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Fine-grained locking is often necessary to increase concurrency. Correctly implementing fine-
grained locking with today’s concurrency primitives can be challenging—race conditions often

plague programs with sophisticated locking schemes.

We present views, a new approach to concurrency control. Views ease the task of implementing
sophisticated locking schemes and provide static checks to automatically detect many data races.

A view of an object declares a partial interface, consisting of fields and methods, to the object

that the view protects. A view also contains an incompatibility declaration, which lists views that
may not be simultaneously held by other threads. A set of view annotations specify which code

regions hold a view of an object. Our view compiler performs simple static checks which identify

many data races. We pair the basic approach with an inference algorithm that can infer view
incompatibility specifications for many applications.

We have ported four benchmark applications to use views: portions of Vuze, a BitTorrent
client; Mailpuccino, a graphical e-mail client; jphonelite, a VoIP softphone implementation; and

TupleSoup, a database. Our experience indicates that views are easy to use, make implementing

sophisticated locking schemes simple, and can help eliminate concurrency bugs. We have evaluated
the performance of a view implementation of a red-black tree and found that views can significantly

improve performance over that of the lock-based implementation.
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1. INTRODUCTION

The increasing availability of multi-core processors has prompted a resurgence of
interest in parallel software. To work properly, parallel software must use con-
currency control mechanisms to ensure that multiple threads of execution do not
interfere with each other. Without sufficient concurrency control, race conditions
occur, causing undesired and potentially incorrect program behaviors.

The dominant concurrency control mechanism today is the lock. Developers must
manually acquire an appropriate lock before accessing a shared resource and release
the lock when they are done with the resource. Locks, however, specify implemen-
tations, not the underlying policies which motivated the developer’s use of locks.
The compiler therefore does not get any information about the locking policy, and
must simply compile the code as-is. Furthermore, subsequent maintainers of the
code must somehow understand the locking policy before implementing changes
to the code. Ideally, the policy would be well-documented in comments and kept
up-to-date as the code evolves. Our work helps maintainers in both the ideal case,
by enabling policies to be explicitly encoded and compiled into locking implemen-
tations, and in less-than-ideal cases, by ensuring that the automatically-generated
implementation always conforms to the policy.

We therefore introduce the notion of views. In our system, developers may specify
that certain parts of an object’s interface and state (a subset of its fields and
methods) are protected by views. A thread may only access a protected part of
an object interface after it obtains an appropriate view. Views therefore raise
the abstraction level of concurrency control: instead of explicitly acquiring a lock
(which may protect anything), the developer requests a view, which documents the
parts of program state that it protects. To ensure the absence of races, views which
access conflicting parts of program state are declared or inferred to be incompatible.
A thread which attempts to obtain a view which is incompatible with some other
currently-held view must wait until the view becomes available.

Views have two primary benefits. First, views enable developers to specify con-
currency control at a higher level than traditional Java locks do, since views allow
developers to enumerate state that needs to be protected (in terms of fields and
methods). The compiler can use this higher-level information to implement lock-
ing; when appropriate, it can automatically use advanced concurrency primitives
like read-write locks. Second, the compiler can detect concurrency control prob-
lems using information in the view specifications: it can warn about possible race
conditions, unprotected field and method accesses, and view specifications that are
likely to be wrong.

1.1 Contributions

We present the following contributions in this paper:

—View Concept: We introduce a new concurrency primitive which formulates
concurrency control in terms of partial object interfaces, or views. This higher-
level abstraction enables developers to specify the underlying concurrency policy,
which explicitly identifies the relevant parts of the implementation that need to
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be protected.
—Automatic Lock Synthesis: We present a technique for compiling views into

locking primitives. Our technique currently supports both standard Java locks
and read-write locks. It uses a greedy algorithm to synthesize implementations
of view policies from their specifications.

—Static Checking: We describe several static checks for automatically detecting
concurrency errors. Our checks identify view specifications that are likely to
erroneously allow race conditions, as well as unprotected accesses to data which
is protected by a view.

—Inferring View Incompatibility: We present an extension that can automat-
ically infer view incompatibility for many applications. This extension analyzes
two views’ field access descriptions for hazards to infer compatibility.

—Experience with Views: We summarize our experience porting four signifi-
cant benchmarks to use views, and present performance results from microbench-
marks. Our experience indicates that it is relatively simple to use views; that
views have acceptable performance on microbenchmarks; that views can sup-
port advanced locking primitives; and that views can statically detect potential
concurrency bugs.

We have made our compiler (under the GNU General Public License) and bench-
mark suite publicly available at the following address: http://demsky.eecs.
uci.edu/views/.

The structure of the remainder of the paper is as follows. Section 2 presents an
example to illustrate our approach. Section 3 presents the view extensions to Java.
Section 4 describes how we compile views. Section 5 presents our experience using
views with four existing applications. Section 6 discusses related work. Finally,
Section 7 concludes.

2. EXAMPLE

We present an example that illustrates the use of views. Figure 1 presents an
implementation of the Vector appropriate for use in single-threaded programs.
This Vector class contains a set() method to set elements of the vector, a
get() method which returns the current value of an element, and a resize()
method which resizes the Vector. We omit remove(), as its implementation is
quite similar to that of resize().

Views consist of two parts: view declarations, which identify the members of each
view, and view annotations to Java source code, whereby threads acquire views as
needed throughout the implementation. Figure 2 presents modifications to lines 28
through 31 of the existing Vector code: they add view acquisitions to the code,
thereby enabling its safe use in multi-threaded programs. Figure 3 presents view
declarations for Vector.

2.1 View Annotations

Our system allows threads to acquire views in two ways: 1) a thread may explicitly
acquire a view using the acquire statement, and 2) a thread may implicitly acquire
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1 public class Vector {
2 int size;
3 int capacity;
4 Object[] array;
5

6 public Vector() {
7 size = 0; capacity = 10;
8 array = new Object[capacity];
9 }

10

11 public Object get(int i) {
12 if (i < size) return array[i];
13 else return null;
14 }
15

16 public void set(int i, Object o) {
17 if (i < capacity()) {
18 array[i] = o;
19 size = ((i+1)>size) ? (i+1) : size;
20 }
21 }
22

23 public void resize(int newcapacity) {
24 Object[] newarray = new Object[newcapacity];
25 for(int i=0; i < newcapacity && i < size; i++) {
26 newarray[i] = array[i];
27 }
28

29 array = newarray; capacity = newcapacity;
30 size = (size<newcapacity) ? size : newcapacity;
31

32 }
33

34 public int capacity() {
35 return capacity;
36 }
37 }

Fig. 1. Sequential Vector Example.

28 acquire (this@resize) {
29 array = newarray; capacity = newcapacity;
30 size = (size<newcapacity) ? size : newcapacity;
31 }

Fig. 2. Changes to Vector to support views.

a view by calling a method declared to be “preferred”.
The statement acquire(this@resize) in Figure 2 causes the thread to ac-
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quire the resize view of the object referenced by this before executing lines 29–
30 and then to release this view in line 31. Note how acquire generalizes Java’s
synchronized construct. The relevant view declaration (see below) explains what
the view protects.

When a thread makes a call to a method that is declared to be “preferred”, such
as get() for the read view, without already holding a view that provides access
to that method, then the thread will automatically acquire the appropriate view
and execute the method. A non-preferred method is only callable by threads that
already hold a view that contains the method.

1 view read {
2 incompatible write, resize;
3 size, capacity, array: readonly;
4 get(int i) preferred;
5 capacity();
6 }
7

8 view write {
9 incompatible read, write, resize, xclRead;

10 size, array: readwrite;
11 capacity: readonly
12 set(int i, Object o) preferred;
13 capacity();
14 }
15

16 view xclRead {
17 incompatible write, resize, xclRead;
18 size, capacity, array: readonly;
19 capacity();
20 resize(int i) preferred;
21 }
22

23 view resize {
24 incompatible read, write, resize, capacity, xclRead;
25 size, capacity: readwrite
26 array: arraywrite;
27 }
28

29 view capacity {
30 incompatible resize;
31 capacity: readonly;
32 capacity() preferred;
33 }

Fig. 3. View Declarations for Vector Example.
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2.2 View Declarations

Figure 3 declares five views: read, write, xclRead, resize, and capacity.
The read, write, and capacity views correspond to methods of Vector, and
state the fields and methods required to execute that method. The views xclRead
and resize support the resize() operation’s two phases—an exclusive-read
phase, in which resize() copies the Vector’s contents, followed by the resize
phase, which atomically updates the Vector. It would be possible to implement a
one-phase resize operation, where we would add the resize() method to the
resize view, but the two-phase design we present enables more concurrency, since
other threads may read from the Vector during the xclRead phase.

View declarations include a view’s name and its body. Figure 3 begins with the
read view. A view body may optionally list views that are incompatible with the
current view; two threads may not simultaneously hold incompatible views on the
same object. Our view compiler can either infer incompatibility declarations or use
developer-provided incompatibility declarations. In the example, line 2 declares
that the read view is incompatible with the write and resize views: no thread
may acquire an object’s read view while any other thread holds the write or
resize views of that object.

The view’s body also contains the view’s field and method declarations. A
field declaration begins with a comma-separated list of fields followed by an ac-
cess description. Access descriptions for scalar (non-array) fields are one of none,
readonly, or readwrite, while access descriptions for array fields may addition-
ally be arraywrite, fieldreadonly, and fieldreadwrite. Line 3 declares
that threads holding the read view of a Vector object may read its size and
capacity fields. Declaring array to be readonly implies that any thread hold-
ing the read view may read elements of the array stored at array; it may neither
write to the array, nor break encapsulation of the array in its containing Vector
object. (Without array encapsulation, a method could acquire the read view and
copy the reference to the array to another field, which would permit any other
method with access to that field to perform arbitrary accesses to the array.) Line 10
indicates that a thread holding the write view has full access to the size field
and may write to elements of the array. Contrast line 10 with line 26, which
declares that a thread holding the resize view may modify the array reference
held in the field array (as well as the array elements). Section 3 explains access
descriptions, including the array access descriptions, in greater detail.

A method declaration identifies a method as belonging to a view by giving the
method’s name and the types of its parameters, optionally followed by the keyword
preferred. Line 4 declares that the read view contains the get() method with
an integer parameter as a preferred member.

All classes contain a base view, which is usually implicit. The base view con-
tains the methods and fields of a class which may be accessed without holding any
views. Usually, the base view is implicit: in that case, it collects all methods and
fields not declared in other views. However, developers may also explicitly declare
a base view, in which case the base view only contains the fields and methods
declared to belong to it. The base view also behaves differently from other views
in the context of object inheritance (see the discussion of the Method Inheritance
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Check in Section 4.1 for details).

