfully open
and manipulate the document. Further inspection reveals
that loading this document causes AbiWord to attempt to
append text to an (inconsistent) empty fragment list. Our
repair algorithm detects the attempt to append text to the
empty list and repairs the inconsistency by adding a section
fragment and a paragraph fragment, breaking any cycles in
the fragment list, connecting the fragments using their next
fields, pointing the prev field of each fragment to the
previous fragment, and redirecting the head pointer to the
beginning of the list and the tail pointer to the end of the
list. The result of this repair is that AbiWord is able to
successfully append the text to the list and continue on to
read and edit Word documents without the loss of any
information. Without repair, AbiWord fails as it attempts to
read in the document.

6.3 Parallel x86 Emulator

The parallel x86 emulator is a software-based x86 emulator
that runs x86 binaries on the MIT RAW machine [50]. The
x86 emulator uses a tree data structure to cache translations
of the x86 code. To efficiently manage the size of the cache,

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 945

5. To reduce specification overhead, we developed a structure definition
extraction tool that uses debugging information in the executable to
automatically generate the structure definitions. This tool works for any
program that can be compiled with Dwarf-2 debugging information. For
AbiWord, we used this tool to automatically generate all of the data
structure definitions. The total specification effort for this application
therefore consisted of 24 lines of model definition rules and model
constraints.

the emulator maintains a variable that stores the current
size of the cache. A bug in the tree insertion method,
however, causes (under some conditions) the cache man-
agement code to add the size of the inserted cache item to
this variable twice. When this item is removed, its size is
subtracted only once. The net result of inserting and
removing such an item is that the computed size of the
cache becomes increasingly larger than the actual size of the
cache. The end result is that the emulator eventually crashes
when it attempts to remove items from an empty cache.

We developed a specification that ensures that the
computed size of the cache is correct. Our specification
consists of 110 lines, of which 90 contain structure
definitions. Our test workload ran gzip on the x86 emulator.
Without repair, the emulator stops with a failed assertion.
With repair, the emulator successfully executes gzip.

6.4 CTAS

The Center-TRACON Automation System (CTAS) is a
set of air-traffic control tools developed at the NASA
Ames research center [1]. The system is designed to help
air traffic controllers visualize and manage complex air
traffic flows. The current source code consists of more
than 1 million lines of C and C++ code. Versions of this
source code are deployed in the continental United States
and are in daily use. CTAS maintains data structures that
store aircraft data. Our experiments focus on the objects that
store the flight plans. These flight plan objects contain both
an origin and destination airport identifier. The software
uses these identifiers as indices into an array of airport data
structures. Flight plans are transmitted to CTAS as a long
character string. The structure of this string is somewhat
complicated, and parsing the flight plan string is a
challenging activity.

Our fault insertion methodology attempts to mimic
errors in the flight plan processing that produce illegal
values in the flight plan data structures. When the program
uses these illegal values to access the array of airport data,
the array access is out of bounds, which typically leads to
the program failing because of an addressing error. Our
specification captures the constraint that the flight plan
indices must be within the bounds of the airport data array.
The specification itself consists of 101 lines, of which 84 lines
contain structure definitions. The primary challenge in
developing this specification was reverse engineering the
source to develop an understanding of the data structures.
Once we understood the data structures, developing the
specification was straightforward.

We used a recorded midday radar feed from the Dallas-
Ft. Worth center as a workload. Without repair, CTAS fails
because of an addressing exception. With repair, it con-
tinues to execute in a largely acceptable state. Specifically,
the effect of the repair is to potentially change the origin or
destination airport of the aircraft with the faulty flight plan.
Even with this change, continued operation is clearly a
better alternative than failing. First, one of the primary
purposes of the system, visualizing aircraft flow, is
unaffected by the repair. Second, only the origin or
destination airport of the plane whose flight plan triggered
the error is affected. All other aircraft are processed with no
errors at all.

