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A Practical Approach for Model Checking C/C++11 Code
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Writing low-level concurrent software has traditionally required intimate knowledge of the entire toolchain
and often has involved coding in assembly. New language standards have extended C and C++ with sup-
port for low-level atomic operations and a weak memory model, enabling developers to write portable and
efficient multithreaded code.

In this paper we present CDSCHECKER, a tool for exhaustively exploring the behaviors of concurrent code
under the C/C++ memory model. We have used CDSCHECKER to exhaustively unit test concurrent data
structure implementations and have discovered errors in a published implementation of a work-stealing
queue and a single producer, single consumer queue.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

Additional Key Words and Phrases: Relaxed Memory Model, Model Checking

1. INTRODUCTION
With the wide-scale deployment of multi-core processors, software developers must
write parallel software to realize the benefits of continued improvements in micropro-
cessors. Many developers in industry have adopted a parallel programming model that
uses threads to parallelize computation and concurrent data structures to coordinate
and share data between threads.

Careful data structure design can improve scalability by supporting multiple simul-
taneous operations and by reducing the time taken by each individual data structure
operation. Researchers and practitioners have developed a wide range of concurrent
data structures designed with these goals in mind [Shavit 2011; Moir and Shavit 2004;
Michael and Scott 1996]. Such data structures often use fine-grained conflict detection
and avoid contention.

Concurrent data structures often use a number of sophisticated techniques including
the careful use of low-level atomic instructions (e.g. compare and swap (CAS), atomic
increment, etc.), careful orderings of loads and stores, and fine-grained locking. For
example, while the standard Java hash table implementation can limit program scal-
ability to a handful of processor cores, the carefully designed concurrent hash tables
can scale to many hundreds of cores [Click 2007]. Traditionally, developers had to tar-
get their implementation of such data structures to a specific platform and compiler,
using intimate knowledge of the platform details and even coding some data structure
components in assembly.

1.1. C/C++ Memory Model
Recently, standardization committees extended the C and C++ language standards
with support for low-level atomic operations [ISO/IEC 14882:2011 ; ISO/IEC 9899:2011
; Boehm and Adve 2008] which allow experts to craft efficient concurrent data struc-
tures that avoid the overheads of locks. The accompanying memory model provides
for memory operations with weaker semantics than sequential consistency; however,
using these weak atomic operations is extremely challenging, as developers must care-
fully reason about often subtle memory model semantics to ensure correctness. Even
experts often make subtle errors when reasoning about such memory models.

The potential performance gains of low-level atomics may lure both expert and
novice developers to use them. In fact some common parallel constructs (e.g., sequen-
tial locks) require ordinary developers to use atomics in C/C++ [Boehm 2012]. In the
absence of proper tool support, developers will likely write concurrent code that they
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hope is correct and then rely on testing to find bugs. Adequately testing concurrent
code that uses C/C++ atomics is nearly impossible. Even just exploring the behaviors
of a given binary on a given architecture can be tricky as some bugs require precise
timing to trigger. Moreover, neither existing processors nor compilers make full use of
the freedom provided by the C/C++ memory model. As future compiler updates imple-
ment more aggressive optimizations, compilers will leverage the freedom provided by
the memory model and produce binaries that exhibit new (but legal) behaviors that
will likely expose existing bugs.

1.2. Tool Support
While it is possible to use a formal specification of the C/C++ memory model [Batty
et al. 2011] to prove code correct, experience suggests that most software developers
are unlikely to do so (e.g., because they lack expertise or time). There is a pressing
need, then, for tools that allow developers to unit test portions of their code to discover
what behaviors the memory model allows. Such tools could guarantee soundness of
properly abstracted code via exhaustive exploration. Typically, concurrent data struc-
tures are amenable to such a scenario; developers reason about (and rigorously test)
their implementation in isolation from the details of a larger client program, then pro-
vide that abstraction to users, who only must ensure correct use of the abstraction.

We present a new approach for exhaustively exploring the behaviors of code un-
der the C/C++ memory model, based on stateless model-checking [Godefroid 1997].
Stateless model-checkers typically explore a program’s possible behaviors—or state
space—by repeatedly executing the program under different thread interleavings.
However, exhaustive search of potential thread interleavings becomes computation-
ally intractable as programs grow to any reasonable length.

Thus, state-of-the-art stateless model-checking rests on a class of optimization tech-
niques known as dynamic partial-order reduction (DPOR) [Flanagan and Godefroid
2005]. The DPOR algorithm can reduce the explored state space by exploring only
those executions whose visible behavior may differ from the behavior of previously-
explored executions. During its state-space exploration, DPOR identifies points at
which it must explore program operations in more than one interleaving (e.g., two
concurrent stores to the same object conflict, whereas two loads do not). Conflict points
are recorded in a backtracking set, so that the exploration can return (or backtrack) to
the recorded program point during a future execution and attempt a different thread
interleaving.

DPOR targets a sequentially consistent model, preventing its direct application to
the C/C++ memory model, as C and C++ provide no guarantee of a total execution
order in which loads see the value written by the most recent store. The C/C++ memory
model instead defines the relation between loads and the values they see in terms of
a reads-from relation which is subject to a number of constraints. We present a new
approach that exhaustively explores the set of legal reads-from relations, with thread
scheduling and support for sequentially consistent atomics influenced by DPOR.

In C/C++, shared variables must be either clearly annotated using the new <atomic>
library (or higher-level thread support libraries, such as <mutex>), or else protected
from conflicting concurrent access through use of these atomics or other synchroniza-
tion primitives; any pair of conflicting accesses to non-atomic variables without proper
synchronization constitutes a data race, which yields undefined behavior [ISO/IEC
9899:2011 ]. Thus, we simply designed CDSCHECKER as a dynamic library implemen-
tation of these threading and atomic libraries, as shown in Figure 1, and generally left
other operations uninstrumented. Such a design can readily support a broad range of
real-world applications, as users simply compile their code against our library with
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Fig. 1. CDSCHECKER system overview

their compiler of choice. At runtime, CDSCHECKER schedules program fragments se-
quentially and determines the values returned by atomic memory operations.

To model all program behaviors, CDSCHECKER implements a backtracking-based
system which performs repeated, controlled program execution until it has explored
all necessary program behaviors. CDSCHECKER reports diagnostic information for all
data races, deadlocks, uninitialized atomic loads, and user-provided assertion failures
that occur for the provided input. All failure reports include a full trace of all thread
and atomic operations performed in the program, a short description of the detected
bug(s), and a representation of the reads-from relation for the execution.

Some tools already exist for testing program behavior according to the C/C++ mem-
ory model. CPPMEM [Batty et al. 2011] enumerates all potential modification orders
and reads-from relations in programs (under a limited subset of C/C++ language con-
structs), then eliminates the infeasible ones according to the formal specification of
the memory model. CPPMEM lacks support for fences and only supports loops with a
priori loop iteration bounds. We contribute an exponentially more efficient approach
that makes it possible to check real code. Our approach reduces the search space by
avoiding explicitly enumerating orderings that produce equivalent execution behav-
ior. We also contribute support for fences and loops without fixed iteration bounds.
Relacy [Vyukov Oct] explores possible behaviors of real C++ programs using library-
based instrumentation, but it cannot model all types of relaxed behavior allowed by
C/C++. Our approach fully models the relaxed behavior of real C and C++ code.

1.3. Limitations
Generally, CDSCHECKER will explore every distinct execution behavior allowed by the
C/C++ memory model, providing exhaustive test coverage under a particular program
input. However, there are a few considerations in the design and implementation of
CDSCHECKER that leave room for incompleteness. We summarize the limitations here
and provide more thorough explanation in the body of the paper.

— Supporting memory order consume requires a compiler’s deep knowledge of data de-
pendences. We opted instead to make CDSCHECKER compiler-agnostic.

— Unbounded loops present infinite state spaces, which cannot be completely explored
by a stateless model-checker. We explore such loops under the restriction of a fair
schedule: either through bounded fairness enforced by our scheduler (bounds ad-
justable) or through the use of CHESS [Musuvathi et al. 2008] yield-based fairness.

— Some programs rely on a live memory system in order to terminate. For such pro-
grams, we impose bounded liveness via an adjustable run-time option.
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— CDSCHECKER may not explore all behaviors involving satisfaction cycles. Not only
are satisfaction cycles difficult to generate in a model-checker, but they are a thorny,
unsolved issue in the current C and C++ specifications, which do not make it clear
exactly which behaviors should be allowed and disallowed.

— CDSCHECKER uses a system of promises to allow loads to read from stores that ap-
pear later in the execution (Section 6). However, we do not allow these promises to
remain forever in an execution which will never satisfy them. Thus, promise expira-
tion theoretically may be a source of incompleteness.

1.4. Contributions
This paper makes the following contributions:

— Basic Approach: It presents new techniques that enable the stateless model-
checking of C/C++ code under the C/C++ memory model. Our approach is the first
that can model-check unit tests for real-world C/C++ data structure implementations
under the C/C++ memory model.

— Constraints-Based Modification Order: It introduces the first technique for
model-checking the C/C++ memory model without explicitly enumerating the modi-
fication order of atomic objects, exponentially decreasing the search space.

— Relaxed Memory Model Support: It develops new techniques to support the full
variability of the memory model, including allowing loads to observe the values writ-
ten by stores that appear later in the execution order while at the same time main-
taining compatibility with uninstrumented code in libraries.

— Partial Order Reduction: It combines our new relaxed model-checking techniques
with existing schedule-driven partial order reduction to efficiently support sequen-
tially consistent memory actions.

— Bug Finding: It shows that our techniques can find bugs in real world code including
finding a new bug in a published, peer-reviewed implementation of the Chase-Lev
deque.

— Correctness: It defines a set of constraints on the C/C++ memory model that suffice
to prohibit “out-thin-air” behaviors. These constraints are not intended to solve the
challenging problem of balancing the concerns of performance and semantics for out-
of-thin-air values, but rather to provide a memory model that we can show soundness
relative to. It proves that the CDSCHECKER algorithm is sound for a version of the
C/C++ memory model that satisfies these constraints.

— Evaluation: It presents an evaluation of the model-checker implementation on sev-
eral concurrent data structures. With runtimes averaging only a few seconds and
no test taking over 11 seconds, empirical results show that our tool is efficient in
practice.

The remainder of the paper is organized as follows. Section 2 presents an exam-
ple. Section 3 reviews important aspects the C/C++ memory model. Section 4 gives an
overview of our approach. Section 5 presents our constraint-based approach to modifi-
cation orders. Section 6 provides more insight on how we support the relaxed memory
model. Section 7 discusses release sequence support. Section 10 discusses how we han-
dle fairness and memory liveness. Section 11 presents a soundness proof for the core
CDSCHECKER algorithm for a simplified version of the C/C++ memory model. Sec-
tion 12 evaluates CDSCHECKER. Section 13 presents related work. We conclude in
Section 14.

2. EXAMPLE
To explore some of the key concepts of the memory-ordering operations provided by
the C/C++ memory model, consider the example in Figure 2, assuming that two in-
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1 atomic <int > x(0), y(0);
2
3 void threadA () {
4 int r1 = y.load(memory_order_relaxed);
5 x.store(1, memory_order_relaxed);
6 printf("r1 = %d\n", r1);
7 }
8 void threadB () {
9 int r2 = x.load(memory_order_relaxed);

10 y.store(1, memory_order_relaxed);
11 printf("r2 = %d\n", r2);
12 }

Fig. 2. C++11 Code Example

dependent threads execute the methods threadA() and threadB(). This example uses
the C++11 syntax for atomics; shared, concurrently-accessed variables are given an
atomic type, whose loads and stores are marked with an explicit memory order govern-
ing their inter-thread ordering and visibility properties (discussed more in Section 3).
In the example, the memory operations are specified to have the relaxed memory or-
dering, which is the weakest ordering in the C/C++ memory model and allows memory
operations to different locations to be reordered.

In this example, a few simple interleavings of threadA() and threadB() show that we
may see executions in which {r1 = r2 = 0}, {r1 = 0 ∧ r2 = 1}, or {r1 = 1 ∧ r2 = 0},
but it is somewhat counter-intuitive that we may also see {r1 = r2 = 1}, in which
both load statements read from the store statements that appear after the other load.
While this latter behavior cannot occur under a sequentially-consistent execution of
this program, it is, in fact, allowed by the relaxed memory ordering used in the exam-
ple (and achieved, e.g., by compiler reordering).

Now, consider a modification of the same example, where the load and store on vari-
able y (Line 4 and Line 10) now use memory order acquire and memory order release,
respectively, so that when the load-acquire reads from the store-release, they form a
release/acquire synchronization pair. Then in any execution where r1 = 1 and thus
the load-acquire statement (Line 4) reads from the store-release statement (Line 10),
the synchronization between the store-release and the load-acquire forms an ordering
between threadB() and threadA()—particularly, that the actions in threadA() after
the acquire must observe the effects of the actions in threadB() before the release.
In the terminology of the C/C++ memory model, we say that all actions in threadB()
sequenced before the release happen before all actions in threadA() sequenced after
the acquire.

So when r1 = 1, threadB() must see r2 = 0. In summary, this modified example
allows only three of the four previously-described behaviors: {r1 = r2 = 0}, {r1 = 0∧
r2 = 1}, or {r1 = 1 ∧ r2 = 0}.

3. C/C++ MEMORY MODEL
The C/C++ memory model describes a series of atomic operations and the correspond-
ing allowed behaviors of programs that utilize them. Note that throughout this paper,
we primarily discuss atomic memory operations that perform either a write (referred
to as a store or modification operation) or a read (referred to as a load operation).
The discussion generalizes to operations that perform both a read and a write (read-
modify-write, or RMW, operations). Section 8 describes how CDSCHECKER supports
fences.

Any operation on an atomic object will have one of six memory orders, each of which
falls into one or more of the following categories.
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relaxed:. memory order relaxed – weakest memory ordering
release:. memory order release, memory order acq rel, and memory order seq cst –
a store-release may form release/consume or release/acquire synchronization
consume:1. memory order consume – a load-consume may form release/consume syn-
chronization
acquire:. memory order acquire, memory order acq rel, and memory order seq cst
– a load-acquire may form release/acquire synchronization
seq-cst:. memory order seq cst – strongest memory ordering

To ease programming burden, atomic operations default to using
memory order seq cst when no ordering is specified.

3.1. Relations
The C/C++ memory model expresses program behavior in the form of binary relations
or orderings. The following subsections will briefly summarize the relevant relations.
Some of this discussion resembles the preferred model from the formalization in [Batty
et al. 2011], adapted to suit its usage in CDSCHECKER.

Sequenced-Before. The order of program operations within a single thread of exe-
cution establishes an intra-thread sequenced-before (sb) relation. Program operations
for purpose of the memory model are loads, stores, RMWs, fences, and synchroniza-
tion operations. Note that while some operations in C/C++ provide no intra-thread
ordering—the equality operator (==), for example—we ignore this detail and assume
that sb totally orders all operations in a thread. This is necessary because the infor-
mation of whether two atomic operations from the same thread are ordered by sb is
not available to CDSCHECKER since it is merely linked against the program.

Reads-From. The reads-from (rf ) relation consists of store-load pairs (X,Y ) such
that Y reads its value from the effect of X—or X

rf−→ Y . In the C/C++ memory model,
this relation is non-trivial, as a given load operation may read from one of many po-
tential stores in the program execution.

Synchronizes-With. The synchronizes-with (sw) relation captures synchronization
that occurs when certain atomic operations interact across two threads. For instance,
release/acquire synchronization occurs between a pair of atomic operations on the
same object: a store-release X and a load-acquire Y . If Y reads from X, then X syn-
chronizes with Y —or X

sw−→ Y . Synchronization also occurs between consecutive un-
lock and lock operations on the same mutex, between thread creation and the first
event in the new thread, and between the last action of a thread and the completion of
a thread-join operation targeting that thread.