2.3 Checking Views

We have implemented an extension to the Polyglot extensible compiler frame-
work [Nystrom et al. 2003] to support view annotations, prevent incorrect accesses
to view-protected object interfaces, and generate executable code from the view-
annotated sources. The compilation process proceeds in three steps. First, the com-
piler verifies that a program properly uses view declarations, as described below.
Next, it uses the view declarations to synthesize a lock allocation: the acquisition
of each view corresponds to the acquisition of a set of locks. Finally, it uses the
lock allocation to generate code.

We next describe how our view compiler works on our Vector example on a
method-by-method basis. The compiler grants each constructor full access to the
object under construction. We expect developers to follow the standard practice of
not exposing the object being constructed in the constructor.

The compiler next verifies that the get() and set() methods respect the view
declaration. The compiler observes that the get() method accesses the size field
and reads from the array stored in the array field of the this object. Both of
these fields have readonly access in the read view, which permits reads and array
accesses. Because the get() method belongs only to the read view, this must
have the read view inside get(), so the compiler accepts these reads of size and
array. The fact that get() is a preferred method is irrelevant to checking the
implementation of get()—it only affects callers to get(), which will automati-
cally acquire the read view if they do not already possess it. The verification of
set() proceeds similarly. However, the compiler also checks that the write view
possesses write permissions for the size field and the array’s elements. (Note
that set() is not allowed to expose the array object, which is encapsulated by
the Vector. Section 4.3 describes how we guarantee encapsulation of arrays.)
Additionally, because set() calls the capacity() method, the compiler checks
that the write view contains the capacity() method. All checks succeed in our
example.

We finally discuss how the compiler verifies the resize() method. Note that
we chose not to add the resize method to the resize view. Because resize()
belongs to the xclRead view, the compiler permits the read of element i of array
on line 261. The method then explicitly acquires the resize view on line 28 of the
modified version of Vector, granting it permission to write to the capacity and
size fields and to reassign the value of the array field (due to the arraywrite
access permission). No other thread may execute any method of Vector in parallel
with the resize view—a thread attempting to access the Vector must wait until
the resize completes.

1The compiler correctly displays an error message if resize() does not belong to any view

granting access to array.
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read

write resize

xclRead capacity

Fig. 4. Incompatibility Graph G for Vector.

2.4 Code Generation

To generate code, the compiler must be able to reason about relationships between
views, since these relationships determine the set of locks that it must create. It
therefore starts by generating a view incompatibility graph. Figure 4 presents the
incompatibility graph G for our running example. Graph vertices represent views,
while edges between two views indicate that they are incompatible. Enclosing lines
represent cliques. The edge in G between the read vertex and the write vertex
implies incompatibility of the read and write views.

Given an incompatibility graph, the lock synthesis algorithm allocates locks by
finding a clique edge covering of the graph: we will associate a lock with each
clique. To acquire a view, a thread must acquire locks for all cliques that the
view belongs to. The compiler selects different types of lock depending on cliques’
contents. When a clique has exactly one view v which is compatible with itself,
the compiler uses read-write locks2. Such a situation indicates that view v allows
concurrent access to the resource being protected (corresponding to the read mode
of the read-write lock), while any views v′ in the same clique require exclusive
access to the resource (write mode). If no views in a clique are compatible with
themselves, then two threads may never simultaneously hold the same view on
the same object instance. This corresponds to the mutual exclusion provided by
ordinary (exclusive) locks, so our compiler simply uses an ordinary (exclusive) lock
in this case.

While one might expect that multiple self-conflicting views represent an opportu-
nity to simplify a program’s views without loss of concurrency, this is not necessarily
the case. In our example, merging views write, resize and resize would prevent
the resize method from running concurrently with the get method.

Returning to code generation for our example, the three cliques
C1 = {read, write, resize}, C2 = {write, resize, xclRead}, and
C3 = {capacity, resize} cover the graph G. The compiler therefore gener-
ates three locks, `1, `2, and `3, one per clique. Figure 5 shows excerpts from
the generated code for Vector; observe that the three locks exist in the Java

2A read-write lock [Lev et al. 2009] can be held by any number of threads in read mode but by

only one thread in write mode.
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code as lock1, lock2, and lock3. Cliques C1 and C3 each contain exactly
one view which is compatible with itself, so the compiler uses read-write locks for
these cliques. A thread may acquire the capacity view by acquiring `3 in read
mode, since capacity is compatible with itself; similarly, it may acquire read by
acquiring `1 in read mode. A thread may acquire write by acquiring `1 in write
mode (since write is incompatible with itself) as well as the ordinary lock `2. To
acquire the resize view, a thread must acquire write locks on both `1 and `3, as
well as the ordinary lock `2.

Figure 5 also presents the compiler-generated code for acquiring and releasing the
capacity view, as well as for releasing the resize view. The code for acquiring
the resize view is significantly longer. It follows the description in Section 4.6
and will not introduce compiler-generated deadlocks while acquiring the view; we
omit it here for space reasons, but it follows the template from Figure 10.

The compiler generates code by applying the lock allocation to the view ac-
quisition statements. Intuitively, the compiler will translate a statement like
acquire(this@resize) by inserting a virtual call to a method on this which
acquires the resize view by requesting the proper locks as per the lock allocation;
the virtual call ensures that the thread gets the appropriate locks for the run-time
type of this, in the presence of inheritance.

To handle preferred methods, the compiler generates a wrapper for the method
which requests the view and delegates to the original implementation. In our exam-
ple, the compiler renames the preferred method resize() to resize$view()
and generates a new wrapper resize(), which will hold the xclRead view for
the duration of the call to resize$view(). Should a caller to resize() already
hold the xclRead view, the compiler simply generates a call to the (now-renamed)
original method resize$view() instead of calling the wrapper.

Figure 6 presents the generated wrapper resize() method as well as the re-
named method resize$view(), with the lock acquisition statements translated
into calls to the relevant acquire() and release() methods.

3. VIEW LANGUAGE EXTENSIONS

Figure 7 presents the grammar for view declarations, while Figure 8 presents the
syntax extensions to Java for view annotations. As seen in Section 2, view dec-
larations contain an optional list of incompatible views followed by a list of view
members, which may be fields or methods. Field members have associated access
descriptions. Developers must unambiguously identify methods which belong to a
view, and may optionally specify that a method is preferred for a view.

The compiler infers incompatibility specifications if the developer omits the in-
compatibility declaration; an empty list of incompatible views indicates a view
which is compatible with all other views. The compiler also infers a base view if it
is not provided by the developer; this view includes all fields and methods that do
not belong to other views.

We support two kinds of view annotations in Java code: 1) types may be deco-
rated with views (i.e. Vector@get); and 2) our new acquire statement gener-
alizes Java’s synchronized statement.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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1 public class Vector
2 {
3 private viewruntime.readwritelock lock1 =
4 new viewruntime.readwritelock ();
5 private java.util.concurrent.locks.ReentrantLock lock2 =
6 new java.util.concurrent.locks.ReentrantLock ();
7 private viewruntime.readwritelock lock3 =
8 new viewruntime.readwritelock ();
9

10 public void realacquireViewcapacity ()
11 {
12 lock1.readlock ();
13 }
14 public void realreleaseViewcapacity ()
15 {
16 lock1.readunlock ();
17 }
18

19 public static vector.MyVector acquireViewcapacity_vector_MyVector
20 (vector.MyVector viewobject)
21 {
22 if (viewobject == null)
23 return viewobject;
24 viewobject.realacquireViewcapacity ();
25 return viewobject;
26 }
27

28 public static vector.MyVector releaseViewcapacity_vector_MyVector
29 (vector.MyVector viewobject, vector.MyVector retvalue)
30 {
31 if (viewobject == null)
32 return retvalue;
33 viewobject.realreleaseViewcapacity ();
34 return retvalue;
35 }
36

37 /* ... */
38 public void realreleaseViewresize ()
39 {
40 lock1.writeunlock ();
41 lock2.unlock ();
42 lock3.writeunlock ();
43 }

Fig. 5. Generated Code for Vector Example (part 1).

3.1 Access descriptions

Access descriptions for scalar, or non-array, fields control access to those fields;
holding a view to field f with access description readwrite permits full access to
f, while readonly permits the holder only to read f, and none allows no access.
Note that if field f holds an object reference, the access description protects the
reference f itself, not the referenced object.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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44 public void resize (int newcapacity)
45 {
46 /*acquire (this@xclRead) */
47 {
48 final MyVector view$0 =
49 vector.MyVector.acquireViewxclRead_vector_MyVector
50 ((vector.MyVector)this);
51 view$0.resize$view (newcapacity);
52 vector.MyVector.releaseViewxclRead_vector_MyVector
53 (view$0, null);
54 }
55 }
56

57 public void resize$view (int newcapacity)
58 {
59 Object[] newarray = new Object[newcapacity];
60 for (int i = 0; i < newcapacity && i < size; i++) {
61 newarray[i] = array[i];
62 }
63 MyVector t = this;
64 /*acquire (t@resize) */
65 {
66 final MyVector t$0 =
67 vector.MyVector.acquireViewresize_vector_MyVector ((MyVector) t);
68 {
69 t$0.array = newarray;
70 t$0.capacity = newcapacity;
71 t$0.size = ((t$0.size < newcapacity) ? (t$0.size) : (newcapacity));
72 }
73 vector.MyVector.releaseViewresize_vector_MyVector (t$0, null);
74 }
75 }
76 }

Fig. 6. Generated Code for Vector Example (part 2).

Array fields, however, complicate the picture. Objects often use arrays to store
data. Such arrays generally ought to be encapsulated: no references to such ar-
rays should ever become visible. An escaping array reference could permit arbi-
trary parts of the program to have uncontrolled access to array elements. Our
view language extensions therefore enable developers to identify encapsulated ar-
rays, and our view compiler ensures that such arrays never escape their containing
objects. The implication of this guarantee is that the view system, as a whole,
properly controls access to reads and writes of values in encapsulated arrays: the
only way to access an encapsulated array is by reading the reference to the ar-
ray from the containing object’s field, and the access only succeeds if the exe-
cuting thread holds the necessary view. Out of the five access descriptions, the
fieldreadonly and fieldreadwrite descriptions denote unencapsulated ar-
rays, while the usual readonly and readwrite descriptions specify encapsulated
arrays, and arraywrite permits mutation of an encapsulated array reference.

We first discuss the descriptions for unencapsulated arrays. Any array
ACM Journal Name, Vol. V, No. N, Month 20YY.
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f which appears in some view with access description fieldreadonly or
fieldreadwrite is treated as if it were a scalar field. The fieldreadwrite
description permits the holder unlimited read and write access to f. The
fieldreadonly description permits a holder unlimited read access to the field
f. (Note that, in particular, the holder may expose the reference to field f; any
recipient of this reference will have complete access to the array elements). Both
of these access descriptions permit reads and writes to the elements of the array
stored in f. These access descriptions are incompatible with the other three access
descriptions, readonly, readwrite, and arraywrite: no field may be de-
clared as fieldreadonly or fieldreadwrite in some view and as readonly,
readwrite, or arraywrite in any other view.