Rebooting CTAS after a crash is an inadequate solution.
After a reboot, CTAS takes several minutes to reacquire
flight plans and radar data. Furthermore, there are many
classes of errors which rebooting does not solve: The system
will reacquire the data, reprocess it, and fail again for the
same reason. In particular, CTAS will fail whenever it
reacquires and attempts to process the faulty flight plan.

6.5 Freeciv

Freeciv is an interactive, multiplayer game available at
www.freeciv.org. The Freeciv server maintains a map of the
game world. Each tile in this map has a terrain value chosen
from a set of legal terrain values. Additionally, cities may be
placed on the tiles. Our fault injection strategy changes the
terrain values in pseudorandomly selected tiles 35 times
during the execution of the program. There are two possible
errors: illegal terrain values or cities located on an ocean tile
instead of a land tile. Our repair algorithm repairs these
kinds of errors by assigning a legal terrain value to any tile
with an illegal value and by assigning a land terrain value
to any ocean tiles containing a city. The specification
consists of 191 lines, of which 173 lines contain structure
definitions. The principal challenge in developing this
specification was reverse engineering the Freeciv source
(which consists of 73,000 lines of C code) to develop an
understanding of the data structures. Once we understood
the data structures, developing the specification was
straightforward.

Freeciv comes with a built-in test mode in which several
automated players play against each other. Our workload
simply runs the program in this built-in test mode. The map
was configured to contain 4,000 tiles. With repair, the game
was able to execute without failing (although the game
played out differently than the corresponding error-free
execution because of changed terrain values). Without
repair, the game crashed with a segmentation fault caused
by indexing an array with an illegal terrain value.

6.6 A Linux File System

Our Linux file system application implements a simplified
version of the Linux ext2 file system. This file system is
similar to the one presented in the example, but includes
more aspects of the Linux ext2 file system and more
consistency properties. The file system, like other Unix file
systems, contains bitmaps that identify free and used disk
blocks. The file system uses these disk blocks to support fast
disk block and inode allocation operations. For our
experiments we used a file system with 1,024 disk blocks.
Our consistency specification contains 108 lines, of which
55 lines contain structure definitions. Because the structure
of such file systems is widely documented in the literature,
it was relatively easy for us to develop the specification. In
general, we have found that developing specifications is a
straightforward task once one understands the relevant
data structures.

Our fault insertion mechanism for this application
simulates the effect of a system crash: It shuts down the
file system (potentially in the middle of an operation that
requires several disk writes), then discards the cached state.
Our workload opens and writes several files, closes the files,
then reopens the files to verify that the data was written

946 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

correctly. To apply our fault insertion strategy to this
workload, we crash the system part of the way through
writing the files, then rerun the workload. The second run
of the workload overwrites the partially written files and
then verifies the writes by reading the contents of the files
and comparing them to the previous writes.

In all of our tested cases, the algorithm is able to repair
the file system and the workload correctly runs to
completion. Without repair, files end up sharing inodes
and disk blocks and the file contents are incorrect. In
addition to repairing the errors introduced by our failure
insertion strategy, our tool is also able to allocate and
rebuild the blocks containing the inode and block allocation
bitmaps, allocate a new inode table block, and allocate a
new inode for the root directory. The repair algorithm is
limited in that if the entries describing aspects of basic file
system format (such as the size of the blocks) become
corrupted, the tool may fail to correctly repair the file
system.