Note that our discussion of sw is incomplete here. We will complete it when we
introduce release sequences in Section 7.

Happens-Before. In CDSCHECKER, we avoid consume operations, and so the
happens-before (hb) relation is simply the transitive closure of sb and sw.

Sequential Consistency. All seq-cst operations in a program execution form a total
ordering (sc) so that, for instance, a seq-cst load may not read from a seq-cst store prior
to the most recent store (to the same location) in the sc ordering, nor from any store
that happens before that store. The sc order must be consistent with hb.

1We don’t support consume due to implementation obstacles in detecting data dependencies. See Section 4.5.
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Modification Order. Each atomic object in a program execution has an associated
modification order (mo)—a total order of all stores to that object—which informally
represents a memory-coherent ordering in which those stores may be observed by the
rest of the program. Note that in general the modification orders for all objects cannot
be combined to form a total ordering that is consistent with the reads-from relation.
For instance, the surprising behavior in which r1 = r2 = 1 in the example in Figure 2
shows an instance where the union of sb and rf is cyclic, and we can easily extend the
example to demonstrate a cyclic union of sb and mo.

4. CDSCHECKER OVERVIEW
CDSCHECKER’s model-checking algorithm (presented in Section 4.1) builds on partial
order reduction concepts from [Flanagan and Godefroid 2005]. However, the C/C++
memory model is significantly more complex than DPOR’s sequentially-consistent
model, and thus simply controlling thread interleavings does not suffice to reproduce
the allowed behaviors. Thus it was necessary to develop a new approach to explore
the richer set of behaviors allowed by the C/C++ memory model and new partial order
reduction techniques to minimize the exploration of redundant executions.

One significant departure from DPOR is that the C/C++ memory model splits mem-
ory locations and operations into two categories: (1) normal locations and opera-
tions and (2) atomic locations and operations. The memory model forbids data races
on normal memory operations (and assigns undefined semantics to programs with
such races), but allows arbitrary interleavings of atomic operations. This enables CD-
SCHECKER to make a significant optimization over existing model-checkers—it detects
and reports data races (a simple feat) on all instrumented normal memory accesses
while exhaustively exploring interleavings (an expensive, combinatorial search) only
for atomic memory operations. If a normal memory access can exhibit more than one
behavior under the synchronization pattern established by the atomic operations in a
given execution, then it has a data race and is forbidden by the C/C++ specifications.

CDSCHECKER’s design leverages this optimization; it exhaustively enumerates the
behaviors of atomic memory accesses and simply checks for data races between normal
memory operations, reporting any data races to the user. This cheapens the instrumen-
tation required for normal memory operations and reduces the search space explored
for racy (i.e., buggy) programs.

4.1. CDSCHECKER Architecture
We next discuss the high-level architecture of CDSCHECKER, beginning with our al-
gorithm (Figure 3) and its relation to existing literature. In our discussions, we adapt
several terms and symbols from [Flanagan and Godefroid 2005]. We associate every
state transition t taken by processes (i.e., threads) p with the dynamic operation that
effected the transition, then define the execution order2 S of these operations as the
total ordering given by the sequence of scheduling choices made in Figure 3, Line 8.
We say that next(s, p) is the next transition in thread p at a given state s; last(S) is the
most recent state visited in S; S.t denotes extending S with an additional transition t;
and enabled(s) is the set of all threads enabled in state s (threads can be disabled, e.g.,
when waiting on a held mutex or when completed).

We base the CDSCHECKER algorithm on standard backtracking algorithms; we per-
form a depth-first exploration of the program’s state space (recursive calls to EXPLORE,
Line 13) by iterating over a set of threads whose next transition must be explored from

2We use the term execution order instead of transition sequence to make clear the fact that a transition in
our model-checker cannot be easily characterized as simply a function of the current state. For example, a
load transition can depend on future stores.
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1: Initially: EXPLORE(∅)

2: function EXPLORE(S)
3: s← last(S)
4: PROCESSACTION(S)
5: if ∃p0 ∈ enabled(s) then
6: threads(s)← {p0}
7: threadsdone← ∅
8: while ∃p ∈ threads(s) \ threadsdone do
9: t← next(s, p)

10: behaviors(t)← {Initial behaviors}
11: behavedone← ∅
12: while ∃b ∈ behaviors(t) \ behavedone do
13: EXPLORE(S.(t, b))
14: behavedone← behavedone ∪ {b}
15: end while
16: threadsdone← threadsdone ∪ {p}
17: end while
18: end if
19: end function

1: function PROCESSACTION(S)
2: (t, b)← last(S)
3: WAKEUP SLEEPING ACTIONS
4: if t is a read then
5: Perform appropriate behavior b for read (read from past store, read from

existing promise, read from future value)
6: Update mo graph with new edges
7: Backtrack if mo graph is cyclic
8: end if
9: if t is a write then

10: Resolve promises specified by behavior b
11: Update mo graph with new edges
12: Backtrack if mo graph is cyclic
13: end if
14: if t is a fence then
15: Process Fence
16: end if
17: if t is a mutex then
18: Process Mutex
19: end if
20: if t is a release sequence fixup then
21: Break or complete pending release sequence at end of execution as specified

by behavior b
22: end if
23: repeat
24: Check for newly formed released sequences
25: Update mo edges in response to new synchronization
26: Backtrack if mo graph is cyclic
27: until No new release sequences are formed
28: Set backtracking point for t by updating threads.
29: end function

Fig. 3. CDSCHECKER algorithm
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the given state s (the outer loop, excluding Lines 10 to 15). Most of our algorithmic
extensions correspond to the inner loop, which performs a similar (but distinct) back-
tracking to explore the different possible behaviors of the transition t that was selected
in the outer loop. Section 4.3 further describes the purpose of the behaviors set.

Note that as presented in Figure 3, the outer loop will only select a single initial
execution order (i.e., each state’s threads set only ever contains the initial thread se-
lection p0). The PROCESSACTION procedure examines the last transition and may add
additional backtracking points for previous states as needed to exhaustively explore
the state space. For clarity of presentation, we describe PROCESSACTION’s behavior in
prose throughout the rest of the paper.

4.2. Example

1 atomic <int > x(0);
2
3 void threadA () {
4 x.store(1, memory_order_relaxed);
5 x.store(2, memory_order_relaxed);
6 }
7 void threadB () {
8 int r1 = x.load(memory_order_relaxed);
9 int r2 = x.load(memory_order_relaxed);

10 }

Fig. 4. C++11 Code Example

Figure 4 presents a simple example to show the operation of CDSCHECKER. Our
examples contains one variable, x, and two threads. The variable x is initialized to 0,
the first thread stores 1 and then 2 to the variable x, and the second thread reads the
variable x twice.

Figure 5 shows how CDSCHECKER builds up an execution. It begins with the ini-
tialization of the variable x. We assume that threadA runs both of its stores next. The
right column shows the various relations in the C/C++ memory model. We show the
constraints CDSCHECKER constructs on the modification order using green arrows la-
beled mo. The modification order is required by the C/C++ standard to be acyclic — if a
cycle is generated in the modification order, the execution is infeasible. After executing
the store instructions, CDSCHECKER next executes the loads from ThreadB. At each
load, it constructs a may-read-from-set that contains the set of stores that the happens-
before relation allows the load to see. In the example, both of the loads read-from the
initial value of x.

After constructing the initial execution, CDSCHECKER backtracks to explore other
values from the may-read-from-sets. Figure 6 shows the construction of a later exe-
cution in the exploration process. In this execution, we assume that the first load in
ThreadB reads from the store of 2 to x. CDSCHECKER then constructs the may-read-
from-set for the second load. This set contains the values {0, 1, 2} even though only
the value 2 is actually feasible. We assume that CDSCHECKER explores the second
load reading from the store of 1 to x. This adds the modification edge constraint shown
by dashed green line and introduces a cycle into the modification order graph. Thus
this execution is not feasible and CDSCHECKER backtracks to explore other execu-
tions. CDSCHECKER contains an optimization that allows rolling back just the last
load operation to make the exploration of alternative reads-from values efficient.
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Trace Graph representation of relations
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r2 = x.load(relaxed)=0;
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may-read-from-set = {0, 1, 2}
Fig. 5. Exploration Process

4.3. Transitions with Multiple Behaviors
We now discuss another major departure from DPOR, which comes from the nature of
relaxed memory models. On one hand, DPOR assumes that all memory modifications
form a consistent total ordering and that all memory accesses read only the last prior
value written to memory. However, it is clear that the relaxed C/C++ memory model
does not fit this model. More precisely, while the union of the sb, hb and sc relations
must be acyclic and consistent with some interleaving of threads, the addition of rf and
mo introduces the possibility of cycles. Therefore, in order to explore a program’s state
space using a linear, totally-ordered execution trace, we must account for behaviors
which are inconsistent with the execution order.

In order to explore a relaxed model, a backtracking-based search not only must select
the next thread to execute, but also must decide how that thread’s next step should
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Trace Graph representation of relations
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atomic init(x, 0);
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r1 = x.load(relaxed)=2;
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may-read-from-set = {0, 1, 2}
Execution is infeasible!

Fig. 6. Exploration Process Continued

behave. We represent this notion in Figure 3 as a backtracking iteration not only over
threads but over behaviors (the aforementioned inner loop). Together, a thread choice
and behavior selection define a unique state transition.

A key source of different transition behaviors arises from the reads-from relation—
in C/C++, loads can read from modifications besides simply the “last” store to an object.
We introduce the concept of a may-read-from set to enumerate the stores that appear
earlier in the execution order that a given load may read from.3 When we execute a
load Y , we build the may-read-from set as a subset of stores(Y ) (the set of all stores to
the same object from which Y reads):

may-read-from(Y ) = {X ∈ stores(Y ) | ¬(Y hb−→ X) ∧

(@Z ∈ stores(Y ). X
hb−→ Z

hb−→ Y )}.

The clause ¬(Y hb−→ X) prevents a load from seeing values from stores that are ordered
later by happens-before, and the clause (@Z ∈ stores(Y ). X

hb−→ Z
hb−→ Y ) prevents a

load from observing stores that are masked by another store.
Successive executions then iterate over this set, exploring executions in which a

load may read from each one of the potential stores. Each execution forms a different
rf relation (and, by extension, mo and hb relations). If @X ∈ may-read-from(Y ) such
that X hb−→ Y , then we report an uninitialized load—a bug in the program under test.

The reads-from mechanism allows CDSCHECKER to explore most of the behaviors
of the C/C++ memory model without rearranging the thread schedule. In fact, in the
absence of synchronization or sequentially consistent operations, CDSCHECKER does
not use the DPOR backtracking mechanism to change the thread schedule at all.

3Loads can also read from stores that appear later in the execution order. Section 6 presents our approach
for handling this case.
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4.4. Handling Sequential Consistency
The memory model guarantees a total ordering sc over all seq-cst operations. CD-
SCHECKER forces the sc relation to be consistent with the execution order. Thus CD-
SCHECKER relies on a modified DPOR-like algorithm to rearrange the scheduled exe-
cution order to implement sequentially consistent operations—CDSCHECKER identi-
fies conflicting sequentially consistent operations and sets backtracking points as de-
scribed in the DPOR algorithm. We combine DPOR with sleep sets [Godefroid 1996].
Note that in addition to using DPOR-style backtracking for maintaining a consistent
sc ordering, we use it to ensure that hb is consistent with the execution order (see
Section 6.3) and to explore the behaviors of higher-level synchronization primitives
(mutexes and condition variables).

4.5. Happens-Before and Clock Vectors
In the absence of consume operations, happens-before is simply the transitive closure
of synchronizes-with and sequenced-before. Thus, CDSCHECKER represents happens-
before succinctly using a Lamport-style clock vector [Lamport 1978]. Events consist of
atomic loads and stores, thread creation and join, mutex lock and unlock, and other
synchronizing actions. Every event increments its own thread’s clock (representing a
step in sb), and then CDSCHECKER tags the event with the current thread’s clock vec-
tor. Synchronization between two threads—Ti and Tj , where Ti

sw−→ Tj—should merge
Ti’s clock vector with Tj ’s clock vector, according to a pairwise maximum over all the
thread clocks. We assign the resulting vector to the synchronizing event in Tj .

Some processor architectures (e.g., Power and ARM) respect low-level data depen-
dencies such that while synchronization is generally expensive it can be cheapened for
operations that are data-dependent on a synchronizing memory access. Thus, C and
C++ provide release/consume atomics as a weaker, dependency-based synchronization
alternative to release/acquire. However on stronger architectures (e.g., x86), consume
provides no benefit over acquire, so we find it reasonable to omit support of consume
in favor of minimizing CDSCHECKER’s compiler-specific dependencies.

Still, given compiler and runtime support for computing the intra-thread carries a
dependency to relation, we can extend our approach to support release/consume syn-
chronization. One approach is to associate a secondary clock vector with a program
event if it is dependency ordered (§1.10p9-10 [ISO/IEC 14882:2011 ]) after a store-
release from a different thread—never forwarding the clock vector to subsequent ac-
tions ordered only by sequenced-before. When present, the model-checker would use
this secondary clock vector for detecting data races and computing may-read-from sets.
A store-release that follows operations that are dependency ordered would then merge
the clock vectors for all operations sequenced before the store, transferring them to
any operation with which it synchronizes.

4.6. Deadlock Detection
CDSCHECKER can easily detect deadlocks during its state space search. Given our
knowledge of the next transition next(s, p) for each thread p, it is straightforward to
check if a thread’s next transition is disabled (i.e., blocking due to a mutex operation
or a thread join) and waiting on another thread. Then, CDSCHECKER can simply check
for a circular wait by traversing the chain of waiting threads whenever a thread takes
a step; if that thread can reach itself, then we report a deadlock to the user.

5. CONSTRAINTS-BASED MODIFICATION ORDER
The modification order relation presents unique challenges and opportunities in
model-checking C/C++, as program executions never directly observe it. One approach
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taken by other tools (e.g., CPPMEM) is to exhaustively enumerate both the mo and
rf relations, discarding any executions that violate memory model constraints. In the
following subsections, we present a new approach, in which we record mo not as an
exhaustively explored ordering but as a constraints graph, in order to reduce (by an
exponential factor) the work spent on both infeasible and redundant executions.

5.1. Motivation
We could constructively maintain the modification order using an approach similar
to CPPMEM—as soon as CDSCHECKER executes a store, we could assign it an abso-
lute ordering within mo. However, at the time of a store’s execution, a program has
not formed many constraints for its modification order, so we would have to choose
its ordering arbitrarily, then explore an additional exponential space of reorderings
to enumerate all possible choices. This would often incur a very large overhead, as
constraints observed later in the execution often invalidate many orderings and many
different modification orderings produce no visible difference in program behavior.

Therefore, rather than constructively (and expensively) maintaining mo as a total or-
dering, we chose a lazy approach to the modification order. CDSCHECKER represents
mo as a set of constraints, built as a constraints graph—the modification order graph,
or mo-graph. A node represents a single store in the execution and an edge directed
from a node A to a node B represents the constraint A mo−−→ B. CDSCHECKER dynam-
ically adds edges to the mo-graph as hb and rf relations are formed, as described in
Section 5.5. Then, CDSCHECKER must only ensure that exploration of a particular ex-
ecution yields a satisfiable set of mo constraints—or equivalently, an acyclic mo-graph.
A cyclic mo-graph implies an ill-formed execution, and so CDSCHECKER can discard
the current execution and move on to explore the next execution.