The three remaining descriptions ensure encapsulation of arrays. The access
description readonly permits reads from elements of an array f, e.g. o.f[3]3. It
does not, however, permit the reference to f to escape, e.g. return o.f, nor does
it permit reassignment of field f, e.g. o.f = a. Any read of such a field o.f must
either occur in the context of an array access, o.f[3], or be stored to a fresh local
variable, Object r = o.f. Values may be read through dereferences of r, and r
may be passed as the source parameter to System.arraycopy. However, r must
not escape: it must not be passed to any other function, nor returned. Similarly,
the access description readwrite permits both reads and writes of elements of f,
but maintains prohibitions on copies w of the field f itself. That is, w admits array
reads and writes, and may be passed as either the source or target parameter to
System.arraycopy, but w may not escape. To enable mutation and unlimited
reads of the array reference, a view must declare field f with access description
arraywrite. Such a description permits statements like o.f = a. Section 4.3
presents the compile-time static analysis which we use to ensure that encapsulated
arrays do not escape.

3.2 Default access for constructors and the base view

We have carefully designed the defaults for views to minimize instrumentation
overhead. We next discuss our special rules for constructors and the default contents
of the base view.

Object constructors often write to many object fields that would be protected by
views and call methods that require access to views. If treated like other methods,
object constructors would have to acquire a number of views to access these fields.
However, it is relatively rare for object constructors to make the object being con-
structed accessible to other threads before the constructor exits. Constructors may
therefore access fields and methods of the object being constructed without holding
the necessary views. We believe that this is a reasonable tradeoff between usability
and detecting possible races.

3We have changed the semantics of the readonly and readwrite access description for
arrays from our earlier work on views [Demsky and Lam 2010]; the fieldreadonly and
fieldreadwrite access descriptions correspond to the earlier semantics of readonly and

readwrite, while the new semantics ensure array encapsulation. Our earlier work did not con-
sider arrays, and therefore overlooked the possibility of escaping references to arrays granting

unintended access to data.
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viewDecl := view name { incompDecl fieldMethodFieldDecls }
incompDecl := ε | incompatible optViewList;

optViewList := ε | viewList

viewList := viewList, name | name

fieldMethodFieldDecls := fieldMethodFieldDecls, fieldMethodFieldDecl | fieldMethodFieldDecl

fieldMethodFieldDecl := fieldDecl | methodDecl

fieldDecl := fieldList : accessDesc;

fieldList := fieldList, field | field

accessDesc := none | readonly | readwrite | arraywrite | fieldreadonly |
fieldreadwrite

methodDecl := name(formallist) optPreferred;

optPreferred := ε | preferred

Fig. 7. View Declaration.

viewtype := typename@viewname

formal := . . . | viewtype varname

varDecl := . . . | viewtype varname

statement := . . . | acquire(varname@viewname) block

Fig. 8. View Annotations.

The view language automatically defines a base view if the developer does not
explicitly declare a base view, according to the following rules:

(1) A field is present in the base view with readwrite access if no other view
declares that field.

(2) A method is present in the base view if no other view declares that method.

4. COMPILING VIEWS

We next describe in detail the static checks and compilation techniques that we use
to compile views. The static checks ensure that view declarations are consistent
with each other and that programs respect the constraints stated in view declara-
tions. First, we describe the general rules that views statically enforce. We also
present a type system which formalizes these rules. Recall the necessity for ensur-
ing array encapsulation (as seen in our example from Section 2); we therefore also
present the relevant static analysis in this section.

In the second part of this section, we describe compilation techniques for views,
including the lock synthesis algorithm (which automatically generates a locking
strategy that enforces view incompatibility constraints), view incompatibility infer-
ence, and how we generate code to acquire and release views.
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4.1 Static Checks

The compiler performs a suite of static checks on the view specifications, field ac-
cesses, and method calls. The type system in Section 4.2 formalizes all of these
checks except for the checks on view specifications (“read-write hazards”). To-
gether, our static checks guarantee that view declarations are consistent with each
other and that the program does not access class members without obtaining re-
quired views. Once a program passes these checks, our compiler can apply its
source-to-source transformation techniques to generate standard Java code from
programs that use views.

—Read-Write Hazards on Fields and Arrays: Generally, writes to a field or
array should be serialized, so that only one thread can write to a particular field
or array at any time, and no other thread should simultaneously be reading the
same member. To ensure that view declarations enforce this constraint, the view
compiler carries out the following static check.
For each pair of compatible views (v1, v2) and each field f , the compiler flags the
field f if v1 has write access to the field f and v2 has read or write access to f . An
identical check applies to field writes to, and field reads from, fields that reference
arrays. For each array reference g, the compiler flags the array g if v1 has array
write or write access and v2 has array write, write, or read access to g. If a view
is compatible with itself, this check flags all fields that are declared readwrite.
Uncontrolled access to flagged fields may lead to race conditions. However, we
anticipate that developers may choose to use external locks or other mechanisms
to protect such fields. The compiler therefore only produces warning messages
for the read-write hazards that it detects.

—Field Read Checks: To ensure that the program always holds an appropriate
view before reading from a field, for each field read x.f, the compiler checks that
all possible views of the receiver expression x allow reads of field f.

—Field Write Checks: To ensure that the program always holds an appropriate
view before writing to a field, for each field write x.f = y, the compiler checks
that all possible views of the receiver expression x allow writes of field f.

—Method Call Checks: To ensure that the program always holds appropriate
views for the receiver object and the method arguments before invoking a method,
for each method call site x.m(a1, ..., aN) to method m(f1, ..., fN),
the compiler checks that each argument ai at the call site matches the view
type of the corresponding method formal parameter fi, if fi has a view type.
The compiler also checks that the view of the reference to the receiver object x
contains m or that m has a preferred view.

—Assignments: To ensure that a program’s view annotations properly reflect the
views that the program has acquired, the compiler checks that the program does
not make assignments to local variables or method formal parameters with view
types other than at their initial declarations.

—Field Inheritance Check: To ensure that the program never accesses an ob-
ject’s fields through upcasts, in violation of view constraints, the compiler checks
that if a field f is declared in a super class of C and is a member of a view v in
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the super class, then field f must be a member of view v in class C, with at least
as permissive access.

—Method Inheritance Check: To ensure that the program never invokes a
method through upcasts, in violation of view constraints, the compiler checks
that if a method m is declared in a super class of C and is a member of a view v
in the super class, then method m must also be a member of view v in class C,
with at least as permissive access.
We make an exception to this check when v is the base view, if m has a preferred
view in class C. Note that if a method m is declared in an interface that class C
implements, the method m must either be in the base view of class C or have a
preferred view in class C.
A program may call a method o.m() such that the declared type of o would require
acquiring a preferred view to call m(), but the run-time type of o indicates that
the executing thread must already hold the appropriate view. In this case, a
compiler could insert a dynamic check which would avoid needlessly acquiring
the preferred view. Our compiler does not currently insert this check.

4.2 View Types

To formalize the checks from Section 4.1, we have extended the Java type system
to add view information to types for method parameters and local variable decla-
rations. The Appendix presents formal type rules for the core of our system; we
briefly summarize them here. The existence of the type rules imply that our com-
piler only needs to carry out type checking to verify that a program satisfies the
constraints specified in its view declarations. Programs which type-check success-
fully are guaranteed to be free of uncontrolled accesses to fields and methods; as
we described above, our checks ensure that accesses to a field or method can only
occur while the program is holding an appropriate view.

A view type consists of a pair of a reference type and a view, as shown in the
[VIEWTYPE C] type rule, which we include below.

[VIEWTYPE C]

P ;E ` v ∈ τ
P ;E ` τ@v

This rule states that τ@v is a valid view type as long as v is declared in type τ (per
rule [VIEW DECL], which is defined in the appendix).

As an example, the view type Vector@write denotes a reference to a Vector
object for which the executing thread holds the write view.

Assignments and Copies.
To prevent the developer from surreptitiously changing the view type of an ob-

ject, only initializing assignments (as found in [METHOD]/[INVOKE]) may copy
variables with view types. [INVOKE] passes actual parameters to [METHOD],
which initializes the corresponding formal parameters with the same view type.
[METHOD] also allows initializing assignments to local variables declared in that
method, as long as the left-hand side and the right-hand side have the same type.
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Otherwise, the type checker does not allow a local variable or a method parameter
with a non-base view type to be re-assigned to reference a different object.

This constraint prevents programmers from acquiring views without using the
acquire statement. In particular, the constraint prevents programmers from writ-
ing the following:

{ T@y o; acquire (T@x o1) { o1 = o; } }
The type rule [STMT READ/COPY] enforces this constraint on copying by

forcing the type τ to be a bare class (τ = cn), not a view type:

[STMT READ/COPY]

E = E1, finaloptτ x,E2 τ = cn P ;E ` e:τ
P ;E ` x = e

This rule also requires that both the variable x on the left-hand side and the
expression e on the right-hand side carry the same type τ .

Acquiring Views.
New views of an object can only be acquired through an explicit acquire or

through an implicit acquisition via a call to a preferred method of a view. This
constraint is reflected in the type rules: the [STMT ACQUIRE] rule and the
[METHOD] rule are the only rules that add a view type to the environment.

[STMT ACQUIRE]

E = E1, τ lv, E2 ∀i ∈ [1..t]. P ;E1, τ@v lv, E2 ` si

P ;E ` acquire(lv@v){s1..t}

The [STMT ACQUIRE] rule states that, if variable lv has type τ , and all of the
statements si type-check assuming that lv has type τ and view v, then an acquire
statement requesting view v for lv and executing the statements si will type-check.
(At runtime, the thread will block until it obtains the requested view.)

Field Reads and Writes.
Any access to a field must be through a reference with the appropriate view, as

enforced by the type rules for [EXP FIELD READ] and [STMT FIELD WRITE].
These rules ensure that the program may only read from a field fd through a view
type with ro or rw access to fd, and that it may only write to fd through a view
with rw access.

[EXP FIELD READ]

E = E1, τx x,E2 τx = cx@vx

∃v ∈ vx. fd : {ro ∨ rw} ∈ v
τf = cf@vf P ` (τf fd) ∈ cx

P ;E ` x.fd:τf

[STMT FIELD WRITE]

E = E1, τx x,E2 E = E′
1, τy y,E

′
2

τx = cx@vx τy = cy@vy

∃v ∈ vx. fd : {rw} ∈ v
P ;E ` (τy fd) ∈ τx

P ;E ` x.fd = y

Both of these rules extract a type τx for x from the environment, and break down
τx into cx@vx. The [STMT FIELD WRITE] rule also extracts a type τy for the
right-hand side y, which consists of the bare type cy and the view vy. In the [EXP
FIELD READ] case, the type rule checks that vx gives either read-only permission
ro or read-write permission rw, while [STMT FIELD WRITE] requires read-write
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permission. Finally, [EXP FIELD READ] states that the type of x.fd is the type τf
of the field fd, as declared in class cx; [STMT FIELD WRITE] verifies compatibility
of the type τy of the right-hand side y with the type τf of the field x.fd.