6.7 Performance

To evaluate the performance of our consistency check and
repair algorithm, we computed two numbers: 1) the mean
time required to perform a consistency check for a
consistent data structure, and 2) the mean time required
to perform the consistency check and the repair for an
inconsistent data structure (rendered inconsistent via fault
injection). Table 1 presents the mean consistency check
times (over 10 trials) for the different applications and the
mean consistency check and repair times. In general, the
check and repair times are dominated by the model
construction overhead. The check and repair times therefore
correlate with the number of times the repair process
rebuilds the model. For AbiWord, the mean number of
times that the repair algorithm rebuilds the model is 10, for
CTAS the mean is 3, for the file system the mean is 119.2,
while for Freeciv the mean is 4.6. The number of times the
model is rebuilt is, in turn, correlated with the number of
data structure updates that the repair algorithm performs.
The mean number of updates is 7 for AbiWord, 1 for CTAS,
59.1 for the file system, and 1.8 for Freeciv. As these
numbers show, the fault injection strategy for the file
system produces faults that require substantially more data
structure updates to repair.

6.8 Discussion

Our experience indicates that data structure repair can
enable a large class of applications to recover from
otherwise fatal data structure inconsistencies. However,
there are applications for which data structure repair may
be undesirable. For example, data structure repair is likely

to be inappropriate for numerical calculations that must be

absolutely correct and for which the results are not urgently

needed. The following factors determine whether or not

data structure repair may be appropriate:

. High cost of halting. The alternative to data structure
repair is typically to halt the system. For many
applications, halting can result in large financial
losses or even the loss of human life.

. Lack of better options. Some systems can recover
from failures by rebooting or by falling back on a
backup implementation. When these options exist,
they may be preferable to data structure repair.
However, in some circumstances an error in persis-
tent state or a repeatedly activated fault may cause
the system to always crash during or immediately
after a reboot. Backup implementations can be
prohibitively expensive to develop, and may suffer
from the same defects as the primary implementa-
tion. In these situations, data structure repair may be
the most desirable option.

. Acceptable repair actions. In our benchmark appli-
cations, the generated repair actions all resulted in
acceptable changes to the data structures. Other
repair actions may not be acceptable: for example,
repairing a file system by reformatting the disk is
likely to be unacceptable to most users.

. Humans in the loop. Even if a repair action may
seem unacceptable (routing a plane to a different
airport), the presence of humans in the loop may
make the repair action acceptable. Often, human
operators may be able to correct small errors in the
data (especially if the system provides automated
support to locate possibly incorrect data), but may be
unable to function without the software system.

. Well understood consistency properties. Our
benchmark applications all had easily understood
consistency properties. It may difficult to develop
consistency specifications for legacy applications
that manipulate poorly understood data structures.

. Simple consistency properties. Our system is
unable to automatically generate repair algorithms
for some consistency properties. For example, if the
developer specifies a complex system of equations
that must be satisfied, our compiler will fail to
generate a repair algorithm. As a result, the devel-
oper will either have to leave out such properties or
not use data structure repair.

7 RELATED WORK

We survey related work in software error detection [14],

[26], traditional error recovery, manual data structure

repair, and databases.
Reboot [30], potentially augmented with checkpointing

[56], is one approach to error recovery. In the reboot

approach, the user simply reboots a crashed or corrupted

software system. This returns the system to a known

consistent state, the initial state. One drawback of this

approach is that all of the volatile state in the software

system is lost. Database systems use a combination of

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 947

TABLE 1
Time to Check Consistency and Perform Repairs

logging and replay to avoid the state loss normally
associated with rolling back to a previous checkpoint [23].
There has recently been renewed interest in applying many
of these classical techniques in new computational environ-
ments such as Internet services [40] and in extending these
techniques to reboot a minimal set of components rather
than the complete system [10].

Software fault tolerance researchers have developed
many methods to address software failures. Recovery
blocks [7] allow a developer to provide multiple imple-
mentations of a given algorithm and an acceptance test for
these implementations. The system executes the first
implementation and then performs the acceptance test. If
the test passes, the system continues execution. If the test
fails, the system repeats the computation using the second
implementation followed by the acceptance check. If the
acceptance check still fails, the system tries each of the
remaining alternate implementations until either the accep-
tance test passes or the system runs out of implementations
in which case it simply fails. This technique requires the
developer to expend the effort to develop multiple im-
plementations of a given algorithm and an acceptance test
for the recovery block. Furthermore, the recovery block
technique may fail if the algorithms share a common defect
or if there is an error in the acceptance test. Data structure
repair is largely orthogonal to this work. However, our
consistency specifications could be used as an acceptance
test and the recovery block could fall back to data structure
repair instead of aborting.

