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Abstract

We show that two multilevel atoms can perform quantum communication with each other via interaction with an
enclosing cavity containing no photons. The physical mechanism is analogous to the way populations can be exchanged
between the extremal states in a three level system via adiabatic following, without populating the intermediate states.
The combined system of the two atoms, the cavity, and two laser beams contains a dark state corresponding to the
cavity in its ground state. Using a counter-intuitive pulse sequence, quantum information can be transferred adia-
batically from one atom to the other via this cavity dark state. This process can be used to circumvent the effect of cavity
decay in a quantum computer formed by cavity interconnected qubits. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 03.67.Lx; 03.67.Hk; 03.67.—a; 32.80.Qk; 42.50.Ct

In recent years, there have been a wide range of
activities aimed at quantum computing. A quan-
tum computer with a large number of bits may
help solve certain problems much more efficiently
than its classical counterpart [1-3]. While the the-
oretical work [4-13] has progressed rapidly, the
experimental realization [14-17] of a many bit
quantum computer remains to be a daunting
challenge [14-17]. It is not clear, for example,
whether NMR or trapped-ion based quantum
computing can be scaled to a large number of
qubits. As such, novel approaches are being pro-
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posed and pursued by many groups. Some of these
proposals involve a collection of distinct quantum
systems (such as atoms, molecules, or quantum
dots) that are not directly coupled to one another.
Instead, an effective coupling is induced via inter-
action of these quantum systems to an optical
cavity.

Pellizari et al. proposed a scheme where each
atom has a pair of identical A-system transitions
[7]. To summarize this scheme briefly, consider the
case where two spatially separated but spectrally
identical atoms are coupled using a cavity. This
is illustrated in Fig. 1, where we have shown only
one of the two A transitions in each atom. Here,
one leg of the A transition in each atom is si-
multaneously excited by the photons of the cavity
mode, while the remaining legs are excited by
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Fig. 1. (a) Illustration of the coupling of two atoms using the
dark resonance inside a cavity. Here, g is the vacuum Rabi
frequency of the cavity, Q;(Q,) is the Rabi frequency of the
first(second) laser beam. (b) The atom cavity composite states
(rotating wave frame) corresponding to two of the closed
transition manifolds having a maximum of 1 or 0 cavity pho-
tons. The ket notation for the composite states is indexed by the
internal states of the first and second atoms followed by the
photon number in the cavity mode.

classical laser beams, applied externally, as shown
in Fig. la. In the limit where the cavity mode has
only zero or one photon, the atoms-field coupled
states are shown in Fig. 1b. This system has a non-
trivial dark state, which can be written as a su-
perposition of the three states that do not contain
any component of the atomic excited state, as well
as a trivial dark state (shown uncoupled at the
bottom of the figure). Such a system can be used to
transfer quantum information between the two
atoms, using adiabatic following, and also to per-
form quantum logic when each atom has a pair of
identical A transitions [7,18-20].

During the transfer, the system evolves adia-
batically, while in a superposition of these dark
states. As such, this process is impervious to any
decoherence caused by spontancous emission from
atomic excited states. However, the non-trivial
dark state contains a component corresponding to
one photon in the cavity. As such, any cavity de-
cay causes the system to decohere. Since the cavity
lifetime is often at least as short as the atomic

excited state lifetime, the potential benefit of using
the dark state is mitigated substantially. Further-
more, there are situations where the cavity decay
rate is orders of magnitude bigger than the line
width of the atomic system, so that the benefit of
using the dark state is minimal. For example,
we have recently proposed a scheme where this
approach can be used to couple spectrally dis-
tinct atoms in a spectral hole burning crystal for
quantum computing [21-23]. One candidate sys-
tem for implementing such a scheme is a cryo-
genically cooled, thin layer of Pr:YSO, embedded
in a cavity. In this case, the atomic excited state is
very longed lived (160 ps), compared to typical
cavity lifetimes (tens of nanoseconds) [17,24]. As
such, avoiding the atomic excited state at the cost
of populating the photon mode is counter pro-
ductive.