Method Calls.
Our [METHOD] rule enforces constraints on views of parameters (including

this) in methods:

[METHOD]

P ` class cn {methmn . . .} Vmn = {vs | P ;E ` mn ∈ vs }
argi = cni@vi vni P ;E0 ` ej : τj τj = cnj@vj lvj = τj lnj ldj = [lj=ej ]

P ;E0 ` wf E = E0, arg0..n, lvn+1..n+l

∀v ∈ Vmn. ∀i ∈ [1..t]. P ;E, cn@v this ` si

P ;E ` mn(arg1..n) {ldn+1..n+l s1..t}

This rule type-checks a method mn with formal parameters argi belonging to class
cn and views vs, as seen in the first three premises. The next three premises set
the types of local variables lnj to τj and check that their initial values ej have the
same type. This rule also checks that environment E0 with the arguments and local
variables is a well-formed environment.

Finally, for each statement si in mn, the rule ensures that si type-checks in
its environment. However, the environment also must include a view type for
this. The view type for this is initially equal to the set of views that contain
the method m. The type checker must therefore ensure that fields and methods
accessed through the this variable are permitted by each view v ∈ vs that declares
the method: a caller only needs to hold one of the views to call m. The statements
in the method must therefore type-check with each possible view that this may
hold.

Our compiler additionally ensures that methods may not have view types as
return types, and that fields or arrays do not have view types; these constraints are
not shown in the type rules.

Views and Inheritance.
Our type rules permit developers to include views in subclasses with more per-

missive access to methods and fields than in an object’s superclass. This design
decision enables developers to extend the behaviour of a subclass without being
constrained by the superclass’s implementation. Allowing more permissive access
in subclasses is safe because the compiler allocates locks based on the actual type,
rather than the declared type, of an object. For instance, if class C extends class
SC, the compiler will generate a lock allocation for a C object consistent with the
views for C, no matter whether the object is accessed as a C or a SC.

Summary of Type Rules.
Collectively, our type rules ensure that threads always acquire and hold the

appropriate view while accessing a field or method which requires a view. They also
guarantee that threads cannot hold a view reference to an object after the release
of a view acquired through an acquire statement or a preferred method.

However, these constraints cannot guarantee encapsulation of array references,
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which is required to properly enforce the array behaviours that we allow developers
to specify. We therefore chose to design a simple static analysis which can verify
that array references are confined to their containing fields, and we describe this
analysis below.

4.3 Static Analysis for Array Encapsulation

We verify the array access descriptions from Section 3 using an intraprocedural
dataflow analysis. Our analysis guarantees that references to arrays are never stored
in fields nor passed to other methods. It therefore prevents references to array
fields declared with view readonly or readwrite from escaping; essentially, it
is a variant of escape analysis [Blanchet 1999] specialized to our particular applica-
tion domain. Without enforcement of array encapsulation, an exposed array could
be subject to uncontrolled changes, notably racy modifications by concurrently-
executing threads. We next describe our analysis, which allows common idioms to
safely access arrays stored in fields, yet prohibits the exposure of field references.

Our analysis abstraction associates three flags with each array-typed variable x
at each program point:

—NO ESCAPE: variable x may not escape the current scope;
—NO STORE: variable x may not be stored into a field; and
—NO WRITE THRU: variable x admits no writes to array elements.

Each flag records the constraints on variable x arising from its past history; for
instance, if x was read from a view-protected field, then it must not escape, and
we mark it with NO ESCAPE.

Our analysis contains two phases: a propagation phase and a verification phase.
In the propagation phase, a dataflow analysis computes the constraints which apply
to each of the program statements based on their predecessors. There are four
sources of constraints for array-typed variables. (1) After a field write o.f=x, the
referenced value x may no longer escape nor be stored to any other field. (2) Field
reads x = o.f constrain the recipient x to no longer be stored nor escape; if the
active views of f only grant read-only access, then the reference x may not be used
for writes. (3) Any statement which allows x to escape the method scope (e.g. a
method call m(x) or a return statement return x) requires that the method not
subsequently store the exposed value x to an encapsulated field. (4) After a copy
y = x, neither x nor y may not be stored to any encapsulated field.

In the verification phase, the analysis ensures that the program respects the
constraints created in the propagation phase, using seven verification rules. At a
field write o.f = x, it verifies that, if f is an encapsulated array field, then x
has not been marked as ineligible for stores into fields. Furthermore, the field write
constitutes an escape, so x must not have been marked as non-escaping. Field reads
of array references x = o.f must read variables x which are newly introduced into
their scope (Object[] x = o.f), to prevent x outliving its scope and hence from
being accessed without the necessary view on o. Furthermore, a field read of field f
can only succeed with at least readonly access to f. At any program point which
allows x to potentially escape the method, e.g. method calls with x as a parameter,
x must have permission to escape. Any write to an element of an array x must
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o.f = x; create: x.NO ESCAPE, x.NO STORE

verify: !x.NO STORE (if f is readwrite)
verify: !x.NO ESCAPE

Object[] x = o.f; create: x.NO ESCAPE, x.NO STORE
create: if f has only readonly access,

x.NO WRITE THRU

verify: at least readonly access on f

x escapes create: x.NO STORE
(e.g. return x) verify: !x.NO ESCAPE

x[i] = ...; verify: !x.NO WRITE THRU

System.arraycopy verify: !x.NO WRITE THRU on target

y = x; create: x.NO STORE, y.NO STORE
verify: !x.NO ESCAPE

Fig. 9. Rules for ensuring array encapsulation.

have write permission for the array. Similarly, any call to System.arraycopy
requires write permission for the destination array. Finally, for a copy statement
y = x, we require that variable x must have permission to escape. (We could also
have required, alternatively, that y be prohibited from escaping.)

Figure 9 summarizes the rules for both the propagation and verification phases.
The propagation rules appear as “create” clauses, while the verification rules appear
as “verify” clauses.

4.4 Lock Synthesis

We next describe how we synthesize a locking strategy that enforces the view in-
compatibility specification. For each class, the lock synthesis algorithm begins by
constructing an undirected view incompatibility graph G. The graph G contains
a vertex v for each view in c. For each pair of views vi and vj , if vi lists vj as
incompatible, or vj lists vi as incompatible, G contains an edge between vi and vj .

Consider a subgraph GC of G that is a clique—that is, GC contains edges between
every pair of vertices in GC . One lock can enforce all of the view incompatibility
constraints between views in GC . Because views can be incompatible with them-
selves, self-edges may occur in the view incompatibility graph. We handle self-edges
by using different kinds of locks. If all views but one in the clique have self-edges,
we use an implementation of a reentrant read-write lock for the clique; we identify
the read mode of the read-write lock with the view with no self-edges, and the write
mode with all other views in the clique. This corresponds to the situation where
any number of threads may hold view v with no self-edges, but only one thread
may hold a view v′ with self-edges or any of the views v′′ that are incompatible
with v′. If all views in the clique contain self-edges, then we use the normal reen-
trant lock class from java.util.concurrent.locks. If more than one view
in the same clique lacks a self-edge (which we expect to be rare in practice—views
without self-edges typically only read data, so two views without self-edges should
typically not conflict with each other), we would use a generalized implementation
of a read-write lock which would permit multiple mutually-incompatible read locks
and a single write lock; however, such cases did not arise in our benchmark set, so
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we have not yet implemented such a lock.
The lock synthesis algorithm computes a clique edge cover of G. Minimizing the

number of cliques minimizes the number of locks we must generate and the number
of locks that must be acquired in a view. However, finding a minimum clique edge
covering for a graph is an NP-complete problem [Orlin 1977]. We therefore use
a greedy algorithm to compute a (possibly non-minimal) clique edge covering in
polynomial time. Our greedy algorithm selects an uncovered edge to cover to start
the clique and adds vertices that will cover other uncovered edges. We expect that,
in practice, many view incompatibility specifications will be simple enough that our
greedy algorithm will generate a minimal covering. All clique edge coverings admit
the same parallelism—a minimal covering optimizes the number of locks to achieve
that parallelism.

4.5 Inferring View Incompatibility

While view incompatibility declarations can be used to capture higher-level abstract
hazards, they often capture straightforward read-write or write-write hazards on
field accesses. Our view compiler can automatically infer view incompatibility dec-
larations in the case of simple conflicting field accesses. The developer indicates
that the compiler should infer view incompatibility for a given view by omitting the
view’s incompatibility declaration. To infer such a view’s incompatibility specifi-
cation, the compiler compares the view with every other view from the same class.
If another view in the same class contains a field access that may conflict with the
field accesses in the current view, the inferred specification will declare the views
to be incompatible. To detect conflicting field accesses, the compiler uses the same
criteria it uses to generate the read-write hazard warnings presented in Section 4.1.

4.6 Acquiring Views

We next describe how the compiled application acquires and releases views at run-
time. For each view, the compiler generates three view acquisition methods: the
tryacquireView method tries to acquire the view, the acquireView method
acquires the view, and the releaseView method releases the view.

To acquire view v, a thread must acquire all of the locks for v. If v has a self
edge in the incompatibility graph, the thread must acquire all readwrite locks in
write mode and lock the normal reentrant locks. If v does not have a self edge, the
thread must acquire all locks, which will be readwrite locks, in read mode. The
tryacquireView method tries to acquire each lock. If it successfully acquires all
locks, it returns true. If it fails to acquire any of the locks, it releases the locks it
has already acquired, and returns false.

The acquireView method must block until it can acquire a view. To avoid
the potential for internal deadlocks, the thread cannot hold any of the component
locks while blocking. Figure 10 presents an example of an acquire method that
our compiler generates for n component locks. Conceptually, the acquireView
method arranges the locks in a circular list. It locks the first component lock in the
list, waiting until this lock becomes available. It then tries to lock the remaining
component locks without blocking. If it fails to acquire any of these locks, it releases
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all of the locks and then repeats the process starting with the lock it failed on. Once
it acquires all of the locks, it has acquired the view and returns to the caller. Of
course, our compiler generates optimized methods for the single-lock case.

Releasing views is straightforward: the releaseView methods simply releases
all locks corresponding to a view.

Simultaneously Acquiring Multiple Views.
Our language supports simultaneously acquiring multiple views. We expect that

developers will find this mechanism useful for locking multiple shared data struc-
tures while avoiding the possibility of deadlock. The generated code for acquiring
multiple views would use the same basic strategy as the code in Figure 10 does on
component locks, but instead uses this strategy on views.