Backward recovery uses a combination of checkpointing
and acceptance testing (or error detection) to prevent a
software system from entering an incorrect state [56], [41],
[13], [55]. Unfortunately, it can be difficult to handle
external actions, such as vending money from an ATM, in
this framework. Forward recovery uses multiple copies of a
computation to recovery from transient errors [29]. At
various points during the execution, the system compares
the results between the copies. If a difference is detected,
the system starts up another copy of the computation to
verify which copy is correct while continuing to execute the
copies. After the verification computation completes, the
incorrect copies are terminated. Both of these recovery
mechanisms are largely orthogonal to data structure repair;
they are designed to handle transient faults. These methods
cannot recover from deterministic faults as the computation
will either fail repeatedly in the case of backward recovery,
or all copies of the computation will fail in the same way in
the case of forward recovery. Data structure repair may be
able to address deterministic faults that corrupt data
structures.

In N-version programming, the developer constructs a
software system out of multiple, independent implementa-
tions and a decision algorithm to decide which result to use
in the event of a disagreement [8]. N-version programming
can address data structure corruption errors. However,
N-version programming may be prohibitively expensive. It
requires multiple implementations, which must be inde-
pendent enough to not share failure modes but similar
enough to be comparable. Furthermore, the different
versions may still be vulnerable to common mode failures.

Self-checking software is a general term that refers to
software that verifies certain aspects of its own correct
execution [54]. These aspects include the function of a
process, the control sequence of a process, and the data of a
process. The software may then take corrective action to
recover from detected failures. Data structure repair can be
used as a technique to construct self-checking software.

The Lucent 5ESS telephone switch [27], [25], [32], [24]
and IBM MVS operating system [39] use inconsistency
detection and repair to recover from software failures.
Both of these systems contain a set of manually coded
procedures that periodically inspect their data structures
to find and repair inconsistencies. The reported results
indicate an order of magnitude increase in the reliability
of the system [23].

Fsck [5], chkdsk [3], and scandisk detect and repair
inconsistencies in file systems. These hand-coded applica-
tions use domain-specific repairs, such as replicating any
blocks that are shared between files. As a result of these
domain-specific repair actions, the hand-coded file system
repair utilities may preserve more information than our
automatically-generated repair algorithms. While our
automatically-generated repair algorithms do not currently
perform these domain-specific repair actions, some of these
repair actions may be general enough that future versions of
repair system might include them. Finally, the hand-coded
repair algorithms have the potential to be more efficient.
The developers of hand-coded repair algorithms may be
able to incorporate domain specific optimizations (such as
checking certain constraints directly on the data structures)
into these repair algorithms. While we have not performed
any experiments that compare the performance of our
automatically generated repair algorithms to hand-coded
repair algorithms, we expect that developers can more
easily optimize hand-coded repair algorithms. However,
testing and debugging hand-coded repair algorithms may
be more challenging—various implementations of file
system repair utilities have contained serious errors [4], [2].

Researchers have developed several specific linked data
structures, including linked lists and trees, that contain
redundancy to enable detecting and repairing errors [47],
[48], [49], [46], [33]. One downside of this approach is that
the developer must manually design the data structures,
develop extra code to maintain the redundant links, and
code error detection and recovery routines.

Researchers in the area of self-stabilizing algorithms
have developed specific distributed algorithms that even-
tually converge to a stable state in spite of perturbations
[19], [20]. Our research goal differs in that 1) we aim to
provide a general-purpose, specification-based inconsis-
tency detection and repair technology for arbitrary data
structures (as opposed to designing individual algorithms
with desirable constraints), and 2) we are willing to accept
potentially degraded behavior as the price of obtaining this
generality. In some cases, however, our data structure
repair algorithm may make the global program behave in a
self-stabilizing way.