5.2. Representing the Memory Model as Constraints
The memory model specifies several properties governing the interplay of rf, hb, sc,
and mo. We contribute the insight that these properties can be formulated as con-
straints on the modification order. Thus, we present them as implications, shown in
the left-to-right progressions in Figure 7. For example, consider READ-READ COHER-
ENCE (§1.10p16 [ISO/IEC 14882:2011 ]); we can say that any pair of loads A and B with
a corresponding pair of stores X and Y (all operating on the same object v), where

X
rf−→ A, Y rf−→ B, and A

hb−→ B

imply a particular modification ordering for X and Y —namely, that X mo−−→ Y . In other
words, such a constraint prevents other loads from observing X and Y in the reverse
order. The reader can examine the similar WRITE-READ, READ-WRITE, or WRITE-
WRITE coherence requirements.

In addition to COHERENCE, we summarize the following memory model require-
ments:

— SEQ-CST / MO CONSISTENCY: A pair of seq-cst stores must form mo consistently
with sc (§29.3p3 [ISO/IEC 14882:2011 ])

— SEQ-CST WRITE-READ COHERENCE: A seq-cst load must read from a store no earlier
(in mo) than the most recent (in sc) seq-cst store (§29.3p3 [ISO/IEC 14882:2011 ])

— RMW / MO CONSISTENCY: A read-modify-write must be ordered after the store from
which it reads (§29.3p12 [ISO/IEC 14882:2011 ])

— RMW ATOMICITY: A read-modify-write must be ordered immediately after the store
from which it reads (§29.3p12 [ISO/IEC 14882:2011 ])
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Fig. 7. Modification order implications. On the left side of each implication, A, B, C, X, and Y must be
distinct.

5.3. Example
We examine the application of these constraints in the mo-graph using the following
example.

1 atomic <int > x(0);
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2
3 void threadA () {
4 x.store(1, memory_order_relaxed); // A
5 x.store(2, memory_order_relaxed); // B
6 }
7 void threadB () {
8 int r1 = x.load(memory_order_relaxed); // C
9 int r2 = x.load(memory_order_relaxed); // D

10 }

As CDSCHECKER executes the stores in threadA(), the WRITE-WRITE COHERENCE
constraint implies a mo edge from store A to store B. Consider an example execution
where load C has read from store B. Now consider the possibility of load D reading from
store A. In such a case, READ-READ COHERENCE would require a mo-graph edge from
B to A—forming a mo-graph cycle between A and B and prohibiting such an execution.

5.4. Search Space Reduction
We will demonstrate in a short example how our approach to constraints-based modi-
fication order reduces the inefficient exploration of redundant and infeasible execution
behaviors in comparison to simpler approaches, such as CPPMEM’s. Consider the fol-
lowing program, written in the syntax style of CPPMEM, where {{{ statement1; |||
statement2; }}} means that statement1 and statement2 execute in parallel.

1 atomic <int > x = 0;
2
3 {{{ x.store(1, relaxed);
4 ||| x.store(2, relaxed);
5 ||| x.store(3, relaxed); }}}
6
7 r1 = x.load(relaxed);

CPPMEM’s search algorithm considers that a load may read from any store in the
program, and that those stores may have any arbitrary (total) modification ordering;
it performs no analysis of the interplay of reads-from, modification order, and happens-
before when enumerating candidate executions. Thus in this program, it enumerates
24 potential modification orderings for the 3 stores and 1 initialization (the permuta-
tions of a 4-element sequence) and considers 4 potential stores to read from at line 7,
yielding 96 combinations. However, one can easily see that there are actually only 3
valid behaviors for this program: those represented by the results r1 = 1, r1 = 2, or r1
= 3. In fact, many of the modification orderings are impossible; none of the stores can
be ordered before the initialization, due to WRITE-WRITE COHERENCE. Additionally,
many of the remaining modification orderings are irrelevant; this program only cares
which of the stores appears last in the order, as this is the store from which the load
must read.

CDSCHECKER’s constraint construction captures exactly the observations of the
previous paragraph because it only establishes modification orders as they are ob-
served. So for example, when line 7 reads a value of 3, CDSCHECKER rules that line 5
must be ordered after all of the other stores (due to WRITE-READ COHERENCE), but
it doesn’t bother enumerating the modification ordering of the remaining stores, since
no operations observe their ordering. Additionally, CDSCHECKER can avoid exploring
executions where line 7 reads a value of 0, since such a rf relation would immediately
generate a mo-cycle. In fact, CDSCHECKER explores exactly the 3 consistent behaviors
without enumerating the other 93 redundant or inconsistent orderings.

5.5. Optimized Constraint Construction
CDSCHECKER derives its mo-graph using the implications presented in Figure 7.
However, these requirements are nontrivial to implement, as a naı̈ve approach in-
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volves a search of the entire execution history every time we update hb, sc, rf, or mo—
that is, at least once for every program operation. But with a few observations and
optimizations, we can efficiently build this graph.

COHERENCE: Because the antecedents of the four coherence implications involve
only the rf and hb relations on a single object, we must compute additional mo edges
only on exploration of new loads and stores or when rf or hb are updated. Now, consider
an implementation of READ-READ COHERENCE. Rather than searching for all pairs
of loads ordered by happens-before, we conclude that when exploring a new load B, we
only need to consider the most recent load Ai, from each thread i, which happens before
B and reads from the same object. For any other load Z (reading the same object) that
happens before B, either Z = Ai for some i, or else Z

sb−→ Aj for some j. By induction,
then, CDSCHECKER must already have considered any prior loads.

The other three coherence conditions have similar inductive behavior, and so we
can limit the number of computations necessary: two rules correspond to a new load
(READ-READ and WRITE-READ), and two rules correspond to a new store (READ-
WRITE and WRITE-WRITE); all four apply to a read-modify-write. Furthermore, by
a similar inductive argument, we can combine the coherence rules such that it is only
necessary to search for the most recent load or store (and not both). Finally, note that
lazy updates of hb (see Section 7) must trigger similar constraint updates.

SEQ-CST / MO CONSISTENCY: Upon exploration of a new seq-cst store, CD-
SCHECKER must add an edge from the most recent seq-cst store to the same object
in the execution order (and hence, in sc) to the current store. By a simple induction,
this computation will soundly cover all seq-cst stores, if applied at exploration of each
new seq-cst store.

SEQ-CST WRITE-READ COHERENCE: In similar fashion to SEQ-CST / MO CONSIS-
TENCY, CDSCHECKER must search for the most recent seq-cst store upon exploration
of a seq-cst load.

RMW / MO CONSISTENCY: Consistency is trivial; CDSCHECKER simply adds a mo-
graph edge whenever a read-modify-write executes.

RMW ATOMICITY: Not only must CDSCHECKER be sure to order a RMW B after
the store A from which it reads (i.e., RMW / MO CONSISTENCY), it must also ensure
that any store C ordered after A is also ordered after B. Thus, CDSCHECKER records
metadata in each graph node A to show which RMW (if any) reads from A; a new edge
from A to C then creates an additional edge from B to C. Note that RMW CONSIS-
TENCY and ATOMICITY combine to ensure that two RMW’s cannot read from the same
store. If two RMW’s, B and C, each read from A, then the mo-graph forms a cycle
between B and C, invalidating the current execution.

5.6. Modification Order Rollback
A naı̈ve implementation of our mo-graph approach would have to rollback the entire
execution whenever it assigns a load to read from a store that results in immediate
violations of mo-graph constraints. To optimize for this common case, our mo-graph
supports rolling back the most recent updates. Then in Section 5.3’s example, for in-
stance, CDSCHECKER can check whether it is feasible for load D to read from store A
before committing D to read from A. This reduces the number of infeasible executions
that must be backtracked.

6. RELAXING READS-FROM
The framework as described thus far can only simulate loads that read from stores
that appear earlier in the execution order. However, the C/C++ memory model allows
executions in which the union of the rf and sb relations is cyclic, implying that regard-
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less of the execution order, this strategy will not suffice to model all legal executions.
The counterintuitive result (i.e., {r1 = r2 = 1}) from our example in Figure 2 is one
such execution.

To fully model all behaviors allowed by the memory model, CDSCHECKER must also
model executions in which values flow backwards in the execution order, allowing loads
to read from stores which have not yet occurred at the time of the load—we say that
such loads are observing future values.

The key idea for modeling future values is to leverage backtracking of transition
behaviors to allow loads to read from stores that appear later in the execution order.
As an illustrative example, consider—without loss of generality—an execution order
of the example from Figure 2 in which all statements in threadA appear before all
statements in threadB. In such an execution, it is relatively easy to see how to simulate
r2 = 1 from the counterintuitive result. However, simulating r1 = 1 requires that the
load in Line 4 of threadA read from the store in Line 10 of threadB. The challenge here
is that this load appears before CDSCHECKER has even seen the store.

To address this challenge, we introduce an extension to our may-read-from set: the
futurevalues set which associates pairs (v, t) with loads X, where v is a predicted fu-
ture value (written by thread t) that X may read. Suppose an execution encounters
a store Y and a number of loads X1, X2, . . . , Xn from earlier in the execution order.
As long as Xi does not happen before Y (i.e., ¬Xi

hb−→ Y ), it may read from Y , and so
CDSCHECKER will add the pair (value(Y ), thread(Y )) to the set futurevalues(Xi) for
each i = 1, . . . , n (if Y ’s thread did not yet exist at the time of Xi, it will use an appro-
priate ancestor thread). On subsequent executions, CDSCHECKER will diverge from
previous behavior and explore executions in which load Xi chooses a pair (v, t) from
futurevalues(Xi) and reads the value v. In our example, this allows CDSCHECKER to
simulate the load reading the value 1 that is written by the later store. We next need
to verify that a later store (from thread t or one of its descendants) will still write the
value 1 and that the memory model constraints allow the load to read from the store.

6.1. Promising a Future Value
When CDSCHECKER backtracks in order to evaluate a load using a future value—
a speculative load behavior—we cannot precisely associate the future value with a
particular store that will generate it; any dependencies on the value observed might
cause divergent program behavior, so that in the new execution, several later stores
may generate the observed value (validating the observation), or else such a store may
no longer occur (making the observation infeasible).

For every speculative load (v, t) made in an execution, CDSCHECKER establishes
a promised future value (or promise)—an assertion that, at some later point in the
execution, thread t (or one of its descendants) will perform a store that can legally pass
value v back to the speculative load. In our example, CDSCHECKER would generate a
promise when it simulates the load in Line 4 reading a future value of 1 from the pair
(1, threadB). This promise asserts that a later store from threadB will write the value
1 and that the load can read from that store.

Once CDSCHECKER detects such a store, we consider the promise to be satisfied,
and we can remove the promise from future consideration. In our example, the promise
would be satisfied when the store in Line 10 writes the value 1.

We must allow a speculative load to read not only from the first satisfactory store to
follow it in the execution order but also from subsequent stores. Thus, we model two
execution behaviors for each store: one in which the store chooses to satisfy a matching
promise and one in which it chooses not to do so, instead allowing a later store to satisfy
it.
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Sending back a future value may cause an execution to diverge such that its promise
is never satisfied nor can the model-checker ever rule out the possibility that it will
eventually be satisfied. To address this, promises expire if they are not resolved by the
expected number of program operations plus a tunable threshold.

6.2. Treating Promises as Stores
After a load observes a promised future value, we assume that some store will even-
tually satisfy it, and so we must allow subsequent loads to observe the same store.
Rather than generating independent promises for each instance of the observed value,
we track these speculative rf relations by treating the promise as a placeholder for a
future store; we can then add this placeholder to the appropriate loads’ may-read-from
set. In practice, then, the may-read-from set for a given load is composed of three sep-
arate components: stores from earlier in the execution order; its futurevalues set; and
the set of yet-unsatisfied promises for the same memory location.

Over the lifetime of a promised future value (that is, the period between its gen-
eration and satisfaction/invalidation), we can build a form of modification order con-
straints for it in much the same way as with non-speculative stores. For example,
whenever a promise can be satisfied only by a single thread, we can order it after all
operations in that thread (in the sb relation, and therefore in hb and mo); and we know
which loads read from the promised value, so we can apply the COHERENCE implica-
tions.

These mo constraints are useful for reasoning about the feasibility of a promise. For
instance, if an execution observes promised values in an inconsistent order, we can
detect a graph cycle and terminate the execution. Additionally, the modification order
can tell us when a thread can no longer satisfy a promise, aiding us in eliminating un-
satisfiable promises. For example, COHERENCE implies that a load A cannot read from
a store C whenever there exists a store B such that A

hb−→ B
mo−−→ C. Thus, when such

a B exists, we eliminate C ’s thread from satisfying a promise to load A. If instead we
encounter a store that satisfies a promise, we can merge the promise and store nodes
in the constraints graph, retaining the constraint information that we have gathered
so far.

6.3. Synchronization Ordering
Allowing loads to see values written by stores that appear later in the execution order
may yield a synchronization relation directed backward in the execution order. Such
a synchronization would break any code (e.g., libraries or operating system calls) that
used uninstrumented memory accesses to implement normal loads and stores. More-
over, it would require complicated mechanisms to ensure that normal shared memory
accesses observe the correct values.

We observe that since the specification guarantees that happens-before is acyclic
(§1.10p12 [ISO/IEC 14882:2011 ]), we can address this problem by ensuring that we
always direct hb forward in the execution trace (note that hb must be acyclic). If hb
is always consistent with the execution order of program fragments, normal loads and
stores (including those in libraries and in many operating system invocations) will
behave as expected; reading the last-written value from memory will always be consis-
tent with the happens-before behavior intended in the original program. This also ex-
plains another design decision made in CDSCHECKER: rather than instrumenting all
shared memory loads to read from the correct stores, CDSCHECKER generally leaves
non-atomic memory accesses uninstrumented (with the exception of a happens-before
race detector).
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We now present a few observations we use in guaranteeing that hb remains con-
sistent with the execution order. Because sequenced-before is trivially consistent, our
guarantee reduces (in the absence of memory order consume) simply to the guarantee
that synchronizes-with forms consistently with the execution order. We achieve this
guarantee in two parts. First, whenever we detect a synchronization relation that is
inconsistent with the execution order (i.e., X sw−→ Y but Y appears earlier in the exe-
cution order than X), we terminate the execution. Second, we must ensure that when-
ever such termination occurs, we will also explore an equivalent execution with well-
formed synchronization; thus, we backtrack whenever an execution trace encounters
a load-acquire ordered before a store-release to the same location. Finally, note that
if we extend our approach to include consume operations as described in Section 4.5,
this discussion of synchronizes-with, load-acquire, and store-release can be trivially
extended to dependency-ordered-before, load-consume, and store-release.

7. RELEASE SEQUENCES
Thus far, our discussion has assumed that release/acquire synchronization only oc-
curs when a load-acquire reads from a store-release. Unfortunately, such a simplistic
synchronization criteria would force implementations of common synchronization con-
structs to declare more atomic operations with release or acquire memory orders in-
stead of relaxed and thus generate suboptimal compiler output (e.g., with extraneous
fence instructions). To address this problem, the C/C++ memory model defines a re-
lease sequence (§1.10p7 [ISO/IEC 14882:2011 ]), which both extends the conditions un-
der which a load-acquire and store-release synchronize and correspondingly increases
the complexity of determining synchronization relationships as they form.

We summarize the definition (note that all operations in consideration must act on
the same atomic object): a release sequence consists of a release operation A—the re-
lease head—followed by a contiguous subsequence of the modification order consist-
ing only of (1) stores in the same thread as A or (2) read-modify-write operations; a
non-RMW store from another thread breaks the sequence. Figure 8 shows a release
sequence headed by A and followed by modifications B, C, and D; note how a chain
of RMW’s (encircled with a dotted boundary) may extend the release sequence beyond
the thread which contained the release head A.