5. EXPERIENCE

We next discuss results from performance testing of views on red-black tree and
concurrent hash map microbenchmarks, as well as from applying views to several
applications: Vuze, a file-sharing (BitTorrent) client; Mailpuccino, a graphical e-
mail client; jPhoneLite, a VoIP softphone client; and TupleSoup, a database. Note
that these applications are concurrent, not parallel, and that their interactive nature
makes it quite difficult to measure improvements in performance due to increased
parallelism. Our changes do provide the potential for increased parallelism in the
applications.

5.1 Methodology

We have developed a prototype implementation of views as an extension to the
Polyglot extensible compiler infrastructure [Nystrom et al. 2003]. The source code
for our extension is available at http://demsky.eecs.uci.edu/views/.

5.2 Performance Microbenchmarks

To verify that fine-grained locking provided by views increases the potential
for concurrency, we investigated two microbenchmarks: a red-black tree, imple-
mented using views, standard locks, and read-write locks; and a concurrent hash
map, where we compared the java.util.concurrent.ConcurrentHashMap
hand-tuned implementation with views, naive locks, and the standard Java
java.util.Hashtable implementation with a single lock. We measured the
performance of our microbenchmarks using various concurrency control schemes
and we present our performance results below.

Red-black Tree Implementation.
We created three thread-safe versions of the TreeMap red-black tree implemen-

tation from the Java class library. One of these versions uses views, while the other
two versions use explicit locks (either standard Java locks or Java’s read-write
locks).

The view-based version of the TreeMap class declares two views: a read view
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1 public void acquireView() {
2 int startindex = 0;
3 while (true) {
4 // Block on the first lock
5 switch (startindex) {
6 case 0:
7 lock0.lock(); break;
8 ...
9 case n-1:

10 lock(n-1).lock(); break;
11 }
12 // Try to acquire the rest of the locks
13 int i;
14 loop:
15 for (i=1; i<n; i++) {
16 if ((++startindex) == n) startindex = 0;
17 switch (startindex) {
18 case 0:
19 if (!lock0.trylock()) break loop;
20 break;
21 ...
22 case n-1:
23 if (!lock(n-1).trylock()) break loop;
24 break;
25 }
26 }
27 // Return if we hold all locks
28 if (i == n) return;
29 // Release locks if we failed to get one
30 int unlockindex = startindex;
31 for(; i>0; i--) {
32 if ((--unlockindex) < 0) unlockindex = n-1;
33 switch (unlockindex) {
34 case 0:
35 lock0.unlock(); break;
36 ...
37 case n-1:
38 lock(n-1).unlock(); break;
39 }
40 }
41 // Repeat, trying to first blocking-acquire the lock that we
42 // failed to acquire.
43 }
44 }

Fig. 10. Locking Code to Acquire A View.

and a write view. The read view is incompatible with the write view, and
the write view is incompatible with both the read view and itself. We declared
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the get method as a preferred method for the read view and the put method a
preferred method for the write view. The compiler implemented these views with
a single read-write lock.

We also developed two versions which use locks. The Java locks ver-
sion of the TreeMap class simply declares both the get and put meth-
ods synchronized, while the read-write lock version uses reentrant read-write
locks (java.util.concurrent.ReentrantReadWriteLock) to allow multi-
ple lookups to proceed in parallel.

We developed a workload for our thread-safe TreeMap implementations. Our
workload initializes a TreeMap object by adding all integers between 0 and 100,000
to the map in a random order. This random order is the same for all executions.
It then starts a worker thread on 8 cores. Each worker thread performs 1,000,000
operations on the TreeMap. The operations are randomly split between reads
(calls to get) and writes (calls to put) and the write percentage is an adjustable
parameter. The workload randomly selects keys to either look up or update the
mapping.

We executed the microbenchmark on a dual processor quad-core Intel Xeon E5520
2.27 GHz processor with 12 GB of RAM running 64-bit Linux and kernel version
2.6.38-2. We used workloads with 0%, 5%, 10%, 15%, and 20% writes. We executed
each workload on each version 100 times. Figure 11 presents a box plot of the results
of this experiment. The bottom and top of each box are the 25th (lower quartile)
and 75th (upper quartile) percentiles, respectively, of the distribution. The middle
bands are the medians. The crosses (or diamonds) are the means. The difference
between the lower and upper quartiles is referred to as the interquartile range (IQR).
The whisker above the bar is the lowest data point within 1.5 of the IQR of the
lower quartile and the whisker below the bar is the highest data point within 1.5 of
the IQR of the upper quartile. We show data points that fall outside of this range
explicitly.

Our results show that views provide speedups for our red-black tree microbench-
mark of 5.68× faster than standard Java locks for read-only workloads, and 2.50×
faster than Java locks for workloads with 5% writes. We note that this microbench-
mark is relatively synchronization-heavy—the get and put methods perform rel-
atively little work compared to the cost of acquiring a lock. Applications that
perform more work while holding the locks should see larger speedups. All ver-
sions of the benchmark serialize the writes to the red-black tree, so the time to
execute the benchmark should increase as the percentage of writes increase. We
see this behavior in our experiments with the microbenchmark. Views perform
significantly better than the manual ReentrantReadWrite locks due to cache line
contention: views use specialized read-write locks that are designed to minimize
cache contention in the read case. The locks are built using multiple AtomicInteger
objects. To acquire a read lock, a thread grabs a read lock on one of the Atom-
icIntegers. To acquire a write lock, a thread must acquire a write lock on all of the
AtomicIntegers. The standard Java read-write lock uses a single memory location
(instead of multiple AtomicIntegers) to implement the lock, and cache contention
causes read-write locks to achieve lower performance for read locks. We also note
that at higher write percentages, the performance of the Java lock version exceeds
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Fig. 11. Time to execute a synthetic workload of red-black tree operations versus percentage of
writes in the workload. Lower is better.

that of the read-write lock. The reason is that read-write lock inherently incurs
larger overheads and larger write percentages prevent amortizing this overhead with
parallelism.

Concurrent Hashmap Implementation. To explore the expressive
power of views, we ported Java’s concurrent hashmap implementation,
java.util.concurrent.ConcurrentHashMap, to views. The original
ConcurrentHashMap implementation was carefully designed by concurrent data
structure experts to only require locking when actually adding a new item to the
table—lookup operations proceed with no locks in the typical case. The update
operations on the ConcurrentHashMap have been carefully implemented such
that updates occur atomically with a single write operation. ConcurrentHashMap
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Fig. 12. Time to execute a synthetic workload of hash map operations versus percentage of writes
in the workload (8 cores). Lower is better.

divides the table into segments, and updates to the entries in each segment are
protected by that segment’s lock, to prevent two updates from conflicting. This
allows multiple threads to simultaneously update disjoint parts of the table.

Reasoning about the correctness of unprotected reads typically requires the care-
ful attention of experts and is beyond the scope of views. We instead developed a
version of ConcurrentHashMap using views to protect both updates and lookups
to hashmap entries in each segment. We also developed a manually-locked version
of the ConcurrentHashMap that simply uses the existing segment locks to protect
both reads and writes. Finally, we include results for java.util.Hashtable,
which uses a single lock to protect the entire table. The compiler implemented the
views for this class using one read-write locks.

Figure 12 presents the performance results for the ConcurrentHashMap mi-
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Fig. 13. Time to execute a synthetic workload of hash map operations versus number of cores;
write percentage 5%. Lower is better.

crobenchmark when varying the percentage of writes. The results show that
the view version is 1.98× to 3.54× slower than the original ConcurrentHashMap,
which is a great improvement over the 2.35× to 8.52× (at 0% writes) slowdown
for the manually-inserted locks; recall also that manually inserting locks carries
no guarantee of soundness. The view-based ConcurrentHashMap is significantly
faster than the manual lock-based ConcurrentHashMap for small write percent-
ages. All versions are significantly faster than the version that simply uses the
java.util.Hashtable implementation.

To explore the scalability of the approach, we held the total workload constant
for the 5% write configuration and scaled the number of cores from 1 to 8. Figure 13
presents the results for the experiment.
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5.3 Vuze Buddy Plugin

Our first substantive benchmark is a subsystem of the open-source Vuze file-
sharing client. The source distribution of Vuze is available at http://azureus.
sourceforge.net. While Vuze contains 194,000 lines of code in all, we chose to
concentrate on the buddy plugin of Vuze, which consists of 13,500 lines of code. This
plugin is implemented in the com.aelitis.azureus.plugins.net.buddy
package.

Parts of the buddy plugin contain a rich locking structure. After inspecting
the code, we chose to annotate the BuddyPluginTracker and BuddyPlugin
classes, as shown in Figure 14. The other classes in the plugin use locking solely to
protect data structure accesses: before an access to a non-thread-safe data structure
(typically a Map or List), Vuze acquires the lock on that data structure. Views in-
teroperate smoothly with ordinary Java synchronized statements implementing
such simple locking strategies.

BuddyPlugin annotations. We added 4 views to BuddyPlugin: general
read and write views read state and write state, for mutable fields
previously protected by the lock on the BuddyPlugin object itself (i.e.
synchronized(this)), as well as views to protect the pd queue and
publish write contacts data structures (previously protected by two locks).
The compiler implemented these views with two normal locks and a read-write
lock. While compiling the annotated source, it also found a few field reads that
were inconsistently unprotected in the original code.

Our change preserves the existing lock structure and also provides static guar-
antees that the program doesn’t attempt to access protected state without the
protecting lock.

BuddyPluginTracker annotations. We found that the
tracker.BuddyPluginTracker class contained the most interesting
locking structure in the buddy plugin. This class contains 5 different
locks: online buddies, actively tracking, tracked downloads,
buddy peers, and on the this object. We carefully studied the fields that
the class accessed under each lock and encoded this information in our view
declarations.

Figure 15 presents the view declarations for the
tracker.BuddyPluginTracker class. We converted the 5 locks into
6 views, splitting accesses to this into read-only and read-write views
read internal state and write internal state, respectively, and
changing the other locks into views. The compiler then implemented the views
using 3 normal locks and 2 read-write locks.

The actively tracking view protects accesses to the actively tracking
Set. Its access pattern is similar to that of the other data structures in the buddy
plugin.

The online buddies view protects two correlated data structures: the
online buddies Set and the online buddy ips Map. Our view annotations
therefore express the formerly-implicit connection between the online buddies
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1 view read_state {
2 incompatible write_state;
3 current_publish, latest_publish, buddies, buddies_map,
4 config_dirty, republish_delay_event, last_publish_start,
5 unauth_bloom, ygm_unauth_bloom, bogus_ygm_written,
6 write_bogus_ygm: readonly;
7 }
8

9 view write_state {
10 incompatible read_state, write_state;
11 current_publish, latest_publish, buddies, buddies_map,
12 republish_delay_event, last_publish_start, unauth_bloom,
13 ygm_unauth_bloom, config_dirty, bogus_ygm_written,
14 write_bogus_ygm: readwrite;
15 }
16

17 view pd_queue {
18 incompatible pd_queue;
19 pd_queue: readwrite;
20 }
21

22 view publish_write_contacts {
23 incompatible publish_write_contacts;
24 publish_write_contacts: readwrite;
25 }

Fig. 14. Views for BuddyPlugin class.

lock and the online buddy ips data structure and statically ensure that the
program always follows the proper locking discipline.