Researchers have incorporated constraint mechanisms
into programming languages. One such system is Kaleido-
scope [36]. Kaleidoscope allows the developer to specify

948 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

constraints that the system should maintain. The developer
is intended to write programs using a hybrid of imperative
style programming and constraints where appropriate.
Another example of a constraint maintenance system as a
programming abstraction is Alphonse [28]. Rule-based
programming [38], [35] is a related technique in which the
developer defines a test condition and an action to take in
response.

Database researchers have developed integrity manage-
ment systems that enforce database consistency constraints.
These systems typically operate at the level of the tuples
and relations in the database, not the lower-level data
structures that the database uses to implement this
abstraction. One approach is to provide a system that
assists the developer in creating a set of production rules
that maintain the integrity of a database [12]. This approach
has been extended to enable the system to automatically
generate both the triggering components and the repair
actions [11]. Researchers have also developed a database
repair system that enforces Horn clause constraints and
schema constraints (which can constrain a relation to be a
function) [51]. Our system supports a broader class of
constraints—logical formulas instead of Horn clauses. It
also supports constraints that relate the value of a field to an
expression involving the size of a set or the size of an image
of an object under a relation. Finally, it uses partition
information to improve the precision of the termination
analysis, enabling the verification of termination for a wider
class of constraint systems.

Some journaling or log-structured file systems are
always consistent on the disk, eliminating the possibility
of file system corruption caused by a system crash [44].
Repair remains valuable even for these systems in that it
can enable the system to recover from file system corruption
caused by other sources such as software errors or
hardware damage.

In our previous research, we have developed a specifica-
tion-based repair system that uses external constraints to
explicitly translate the model repairs to the concrete data
structures [16], [17]. The primary disadvantage of this

approach in comparison with the approach presented in
this paper is a potential lack of repair effectiveness—there is
no guarantee that the external constraints correctly imple-
ment the model repairs and, therefore, no guarantee that the
concrete data structures will be consistent after repair.

8 CONCLUSION

Data structure repair can be an effective technique for
enabling programs to recover from data structure damage
to continue to execute successfully. A developer using our
model-based approach specifies how to translate the
concrete data structures into an abstract model, then uses
the sets and relations in the model to state key data
structure consistency constraints. Our automatically gener-
ated repair algorithm finds and repairs any data structures
that violate these properties. The key results in this paper
include a technique for analyzing the model definition rules
to translate model repairs into data structure updates and
the use of the repair dependence graph to formulate and
solve the repair termination analysis problem. Our experi-
ence indicates that goal-directed data structure repair can
effectively repair otherwise crippling data structure incon-
sistency errors and enable systems to continue to execute.
This approach promises to substantially reduce the devel-
opment costs and increase the effectiveness of data
structure repair, enabling its application to a wider range
of software systems.

APPENDIX

See Fig. 11, Fig. 12, Fig. 13, and Fig. 14.

ACKNOWLEDGMENTS

This is a revised and extended version of the paper that
appeared in the Proceedings of the 2005 International

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 949

Fig. 11. Structure definition language.

Fig. 12. Set and relation declarations.

Fig. 13. Model definition language.

Fig. 14. Consistency constraint language.

Conference on Software Engineering [18]. The authors would

like to thank David Wentzlaff for his help with the MIT

RAW x86 emulator. They would also like to thank the

anonymous referees and the two editors, Dr. William

Griswold and Dr. Bashar Nuseibeh, for their criticism and

feedback.

REFERENCES

[1] “Center-Tracon Automation System,” http://www.ctas.arc.nasa.
gov/, 2006.

[2] “Changelog in Reiserfsprogs Distribution,” http://ftp.namesys.
com/pub/reiserfsprogs/, 2006.