In this article, we present a solution to this
problem, by using a scheme where the information
exchange takes place through a dark state of the
cavity, which contains no cavity photons, while a
finite population of the atomic excited state is al-
lowed for a short time. To see how such a state
might be formed, consider the level diagram of
Fig. 2. ! The objective here is to find a dark state
that does not contain the middle state (with one
photon in the cavity), and contains as small a
fraction as possible of the states with components
of the atomic excited state. By detuning the clas-
sical fields, while keeping the cavity resonant, we
find that we can produce a state which has no
photons in the cavity mode: a cavity dark state.
This state does not contain any significant com-
ponent of |byby1), and has a small component
(proportional to |Q/8]> < 1) of states containing
the atomic excited states. This state is produced by
combining the strong-field seeking dressed states
corresponding to the two-level transition in each
atom, in the limit where |Q/8]° < 1. Explicitly, the
cavity dark state is given by

! For simplicity, we have used the original model of Ref. [7]
where the two atoms are spectrally identical; it can be
generalized easily to the scheme for coupling spectrally adjacent
atoms.
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Fig. 2. Illustration of the excitation scheme needed to imple-
ment a cavity dark state. As shown in the top diagram, the
classical laser beams are detuned, while the cavity is kept on
resonance. The bottom diagram shows the same situation in the
rotating wave frame. The state |;5,0) (not shown) is still the
trivial dark state.
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Since this state does not contain any photons, it is
impervious to the cavity decay, in the same man-
ner that a conventional dark state is unaffected by
atomic decay. Of course, this state is not com-
pletely dark with respect to the atomic decay.
However, the effect of atomic decay is reduced by a
factor of |Q/6|>, which can be made small by in-
creasing the detuning. Moreover, since the atomic
decay rate in Pr:YSO is much smaller than the
decay rate of the cavity, this state is particularly
suited for our scheme.

The potential success of this model depends
strongly on the details of the adiabatic following.
It is necessary to determine the conditions under
which the system can be made to evolve in this
state during the counter intuitive pulse sequence
used for the transfer. We have looked at this issue
in detail, and have identified conditions under
which the transfer takes place in a state that is very
close to this cavity dark state.

In general, during the adiabatic passage, the
system is susceptible to decoherence from several
sources. To minimize decoherence effects, it is
desirable to complete the adiabatic passage as
quickly as possible. But, as the passage time be-
comes shorter, non-adiabatic effects are intro-
duced. While non-adiabaticity is not a decoherence
effect, it can of course cause the coherent transfer
to fail, and it can cause the system to become more
susceptible to decay as a result of populating un-
stable states. To use adiabatic passage for coherent
transfer, the actual passage time must be carefully
optimized: slow enough to be adiabatic, but fast
enough to avoid significant decay.

The defining parameters of the system are the
vacuum Rabi frequency g, the cavity decay rate x,
and the spontaneous emission rate y. The vacuum
Rabi frequency g is determined by the cavity geo-
metry and the strength of the atomic dipole
moment; x depends on the cavity geometry, the
reflectivity of the cavity mirrors, and the presence
of scattering centers within the cavity; y is deter-
mined from the atomic dipole moment (we will
assume that the decay rate inside the cavity does
not differ significantly from the free space rate).
Here, we assume that these parameters are fixed,
and determine how a variation of the control pa-
rameters can be used to improve the quality of
adiabatic passage.

For notational simplicity, we rename the five
basis states of Fig. 3 as follows: |1) = |ab0), |2) =
[eb0), |3) = |bbl), |4) =|bc0), |5) = |ba0), as
shown. Consider a situation where the system is in
the state |1) at + = 0. The counter-intuitive pulse
sequence is applied as follows: @, is kept zero and
@, is turned on for a duration 7;. At t = Ty, Q; is
also turned on over a duration 7 while Q, is turned
off. At t=T+T, Q; is also turned off over a
duration 7;, and the operation is complete at
t =Ty + T + T. Obviously, the transfer has to take
place during the time when both fields are non-
zero, i.e., during the interval 7. Fig. 3a shows the
energies of the five eigenstates of the system during
this interval. Here, the unit of energy is chosen to
be g = 1, the peak value of Q; and @, is Q, = 10g,
and the detuning is 6 = —100g. Note that the
states |2),|3) and |4) are degenerate (in the rotating
wave frame) in the absence of interactions. We
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Fig. 3. Illustration of the dressed states corresponding to the system of two atoms coupled to the cavity, as functions of the interaction
interval during which both laser pulses are present. (a) All five dressed states on the same scale; (b) expanded view of the dressed states
that evolve adiabatically from/to the states |2), |3) and |4); (c) expanded view of the dressed states that evolve adiabatically from/to the

states |1) and |5).

have chosen this to be the zero of energy in this
plot. As the laser beams are turned on, these three
states evolve into a band of three dressed states,
which are shown on an expanded scale in Fig. 3b.
Similarly, the states |1) and |5) are degenerate in
the absence of interactions, with a energy equaling
d. As the laser beams are turned on, these two
states evolve into another band of two dressed
states, which are shown on an expanded scale in
Fig. 3c.