The tracked downloads view protects six related fields, including two sets and
two maps. In the original version of the BuddyPluginTracker, the application
always acquired the tracked downloads lock before accessing any of these fields.

Finally, the three views read internal state, write internal state,
and buddy peers all protect miscellaneous internal state of the
BuddyPluginTracker. Both the write internal state and buddy peers
views provide write access to different parts of the tracker. The
read internal state view is not incompatible with itself, so multiple
threads may simultaneously read internal state. Each of the write views is
incompatible with itself and with the read internal state view.

We found that views enable developers to confidently use fine-grained concur-
rency patterns. Using the view declarations, our compiler statically verifies that
the code always acquires the appropriate locks.

5.4 Mailpuccino

Mailpuccino is an open-source graphical mail client written in Java that sup-
ports the POP3 and IMAP protocols. Mailpuccino is available at http://www.
kingkongs.org/mailpuccino/. It contains over 14,000 lines of code.
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1 view actively_tracking {
2 incompatible actively_tracking;
3 actively_tracking: readwrite;
4 }
5

6 view online_buddies {
7 incompatible online_buddies;
8 online_buddies, online_buddy_ips: readwrite;
9 }

10

11 view tracked_downloads {
12 incompatible tracked_downloads;
13 tracked_downloads, last_processed_download_set_id,
14 last_processed_download_set, download_set_id, full_id_map,
15 short_id_map: readwrite;
16 }
17

18 view read_internal_state {
19 incompatible write_internal_state, buddy_peers;
20 online_enabled, old_plugin_enabled, plugin_enabled,
21 old_tracker_enabled, tracker_enabled, old_seeding_only,
22 seeding_only, consecutive_fails, last_fail, network_status,
23 buddy_send_speed, buddy_receive_speed: readonly;
24 }
25

26 view write_internal_state {
27 incompatible read_internal_state, write_internal_state,
28 buddy_peers;
29 online_enabled, old_plugin_enabled, plugin_enabled,
30 old_tracker_enabled, tracker_enabled, old_seeding_only,
31 seeding_only, consecutive_fails, last_fail: readwrite;
32 }
33

34 view buddy_peers {
35 incompatible read_internal_state, buddy_peers,
36 write_internal_state;
37 seeding_only: readonly;
38 buddy_peers, buddy_stats_timer, network_status, buddy_send_speed,
39 buddy_receive_speed: readwrite;
40 }

Fig. 15. Views for BuddyPluginTracker class.

Mailpuccino maintains separate cache data structures for the message headers,
message flags, message parts, and the message structure. The locking for the orig-
inal cache objects used synchronized methods. The original coarse-grained locking
structure only allowed one thread to read from the message cache at a time.

Figure 16 presents the views that we wrote for Mailpuccino’s Cache object. We
created four views in all, belonging to two sets of two views each.
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The first set of views includes the lookup view and modify view for the
Mailpuccino cache. The lookup view provides read-only access, enabling methods
to safely read the cache, while the modify view provides read-write access, allow-
ing methods to safely modify the cache. Multiple threads may simultaneously read
from Cache objects, so the lookup view is compatible with itself. However, while
any thread is modifying the Cache object, no other threads can safely access that
Cache object at the same time. Therefore, the modify view is incompatible with
both itself and the lookup view. Note that our use of views enables the Cache
object to potentially support multiple simultaneous lookup operations.

1 view lookup {
2 incompatible modify;
3 KeyValues: readonly;
4 getAsByteArray(Object Key) preferred;
5 get(Object key) preferred;
6 flush() preferred;
7 getKeys() preferred;
8 close() preferred;
9 }

10

11 view modify {
12 incompatible modify, lookup;
13 KeyValues: readwrite;
14 put(Object Key, Object Value) preferred;
15 remove(Object Key) preferred;
16 keepOnlyThese(Vector Keys) preferred;
17 compact() preferred;
18 getAsByteArray(Object Key);
19 }
20

21 view file {
22 incompatible file;
23 Data: readwrite;
24 DataFile: readonly;
25 }
26

27 view indexfile {
28 incompatible indexfile;
29 IndexFile: readonly;
30 }

Fig. 16. Mailpuccino Cache Views

The second set of views includes the file and indexfile views. Each cache is
backed by two files: the DataFile file and its index, IndexFile. Cache misses
are served from these files. While the lookup view conceptually protects these
accesses and prevents simultaneous writes, Java’s RandomAccessFile object does
not support atomic reads from a specific file offset, so Mailpuccino performs a seek
followed by a read. We must therefore ensure that no other thread accesses the
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file object between the seek and the read operations. To do so, we created two
more views to protect the file objects. Only threads which have acquired these
self-incompatible views may access the fields that reference the corresponding files.
This ensures that only one thread may seek and read from a file at a time. While
we have described our changes to Cache, we also modified the MsgPartsCache
class in a similar fashion. The compiler synthesized the views for the cache objects
into 3 locks—two normal locks and one read-write lock.

We next modified the synchronized methods in the MonitoredInputStream
class to use views. This class contained two synchronized methods: the mark
method and the reset method. The “synchronized” annotations led us to believe,
at first, that the class was designed to be safely shared between threads. The mark
and reset methods access only two fields: MarkedBytesRead and BytesRead.
We wrote a view that allowed access to these fields and added the mark and reset
methods to the view.

At this point, we believed that we had distilled MonitorInputStream’s
old synchronization pattern into views. We therefore attempted to compile the
modified class. Surprisingly, the compiler threw error messages warning that
MonitorInputStream’s read method accesses the ByteRead field without
holding an appropriate view. However, the read method contained no synchro-
nization!

Closer examination revealed that the MonitoredInputStream class is not
thread safe and its mark and reset methods are never called. We modified the
class to remove these methods and added comments to make it clear that the class
is not thread safe.

5.5 jPhoneLite

jPhoneLite is an open-source VoIP softphone written in Java. jPhoneLite is avail-
able at http://sourceforge.net/projects/jphonelite/, and contains
20,000 lines of code. We annotated the core library of version 0.13.1 beta of
jPhoneLite.

The class with the most sophisticated locking structure in jPhoneLite is RTP,
which handles the transmission and reception of real-time content. This class con-
tains two locks, lockBuffers and lockHostPort, in addition to the built-in
lock on this.

Figure 17 presents the views that we created to replace the locks in RTP and
RTPChannel. These views control access to the input buffer, bufs, and its helper
fields; the destination port information, remoteip and remoteport; and, in
RTPChannel, the random number generator r. The original code also uses the
built-in lock on the RTP object to protect various remaining parts of RTP’s state.
Because views interoperate smoothly with Java locks, we decided to keep the orig-
inal lock on RTP. The compiler implements the views in RTP using two locks—one
read-write lock and one normal lock—and uses one normal lock to implement the
view in RTPChannel.

The readSamples and writeSamples views protect a circular buffer which
contains incoming data. While the readSamples view only reads from the buffer
bufs, it must update the auxiliary pointers to the buffer, so it has read-write access
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to bufFull and bufTail. It must therefore be declared as being incompatible
with itself. The writeSamples view writes to the buffer bufs as well as other
associated state; it is incompatible with both readSamples and writeSamples.
Unfortunately, since both of these views write to related state, the compiler must
use a traditional Java lock covering all of the state. However, views still enable a
developer to describe the locking policy and the anticipated access patterns to the
protected state, and our view compiler computes the optimal locking implementa-
tion for this case.

The readHostPort and writeHostPort views protect the destination infor-
mation, which may change during a connection. The RTP class only writes this
information, while the related RTPChannel class reads this information. The pri-
mary advantage of views in this case is to enable the compiler to ensure that all
reads from and writes to the remoteip and remoteport fields are protected by
a lock. Our compiler’s use of read-write locks could, in principle, lead to perfor-
mance improvements in similar usage patterns, but the potential for performance
improvements on network access is limited.

5.6 TupleSoup

TupleSoup is an open-source database library written in Java. TupleSoup is avail-
able at http://sourceforge.net/projects/tuplesoup/. TupleSoup con-
tains over 6,600 lines of code. We rewrote all of the synchronization in TupleSoup
to use views.

TupleSoup contains three index classes: a MemoryIndex class, a PageIndex
class, and a FlatIndex class. The original index classes only permitted one thread
to search the index at a time and implemented concurrency control using a single
lock. Figure 18 presents our view declarations for TupleSoup. We created two views
per index class: an access view and a modifying view (the FlatIndex class
only uses one view). Multiple threads can simultaneously hold the access view.
If one thread holds the modifying view of an index, no other thread can hold the
modifying or access views of the index. The compiler implemented these views
using a single lock (a read-write lock for the MemoryIndex and PageIndex views
and a normal lock for the FlatIndex case).

The DualFileTable class implements a cached table backed by two separate
files. The original version of DualFileTable contained five separate locks: one
lock for each of the two data files, a lock for the cache, and a lock for the statistics
counters. Upon closer inspection, we found that one of the locks in the Dual-
FileTable class was unnecessary. While it would have been possible to detect this
manually, encoding the locking scheme with views made the excess lock very obvi-
ous.

We also examined the code to see if we could modify the class to allow multiple
simultaneous calls to the getCacheEntry cache lookup method. Unfortunately,
this method actually mutates a list of least-recently-used cache entries that is used
to determine which entries to evict. Therefore, it is not safe to allow multiple
threads to simultaneously call the getCacheEntry method.