[3] “Chkdsk,” http://www.microsoft.com/resources/
documentation/windows/XP/all/proddocs/en-us/chkdsk.
mspx?mfr=true, 2006.

[4] “E2fsprogs Release Notes,” http://e2fsprogs.sourceforge.net/
e2fsprogs-release.html, 2006.

[5] “Ext2 fsck Manual Page,” http://e2fsprogs.sourceforge.net/,
2006.

[6] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A.
Tevanian, and M. Young, “Mach: A New Kernel Foundation for
UNIX Development,” Proc. USENIX Summer Conf., 1986.

[7] T. Anderson and R. Kerr, “Recovery Blocks in Action: A System
Supporting High Reliability,” Proc. Second Int’l Conf. Software Eng.,
pp. 447-457, 1976.

[8] A. Avizienis, “The Methodology of N-Version Programming,”
Software Fault Tolerance, M.R. Lyu, ed., pp. 23-46, Wiley, 1995.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,”
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 1, pp. 11-
33, Jan.-Mar. 2004.

[10] G. Candea and A. Fox, “Recursive Restartability: Turning the
Reboot Sledgehammer into a Scalpel,” Proc. Workshop Hot Topics in
Operating Systems (HotOS-VIII), pp. 110-115, May 2001.

[11] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca, “Automatic
Generation of Production Rules for Integrity Maintenance,” ACM
Trans. Database Systems, vol. 19, no. 3, Sept. 1994.

[12] S. Ceri and J. Widom, “Deriving Production Rules for Constraint
Maintenance,” Proc. Int’l Conf. Very Large Data Bases, pp. 566-577,
1990.

[13] K. Chandy and C. Ramamoorthy, “Rollback and Recovery
Strategies,” IEEE Trans. Computers, vol. 21, no. 2, pp. 137-146,
Feb. 1972.

[14] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S. Pasareanu,
Robby, and H. Zheng, “Bandera : Extracting Finite-State Models
from Java Source Code,” Proc. 22nd Int’l Conf. Software Eng., 2000.

[15] B. Demsky, “Data Structure Repair Using Goal-Directed Reason-
ing,” PhD thesis, Massachusetts Inst. of Technology, Jan. 2006.

[16] B. Demsky and M. Rinard, “Automatic Detection and Repair of
Errors in Data Structures,” Proc. 18th Ann. Conf. Object-Oriented
Programming Systems, Languages and Applications, Oct. 2003.

[17] B. Demsky and M. Rinard, “Static Specification Analysis for
Termination of Specification-Based Data Structure Repair,” Proc.
14th IEEE Int’l Symp. Software Reliability Eng., Nov. 2003.

[18] B. Demsky and M. Rinard, “Data Structure Repair Using Goal-
Directed Reasoning,” Proc. 2005 Int’l Conf. Software Eng., May 2005.

[19] E.W. Dijkstra, “Self-Stabilization in Spite of Distributed Control,”
Comm. ACM, vol. 17, no. 11, pp. 643-644, 1974.

[20] S. Dolev, Self-Stabilization. MIT Press, 2000.
[21] R. Ghiya and L.J. Hendren, “Is It a Tree, a Dag, or a Cyclic Graph?

A Shape Analysis for Heap-Directed Pointers in C,” Proc. 23rd
ACM SIGPLAN-SIGACT Symp. Principles of Programming Lan-
guages, 1996.

[22] A.L. Goel, “Software Reliability Models: Assumptions, Limita-
tions, and Applicabity,” IEEE Trans. Software Eng., vol. 11, no. 12,
Dec. 1985.

[23] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[24] T. Griffin, H. Trickey, and C. Tuckey, “Generating Update
Constraints from PRL 5.0 Specifications,” Preliminary Report
Presented at AT&T Database Day, Sept. 1992.