Then, we redefine release/acquire synchronization4: a store-release A synchronizes
with a load-acquire B if B reads from a modification M in the release sequence headed
by A [ISO/IEC 14882:2011 ]. In Figure 8, the load-acquire E reads from D, which is
part of the release sequence headed by A—so A

sw−→ E.
This definition of release/acquire synchronization poses several challenges as we

attempt to eagerly form the sw relation, since CDSCHECKER does not establish the
modification order eagerly. For one, future values allow the possibility of lazily-satisfied
reads-from relationships, so we may not establish the modification order of a read-
modify-write operation until its read portion is satisfied. More generally, recall that
CDSCHECKER uses a constraints-based approach to establishing modification order,
so at a given point in a program execution, two modifications may be unordered with
respect to each other, leaving us uncertain as to whether or not a given sequence of
modifications is contiguous (e.g., in Figure 8 we must guarantee that no non-RMW
store M exists in another thread such that A mo−−→M

mo−−→ B). Either of these two factors
may prevent CDSCHECKER from eagerly deciding synchronization when exploring
load-acquire operations, so we resort to lazy evaluation.

4This definition subsumes the previous definition; a store-release is in the release sequence headed by itself.
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A: v.store(1, release) B: v.store(2, relaxed)sb

mo

E: v.load(acquire)

sw

C: v.fetch_add(1, relaxed)

mo
rf

D: v.fetch_add(1, relaxed)

mo
rf

rf

Fig. 8. An example release sequence. Program execution is generally ordered from left to right.

Lazy evaluation of release sequences means that for any release/acquire pair whose
corresponding release sequence we cannot establish or invalidate with certainty at
first discovery, CDSCHECKER leaves the pair unsynchronized5 and places it into a set
of pending release sequences, along with any unconstrained (or loose) stores which
might break up the release sequence. By the end of the execution, a program will
usually build up enough constraints to mo such that CDSCHECKER can resolve these
pending release sequences deterministically and drop the release/acquire pair from
the pending set. However, if at the end of a program execution the constraints are
still undecided for one or more pending release sequences, then CDSCHECKER must
search for a particular constraints solution by selecting one of two possibilities for each
pending sequence: either that one of the loose stores breaks the sequence, or that the
sequence is contiguous, causing the release/acquire pair to synchronize. Selections may
not be independent (one contiguous release sequence may imply another, for instance)
and so many solutions are infeasible.

Now, sound model-checking does not require exploration of all possible solutions,
as some solutions only allow a subset of behaviors exhibited by an equivalent, less-
constrained execution. Particularly, in a constraints problem where one solution might
result in no additional synchronization and a second solution results in one or more
additional release/acquire synchronizations, the first solution must exhibit a super-
set of the erroneous behaviors (e.g., data races) exhibited by the second one. Thus,
an optimized search would prioritize constraint solutions where all pending release
sequences are broken (i.e., non-contiguous); such a minimally-synchronizing solution
precludes the need to explore other release sequence combinations in which the release
sequences resolve to some non-empty set of synchronizations.

The discussion so far has failed to account for the effect of delayed synchronization
on the rest of the model-checking process, where we previously assumed that CD-
SCHECKER establishes synchronization eagerly. When delayed resolution of a release
sequence causes synchronization, CDSCHECKER must perform a number of updates
for all clock vectors and mo-graph edges that are dependent on this update. A newly-
established relation X

sw−→ Y , where Y is in the interior of the execution trace, must
generate a cascading update in the clock vectors for all operations which have pre-
viously synchronized with Y (previously-unordered operations are unaffected). Addi-
tionally, each updated clock vector may yield new information about mo constraints.
Thus, after such a lazy synchronization X

sw−→ Y , CDSCHECKER performs an itera-
tive pass over all operations ordered after Y in the execution order, recalculating the
happens-before clock vectors and mo constraints.

5Lazy synchronization is acceptable because an execution in which synchronization does not occur can only
exhibit a superset of behaviors seen in the equivalent synchronizing execution.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: YYYY.



A Practical Approach for Model Checking C/C++11 Code A:21

Lazy synchronization presents a few other problems for CDSCHECKER. For one, it
may reveal that rf is inconsistent with hb long after the relevant load, causing unnec-
essary state-space exploration. Furthermore, because lazy synchronization may pro-
tect the memory accesses which previously constituted a data race, our happens-before
race detector must delay recognizing data races until there are no pending synchro-
nizations.

Despite this discussion of the complexity involved in release sequences, we sus-
pect that most valid programs will never incur significant overhead when resolving
release sequences. In our tests of real data structures, all release sequences have been
trivially-resolvable: either a load-acquire reads directly from a store-release or it reads
from a chain of one or more RMW’s.6 With the former, synchronization is immediately
evident, and with the latter, the chain of RMW’s guarantees a contiguous subsequence
of the modification order (see Figure 7, RMW ATOMICITY). Such programs will never
incur the costs of the more complicated constraints checks for determining a contigu-
ous subsequence of mo.

8. FENCES
In addition to the atomic loads, stores, and read-modify-writes discussed previously, C
and C++ support atomic fence operations. C/C++ fences loosely imitate the low-level
fence instructions used in multiprocessors for ordering memory accesses and are in-
cluded to allow developers to more efficiently represent their algorithms. Fences may
use the release, acquire, rel acq, or seq cst memory orders (relaxed is a no-op and
consume is an alias for acquire, §29.8p5 [ISO/IEC 14882:2011 ]) and have additional
modification order constraints and synchronization properties, whose support we will
discuss in this section.

8.1. Fence Modification Order Constraints
C and C++ introduce several rules governing rf and mo when dealing with sequentially
consistent fences. As in Section 5.2, we transform these rules directly into modification
order implications for use by CDSCHECKER.

— SC FENCES RESTRICT RF: Seq-cst fences impose restrictions on the “oldest” store
from which a load may read (§29.3p4-6 [ISO/IEC 14882:2011 ]).

— SC FENCES IMPOSE MO: A pair of stores separated by seq-cst fences must form mo
consistently with sc (§29.3p7 [ISO/IEC 14882:2011 ]). Notably, the C++ specification
leaves out the COLLAPSED constraints that are presented here, but they are included
in the formal model developed for [Batty et al. 2011]. The report for C++ Library Issue
2130 indicates that the specification committee plans to include these rules in future
revisions.

These implications can be applied using similar induction arguments to those devel-
oped in Section 5.5; because sc is a total order, we can always find the last store A in
each thread that satisfies the left-hand side (if any exists). Any prior store must al-
ready be ordered before A in mo, and so we must look no further than A when building
constraints for a newly-explored program operation.

8.2. Fence Synchronization
Besides the modification order constraints imposed by sequentially consistent fences,
fences can induce synchronization (sw) via an extension to release sequences. The spec-
ification defines a hypothetical release sequence headed by a store X as the release se-
quence that would exist if X were a release operation. We will say that if store Y is

6We also observed simple release sequences in the presence of fence operations (see Section 8).
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Fig. 9. Fence modification order implications. On the left side of each implication, A, B, C, X, and Y must
be distinct.
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Fig. 10. Fence synchronization implications

part of the hypothetical release sequence headed by X, then X
hrs−−→ Y (or similarly,

X
rs−→ Y for true release sequences).

We take the synchronization implications in Figure 10 directly from §29.8p2-4. In-
formally, these rules cause a load-relaxed followed by a fence-acquire to act like a
load-acquire and cause a store-relaxed preceded by a fence-release to act like a store-
release.

These synchronization implications can be easily computed with simple extensions
to the methods described in Section 7. In fact, a hypothetical release sequence makes
synchronization detection even simpler than with traditional release sequences be-
cause the “loose” store problem is no longer an issue; as soon as we find any store X

such that X
hrs−−→ Y , there is no longer a need to establish a contiguous modification

order: we only need to search for the last fence-release A that is sequenced before X
in the same thread. In other words, hypothetical release sequence computations only
require knowledge of rf (to follow the RMW chain, if any) and the intra-thread order-
ing sb (to find prior fence-releases) but do not require querying the partially-ordered
mo-graph.

8.3. Fence Backtracking
Because fences can synchronize with other loads, stores, or fences, we must order them
properly in the execution order such that their synchronization is consistent (recall
Section 6.3). We extend our previous backtracking approach to accommodate any po-
tential synchronization involving the fence rules in Section 8.2. So, whenever CD-
SCHECKER observes an acquire B ordered earlier in the execution than a release A,
and we determine that A may synchronize with B (A sw−→ B), we must backtrack to
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allow the thread which performed A to execute before B. Note that identifying such A
and B may also involve identifying, for instance, an appropriate load/store pair X and
Y (when applying FENCE SYNCHRONIZATION); similar observations can be made for
the COLLAPSED synchronization rules.

As described in Section 4.4, we force sc to be consistent with the execution order and
use DPOR backtracking to explore the necessary interleavings of conflicting seq-cst
operations. To extend this to seq-cst fences, we simply say that a seq-cst fence conflicts
with any other seq-cst operation.

9. PRUNING FUTURE VALUES
To reduce the search space generated by the exploration of future values, we devel-
oped a few optimizations. With these optimizations, we attempt to avoid introducing
future values when their introduction is guaranteed to generate infeasible (or other-
wise unnecessary) executions. Reductions in infeasible future values provide a com-
pounding reduction in overhead, since such ill-advised values may generate a sig-
nificant amount of unproductive exploration space in between the speculative load
and its promise resolution—at which point we finally realize an execution-ending mo-
graph cycle. Thus, we present a few derived constraints for pruning those future values
which, when observed, would guarantee a cyclic mo-graph. Additionally, we introduce a
few other optimizations for reducing redundant or otherwise unnecessary exploration.

For any load A and store X, we can show that X 6 rf−→ A whenever there exists a store
B such that

A
hb−→ B ∧B

mo−−→ X.

Allowing X
rf−→ A would yield a mo cycle in B and X, due to READ-WRITE COHER-

ENCE. Therefore, X should never send a future value to A. Without this constraint,
CDSCHECKER would let X send its future value to A, not recognizing the cycle un-
til it established the rf edge concretely. Similarly, we do not send a future value from
store B to load A if A hb−→ B.

Knowledge of promise behavior presents further opportunity for optimization of fu-
ture values. If a store Y is scheduled to satisfy an outstanding promise P , then we
limit the cases in which Y sends its future value to prior loads Xi—we avoid sending
Y ’s future value to any load Xi whose may-read-from set contains P (as a placeholder
for Y ). Specifically, Y does not send its future value to the load X which first generated
promise P , nor to any load which follows X in the execution since such loads may also
read from P (Y can, however, send its future value to loads prior to X).

A speculative load X can cause a later store Y to send a new future value back
to X, even when Y actually depends on X. Such a cyclic dependence can potentially
cause CDSCHECKER to explore an infinite space of infeasible executions. We eliminate
these cycles by an additional constraint when sending a future value from such a store
Y to a load X; we check whether there exists a yet-unresolved promise created by a
speculative load Z, where Z is between X and Y in the execution order. If not, then Y
can send its future value safely (subject to previously-discussed constraints). If such a
Z does exist, however, we delay sending the future value until Z ’s promise is resolved—
breaking the cycle while still allowing non-cyclic dependences to be resolved.

The correctness of this optimization follows from the following argument. If the sat-
isfying store S for Z does not depend on X observing Y ’s future value, then Z ’s promise
will eventually be resolved and the future value will be sent. If the satisfying store S
for Z does depend on X observing Y ’s future value, then either (1) X occurs after Z in
the execution order and hence does not trigger the delay condition or (2) when Z even-
tually reads from a different store, Y can then add its future value to futurevalues(X)
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(Y can only depend on Z in the presence of a satisfaction cycle); the backtracking algo-
rithm will later revisit the current situation without the need to send the future value
as the value already exists in futurevalues(X).

10. LIVENESS AND FAIRNESS
Some programs present infinite spaces of execution when allowed to continually read
a particular value from an atomic object, even after new values have been written; C
and C++ require that these new values “become visible to all other threads in a finite
period of time” (§1.10p25 [ISO/IEC 14882:2011 ]), posing a practicality problem for our
exhaustive search. We conclude that, for some programs which rely on memory system
liveness, we must trade off state-space coverage for liveness. CDSCHECKER provides
users with a runtime-configurable bound on the number of times a thread can read
from the same store while the modification order contains another later store to the
same location.

A related issue arises for sequentially consistent atomics; thread starvation can pre-
vent some algorithms from terminating. CDSCHECKER supports the CHESS [Musu-
vathi et al. 2008] fairness algorithm through the use of thread-yields placed in the
program under test. Or, if a user cannot insert appropriate yields, we also support
a tunable fairness parameter such that threads which are enabled sufficiently many
times within an execution window without taking a step should receive priority for
execution, allowing users to automatically balance fairness and completeness.

11. CORRECTNESS
Showing the soundness of any practical model checking for C/C++11 is a complex prob-
lem as it inherently involves some sort of precise prohibition against “out-of-thin-air”
results and other types of satisfaction cycles [Batty et al. 2013; Vafeiadis et al. 2015].
Prohibiting “out-of-thin-air” results remains an open problem [Boehm and Demsky
2014]. While the C/C++11 standard included an attempt at prohibiting such results in
§29.3p9, this attempt both failed to prohibit many troublesome satisfaction cycles and
at the same time unintentionally disallowed reasonable implementations of relaxed
atomics on architectures like ARM or POWER. As a result, this part of the standard
has been modified in C++14 by N3786 [Boehm 2013] to simply forbid “out-of-thin-air”
values without defining what they are.

11.1. Memory Model
The correctness of the CDSCHECKER algorithm depends first on framing the discus-
sion about what it means to be correct. This is not straightforward, because there are
known issues in the C/C++11 memory model such that it formally allows undesirable
behaviors (“out-of-thin-air” value or “satisfaction cycles”), it disallows harmless be-
haviors which are allowed on certain modern architectures, and then only informally
discourages various behaviors. While N3786 [Boehm 2013] removes the prohibition on
the harmless behaviors for C/C++14, it does not define what an “out-of-thin-air” value
is. Instead it simply forbids them without definition.

Thus, before we can show correctness, we must smooth some of the rough edges of
the current memory model. One approach to prohibiting satisfaction cycles [Vafeiadis
and Narayan 2013] which is suggested in N3710 [Boehm et al. 2013] is to require that
hb ∪ rf be acyclic. This approach eliminates some of the interesting behaviors allowed
by real implementations, and thus we adopt a more complicated and weaker set of
constraints. Our constraints are not intended to be a final solution to the “out-of-thin-
air” problem.

To focus the proof on the core challenges, we next define a core subset of the C/C++
features.
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11.1.1. Simplified C/C++11 Model. For the purposes of simplicity and focusing on the
core technical issues, we will consider the following simplified version of the C/C++
memory model:

— Atomics only perform a load or a store. We will not consider fence or read-modify-
write operations.

— We omit memory order consume and memory order seq cst. We support only
memory order release, memory order acquire, and memory order relaxed. One impli-
cation is that hb is the transitive closure of sb and sw.

— We also remove release sequences as a consequence of removing read-modify-write
operations7. Synchronization occurs only as follows:
For store-release x and load-acquire y, if x rf−→ y, then x

sw−→ y.
— We drop the now-removed requirements of C++11 §29.3p9 and replace them with our

own satisfaction order that we define in Section 11.1.2.
— We assume that programs exist as a static set of n threads t1, t2, . . . tn, all of which

happen after some set of atomic initialization operations.
— We omit mutexes and other high-level synchronization primitives.
— There is a modification order (mo) that totally orders memory operations to a given

memory location. This order is consistent with happens before.