We therefore decided on a straightforward translation to views, shown in Fig-
ure 18, which replaces each lock with a corresponding view, and replaces syn-
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1 public class RTP {
2 view readSamples {
3 incompatible readSamples;
4 bufFull, bufTail: readwrite;
5 bufs: readonly;
6

7 getSamples(short data[]) preferred;
8 }
9

10 view writeSamples {
11 incompatible readSamples, writeSamples;
12 bufFull, bufTail: readwrite;
13 bufs, bufHead: readwrite;
14 }
15

16 view readHostPort {
17 incompatible writeHostPort;
18 remoteip, remoteport: readonly;
19 }
20

21 view writeHostPort {
22 incompatible readHostPort, writeHostPort;
23 remoteip, remoteport: readwrite;
24

25 change (String remote, int remoteport) preferred;
26 }
27 // ...
28 }
29

30 public class RTPChannel {
31 view rlock {
32 incompatible rlock;
33 r: readonly;
34 }
35 // ...
36 }

Fig. 17. Views for RTP and RTPChannel classes.

chronized methods with preferred views for methods. Such a translation is quite
straightforward to carry out and enables developers to explicitly express the cor-
relations between fields that the locking structure implicitly encoded. In other
words, the views explicitly label the data that each lock protects, and our view
compiler provides static assurances that the code never accesses protected fields
without holding an appropriate view. The compiler implemented these views with
four normal locks.
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1 view filea {
2 incompatible filea;
3 fileastream, filearandom, fca, fileaposition: readwrite;
4 updateRowA(Row row) preferred;
5 addRowA(Row row) preferred;
6 }
7 view fileb {
8 incompatible fileb;
9 filebstream, filebrandom, fcb, filebposition: readwrite;

10 updateRowB(Row row) preferred;
11 addRowB(Row row) preferred;
12 }
13

14 view indexcache {
15 incompatible indexcache;
16 indexcache, indexcacheusage, indexcachefirst, indexcachelast:
17 readwrite;
18 addCacheEntry(TableIndexEntry entry) preferred;
19 updateCacheEntry(TableIndexEntry entry) preferred;
20 removeCacheEntry(String id) preferred;
21 getCacheEntry(String id) preferred;
22 }
23

24 view stat {
25 incompatible stat;
26 stat_add, stat_update, stat_delete, stat_add_size,
27 stat_update_size, state_read, stat_read_size, stat_cache_hit,
28 stat_cache_miss, stat_cache_drop: readwrite;
29 readStatistics();
30 }

Fig. 18. TupleSoup DualFileTable Views

5.7 Discussion

We used the following process for annotating an existing class with views. First, we
studied an existing class’s locking structure. Next, we proposed a view structure
which would protect a related group of fields and methods, typically with a read-
only view for accessing state and a read-write view for updating state. We fed this
view structure to our compiler, which guaranteed that accesses to protected fields
and methods only occur when holding appropriate views.

We found that it was straightforward to replace the traditional Java locking
structure with view acquisitions; it sufficed to replace synchronized(x) with
acquire(x@v) and synchronized methods with preferred view methods. Each
benchmark took a couple of hours to annotate; the crux was in understanding the
existing locking structures.

Our process typically results in an application with increased potential for concur-
rency. Many of our annotated benchmarks allow multiple threads to simultaneously
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read state, while ensuring that only one thread can write state.
After we manually developed complete view specifications, we removed the in-

compatibility declarations and used the incompatibility inference algorithm to au-
tomatically infer the incompatibility declarations. We found that the heuristic
successfully inferred all view incompatibility declarations for Vuze, TupleSoup, and
jPhoneLite. The inference algorithm was able to infer incompatibility declarations
for all views in Mailpuccino except the indexfile view. The indexfile view
only allows reads from the IndexFile field, and therefore it would appear to be
safe to allow multiple threads to simultaneously hold this view. However, the view
is held while performing file operations on the index file, and serves to protect state
changes that occur inside the operating system.

6. RELATED WORK

We discuss three threads of work related to concurrency control. First, we describe
systems to prevent or detect races. Next, we discuss other systems for specifying
and verifying concurrency control policies in Java. Finally, we compare views to
alternate concurrency control mechanisms which go beyond Java lock-based con-
currency control.

Ensuring Race-Freedom. Many teams have developed different type systems which
ensure that well-typed programs are free of data races. Boyapati, Lee, and Rinard
developed type systems which ensure the absence of data races by tracking object
ownership [Boyapati and Rinard 2001; Boyapati et al. 2002]. Abadi, Flanagan, and
Freund have developed RaceFreeJava [Abadi et al. 2006], where developers associate
a lock with each shared field and express this information via the type system; the
compiler infers additional type annotations and verifies that programs conform to
the specified type-based discipline. Bacon, Strom, and Tarafdar propose the Guava
race-free dialect of Java [Bacon et al. 2000], which forces all members of shared
objects to synchronized. Views generalize RaceFreeJava by allowing developers
to specify the locking policy for a set of related fields and methods, not just for
one field at a time as in the RaceFreeJava case. That is, views allow developers
to explicitly express, in one place, the state and methods protected by each lock.
Moreover, unlike previous approaches, views are not limited to using simple Java
locks to guarantee race-freedom; they can leverage read-write locks and other more
sophisticated approaches to concurrency control. Views provide developers with
a flexible mechanism that can be used to implement sophisticated approaches to
concurrency control.

An alternative to statically ensuring that programs are free of races is to detect
these races, either statically or dynamically. The Eraser dynamic race detection
tool computes lock sets for memory locations and warns if a memory location is
not protected by a lock [Savage et al. 1997]. Choi et al. have developed a run-
time approach that records access events and uses several optimizations to mini-
mize overheads [Choi et al. 2002]. Marino et al’s LiteRace tool uses sampling to
minimize overheads [Marino et al. 2009]. Other dynamic approaches use static
analysis to lower the instrumentation overhead [von Praun and Gross 2001]. While
dynamic race detection is useful, it requires adequate test suites to detect bugs.
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RacerX instead uses interprocedural static analysis to detect race conditions and
deadlocks [Engler and Ashcraft 2003]. More recently, Chord [Naik et al. 2006; Naik
and Aiken 2007; Naik 2008] implements static race detection using a staged ap-
proach; stages incorporate increasingly sophisticated pointer analyses, culminating
with conditional must-not alias analysis. Note that Chord can successfully ana-
lyze implementations of many fine-grained locking schemes. Other static analysis
approaches include Warlock [Sterling 1993] and Sema [Korty 1989]. Race detec-
tion tools are, in general, useful for detecting bugs in programs. However, they
provide developers with little guidance about which fields need to be protected by
locks. Any solution requires developers to formulate a suitable concurrency control
policy for their system. Views enable developers to express concurrency control
policies; the compiler then automatically computes a mechanism for implementing
the policy. Views therefore differ from race detection and race-free type systems
approaches because those approaches only verify that implemented solutions are
free of races.

Another technique related to ours is that of automatically generating locking
schemes for critical regions [Halpert et al. 2007; Emmi et al. 2007; Hicks et al.
2006]. Typically, such approaches allow developers to specify critical or atomic
sections of their programs. Zhang et al. state a minimal lock assignment problem
that is similar to the problem of lock synthesis for views, but differs in that it
contains information about non-conflicting critical sections that are never executed
concurrently and therefore can share locks without limiting concurrency [Zhang
et al. 2007]. This body of work must rely on static analysis to generate locks
and therefore may generate overly conservative locking schemes. Furthermore, this
work does not attempt to detect possible data races arising from accessing shared
state outside of critical regions. Views instead start with a data-centric approach:
developers declare certain fields (and methods) as belonging to a view, and specify
when threads acquire views; the compiler then ensures that the program always
acquires appropriate views, and synthesizes a locking strategy which respects the
view annotations.

Atomic sets [Vaziri et al. 2006; Vaziri et al. 2010] are a related data-centric syn-
chronization approach. In this approach, the developer declares which fields are re-
lated, and the system automatically inserts synchronization. Relative to this work,
views provide programmers with more control over fine-grained locking strategies
and support read-write locks. Views also nicely support incremental refinement of
the specifications. Views are fully compatible with locks—developers can incremen-
tally convert a program from using locks to views.

Specifying and verifying design intent. Composable thread coloring [Sutherland and
Scherlis 2010] constrains which threads may execute at specific periods of program
executions: one way of avoiding the need to lock shared state is to ensure that it is
not shared. For instance, AWT and Swing programs require that only one thread
may directly interact with the user interface. We see the work on composable thread
coloring as orthogonal to our work on views.

The Fluid project developed techniques for verifying concurrency-related design
intent. Part of the work on Fluid [Greenhouse 2003] enables developers to declare
regions and locking policies. Each region controls access to a collection of object
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fields. It is then the responsibility of the developer to implement a locking pol-
icy which satisfies the specification; Fluid can verify locking implementations, as
long as they are implemented using standard Java locks, but it cannot implement
the locking policy itself. Views compile locking policies into executable code. Be-
cause the views compiler understands the underlying policy, it can use advanced
concurrency primitives like read-write locks when appropriate.

Other concurrency control mechanisms. We discuss a number of concurrency con-
trol mechanisms, including full/empty bits, accept sets and atomic sections.

Another solution for fine-grained concurrency is full/empty bits [Yeung and Agar-
wal 1993]. Full/empty bits generally enable programs to control access to one
memory word, or data item, at a time, and typically apply to matrix computations.
They are therefore quite different from views: developers must generally implement
a fine-grained concurrency policy for full/empty bits by hand, explicitly indicating
when words are available for reading (possibly with compiler support), while views
enable developers to specify high-level concurrency policies. Furthermore, policies
for views can be expressed in terms of object-oriented abstractions, namely fields
and methods, rather than on a per-data-item basis, as with full/empty bits. Note
also that one view can protect several fields and methods, while each full/empty
bit protects one word.

Moving beyond Java concurrency, the language-level mechanisms of accept sets
and member guards [Buhr and Harji 2005] enable developers to implement sophis-
ticated concurrency control mechanisms. Like views, accept sets allow a developer
to control access to parts of a method interface. However, accept sets are a dy-
namic mechanism which temporarily grant and revoke parts of an object’s interface.
Views differ from accept sets in two main ways. The first difference arises when
trying to use an unavailable resource. When using views, it is a compile-time error
to attempt to invoke part of the interface that is unavailable (because the thread
has not yet acquired the appropriate lock). With accept sets, a caller instead waits
until a desired part of an object interface becomes available before invoking that
part of the interface. The second difference is in the level of abstraction: views spec-
ify which parts of an object need protection, whereas accept sets allow developers
to implement a particular locking policy. In particular, accept sets do not explain
why these methods are available or not. Because views describe what is being pro-
tected, the compiler can identify potential race conditions at compile-time, and the
developer can then correct these race conditions before deploying the software.

Member guards enable developers to specify preconditions which must be met
before a method may execute. Because member guards can contain arbitrary ex-
pressions, they are potentially more expressive than even views; for example, a
consumer might only start running when its queue is nonempty. Member guards
can therefore express higher-level requirements on methods. Like accept sets, mem-
ber guards are a dynamic approach which delay method executions until they are
safe. However, unlike views, member guards still do not enable developers to state
which parts of an object’s state need to be protected.

Kulkarni et al introduced a systematic approach for checking semantic commu-
tivity of method invocations [Kulkarni et al. 2011]. Their approach solves a similar
lock synthesis problem, but in a simper context.
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Researchers have proposed transactional memory [Harris et al. 2010] as another
concurrency control mechanism. The idea is that programmers specify transactions,
atomic regions of code, and the runtime automatically provides atomicity either
through optimistic concurrency or pessimistic locking. Efficiently implementing
transactional memory and handling side-effects remain open research problems.
Moreover, transactional memory does not provide any guarantee against data races
for accesses which occur outside of transactions.