[25] N.K. Gupta, L.J. Jagadeesan, E.E. Koutsofios, and D.M. Weiss,
“Auditdraw: Generating Audits the FAST Way,” Proc. 19th Int’l
Conf. Software Eng., 1997.

[26] S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A System and
Language for Building System-Specific, Static Analyses,” Proc.
SIGPLAN ’02 Conf. Program Language Design and Implementation,
2002.

[27] G. Haugk, F. Lax, R. Royer, and J. Williams, “The 5ESS(TM)
Switching System: Maintenance Capabilities,” AT&T Technical J.,
vol. 64, no. 6, part 2, pp. 1385-1416, July-Aug. 1985.

[28] R. Hoover, “Incremental Computation as a Programming Abstrac-
tion,” Proc. SIGPLAN ’92 Conf. Program Language Design and
Implementation, 1992.

[29] K. Huang, J. Wu, and E.B. Fernandez, “A Generalized Forward
Recovery Checkpointing Scheme,” Proc. 1998 Ann. IEEE Workshop
Fault-Tolerant Parallel and Distributed Systems, Apr. 1998.

[30] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” Proc. 25th Int’l
Symp. Fault-Tolerant Computing, 1995.

[31] D. Jackson, “Alloy: A Lightweight Object Modeling Notation,”
Technical Report 797, Laboratory for Computer Science, Massa-
chusetts Inst. of Technology, 2000.

[32] D.A. Ladd and J.C. Ramming, “Two Application Languages in
Software Production,” USENIX 1994 Very High Level Languages
Symp. Proc., Oct. 1994.

[33] C.-C.J. Li, P. Cheng, and W.K. Fuchs, “Local Concurrent Error
Detection and Correction in Data Structures Using Virtual
Backpointers,” IEEE Trans. Computers, vol. 38, no. 11, pp. 1481-
1492, Nov. 1989.

[34] J. Lions, “Ariane 5 Flight 501 Failure: Report by the Inquiry
Board,” 1996.

[35] D. Litman, P.F. Patel-Schneider, and A. Mishra, “Modeling
Dynamic Collections of Interdependent Objects Using Path-Based
Rules,” Proc. 12th Ann. Conf. Object-Oriented Programming Systems,
Languages and Applications, Oct. 1997.

[36] G. Lopez, “The Design and Implementation of Kaleidoscope, a
Constraint Imperative Programming Language,” PhD thesis,
Univ. of Washington, Apr. 1997.

[37] T. May and M. Woods, “Alpha-Particle-Induced Soft Errors in
Dynamic Memories,” IEEE Trans. Electron Devices, vol. 26, no. 1,
2-9 Jan. 1979.

[38] A. Mishra, J.P. Ros, A. Singhal, G. Weiss, D. Litman, P.F. Patel-
Schneider, D. Dvorak, and J. Crawford, “R++: Using Rules in
Object-Oriented Designs,” Proc. 11th Ann. Conf. Object-Oriented
Programming Systems, Languages and Applications, July 1996.

[39] S. Mourad and D. Andrews, “On the Reliability of the IBM MVS/
XA Operating System,” IEEE Trans. Software Eng., Sept. 1987.

[40] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J.
Cutler, P. Enriquez, A. Fox, E. Kcman, M. Merzbacher, D.
Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N.
Treuhaft, “Recovery-Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies,” Technical Report
UCB//CSD-02-1175, Computer Science, Univ. of California
Berkeley, Mar. 2002.

[41] J.S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
Checkpointing Under Unix,” Proc. Usenix Winter Technical Conf.,
pp. 213-223, Jan. 1995.

[42] “The Unified Modeling Language,” Rational Inc., http://www.
rational.com/uml, 2006.

[43] M. Rinard, “Probabilistic Accuracy Bounds for Fault-Tolerant
Computations that Discard Tasks,” Proc. 20th ACM Int’l Conf.
Supercomputing, 2006.