It is difficult to express the eigenvectors corre-
sponding to these levels in exact analytic form.
However, one can easily derive the approximate
form of these states by using well-known expres-
sions for two-level dressed states [25]. Furthermore,
this approach allows us to derive approximate
analytic expressions for the energy levels as well.
In the case considered here, the system starts out in
the state denoted by |«) (the solid line in Fig. 3c).
What we need to determine are the conditions

under which the system will stay in this state. The
state that it can couple to via non-adiabaticity is
the one denoted by |f) (the dotted line in Fig. 3c),
since it appears to become degenerate with the
desired state at the middle of the interaction time.

To interpret the eigenstates and the eigenener-
gies, consider first the state |5) interacting with
state |4). Assuming that the detuning is much
greater than the Rabi frequency, we get the light
shifted state:

! QZ
) =15) +35514) 2)
where the normalization is omitted since it is ap-
proximately unity. At ¢ < 7;, we thus have |«) = |1)
and |f) = |5') with an energy difference given by:
6 = (alH o) — (BIH|B) = —22/45.

As Q; is turned on, the state |1) is also light
shifted, via its interaction with state |2), producing
the state:
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However, the states |1’} and |5') are not fully de-
coupled from each other. We proceed in steps to
determine the eigenstates |o) and |f) when both
laser fields are non-zero.

Consider the coupling of the light shifted state
[1') to the intermediate state |3), mediated by the
vacuum Rabi frequency g. The coupling rate is:

ng
55 (4)

with a detuning (1.e., the energy difference between
[1’) and |3), under the rotating wave transforma-
tion) given approximately by . Since this detuning
is much larger than the coupling strength g; the
state |1') is further light shifted by this interaction,
producing the state:

1) = 1) +5513) (5)

Similarly, the state |5') interacts with state |3) to
produce the light-shifted state:

5" = 15 +5513) (6)

where g, = 2(5'|H|3) = 2,g/26. The energy dif-
ference between |1”) and |5”) is now given by:

=2(l'|H3) = <2IHI3>

A= (P QZ)<415+ 1§53> ~ (- Q)40 (7)

The states |1”) and |5”) couple to each other as
well, since each contains a component of state |3).
The coupling rate is:

2
g 1 gz g

o4+ 20,0

20 25 gor ®)
Diagonalizing this interaction G in the presence of
the detuning A yields the eigenstates:
|or) = cos 0]1") — sin 0]5")

|8) = sin 0]1") + cos 0]5")

G =2(1"|H|5") =

©)

where tan 20 = G/4, and the energy separation is
given by ¢ = v 4% + G2.

Before proceeding further, it instructive to
consider this result in the limits. Just at the onset

of the active period 7, we have Q; =0, so that
G =0 and 4 = Q3/45, yielding ¢ = Q3/45, as de-

termined before. Since 0 = 0, the eigenstates are
given by o) = 1) = 1) = [1) and |§) = |5") =
|5), again as determined before. At the end of the
period 7, we have ©Q, =0, so that G=0 and

= Q7/44, yielding & = Q7 /49, as expected. Now
0 = /2 and the eigenstates are given by —|a) =
15") =15") =15) and [f) =[1") =) = 1), as
wanted. Finally, at the cross-over point, Q; =
Q= Q/+/2, so that 4 =0 and G = g°Q}/ 85,
yielding & = gzﬁé / 857, in close agreement with the
energy separation shown in Fig. 4, which is an
expanded view of the anti-crossing region of Fig.
3c. Here 0 = n/4 and the eigenstates are:

o) = (Il”> |5”>)=7\1> 15))

%|

— " _L / / ng
B =501+ s >>—\@(|1>+|5> |3>)
(10)

Thus, the state |«) is exactly dark with respect to
the cavity mode at this point.