Although read-modify-write, fence, mutex, and memory order seq cst operations
along with release sequences are all supported by CDSCHECKER, we elide the de-
tails in our proof as they either complicate the proof with little benefit (e.g., fences) or
are handled orthogonally to the core of this proof (e.g., mutexes—via standard dynamic
partial-order reduction techniques).

11.1.2. Satisfaction Order. C++11 previously defined an evaluation sequence (§29.3p9)
which generates the value written by a store, to try to eliminate “out-of-thin-air” val-
ues. However, the authors of this paper developed a variation of IRIW that showed
existing architectures violate §29.3p9; as a result N3786 removes the evaluation se-
quence from the standard and replaces it with an informal statement.

Therefore, we next make precise a set of constraints that implement C/C++14’s in-
formal prohibition against “out-of-thin-air” values. Appendix A provides the set of sat-
isfaction cycle examples that motivated our definition of dependence order.

Definition 11.1. The dependence order (dep) is the minimal relation that includes
all pairs of evaluations (a, b) where any one of the following is true:

(1) b is data-dependent on a (excluding reads-from (rf ))
(2) There exists some potentially non-terminating loop l such that l is conditionally-

dependent on a and l
sb−→ b

(3) a is a load-acquire, b is a load or store, and a
sb−→ b8

(4) a is a load, b is a store, and there exists a condition statement (e.g., if statement)
a0 such that a0 depends on a and a0

sb−→ b
(5) a is a load, b is a store, and there exists a store a0 such that the address of a0

depends on a and a0
sb−→ b

7CDSCHECKER handles the other complications of release sequences (that the head store could potentially
be relaxed) by simply assuming such release sequences do not synchronize and then checking whether they
must have synchronized after the entire execution is generated.
8This is required because acquire operations can “leak” information about synchronization (or lack thereof)
to subsequent operations.
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Definition 11.2. Let sat be a relation that is the transitive closure of dep extended
with the edges from the reads-from (rf ) relation. Thus, sat is the transitive closure of
dep ∪ rf.

To forbid satisfaction cycles we add the axiom that sat must be antisymmetric:

a
sat−−→ b =⇒ ¬b sat−−→ a

Transitivity and antisymmetry together imply acyclicity of the satisfaction order, its
central property.

To illustrate the satisfaction order, consider the following example, in which C++11
standard discourages allowing the result r1 = r2 = 42. Our requirements (rules 1 and
4, plus acyclicity) disallow such a satisfaction cycle.

// Thread 1
r1 = x.load(memory_order_relaxed);
if (r1 == 42)

y.store(r1, memory_order_relaxed);

// Thread 2
r2 = y.load(memory_order_relaxed);
if (r2 == 42)

x.store(42, memory_order_relaxed);

At the same time that the acyclicity of our satisfaction order outlaws problematic
satisfaction cycles, it removes the onerous restrictions that the former §29.3p9 placed
on evaluations, where an evaluation must observe values written by the “last” prior
assignment in the evaluation order.

11.1.3. Load-Load Dependences. Because it is acyclic, the satisfaction order can be topo-
logically sorted such that any evaluation depends only on those evaluations preceding
it in the sequence, and the root evaluation depends only on constants or program in-
puts. However, the satisfaction order as defined does not yet account for all types of
dependence. For instance, consider the following program fragment

a: r1 = x.load(memory_order_relaxed);
b: if (r1 == 1)
c: r2 = y.load(memory_order_relaxed);

and consider a target execution in which r1 = r2 = 1. In such an execution, we want
to capture the information flow from statement a to statement c via the conditional
branch at b because we cannot guarantee that CDSCHECKER will explore statement c
until it satisfies all dependencies for a (that is, until we see r1 = 1). But the definition
of sat does not specify that a sat−−→ c—it only requires this if c is a store.

We observe, however, a secondary property of the satisfaction order, which we
present in the following lemma.

LEMMA 11.3 (CONDITIONAL LOAD ORDERING). Let U be an execution of a pro-
gram. For all loads a, c ∈ U and condition statement b such that b depends on a or
a store b whose address depends on a and b

sb−→ c, then

¬c sat−−→ a.

PROOF. Assume that c sat−−→ a. Then there must be some store d such that c sb−→ d and
c

sat−−→ d
sat−−→ a. But because a

sb−→ b
sb−→ d, then a

sat−−→ d—a cycle. Therefore, ¬c sat−−→ a.

As a corollary, whenever such a pair of loads a and c exist that satisfy the hypothesis
of this lemma, we can safely extend the satisfaction order to include a

sat−−→ c (and its
transitive closure). From now on, consider that the satisfaction order includes these
conditional load-load dependences.
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11.2. CDSCHECKER Algorithm
We next review key points of the CDSCHECKER algorithm with respect to simplified
C/C++ memory model used for this proof.

Execution Order. We define the execution order according to the sequence of
scheduling choices made in Figure 3, Line 8. If an operation x is executed before an
operation y, we say x

exec−−→ y.

Coherence. When we refer to COHERENCE, we refer to the following four rules, for
loads x, y and stores a, b, all to the same location:

a
hb−→ b =⇒ a

mo−−→ b (WRITE-WRITE COHERENCE)

a
hb−→ x ∧ b

rf−→ x =⇒ a
mo−−→ b (WRITE-READ COHERENCE)

x
hb−→ b ∧ a

rf−→ x =⇒ a
mo−−→ b (READ-WRITE COHERENCE)

x
hb−→ y ∧ a

rf−→ x ∧ b
rf−→ y =⇒ a

mo−−→ b (READ-READ COHERENCE)

Early Termination. CDSCHECKER ensures that at all points in an execution, mo
is acyclic and sw is consistent with exec. If at any point either of these conditions is
violated, CDSCHECKER discards the execution immediately as invalid. Note that the
acyclicity of hb allows the latter optimization.

Reading from the Past. For a load x, we define stores(x) to be the set of all stores
in the program execution which store to the same location as x.

The set may-read-from(x) is built up as a subset of stores u ∈ stores(x), such that
u

rf−→ x would not create a mo-cycle. When x is first explored, we consider prior stores
in the execution order. When new stores occur after x, we consider passing their value
as future values.

Note that the mo-cycle requirement eliminates the following set, for instance

{u ∈ stores(x) | ∃a ∈ stores(x). u hb−→ a
hb−→ x}

because

u
hb−→ a =⇒ u

mo−−→ a (WRITE-WRITE COHERENCE)

a
hb−→ x ∧ u

rf−→ x =⇒ a
mo−−→ u. (WRITE-READ COHERENCE)

Intuitively, x should not read from any store in this set because each such u is
masked by the later store a.

Reading from Future Stores. In general, the C/C++ memory model allows loads
to read from stores that appear later in the trace. CDSCHECKER uses a future value
mechanism to simulate this behavior. The idea is to learn the value that a future store
writes in one execution and then use backtracking plus speculation to allow a load
to read from a future store. When a load reads from a future store, CDSCHECKER
generates a promise or assertion that some later store will write that value. There is
at most one promise for a given store and once a promise is instantiated other loads
can read from that same promise.

The PROCESSACTION method in Figure 3 encapsulates the process of sending future
values from stores to prior loads in the execution order. For any load x and store y to
the same location, where x

exec−−→ y and y is the last operation in S, PROCESSACTION(S)
will add (value(y), thread(y)) to futurevalues(x) unless one of the following are true:
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(1) x
hb−→ y

(2) ∃b. x hb−→ b
mo−−→ y

(3) ∃a, b. x hb−→ b ∧ a
rf−→ b ∧ a

mo−−→ y

(4) There exists a promise p such that x exec−−→ p
exec−−→ y (a.k.a. “promises may allow”).

The first three rules are derived from COHERENCE, and the fourth is an optimization
which reduces the exploration of cyclic behaviors. Because it is not central to CD-
SCHECKER, we first prove correctness without this rule, then argue correctness in the
presence of this optimization. See Corollary 11.17.

Behaviors. The behaviors set is different for loads and stores. For a load, it repre-
sents the may-read-from set, which consists of

— prior stores (in the execution order) and
— future stores—because these have not yet been executed in the current execution,

they remain “speculative” and must be treated differently until we produce a store
that satisfies the promised value.

Stores do not select a rf behavior like loads do, so they have a single operational
behavior. They are, however, given the choice of whether to satisfy a given promise—
recall that for any store which may be read by a prior load, the store must explore both
the scenario in which it satisfies the prior load and the scenario in which it does not
satisfy the load, potentially allowing a subsequent store to satisfy it. Thus, a store’s
behaviors consist of only a promise satisfaction behavior, with one behavior for each
potential promise to satisfy and one behavior for the scenario in which it satisfies no
promises.

11.3. Proof Overview
Before continuing, we next discuss our overall proof strategy. The first issue is that
the C/C++ memory model does not contain a notion of a trace order (or execution or-
der) and a given execution can be generated by a number of different traces of the
CDSCHECKER algorithm.

Thus we begin in Section 11.4 by building up a notion of equivalence between subsets
of actions of different traces. Given this definition of equivalence, in Section 11.5 we
show a number of properties that hold for equivalent traces prefixes.

In Section 11.6, we then build the framework for mapping stores in one trace prefix
to stores in an equivalent trace prefix. We then formally define a bijection between sub-
sequences of stores from equivalent subtraces and show that this bijection preserves a
number of properties including happens before.

In Section 11.7, we then define the notion of a consistent subtrace. Finally, in Sec-
tion 11.8 we use an induction on consistent subtraces to show the correctness of the
CDSCHECKER algorithm.

11.4. Trace Equivalence
We want to show that for a target execution trace V that is consistent with the memory
model, CDSCHECKER will explore some execution that is equivalent. In the following
definitions, we build on our definition of satisfaction order to develop the formal infras-
tructure for representing trace equivalence.

Now, we observe that the sat and dep relations partially order the operations in
a program execution. Particularly, they capture an acyclic flow of information in the
program, such that two operations, where one “causes” another, are related by dep.
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Next, we will begin to compare two execution traces U and V , constructively build-
ing up a set of operations from U and V with matching thread sequencing and dep
structure. Given an initial “matching” set X, we can pair up a sequencing of matching
operations which depend only on operations in X—only their rf structure is missing.

Definition 11.4. Let U and V be execution traces of the same program and input,
with threads t1, t2, . . . tn, and let X ∈ P(U × V ). We can index the evaluations in each
thread according to sequenced-before9 where dU,i,j is the jth evaluation in thread ti of
trace U . We define eU,i,j to be the subsequence of dU,i,j which is restricted to the subset

{dU,i,j | ∀u
dep−−→ dU,i,j . ∃(u, v) ∈ X}.

We define eV,i,j similarly.

Having defined these sequences, we next define equivalence.

Definition 11.5. Given two traces U and V of a program with n threads t1, t2, . . . tn
and a set of initial matches M ∈ U ×V from future values in U to stores in V such that
a future value u is only mapped to a store v if in a previous execution the store u′ that
sent the future value u was equivalent to v. gequiv : P(U × V )→ P(U × V ) is defined as
follows

(1) Let X ∈ P(U × V )
(2) Define eU,i,j and eV,i,j as in Definition 11.4.
(3) Let

Ni = {(x, y) |∃j ∈ N. x = eU,i,j ∧ y = eV,i,j ∧

(∀a ∈ U. a
dep−−→ x =⇒ ∃b ∈ V. (a, b) ∈ X ∧ b

dep−−→ y) ∧

(∀b ∈ V. b
dep−−→ y =⇒ ∃a ∈ U. (a, b) ∈ X ∧ a

dep−−→ x) ∧

(∀a ∈ U. a
rf−→ x =⇒ ∃b ∈ V. (a, b) ∈ X ∧ b

rf−→ y) ∧

(∀b ∈ V. b
rf−→ y =⇒ ∃a ∈ U. (a, b) ∈ X ∧ a

rf−→ x)}
(4) Let

gequiv (X) = X ∪
n⋃

i=1

Ni.

Then, gequiv is a fixed-point generating function, which can be applied iteratively,
starting with the set of initial matches X = M . Note that M does not in general
monotonically increase as we progress towards the target execution. We make use of
the set M in the proof of Theorem 11.14.

The fixed point X0 of gequiv (that is, where gequiv (X0) = X0) is a set of evaluation
pairs (x, y) ∈ U × V , where we say x is equivalent to y if (x, y) ∈ X0. We denote this
x ∼= y.

To make these definitions clearer, consider the following example code.
1 atomic <int > x(0), y(0), z(0);
2
3 void threadA () {
4 int r1 = y.load(memory_order_relaxed);

9We assume sb to be a total order on events from the same thread. This assumption arises because CD-
SCHECKER is architected as a library and thus does not have sufficient information available to determine
when operations from one thread are not ordered by sb.
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5 int r2 = z.load(memory_order_relaxed);
6 if (r2 != 0)
7 r2 = z.load(memory_order_relaxed);
8 int r3 = 0;
9 if (r1 != 0)

10 r3 = x.load(memory_order_relaxed); /@ \label{line:loadx} @*/
11 }
12 void threadB () {
13 x.store(1, memory_order_relaxed);
14 y.store(2, memory_order_relaxed);
15 z.store(3, memory_order_relaxed);
16 }

Let’s consider the following two executions:

U =y.load(memory order relaxed)=1a, z.load(memory order relaxed)=0b,

x.load(memory order relaxed)=0c, x.store(1, memory order relaxed)d,

y.store(2, memory order relaxed)e, z.store(3, memory order relaxed)f

where e
rf−→ a, initial value rf−→ b, and initial value rf−→ c.

V =y.load(memory order relaxed)=1A, z.load(memory order relaxed)=3B ,

x.store(1, memory order relaxed)C , y.store(2, memory order relaxed)D,

z.load(memory order relaxed)=3E , x.load(memory order relaxed)=2F ,

z.store(3, memory order relaxed)G

where D
rf−→ A, G rf−→ B, G rf−→ E, and C

rf−→ F .
For these executions,

dU,1 =y.load(memory order relaxed)=1a, z.load(memory order relaxed)=0b,

x.load(memory order relaxed)=0c

dU,2 =x.store(1, memory order relaxed)d, y.store(2, memory order relaxed)e,

z.store(3, memory order relaxed)f

dV,1 =y.load(memory order relaxed)=1A, z.load(memory order relaxed)=3B ,

z.load(memory order relaxed)=3E , x.load(memory order relaxed)=2F ,

dV,2 =x.store(1, memory order relaxed)C , y.store(2, memory order relaxed)D,

z.store(3, memory order relaxed)G

Starting with the matching set M = {} as U has no unresolved future val-
ues, the fixed-point of the generating function for this example will yield X0 =
{〈a,A〉, 〈d,C〉, 〈e,D〉, 〈f,G〉}. Alternatively, a ∼= A, d ∼= C, e ∼= D, f ∼= G.

Using this X0, we obtain:
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eU,1 =y.load(memory order relaxed)=1a, z.load(memory order relaxed)=0b,

x.load(memory order relaxed)=0c

eU,2 =x.store(1, memory order relaxed)d, y.store(2, memory order relaxed)e,

z.store(3, memory order relaxed)f

eV,1 =y.load(memory order relaxed)=1A, z.load(memory order relaxed)=3B ,

x.load(memory order relaxed)=2F ,

eV,2 =x.store(1, memory order relaxed)C , y.store(2, memory order relaxed)D,

z.store(3, memory order relaxed)G

To make notation easier throughout this proof, we will use the following additional
notations for referring to the matching prefix of traces U and V .

Definition 11.6. Given execution traces U and V , let

PRE(U, V ) = {(x, y) ∈ U × V | x ∼= y}
PU = PRE1(U, V ) = {x | ∃(x, y) ∈ PRE(U, V )}
PV = PRE2(U, V ) = {y | ∃(x, y) ∈ PRE(U, V )}

We call PRE(U, V ) the prefix of U and V (PRE1 and PRE2 are the left- and right-hand
projections). We make use of notation PU and PV throughout the rest of the paper for
brevity. Intuitively, the prefix of U and V is a matching portion at the “beginning” of U
and V such that no evaluations in the prefix may depend on any evaluation outside of
the prefix.