[44] M. Rosenblum and J.K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” Proc. 13th ACM Symp.
Operating Systems Principles, Oct. 1991.

[45] P. Shirvani, N.R. Saxena, and E.J. McCluskey, “Software-Imple-
mented EDAC Protection against SEUs,” IEEE Trans. Reliability,
vol. 49, no. 3, pp. 273-284, Sept. 2000.

[46] D. Taylor and J. Black, “Principles of Data Structure Error
Correction,” IEEE Trans. Computers, vol. 31, no. 7, pp. 602-608,
July 1982.

[47] D. Taylor, D. Morgan, and J. Black, “Redundancy in Data
Structures: Improving Software Fault Tolerance,” IEEE Trans.
Software Eng., vol. 6, no. 6, pp. 585-594, Nov. 1980.

[48] D. Taylor, D. Morgan, and J. Black, “Redundancy in Data
Structures: Some Theoretical Results,” IEEE Trans. Software Eng.,
vol. 6, no. 6, pp. 595-602, Nov. 1980.

[49] D. Taylor, D. Morgan, and J. Black, “A Compendium of Robust
Data Structures,” Proc. 11th Int’l Symp. Fault Tolerant Computing,
June 1981.

950 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

[50] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B.
Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S.
Amarasinghe, and A. Agarwal, “The Raw Microprocessor: A
Computational Fabric for Software Circuits and General-Purpose
Programs,” IEEE Micro, Mar./Apr. 2002.

[51] S.D. Urban and L.M. Delcambre, “Constraint Analysis: A Design
Process for Specifying Operations on Objects,” IEEE Trans.
Knowledge and Data Eng., vol. 2, no. 4, Dec. 1990.

[52] E.J. Weyuker, “Using the Consequence of Failures for Testing and
Reliability Assessment,” Proc. Third ACM SIGSOFT Symp. Founda-
tions of Software Eng., 1995.

[53] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard, “Field
Constraint Analysis,” Proce. Int’l Conf. Verification, Model Checking,
and Abstract Interpratation, 2006.

[54] S.S. Yau and R.C. Cheung, “Design of Self-Checking Software,”
Proc. Int’l Conf. Reliable Software, pp. 450-455, 1975.

[55] J.W. Young, “A First Order Approximation to the Optimum
Checkpoint Interval,” Comm. ACM, vol. 17, no. 9, pp. 530-531,
1974.

[56] Y. Zhang, D. Wong, and W. Zheng, “User-Level Checkpoint and
Recovery for LAM/MPI,” ACM SIGOPS Operating Systems Rev.,
vol. 39, no. 3, pp. 72-81, 2005.

Brian Demsky received the PhD degree in 2006
from the Massachusetts Institute of Technology
(MIT) while with the Program Analysis and
Compilation Group at the MIT Computer
Science and Artificial Intelligence Laboratory.
He is an assistant professor in the Department
of Electrical Engineering and Computer Science
at the University of California at Irvine. His
current research interests include software
reliability, software engineering, compilation,

software debugging, and program understanding.

Martin C. Rinard is a professor in the Massa-
chusetts Institute of Technology (MIT) Depart-
ment of Electrical Engineering and Computer
Science and a member of the MIT Computer
Science and Artificial Intelligence Laboratory.
His research interests have included parallel and
distributed computing, programming languages,
program analysis, program verification, and
software engineering. Much of his current
research focuses on techniques that enable

software systems to execute successfully in spite of the presence of
errors. Results in this area include acceptability-oriented computing (a
framework for ensuring that software systems satisfy basic acceptability
properties), failure-oblivious computing (a technique for enabling
programs to execute successfully through otherwise fatal memory
addressing errors), and a technique for providing probabilistic bounds on
the accuracy of program outputs in the presence of failures.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DEMSKY AND RINARD: GOAL-DIRECTED REASONING FOR SPECIFICATION-BASED DATA STRUCTURE REPAIR 951

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