During adiabatic following, the system para-
meters must change slowly compared to the energy
separation between these two eigenstates. More
quantitatively, we can say that the rate of mixing
between these two states, Ona, must be con-
strained by:
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Fig. 4. Expanded view of the anti-crossing of the dressed states
at the center. The separation at the center is about 1.2 x 107%, in
close agreement with the analytical result of 1.25 x 10~°, both
expressed in units of 7g.
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where ¢ is the adiabaticity parameter. Typically, a
value of & = 10 or greater ensures that the system
will stay primarily in the state |«) during the evo-
lution. For example, in the case where ¢ is kept
constant during the evolution, the adiabaticity
constraint can be interpreted simply as the transit
time broadening of the energy levels due to the
finite time of interaction. The inverse of the transit
time (which is characteristic of the rate of mixing
between the dressed states) then must be less than
the energy separation ¢ by the factor of ¢ in order
to assure that the levels do not get too close to
each other. In the case at hand, however, ¢ varies
with time. In order to minimize the time necessary
for the adiabatic transfer, we adopt the method
where the rate of change of the two Rabi fre-
quencies are varied dynamically as the value of ¢
changes.

In order to constrain time variations of the two
Rabi frequencies (for computational simplicity),
we consider an equivalent model where the two
laser beam profiles are fixed in time, and vary in
space sinusoidally (or cosinusoidally), extending
over a distance L: Q(x) = Qysin(xn/2L), Q,(x) =
Qo cos(xm/2L). The atom plus cavity is then as-
sumed to travel through the field profile, at a speed
v(t) that varies with time. Once the exact func-
tional form of this time varying speed is deter-
mined, the total travel time 7 is found by inverting
the relation:

L= /Tdm(z) (12)

In order to determine v(¢), we estimate first the
non-adiabatic coupling rate, Ona, using the ex-
plicit expressions for the eigenstates determined
above. The resulting expression is quite cumber-
some. In order to simplify further, we note first
that:

_g

=5 (13)
Given that 5 is very small, we can identify two
distinct zones during the adiabatic transfer. For
a very small zone L/2 —d/10 <x<L/2+d/10

tan(20) = g = ptan(nx/L);

(where d = nL/n) around the center (x = L/2), we
have G > 4 = 0, so that 6 ~ /4 and ¢ ~ G. Once
we get away from the center by a distance of
more than £10d we have 4 > G, so that ¢ ~ 4,
cos(0) =~ 1, and sin(f) ~ 0 =~ G/24. The velocity
in the intermediate zone can be estimated via in-
terpolation. The resulting total time for adiabatic
transfer is given by T ~ &/9&ni,, where &y, is the
minimum separation between the energies of the
eigenstates, given by gzgg /48, as determined be-
fore. For & = 10, we have verified via numerical
methods that this value of 7 results in nearly
perfect adiabatic transfer.

As an explicit example, consider the case where
Qo = g =9/3, so that all our approximations re-
main valid. We then have pi, ~ 1072 g, and the
time for adiabatic transfer is 7 ~ 12¢g~!. This is
about an order of magnitude slower than the time
needed for the Pellizari scheme. However, the ef-
fect of cavity decay, integrated over the transfer
time, is now much smaller. Explicitly, the maxi-
mum population of the state |3) is about 0.4 x
104, as compared to 1/3 for the Pellizari case. The
effective rate of decoherence due to cavity photon
decay is thus reduced by nearly three orders of
magnitude. Thus, the cavity dark state described
here achieves the desired transfer of quantum in-
formation without being affected significantly by
the cavity decay, and yet does not take much
longer than the original Pellizari scheme.

To summarize, we have shown that two multi-
level atoms can perform quantum communication
with each other via interaction with an enclosing
cavity containing virtually no photons at all times.
The physical mechanism is analogous to the way
populations can be exchanged between the extre-
mal states in a three level system via adiabatic
following, without populating the intermediate
states. The combined system of the two atoms, the
cavity, and two laser beams contains a dark state
corresponding to the cavity in its ground state.
Using a counter-intuitive pulse sequence, quantum
information can be transferred adiabatically from
one atom to the other via this cavity dark state.
This process can be used to circumvent the effect of
cavity decay in a quantum computer formed by
interconnected qubits. Finally, it should be possi-
ble to generalize this model to other situations
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where a damped channel is used to couple stable
systems.
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