Atomic sections are another high-level concurrency construct. A thread execut-
ing an atomic section must not see updates from concurrent threads until the end
of its atomic section. Cherem et al. describe a technique for inferring locks from
atomic section declarations [Cherem et al. 2008]. Their work shares the goals of
views: it enables programmers to use higher-level concurrency constructs, leaving
the compiler to automatically generate lock-based code based on the constructs.
Their approach also generates fine-grained locks whenever possible. Views, how-
ever, always use fine-grained locking by giving the developer more control over the
locking scheme: instead of simply specifying that a region is atomic, the developer
tells the compiler about the actual data access patterns inside the region. Under
our approach, the compiler does not need to understand the access patterns of the
protected code; it simply needs to enforce developer-specified policies.

7. CONCLUSION

In this paper, we have described views, a language extension which enables devel-
opers to specify concurrency control policies. Our prototype compiler implements
these policies using sophisticated locks, while statically detecting possible concur-
rency bugs. Views promise to ease the difficult task of implementing locking schemes
for fine-grained concurrency.

To use views, a developer writes a set of view declarations and annotates code
with view acquisition statements. A view declaration describes which views of an
object may be simultaneously held by different threads and the parts of the object
interface that the view controls. The partial object interface grants read and write
access to fields and permission to call methods, while holding the view.

Our compiler performs static checks of the view specifications and the program’s
view acquisitions to detect concurrency bugs. Our compiler automatically synthe-
sizes a locking scheme that enforces the necessary constraints between views.

Implications. Our compiler uses view annotations to guarantee that fields and
methods that appear in some view will not be accessed without holding any view
that provides access to those fields. For programs which do not trigger compiler
warnings, our compiler guarantees race-freedom for view-protected fields4.

Experience. Views support most common locking patterns. While views do not
support concurrency patterns that allow optimistic reading of fields without holding
a lock (e.g. as found in ConcurrentHashMap), we were able to express all of the

4We make an exception for constructors: for convenience, we provide defaults that allow construc-

tors to access any field of the object being constructed.
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lock-based patterns we explored in our benchmark applications, which included part
of a BitTorrent client, a graphical e-email client, a VoIP softphone implementation,
and a database.

Our experience indicates that views are simple to program with, support sophis-
ticated fine-grained access control, and can detect concurrency bugs.
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Appendix: Type Rules

In this appendix, we present type rules for a simplified version of the view system.
The language is based on ConcurrentJava, as described in [Abadi et al. 2006].
Our rules formally explain how our view language extensions ensure that the pro-
gram always holds the appropriate view before accessing a field or method that is
protected by a view. We assume that the statements in each method have been
transformed into control-flow graphs and that the program has been rewritten to
explicitly include the “base” views. Our type rules do not include arrays, which we
handle with a separate static analysis.
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Following [Flatt et al. 1998], our type system uses these predicates, which we
define informally.

ClassesOnce(P ) Each class in P is declared at most once.
FieldsOnce(P ) Each field appears no more than once in any class.
MethodsOnce(P ) Each method appears no more than once in any class.
ViewsOnce(P ) Each view appears no more than once in any class.
JumpsLocal(P ) Jumps in P do not cross scope boundaries.
ViewInheritOK (P ) Access descriptions for view members in subclasses

are at least as permissive as in the superclasses.
Figure 19 presents the purpose, or meaning, of each of the following judgments

in our type system. Figure 20 presents the type rules for our language.

Judgement Meaning

` P program P is well-typed

P ` defn defn is a well-formed class definition
P ;E, vc c ` inc inc is a well-formed view incompatibility declaration

if declared in class c

P ;E, vc c ` vf : accessDesc vf is a well-formed view field declaration
with access descriptor accessDesc ∈ {none, ro, rw}

P ;E, vc c ` vf : accessDesc ∈ v view v contains field vf

P ;E, vc c ` vm vm is a well-formed view method declaration
P ;E, vc c ` vm ∈ v view v contains method vm
P ;E, vc c ` view view view is a well-formed view
P ;E ` view ∈ c class c declares view view

P ;E ` meth meth is a well-formed method
P ;E ` meth ∈ c class c declares method meth
P ;E ` field field is a well-formed field

P ;E ` field ∈ c class c declares field field
P ;E ` wf E is a well-formed typing environment
P ;E ` τ τ is a well-formed type

P ;E ` e:τ expression e has type τ
P ;E ` cond condition cond is well-typed
P ;E ` s statement s is well-typed

Fig. 19. Meanings of Judgements in Type Rules.
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` P

[PROG]
ClassesOnce(P ) FieldsOnce(P ) MethodsOnce(P ) ViewsOnce(P )

JumpsLocal(P ) P = defn1..n P ` defni
` P

P ` defn

[CLASS]
P ;E, vc c ` viewi P ;E ` fieldi P ;E ` methi

P ` class cn extends c’ {view1..n field1..j meth1..m}

P ;E, vc c ` inc

[VIEW INCOMP]
P ;E, vc cn ` view ∈ cn

P ;E, vc cn ` incompat view

P ;E, vc c ` vf : accessDesc

[VIEW FIELD]
P ;E, vc cn ` τ fd ∈ cn

P ;E, vc cn ` fd : accessDesc

P ;E ` vf : accessDesc ∈ v

[VIEW FIELD DECL]
P ;E, vc cn ` view vn {. . . vf . . .}
P ;E, vc cn ` vf : accessDesc

P ;E, vc ` vf : accessDesc ∈ vn

[VIEW FIELD INH]
P ;E, vc cn ` view vn {. . .}

P ;E, vc cn′ ` vf : accessDesc ∈ vn

P ;E ` cn <: cn′
P ;E, vc ` vf : accessDesc ∈ vn

P ;E, vc c ` vm

[VIEW METHOD]
P ;E, vc cn ` meth ∈ cn

P ;E, vc cn ` vm [pref]opt

P ;E ` vm ∈ v

[VIEW METHOD DECL]
P ;E, vc cn ` view vn {. . . vm . . .}

P ;E, vc cn ` vm

P ;E, vc ` vm ∈ vn

[VIEW METHOD INH]
P ;E, vc cn ` view vn {. . .}

P ;E, vc cn′ ` vm

cn <: cn′
P ;E, vc ` vm ∈ vn

P ;E, vc c ` view

[VIEW]
P ;E, vc cn ` inci P ;E, vc cn ` vfi ∈ vn

P ;E, vc cn ` vmi ∈ vn

P ;E, vc cn ` view vn{inc1..n vf1..m vm1..j}

P ;E ` view ∈ c

[VIEW DECL]
P ;E ` class cn {. . . view . . .}

P ;E, vc cn ` view

P ;E ` view ∈ cn

P ;E ` field

[FIELD]
P ;E ` τ
P ;E ` τ fd

P ;E ` field ∈ c

[FIELD DECL]
P ;E ` class cn {. . . field . . .}

P ;E ` τ field

P ;E ` field ∈ cn

[FIELD INH]

P ;E ` cn <: cn′

P ;E ` field ∈ cn′
P ;E ` field ∈ cn

P ;E ` meth

[METHOD]
P ` class cn {methmn . . .}

Vmn = {vs | P ;E ` mn ∈ vs }
argi = cni@vi vni P ;E0 ` ej : τj

τj = cnj@vj lvj = τj lnj ldj = [lj=ej ]
P ;E0 ` wf E = E0, arg0..n, lvn+1..n+l
∀v ∈ Vmn. ∀i ∈ [1..t]. P ;E, cn@v this ` si
P ;E ` mn(arg1..n) {ldn+1..n+l s1..t}

P ;E ` meth ∈ c

[METHOD DECL]
P ;E ` class cn {. . .meth . . .}

P ;E ` meth ∈ cn

[METHOD INH]

P ;E ` cn <: cn′

P ;E ` meth ∈ cn′
P ;E ` meth ∈ cn

P ;E ` wf

[ENV ∅]

P ;∅ ` wf

[ENV X]
P ;E ` τ x 6∈ Dom(E)

P ;E, τ x ` wf

[ENV VC]
P ;E ` wf vc * 6∈ E
P ;E, vc c ` wf

P ;E ` τ

[TYPE C]
P ` class cn{. . .}

P ;E ` cn

[VIEWTYPE C]
P ;E ` v ∈ τ
P ;E ` τ@v

P ;E ` τ1 <: τ2

[SUBTYPE]

P ` class cn extends cn′{. . .}
P ;E ` cn

P ;E ` cn <: cn′

[SUBTYPE TRANS]

P ;E ` τ1 <: τ2
P ;E ` τ2 <: τ3
P ;E ` τ1 <: τ3

[SUBTYPE REFL]

P ;E ` τ1
P ;E ` τ1 <: τ1

P ;E ` cond

[COND EQ]
P ;E ` e1
P ;E ` e2

P ;E ` e1==e2

[COND NEQ]
P ;E ` e1
P ;E ` e2

P ;E ` e1! =e2

P ;E ` e:τ

[EXP VAR READ]
E = E1, τ y, E2
P ;E ` y:τ

[EXP FIELD READ]
E = E1, τx x, E2 τx = cx@vx
∃v ∈ vx. fd : {ro ∨ rw} ∈ v
τf = cf@vf P ` (τf fd) ∈ cx

P ;E ` x.fd:τf

P ;E ` s

[STMT NEW]
E = E1, τ x, E2 τ = c

P ;E ` c
P ;E ` x = new c

[STMT READ/COPY]
E = E1, finaloptτ x, E2
τ = cn P ;E ` e:τ
P ;E ` x = e

[STMT LABEL]
P ;E ` wf

P ;E ` `:

[STMT GOTO]
P ;E ` wf

P ;E ` goto `

[STMT IF]
P ;E ` `1: P ;E ` `2:

P ;E ` cond

P ;E ` if cond then `1else `2

[STMT FIELD WRITE]

E = E1, τx x, E2 E = E′1, τy y, E
′
2

τx = cx@vx τy = cy@vy
∃v ∈ vx. fd : {rw} ∈ v
P ;E ` (τy fd) ∈ τx
P ;E ` x.fd = y

[STMT FORK]
P ;E ` ei:τi gi = finalτiei

P ;E ` cj lvj = cj lnj
∀i ∈ [1..t]. P ;gi, lv1..l ` si
P ;E ` fork(e1..n){lv1..ls1..t}

[STMT ACQUIRE]
E = E1, τ lv, E2

∀i ∈ [1..t]. P ;E1, τ@v lv, E2 ` si
P ;E ` acquire(lv@v){s1..t}

[STMT INVOKE]
P ;E ` mn(τj yj)j∈1..n{· · · }

τj = cnj@vj P ;E ` e′j :τ
′
j τ′j = cnj@vj

P ;E ` a:τ τ = cn@va methmn ∈ cn
(∃v ∈ va. mn ∈ v) ∨ (∃v. mn pref ∈ v)

P ;E ` a.mn(e′1..n)

Fig. 20. Type Rules.
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