We say that traces U and V are equivalent (denoted U ∼= V ) if

PRE1(U, V ) = U ∧ PRE2(U, V ) = V.

For ease of use, we define a bijection equiv : PU → PV where equiv(u) = v ⇐⇒ u ∼= v.

In addition to equivalence (∼=), it is useful to recognize those operations which are
equivalent in everything except for their rf behavior. We define a similarity property
for this purpose.

Definition 11.7. Given traces U and V , let us also define a similarity operator (∼)
using a mapping SIM : U × V → U × V

(1) Let X = PRE(U, V ), and define eU,i,j and eV,i,j as in Definition 11.4.
(2) Let

Oi = {(x, y) |∃j ∈ N. x = eU,i,j ∧ y = eV,i,j

(∀a ∈ U. a
dep−−→ x =⇒ ∃b ∈ V. (a, b) ∈ X ∧ b

dep−−→ y) ∧

(∀b ∈ V. b
dep−−→ y =⇒ ∃a ∈ U. (a, b) ∈ X ∧ a

dep−−→ x)}}.
(3) Let

SIM (U, V ) = X ∪
n⋃

i=1

Oi.

Then we say that x ∈ U is similar to y ∈ V if (x, y) ∈ SIM (U, V ). We denote similarity
as x ∼ y. We define the projections QU = SIM 1 and QV = SIM 2 as before.
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For our example, a ∼ A, d ∼ C, e ∼ D, f ∼ G, c ∼ F . Note the addition of c ∼
F relative to the equivalence relation. The load c and load F both have all of their
dependences in PRE , the just happen to read from different stores.

Intuitively, similarity includes evaluations that, aside from their selection of rf, are
equivalent.

For ease of use, we define a bijection sim : QU → QV where sim(u) = v ⇐⇒ u ∼ v.

11.5. Trace Properties
We next build on the notion of equivalence to prove properties that hold for equivalent
prefixes. First, our definition of equivalence yields the following properties, where the
third statement is of particular noteworthiness.

LEMMA 11.8 (PREFIX EQUIVALENCE). Let U and V be execution traces, and let
u1, u2, u3 ∈ U, v1, v2, v3 ∈ V where u1 ∼ v1, u2

∼= v2, and u3 ∼ v3. Then

(1) u1
rf−→ u2 ⇐⇒ v1

rf−→ v2
(2) u1

sw−→ u2 ⇐⇒ v1
sw−→ v2

(3) u1
hb−→ u2 ⇒ v1

hb−→ v2

(4) ∃u′ ∈ U.u1
hb−→ u′ sb−→ u3 ⇒ v1

hb−→ v3

PROOF. Statement 1: Follows from the definition of equivalence.
Statement 2: Follows from Statement 1 and the definition of sw, since u1

sw−→ u2 =⇒
u1

rf−→ u2.
Statement 3: Assume u1

hb−→ u2.
It follows trivially that u1

sb−→ u2 ⇐⇒ v1
sb−→ v2 (and sb implies hb). Additionally,

u1
sw−→ u2 is already covered by Statement 2.

Assume instead that u1 and u2 are in different threads and that ¬u1
sw−→ u2. Then

there exists one or more chains of sb and sw which transitively construct this hb such
that none of the stores are future values. That is, for some n ∈ N, ∃ai, bi. i = 1, 2, . . . , n
such that

u1
sb−→ a1

sw−→ b1
sb−→ a2

sw−→ b2
sb−→ . . . ,

sb−→ an
sw−→ bn

sb−→ u2.

Now, bi must be an acquire operation (with bi
sb−→ ai+1 for i = 1, 2, . . . , (n − 1) and

bn
sb−→ u2), and ai

rf−→ bi; hence, we can inductively show that ai
sat−−→ bi

sat−−→ u2 for all
i = 1, 2, . . . , n. Because u2 ∈ PRE1(U, V ), then ai, bi ∈ PRE1(U, V ). Thus, for any such
chain in U , there exists an equivalent chain in V such that v1

hb−→ v2.
Statement 4: Follows from same argument used in statement 3 but extended with

the observation that since last load acquire is dep ordered before u3 and u3 ∈ QU that
the last load acquire must be in PU .

Our proof will focus on the behavior of loads; as long as all the dependences for a
store are in the equivalence prefix, the store itself must be in the prefix.

11.6. Bijection between Stores in Trace Prefixes
The primary challenge at this point is that loads cannot read from arbitrary stores in
C/C++11 — the C/C++11 memory model restricts the values loads can observe with a
number of constraints involving both the modification order and the happens-before
relations. These constraints could potentially prevent the model checker from making
progress towards the target execution. Our approach towards this problem is to show
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that we can always generate an execution prefix for which both the happens-before
and modification order constraints are weaker than those in target execution.

The first step towards showing this is to create a bijection between the stores in the
equivalent prefixes of two traces and show that this bijection preserves a number of
properties.

Before we can do this, we have to first address the problem that the stores in our
definition of QU or QV may not be contiguous and may contain future values. We
thus define the store subprefixes SU and SV to contain all of the stores in PU and PV ,
respectively, plus all stores that are sequenced before any load in SIM or a store in
PRE :

Definition 11.9 (Store Subprefix). Let U , V be execution traces with prefixes QU

and QV .
We define

SU = {u ∈ U | is store(u) ∧ ∃x ∈ QU . ¬is fut val(x) ∧ u
sb−→ x} ∪ PU

and

SV = {v ∈ V | is store(v) ∧ ∃x ∈ QU . ¬is fut val(x) ∧ v
sb−→ equiv(x)} ∪ PV

.
Additionally, for any thread ti in trace U we define sU,i as the subsequence of stores in

SU performed by thread ti, ordered according to sequenced-before with future values
ordered according to the sequenced-before relation of their equivalents in V .10 The
notation sU,i,j refers to the jth store in the sequence sU,i. For any thread ti in trace V ,
define sV,i as the subsequence of stores in SV performed by thread ti.

Having defined store subprefixes, we next establish a bijection between them.

LEMMA 11.10 (STORE BIJECTION). For each thread ti, let sU,i,j and sV,i,j be from
Definition 11.9.

Then the function f(sU,i,j) = sV,i,j that maps a store sU,i,j from SU to the equivalently
numbered store sV,i,j from SV is a bijection.

PROOF. To show that f is a bijection, we need to show that it is (1) a function, (2)
onto, and (3) one-to-one.

We begin by showing that f is a function. If a store sU,i,j is a member of SU , then we
know that it is sequenced before some action x that is in QU . By Lemma 11.3 we know
that any load that determines whether sU,i,j is executed is satisfaction ordered before
x. Thus, if sU,i,j is in U , there must be an analogous store in SV,i and furthermore by
Lemma 11.3 that store must write to the same address.

By the same argument, applied to stores in SV , we can show that f is onto.
All that remains is to show that f is one-to-one, and is easy to see that it is by

construction.

This lemma proves, then, that we can bijectively map stores from SU to stores in
SV —we no longer have to reason about stores which may appear in U but not in V
based on unrelated execution choices, for instance.

The next lemma shows that the bijection f preserves equivalence in thread, location,
sequenced-before, and happens-before.

10Future values in U are not inherently ordered as we have lost the information about the stores that
produced them. We can instead use the ordering of the corresponding stores in V to ensure that they match
up properly in the bijection that we build later.
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LEMMA 11.11. Let U , V be execution traces. Let SU , SV , and f be from Defini-
tions 11.9 and Lemma 11.10.

Then for all stores a, b ∈ SU

(1) a and f(a) are in the same thread
(2) a and f(a) store to the same location
(3) a

sb−→ b ⇐⇒ f(a)
sb−→ f(b)

(4) a
hb−→ b⇒ f(a)

hb−→ f(b).

Additionally, ∀u ∈ PU . equiv(u) = f(u).

PROOF. Statements 1 and 3 follow directly from the definition of f .
Statement 2: For each thread ti, let sU,i,j and sV,i,j be from Definition 11.9.

Suppose sU,i,j and sV,i,j do not store to the same location. This means there exists a
load a ∈ U and b ∈ V on which the address of sU,i,j and sV,i,j depends, respectively.

By the definition of SU , there exists an operation x such that x ∈ QU and sU,i,j
sb−→ x.

By Lemma 11.3 we also have a
sat−−→ x. Since x ∈ QU all of its dependences in the

satisfaction order other than reads-from must be resolved and hence a must be in
PU . But once a ∈ PU , the analogous b must be in PV and read the same value — a
contradiction.

Thus, u and v store to the same location.
The converse arguments apply similarly.

Statement 4: Assume that a hb−→ b. Since b ∈ SU , there must either exist u ∈ QU . b
sb−→ u

(by definition of SU ) or b ∈ PU and let u = b.
Consider a

hb−→ b in cases. Because they are both stores, we can split cases as follows:

(1) a
sb−→ b

(2) ∃ai, bi. a = a0 ∧ a0
sw−→ b0

sb−→ a1
sw−→ . . .

sw−→ bn
sb−→ b

(3) ∃ai, bi. a
sb−→ a0

sw−→ b1
sb−→ a1

sw−→ . . .
sw−→ bn

sb−→ b

Case 1: If a sb−→ b, then by Statement 3, f(a) sb−→ f(b).
Case 2: For all i, ai is a store, bi is a load-acquire, and ai

rf−→ bi, so ai
sat−−→ bi

sat−−→ ai+1.
Additionally, bn

sat−−→ u ∈ QU , so all ai, bi ∈ PU by the definition of the satisfaction order.
Thus, a0 ∼= f(a0), bn ∼= f(bn), and by Lemma 11.8, f(a0)

hb−→ f(bn)
sb−→ f(b).

Case 3: In the same way as Case 2, we can show that f(a0)
hb−→ f(b). We then apply

Statement 3 to show that f(a) sb−→ f(a0)
hb−→ f(b).

11.7. Consistent Subtraces
We are now ready to reason about the exploration of a series of traces in order to form
executions with increasingly larger matching prefixes. But first, we define a subtrace,
so that we can present some properties about sub-portions of a trace. There are two
concerns that motivate our definition of a consistent subtrace: (1) each subtrace has to
satisfy our modification order constraints such that the trace is not terminated early
by CDSCHECKER, (2) each subtrace should contain minimal constraints on the reads-
from relation such that CDSCHECKER can take the next step towards the target trace,
and (3) the definition should contain enough freedom to allow loads to read from future
values as necessary for backtracking to build back up a trace.

Definition 11.12. Let U be an execution trace and let x ∈ U .
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A subtrace Ux of U is a subset of operations in U such that

∀u ∈ U. u
exec−−→ x ∨ x = u =⇒ u ∈ Ux

and

∀u ∈ U, v ∈ Ux. u
rf−→ v =⇒ u ∈ Ux.

A subtrace intuitively includes (1) the subsequence of the execution order up to and
including x and (2) any promised future stores from which this subsequence reads.

When constructing execution traces U ′, we want to constrain all loads in an execu-
tion trace to reading only from stores which we can show are consistent with the target
trace V . That is, we want to ensure that we don’t generate mo-cycles and that the mod-
ification order doesn’t unnecessarily constrain the stores from which later reads may
read. The bijection f provides much of the information required for selecting stores
from which a given load should read.

We now define the consistency property that we want to maintain as we build up
increasingly large subtraces.

Definition 11.13 (Consistent subtrace). Given traces U and V and a subtrace Ux of
U , we define

consistent subtrace(U, V, x) =

(∀a, b ∈ Ux. (a
rf−→ b ∧ b /∈ PU ) =⇒ (∃c.a hb−→ c

sb−→ b ∨ a
rf−→ c

hb−→ b))

∧ (∀a, b ∈ Ux ∩ SU . a
mo−−→ b =⇒ f(a)

mo−−→ f(b))

∧ (∀a ∈ Ux \ SU , b ∈ Ux ∩ SU . ¬a
mo−−→ b)

The consistent subtrace predicate asserts that a subtrace of U has a modification or-
der which is consistent with V and provides as few additional constraints on the mod-
ification order as possible. The predicate consists of the logical conjunction (∧) of three
separate clauses. The first clause provides restrictions for loads that are not in the
prefix, and the latter two clauses restrict the modification order of stores that are and
aren’t (respectively) in the bijective mapping f .

In the first clause, we prevent non-prefix loads from establishing additional modifi-
cation order constraints by reading from a previously-unconstrained store.

The second clause requires that stores in the bijective mapping f have a modification
order that is compatible with their match in V .

The third clause forbids stores that are not in the bijective mapping f from being
ordered before any store in the bijective mapping. Stores that are not in the bijective
mapping can obstruct our intended rf relations in arbitrary ways unless we can con-
strain them in this way.

Given this consistency predicate, we can construct an execution U ′ using pro-
gressively larger subtraces Ux that satisfy consistent subtrace(U ′, V, x) until we have
U ′ = Ux. We prove this in the following theorem.

THEOREM 11.14. Let U and V be traces with a subtrace Ux of U .
If consistent subtrace(U, V, x) is true then either U = Ux or CDSCHECKER can gener-

ate an execution U ′ with subtrace U ′
y such that

consistent subtrace(U ′, V, y) ∧ Ux ⊂ U ′
y ∧

(PRE1(U, V ) ∩ Ux) ⊆ (PRE1(U
′, V ) ∩ U ′

y)

PROOF. If U = Ux, then we are done.
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Assume instead that U 6= Ux, and so there exists a load y ∈ U \ Ux. If we select the
earliest y (in the execution order), then we can construct U ′ as follows.

If y ∈ PU , we note that by definition of PU that y reads from u such that f(u) rf−→ f(y).
Thus the execution already trivially satisfies consistent subtrace and retains the prefix
such that (PRE1(U, V ) ∩ Ux) ⊆ (PRE1(U

′, V ) ∩ U ′
y).

Now, assume y /∈ PU .
Let stores hb(y) = {u ∈ Ux | is store(u) ∧ same location(u, y) ∧ (∃c.u hb−→ c

sb−→ y ∨ u
rf−→

c
hb−→ y)}. We will select u ∈ stores hb(y) with which to construct a new subtrace U ′

y

such that u rf−→ y, then we will show that consistent subtrace(U ′, V, y). Note that Ux and
U ′
y differ only in load y, diminishing our proof obligations. In cases, we have:

(1) stores hb(y) ⊆ SU

(2) stores hb(y) * SU

Case 1: Assume stores hb(y) ⊆ SU . We simply select u ∈ stores hb(y) such that ∀a ∈
stores hb(y). u = a ∨ f(a)

mo−−→ f(u). We then let y read from u in our new trace U ′, with
subtrace U ′

y.
The first clause of consistent subtrace is trivially satisfied because u ∈ stores hb(y).
For the second clause, suppose that in Ux, there exists some store a such that y

introduces a new constraint a mo−−→ u. The only two rules that apply for such a load are
Write-Read and Read-Read coherence. By either rule, we also have a ∈ stores hb(y) ⊆
SU and therefore, f(a) mo−−→ f(u). Thus, y cannot create a cycle with a, and we retain
the consistency of the second clause.

The third clause can be easily verified because for any store a where u
rf−→ y =⇒

a
mo−−→ u, there must be a happens-before relation between a and y and thus a ∈ SU .
Because we do not change any loads in the subtrace Ux and the future value mapping

M remains the same for those loads, we trivially retain the property (PRE2(U, V ) ∩
Ux) ⊆ (PRE2(U

′, V ) ∩ Uy).
Case 2: In this case, ∃u. u ∈ (stores hb(y)\SU ). Then we select some “late” u, such that

∀v. v ∈ stores hb(y) \ SU =⇒ ¬u mo−−→ v.

We can show that u rf−→ y in U ′ will retain consistent subtrace(U ′, V, y).
Again, the first clause is satisfied because u ∈ stores hb(y).
The second and third clauses can be argued together. No store a ∈ SU can happen

after either u or y, so y can only provide at most the constraint that a mo−−→ y. This has
no bearing on the second clause, and it is consistent with the third clause.

Because we do not change any loads in the subtrace Ux and the future value mapping
M remains the same for those loads, we trivially retain the property (PRE2(U, V ) ∩
Ux) ⊆ (PRE2(U

′, V ) ∩ Uy).

11.8. Induction on Subtraces
We next state the two key theorems: Theorem 11.15 shows that CDSCHECKER will
always either generate a trace that is closer to the target trace or find a bug. Theo-
rem 11.16 is an induction on Theorems 11.14 and 11.15 to show that CDSCHECKER
will either produce the target execution, find a bug, or fail to terminate.

THEOREM 11.15. Given two execution traces U and V of the same program and
input, such that

U 6= V ∧ PRE(U, V ) 6= ∅,
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then if CDSCHECKER explores U , either

(1) it also explores some trace U ′ where it reports an execution bug or
(2) for any load x such that x ∈ QU , ¬x ∈ PU , ∃u ∈ PU , equiv(u)

rf−→ sim(x),
consistent subtrace(U, V, x) and consistent subtrace(U, V, u) it explores some trace U ′

that contains x′ such that x′ ∼= sim(x), (PRE1(U, V )∩Ux)∪{x′} ⊆ PRE1(U
′, V ), and

consistent subtrace(U ′, V, x′).

PROOF. Let PU = PRE1(U, V ) and PV = PRE2(U, V ).
Given that x ∈ QU and x /∈ PU , we have y = sim(x) /∈ PV ..
We will show in cases how we can transform U into U ′, where PU ∪ {x′} ⊆

PRE1(U
′, V ) where x′ ∼= y.

Now, let v = equiv(u)
rf−→ y (v ∈ PV ).

First, we must show that CDSCHECKER will explore U ′ where x may read the value
from u. Consider cases for u:

(1) u
exec−−→ x

(2) x
exec−−→ u

Case 1: u exec−−−→ x
In the first case, we must show that u ∈ may-read-from(x) when we explore x.
We will show that u ∈ may-read-from(x) by contradiction. Assume u /∈

may-read-from(x). This means that the addition of u rf−→ x must create a mo-cycle due
to one of the read COHERENCE constraints that creates an mo edge from some other
store c to u. This means that either c

hb−→ x (Write-Read Coherence) or there is a load l
that reads from c and happens before x (Read-Read Coherence).

In the case c
hb−→ x, we note that c ∈ SU and thus the same modification order edges

must exist in V and thus we have a contradiction.
In the case l

hb−→ x, we consider two cases:

(1) l ∈ PU : This implies that c ∈ PU and thus the same modification order edges must
exist in V and we have a contradiction.

(2) l /∈ PU : In this case, by the first clause of consistent subtrace we have ∃e.c hb−→ e
sb−→

l ∨ c rf−→ e
hb−→ l. In either case, we either have some action e earlier in the execution

order for which either this recursively applies or the store c must happens before
the load. Eventually this induction must end in the store case and hence c

hb−→ x
and thus c must be in SU , the same modification order edges must exist in V , and
we have a contradiction.

Once we reach a partial execution U ′ in which u
rf−→ x, it is simple to complete the

execution trace by having loads read from stores that simply remain consistent with
the mo of V .

As we previously had consistent subtrace up to the action x, all we need show is that
we satisfy consistent subtrace for the new action x′. As x′ ∈ PU , the first clause is triv-
ially satisfied. Consider a store a that could violate the second clause. To violate the
clause, we must have the load x produce the edge a

mo−−→ u while f(u)
mo−−→ f(a) (as-

suming without loss of generality that mo−−→ is a total order for a given location in V ).
Thus by cases we either have a

hb−→ x (write-read coherence) or l
hb−→ x where a

rf−→ l.
By application of the consistent subtrace using the same reasoning as above we have in
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either case that a hb−→ x. By application of Lemma 11.8 we get f(a) mo−−→ f(u) which is a
contradiction and thus the store a cannot exist. Hence the second clause is satisfied.

The last clause is trivial to show as we don’t have an operation after x′ that could
violate the condition.

We have the property (PRE1(U, V ) ∩ Ux) ∪ {x′} ⊆ PRE1(U
′, V ) by construction.

Case 2: x exec−−−→ u
Because u ∈ PU , CDSCHECKER reaches u in trace U . We must show that

(value(u), thread(u)) ∈ futurevalues(x). In other words, we must demonstrate some
trace (U or a similar execution) where the future value pruning rules 1 to 3 (Sec-
tion 11.2) do not prevent adding u to futurevalues(x).

If u cannot send a future value to x, then one of the future value pruning rules must
be blocking it. We can show that rules 1 and 2 cannot block u

rf−→ x.
With rule 1, we must have x

hb−→ u. Then by Lemma 11.8, y hb−→ v which contradicts
v

rf−→ y.
For rule 2, we must have ∃b. x hb−→ b

mo−−→ u. Consider in cases:

(1) b /∈ SU .
(2) b ∈ SU

The first case is impossible, due to the third clause of consistent subtrace.
In the second case, the second clause of consistent subtrace implies f(b)

mo−−→ f(u),
and Lemma 11.8 implies sim(x)

hb−→ f(b). But f(u)
rf−→ sim(x), and so f(u)

mo−−→ f(b)
(READ-WRITE COHERENCE) yielding a mo-cycle in V —a contradiction.

Now, rule 3 may still prevent sending a future value, so we will show how to generate
an equivalent execution U ′′ in which x may read from u.

Consider the set of potentially-blocking loads:

blocking(u, x) ={b ∈ U. is load(b) ∧ same location(x, b) ∧

x
hb−→ b

exec−−→ u ∧ (∃a. a rf−→ b ∧ a
mo−−→ u)}.

Note that none of the blocking loads can be in the prefix PU as that would imply the
same modification ordering constraint in V .

We will inductively show how to transform U into a similar execution U ′′ where
blocking(u, x) is empty (if it is empty, then rule 3 no longer blocks u

rf−→ x), via a finite
sequence of intermediate executions Ui, i = 0, 1, . . . , n, where U0 = U and Un = U ′′.

Let last blocking(u, x) be the latest (in the execution order) load in blocking(u, x) (if it
is nonempty) for execution Ui.

Let b = last blocking(u, x) in Ui. Now suppose ∃c ∈ blocking(u, b). Because x
hb−→ b

hb−→
c, we also have c ∈ blocking(u, x). But b exec−−→ c, which contradicts the “last” selection of
b. Therefore, blocking(u, b) is empty, and b can read a future value from u. The model
checker will then find a new execution with u

rf−→ b as u
sat−−→ b and having the blocking

loads read from u cannot generated any mo edges that are not already present in V .
Thus, for each Ui where blocking(u, x) is nonempty, we generate the successive exe-

cution Ui+1 in which u
rf−→ b. Note that after this change to b in execution Ui+1, there

may be a new b′ = last blocking(u, x) such that b
exec−−→ b′. But we will not see infinitely

many such executions because we can bound the number of blocking loads b′ that can
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appear.11 Thus, in a finite number of steps we reach an execution Un = U ′ in which
blocking(u, x) is empty, at which point x may read from u.

We can complete this partial execution U ′ in the same way as in Case 1. As we
previously had consistent subtrace up to the action x, all we need show is that we satisfy
consistent subtrace for the new action x′. The same argument from Case 1 applies here.

We have the property (PRE1(U, V ) ∩ Ux) ∪ {x′} ⊆ PRE1(U
′, V ) by construction.

THEOREM 11.16. Given a program’s execution trace V , then for any initial execu-
tion U of the same program and input, either:

(1) there exists a (potentially empty) series of backtracking transformations from U by
which CDSCHECKER will produce an execution trace U ′ such that U ′ ∼= V ,

(2) CDSCHECKER will discover a bug in the program under test,
(3) CDSCHECKER will fail to terminate.

PROOF. Proof by induction on consistent subtraces. Theorem 11.14 states that we
can always make the consistent portion of a subtrace longer while still maintaining all
of the actions in the consistent part of the trace in PU until the entire trace is consistent
(or CDSCHECKER fails to terminate by generating increasingly long traces). Once the
entire trace Uc is consistent, it follows that because the satisfaction order is acyclic
that if ¬Uc

∼= V , then at least one load l in Uc has all of its dependences other than
reads-from resolved.

Theorem 11.15 then shows that we can generate a new consistent subtrace in which l
is in the prefix with V while still retaining all actions that are execution ordered before
l in the prefix. Thus by induction, if CDSCHECKER terminates, it must eventually
obtain a trace U ′ in which all loads are in the prefix and thus we have U ′ ∼= V .

COROLLARY 11.17. The “promises may allow” future value optimization (Rule 4)
can be applied to CDSCHECKER and still retain the correctness of Theorem 11.15.

PROOF. Consider a
exec−−→ b

exec−−→ c, where a may read from c and b reads from the
future. We do not allow c to send its value to a until b’s promise is resolved. To show
that this is sound, we reason about a few cases. Consider some hypothetical d that
might satisfy b. We have the following cases:

(1) d
exec−−→ c

(2) c = d
(3) c

exec−−→ d.

In the first case, d already executed, so it no longer can satisfy outstanding promises.
In the second case (c = d), d will first resolve b, eliminating the outstanding promise

and allowing itself to send a future value to a.
This leaves only the third case, where c

exec−−→ d. If d does not depend on a, then a does
not affect the existence of d; CDSCHECKER will explore d, d will satisfy b, and c can
now send its future value to a. Now instead, assume that d depends on a. We can show
c does not depend on b (if it did, then we should not send c’s value to a, as this would
be a satisfaction cycle: a sat−−→ d

rf−→ b
sat−−→ c

rf−→ a). Thus, for some execution in which b
does not read d, the execution will still include c, which can then pass its future value
to a.

11Any potentially-nonterminating loops in threads that affect the generation of u must be in the prefix
(they are sat-ordered before u) and therefore consist of a bounded number of blocking loads. And potentially-
nonterminating loops in unrelated threads only provide a bounded number of blocking loads, since a fair
schedule guarantees that there are a bounded number of steps between x and u.
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11.9. Discussion
We note that the definition of the satisfaction order in many cases specifies a stronger
notion of dependence than compilers necessarily preserve. For example, a compiler
may break the dependence from x to y in the following code: y=x*0;.

In practice, CDSCHECKER is sound with respect to a weaker definition of depen-
dence as it only observes the effects of dependences dynamically. If the effect of a de-
pendence between a load and a store is not observed for any of the subtraces that com-
prise the induction sequence, then CDSCHECKER must produce the target execution.
Thus, the types of dependences that compiler optimizations are likely to eliminate are
in general not visible to CDSCHECKER, and therefore CDSCHECKER will generate
any executions that breaking these dependences may enable.

12. EVALUATION
Because C++11 is so new, there are few tools that test programs under its mem-
ory model and few benchmarks against which to run. For those tools that do ex-
ist, there are limitations either on scalability (they can only test very small pro-
grams) or on soundness (they miss a significant number of potential program behav-
iors). We evaluated CDSCHECKER against these tools where possible, while sepa-
rately measuring CDSCHECKER’s performance on real data structures. We ran our
evaluations on an Ubuntu Linux 12.04 machine with an Intel Core i7 3770 CPU.
We have made both our model-checker and benchmarks publicly available at http:
//demsky.eecs.uci.edu/c11modelchecker.html.

We compiled and ran our evaluations with compiler optimizations enabled (GCC’s
-O3 flag). However, because we implement instrumented versions of atomic operations
within CDSCHECKER’s (opaque) shared library, the compiler has limited ability to
reorder the atomic operations in the unit tests, and so compiler optimizations per-
formed on the program under test do not affect the correctness of model-checking. To
verify this, we studied the implementation of atomic operations in GCC and clang/L-
LVM. Both compilers utilize library headers which we can easily substitute with CD-
SCHECKER’s header; thus, we transform atomic operations into function calls which
cannot be reordered. Additionally, a simple experiment showed no behavioral differ-
ences in our benchmarks results when using GCC to compile them with and without
optimization.

12.1. Data Structure Benchmarks
For testing CDSCHECKER on real code, we have gathered five data struc-
ture implementations—a synchronization barrier, a mutual exclusion algorithm,
a contention-free lock, and two different types of concurrent queues—downloaded
from various publicly-accessible Internet websites, and a work stealing deque taken
from [Lê et al. 2013]. Additionally, we ported our own implementations of the
Linux kernel’s reader-writer spinlock from its architecture-specific assembly imple-
mentations and the Michael and Scott queue from its original C and MIPS source
code [Michael and Scott 1996].

Most benchmarks were originally written simply as data structure implementations,
so we wrote test drivers for many of them in order to run them under CDSCHECKER.
We briefly describe each data structure, our test methodology, and our performance re-
sults and analysis. For our performance results (Figure 11), we record the total number
of times CDSCHECKER executed the test program (# Executions) and the number of
executions whose behavior was consistent with the memory model (# Feasible). The
ratio of the feasible executions to the total number of executions provides a measure
of the overhead of exploring infeasible executions.
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Benchmark # Executions # Feasible Total Time (s)
Chase-Lev deque 748 81 0.14
SPSC queue 18 11 0.01
SPSC queue (bug free) 19 16 0.02
Barrier 10 10 0.01
Dekker critical section 19,319 2,313 3.22
MCS lock 18,035 14,017 3.61
MPMC queue 40,148 13,028 7.66
M&S queue 272 114 0.07
Linux RW lock 54,761 1,366 10.56

Fig. 11. Benchmark Results

Many benchmarks have an infinite space of executions under memory systems that
do not guarantee liveness, so for all our tests, we ran CDSCHECKER with a memory
liveness parameter of 2 (see Section 10). For all benchmarks with non-atomic shared
memory, we manually instrumented the normal memory accesses to check for data
races.

Chase-Lev Deque: We took this implementation from a peer-reviewed, published
C11 adaptation of the Chase-Lev deque [Lê et al. 2013]. It predominantly utilizes re-
laxed operations (for efficiency) while utilizing fences and release/acquire synchroniza-
tion to establish ordering. While the paper proves an ARM implementation correct, it
does not contain a correctness proof for its C11 implementation. Our test driver for
this benchmark utilizes two threads in which the thread that owns the deque pushes
3 work items and takes 2 work items while the other thread steals a work item.

Our model-checker discovered a bug in the published implementation. The bug oc-
curs when both a steal and push operation occur concurrently and the push operation
resizes the deque. The bug reveals itself as a load from a potentially uninitialized
memory location. We contacted the paper’s authors and they confirmed the bug in the
C11 implementation.

SPSC queue: This single-producer, single-consumer queue allows concurrent access
by one reader and one writer [sps ]. We utilize the test driver provided along with
the queue, which uses two threads—one to enqueue a single value and the other to
dequeue it and verify the value.

This queue utilizes seq-cst atomics, a C++ mutex/condition variable and only a few
non-seq-cst atomics, allowing CDSCHECKER to easily reduce the search space. It con-
tained a known bug—a deadlock—which CDSCHECKER detected on its first execution,
pruning the search space early and resulting in fewer executions for the buggy bench-
mark than for our modified bug-free version.

Barrier: This implements a synchronizing barrier [bar ], where a given set of
threads may wait on the barrier, only continuing when all threads have reached the
barrier. The barrier should synchronize such that no memory operation occurring after
the barrier may race with a memory operation placed before the barrier. The imple-
mentation is simple and contentious, as the first n − 1 threads will spin on a global
flag, waiting for the nth thread to reach the barrier.

Our test driver utilizes two threads with a non-atomic shared memory operation
executed on either side of the barrier, one in each thread.

Because the barrier is implemented with seq-cst atomic operations, it exhibits rel-
atively few behaviors—those determined by simple thread interleavings. Under a fair
schedule, this test required only 7 executions.

Dekker critical section: This implements a simple critical section using Dekker’s
algorithm [dek ], where a pair of non-atomic data accesses are protected from concur-
rent data access. This benchmark successfully utilizes sequentially consistent, release,
and acquire fences to establish ordering and synchronization.
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Contention-free lock: This contention-free lock implements the algorithm pro-
posed by Mellor-Crummey and Scott (known as an MCS lock) [Mellor-Crummey and
Scott 1991; mcs ]. The lock acts like a concurrent queue, where waiting threads are
queued—first-in, first-out. Our test driver uses two threads, each of which alternates
between reading and writing the same shared variable, releasing the lock in between
operations.

As with several other benchmarks, heavy usage of non-seq-cst operations in multiple
threads required exploration of a larger state space; weak loads and stores provide
many more potential combinations of store/load pairs in the rf relation.

MPMC queue: This multiple-producer, multiple-consumer queue allows concurrent
access by multiple readers and writers [mpm ]. Our test driver runs two identical
threads. Each thread first enqueues an item and then dequeues an item.

M&S queue: This benchmark is an adaptation of the Michael and Scott lock free
queue [Michael and Scott 1996] to the C/C++ memory model. Our adaptation uses
relaxed atomics when possible. Our test driver runs two identical threads. Each thread
first enqueues an item and then dequeues an item.

Linux reader-writer lock: A reader-writer lock allows either multiple readers or a
single writer to hold the lock at any one time—but no reader can share the lock with a
writer. We ported this benchmark from a Linux kernel implementation, likely making
this the most deployed example out of all our benchmarks.

To test the Linux reader-writer lock, our test driver runs two identical threads, with
a single rwlock t protecting a shared variable. Each thread reads the variable under
a reader lock, then writes to the variable under the protection of a writer lock.

This benchmark utilizes a large number of relaxed memory operations, thoroughly
testing the efficiency of our relaxed model optimizations. In fact, our naı̈ve early imple-
mentations of future values typically took thirty or more minutes to complete, whereas
the current results show an exploration time of under 11 seconds.

Discussion: While many bugs are straightforward to find with simple test cases,
others can be more difficult to find. The bug we discovered in the Chase-Lev Deque is
an example of a bug that requires a test case that exercises a corner case — exposing
this bug requires the test case to trigger a resize while another thread performs a
concurrent steal operation.

In our experience, effective testing sometimes requires the developer to think about
the corner cases in the code and build test cases that exercise these in the presence of
potentially conflicting, concurrent accesses.

12.2. Litmus Tests
To help verify that CDSCHECKER performs sound exploration of the memory model,
we tested it against a set of litmus tests, including the tests described in Nitpick-
ing [Blanchette et al. 2011] as well as a few of our own custom tests. With the Nitpick-
ing litmus tests, we wrote assertion-based tests when possible, and manually checked
other properties (e.g., when testing for the existence, rather than avoidance, of a par-
ticular behavior). We ran all the listed relaxed, release/acquire and seq-cst tests, all of
which exhibited the expected behaviors.

Whereas the Nitpicking litmus tests only tested the memory ordering behaviors of
loads and stores, we performed additional tests to verify the treatment of, e.g., read-
modify-writes in CDSCHECKER. In one such test we ran two threads, with each thread
performing n identical fetch add(1) operations on a single variable. We verified that
we see the correct number of distinct execution behaviors (enumerating rf ) and that
each execution yields a sum of 2n. We performed other similar tests and checked the
combinatorial behavior.
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12.3. Comparison to CPPMEM and Nitpick
Researchers have developed two tools—CPPMEM [Batty et al. 2011] and Nit-
pick [Blanchette et al. 2011]—for exploring the behaviors of short code fragments un-
der the C/C++ memory model. Both of these tools are targeted toward understand-
ing the memory model and not toward testing real code. Additionally, Nitpick is not
publicly available, and due to various constraints of CPPMEM, it is impossible to port
our benchmarks to CPPMEM. Hence, we cannot directly compare these tools to CD-
SCHECKER using our benchmarks.

Instead, to roughly compare CDSCHECKER to Nitpick, we reconstructed the largest
relaxed WRC example for which they published results. Their example contained ad-
ditional constraints to limit the exploration to a subset of the legal executions by con-
straining loads to specific values, while CDSCHECKER is intended to explore all legal
executions of the program and hence CDSCHECKER must explore a much larger space
of executions. CDSCHECKER took 0.03 seconds to explore all possible executions for
this example, while the published results show that Nitpick took 982 seconds to ex-
plore a subset of the results. We then ran our unrestricted version of the benchmark on
CPPMEM, and it took 472.87 seconds to complete. CDSCHECKER is significantly faster
than both CPPMEM and Nitpick as both of those tools make modification orders ex-
plicit. CDSCHECKER avoids enumerating modification orders, thereby exponentially
decreasing its search space. The other two tools also use generic search or SAT solv-
ing frameworks whereas CDSCHECKER has been designed specifically for the C/C++
memory model and can leverage memory model constraints to prune its search.

13. RELATED WORK
Researchers have created tools to find bugs in concurrent data structures. State-based
model-checkers such as SPIN [Holzmann 2003] can be used to debug designs for con-
current data structures. The CHESS [Musuvathi et al. 2008] tool is designed to find
and reproduce concurrency bugs in C, C++, and C#. It systematically explores thread
interleavings. Line-Up [Burckhardt et al. 2010] extends CHESS to check for lineariza-
tion. The Inspect tool combines stateless and stateful model-checking to model-check
C and C++ code [Yang et al. 2009; Wang et al. 2008; Yang et al. 2008]. These tools
are designed to check code using the sequential consistency model rather than the
more relaxed memory model of the C/C++ standards and therefore are not suitable for
catching concurrency bugs arising from reordered memory operations.

Adversarial memory increases the likelihood of observing relaxed memory system
behavior during testing [Flanagan and Freund 2010]. While it helps to uncover rare
erroneous behaviors, it makes no guarantee of exhaustive testing. Moreover, adversar-
ial memory is unable to simulate executions in which a load observes the value of a
store that has not yet happened and therefore cannot catch bugs that are exposed by
such behavior. CDSCHECKER can exhaustively explore a data structure’s behavior for
a given input and simulates loads that observe values of stores that appear later in
the execution order.

State-based model-checkers have been developed for C# [Huynh and Roychoudhury
2006] and Java [De et al. 2008] that use reordering tables. As the C/C++11 memory
model is not based on reordering tables, these approaches are not applicable to C/C++.

Other tools have been developed that systematically explore interleavings and mem-
ory operation reorderings. The Relacy race detector [Vyukov Oct] systematically ex-
plores thread interleavings and memory operation reorderings for C++11 code. The
Relacy race detector has a number of limitations that cause it to miss executions al-
lowed by the C/C++ memory model. Like CDSCHECKER, Relacy imposes an execution
order on the program under test. However, Relacy cannot produce executions (allowed
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by the memory model) in which loads read from stores that appear later in the execu-
tion order. Moreover, Relacy derives the modification order from the execution order; it
cannot simulate (legal) executions in which the modification order is inconsistent with
the execution order. Relacy also does not support partial order reduction.

Researchers have formalized the C++ memory model [Batty et al. 2011]. The CPP-
MEM tool is built directly from the formalized specification with a primary goal of
allowing researchers to explore implications of the memory model. It explores all legal
modification orders and reads-from relations—a source of redundancy—and therefore
must search a significantly larger search space than CDSCHECKER, whose search al-
gorithm limits redundancy by only exploring the space of legal reads-from relations.
Furthermore, at this point CPPMEM lacks support for much of the C/C++ language.
Nitpick translates the memory model constraints into SAT problems and then uses a
SAT solver to find legal executions [Blanchette et al. 2011]. Simple experiments reveal
that CDSCHECKER is significantly faster than either of these tools.

Several tools have been designed to detect data races in code that uses standard
lock-based concurrency control [Elmas et al. 2007; Flanagan and Freund 2009; Lucia
et al. 2010; Engler and Ashcraft 2003; Savage et al. 1997]. These tools typically verify
that all accesses to shared data are protected by a locking discipline. They are not
designed to check concurrent code that makes use of low-level atomic operations.

In the context of relaxed hardware memory models, researchers have developed
tools for inferring the necessary fences [Kuperstein et al. 2011] and stateful model-
checkers [Kuperstein et al. 2010; Jonsson 2009; Park and Dill 1999].

Researchers have also argued that reasoning about relaxed memory models is chal-
lenging and have made a case that compilers should preserve sequential consis-
tency [Marino et al. 2011]. Whether such approaches can replace the need for a relaxed
memory model depends to some degree on the memory models of future processors.
We agree with the authors regarding the difficulty of reasoning about relaxed memory
models, and we believe that tool support is necessary.

Our previous work presented the CDSCHECKER tool [Norris and Demsky 2013] and
showed that it can effectively unit test data structures and discovered bugs in peer-
reviewed concurrent data structures. This article extends the conference publication
by showing that the core model checking algorithm used by CDSCHECKER is correct.

14. CONCLUSION
The C/C++ memory model promises to make it possible to write efficient, portable low-
level concurrent data structures. The weak memory model that C/C++ provides for
these low-level operations can result in unexpected program behaviors and can make
writing correct code challenging. CDSCHECKER is the first tool that can both test
real concurrent data structures while still simulating all of the weak memory model
behaviors that C/C++ implementations are likely to produce. Our results indicate that
CDSCHECKER can successfully test real low-level concurrent code.
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A. EXAMPLES THAT MOTIVATED THE DEFINITION OF SATISFACTION ORDER
In this section, we list several examples of satisfaction cycles that motivated our defi-
nition of satisfaction order.

A.1. Information Flows through Conditional Branches
Figure 12 shows an implicit information flow from the load in Line 6 to the store in
Line 10 via control flow.

One might believe that the implicit information flow from Figure 12 could be ad-
dressed by a thread local analysis that detects the flow from the load to the store
through the conditional code.
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1 atomic_int x,y;
2 /* Initially x=y=0 */
3
4 void T1() {
5 int t=0;
6 int r1=x.load(relaxed);
7 if (r1==0)
8 t=1;
9 if (t==0)

10 y.store(1,relaxed);
11 }
12
13 void T2() {
14 int r2=y.load(relaxed);
15 x.store(r2,relaxed);
16 }
17
18 /* Can r1=1, r2=1? */

Fig. 12. Implicit Flow Satisfaction Cycle
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Fig. 13. Implicit Flow Satisfaction Cycle

1 atomic_int x,y,f,s;
2 /* Initially x=y=f=s=0 */
3
4 void T1() {
5 int r1=x.load(relaxed)
6 if (r1==0) {
7 f.store(1,relaxed);
8 }
9 s.store(1, release);

10 }
11
12 void T2() {
13 int r2=s.load(acquire);
14 int r3=f.load(relaxed);
15 if (r2==1 && r3==0) {
16 y.store(1,relaxed);
17 }
18 }
19
20 void T3() {
21 int r4=y.load(relaxed);
22 x.store(r4, relaxed);
23 }
24
25 /* Can r1=1, r2=1, r3=0, r4=1?*/

Fig. 14. Implicit Flow #2 Satisfaction Cycle
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Fig. 15. Implicit Flow #2 Satisfaction Cycle
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Figure 14 shows that prohibiting such flows is not so simple. The absence of the store
to f in T1 implicitly leaks information across the synchronization from s.store to s.load.

This suggests the following more conservative thread local constraint:
a

sat−−→ b if: a is a load, b is a store, and there exists a condition statement (e.g., if
statement) a0 such that a0 depends on a and a0

sb−→ b.

A.2. Implicit flows through store addresses

1 atomic_int x[2], idx , y;
2 /* Initially x[0]=1, idx=0, y=0 */
3
4 int r1, r2, r3; /* "local" variables */
5
6 void T1() {
7 r1=idx.load(relaxed);
8 x[r1]. store(0, relaxed);
9

10 /* Key point: can we guarantee that &x[0] == &x[r1]? */
11 r2=x[0]. load(relaxed);
12 y.store(r2);
13 }
14
15 void T2() {
16 r3=y.load(relaxed);
17 idx.store(r3, relaxed);
18 }
19
20 /* Can r1=1, r2=1, r3=1? */

Fig. 16. Address Satisfaction Cycle
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Fig. 17. Address Satisfaction Cycle

In Figure 16 we have an implicit flow of information from the store in Line 8 to the
load in Line 11. If r1 is 0, then the store in Line 8 will prevent the load in Line 11 from
seeing the initial value of 1 in x[0].

It does not appear that processors in general will guarantee a dependence between
the loads. But we can get by with the following alternative constraint:
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a
sat−−→ b if: a is a load, b is a store, and there exists a store a0 such that the address of

a0 depends on a and a0
sb−→ b12

A.3. Synchronization Satisfaction Cycles
In this section, we explore two examples of satisfaction cycles in which the failure to
synchronize produces the store that enables the failure.

1 atomic_int x, y, z;
2 /* Initially x=y=z=0 */
3
4 int r1, r2, r3; /* "local" variables */
5
6 void T1() {
7 x.store(relaxed , 1);
8 y.store(release , 1);
9 }

10
11 void T2() {
12 r1 = y.load(acquire);
13 r2 = x.load(relaxed);
14 if (r1==1 && r2==0)
15 z.store(1, relaxed)
16 }
17
18 void T3() {
19 r3=z.load(relaxed);
20 if (r3==1)
21 y.store(relaxed , 1);
22 }
23
24 /* Can r1=1, r2=0, r3=1? */

Fig. 18. Failed Synchronization Satisfaction Cycle-Load Dep
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Fig. 19. Failed Synchronization Satisfaction Cycle

Figure 18 shows an execution in which the failure to synchronize allows a later load
to see an “old value” that then produces the store that allows the synchronization to
fail.

12Note that store a0 need not be an atomic store. This constraint can be ignored if a0 is a dead store and no
load can ever read from it.
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1 atomic_int x, y;
2 /* Initially x=y=0; */
3
4 int r0, r1, r2, r3; /* "local" variables */
5
6 void T1() {
7 y.store(10, relaxed);
8 x.store(1, release);
9 }

10
11 void T2() {
12 r0 = x.load(relaxed);
13 r1 = x.load(acquire);
14 y.store(11, relaxed);
15 }
16
17 void T3() {
18 r2 = y.load(relaxed);
19 r3 = y.load(relaxed);
20 if (r2==11 && r3==10)
21 x.store(0, relaxed);
22 }
23
24 /* Can r0 = 1, r1 = 0, r2 = 11, r3 = 10?

Fig. 20. Failed Synchronization Satisfaction Cycle-Store Dep
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Fig. 21. Failed Synchronization Satisfaction Cycle

Figure 20 shows an example where the failure to synchronize creates the store that
allows the synchronization to fail. In this case the failed synchronization is detected
by another thread by the ordering of the stores.

We add the following constraint to eliminate satisfaction cycles involving the failure
to synchronize. This constraint is required because acquire operations that synchro-
nize can “leak” information in a way that must be accounted for in our proof. We expect
that all implementations will satisfy this constraint as load acquires must have a fence
after the load (or provide a similarly strong guarantee for the load itself) to guarantee
correct behavior in the case that the load synchronizes.
a

sat−−→ b if: a is a load-acquire, b is a load or store, and a
sb−→ b
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