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Abstract
Most “Big Data” systems are written in managed lan-
guages, such as Java, C#, or Scala. These systems suffer
from severe memory problems due to the massive volume
of objects created to process input data. Allocating and
deallocating a sea of data objects puts a severe strain on
existing garbage collectors (GC), leading to high memory
management overheads and reduced performance.

This paper describes the design and implementation
of Yak, a “Big Data” friendly garbage collector that pro-
vides high throughput and low latency for all JVM-based
languages. Yak divides the managed heap into a control
space (CS) and a data space (DS), based on the obser-
vation that a typical data-intensive system has a clear
distinction between a control path and a data path. Ob-
jects created in the control path are allocated in the CS
and subject to regular tracing GC. The lifetimes of objects
in the data path often align with epochs creating them.
They are thus allocated in the DS and subject to region-
based memory management. Our evaluation with three
large systems shows very positive results.

1 Introduction
It is clear that Big Data analytics has become a key com-
ponent of modern computing. Popular data processing
frameworks such as Hadoop [5], Spark [57], Naiad [44],
or Hyracks [13] are all developed in managed languages,
such as Java, C#, or Scala, primarily due to 1) the fast
development cycles enabled by these languages, and 2)
their abundance of library suites and community support.

However, managed languages come at a cost: memory
management in Big Data systems is often prohibitively
expensive. For example, garbage collection (GC) ac-
counts for close to 50% of the execution time of these
systems [16, 24, 45, 46], severely damaging system per-
formance. The problem becomes increasingly painful
in latency-sensitive distributed cloud applications where
long GC pause times on one node can make many/all
other nodes wait, potentially delaying the processing of
user requests for an unacceptably long time [40, 41].

Multiple factors contribute to slow GC execution. An
obvious one is the massive volume of objects created by
Big Data systems at run time. Recent techniques pro-
pose to move a large portion of these objects outside the
managed heap [29, 46]. They can significantly reduce

GC overhead, but inevitably substantially increase the
burden on developers by requiring them to manage the
non-garbage-collected memory, which negates much of
the benefit of using managed languages.

A critical reason for slow GC execution is that ob-
ject characteristics in Big Data systems do not match the
heuristics employed by state-of-the-art GC algorithms.
This issue could potentially be alleviated if we can design
a more suitable GC algorithm for Big Data systems. Intel-
ligently adapting the heuristics of GC to object character-
istics of Big Data systems can enable efficient handling of
the large volume of objects in Big Data systems without
relinquishing the benefits of managed languages. This is
a promising yet challenging approach that has not been
explored in the past, and we explore it in this work.

1.1 Challenges and Opportunities
Two Paths, Two Hypotheses The key characteristics
of heap objects in Big Data systems can be summarized
as two paths, two hypotheses.

Evidence [16, 29, 46] shows that a typical data pro-
cessing framework often has a clear logical distinction
between a control path and a data path. As exemplified by
Figure 1, the control path performs cluster management
and scheduling, establishes communication channels be-
tween nodes, and interacts with users to parse queries and
return results. The data path primarily consists of data
manipulation functions that can be connected to form a
data processing pipeline. Examples include data partition-
ers, built-in operations such as Join or Aggregate, and
user-defined data functions such as Map or Reduce.

These two paths follow different heap usage patterns.
On the one hand, the behavior of the control path is simi-
lar to that of conventional programs: it has a complicated
logic but does not create many objects. Those created ob-
jects usually follow the generational hypothesis — most
recently allocated objects are also most likely to become
unreachable quickly; most objects have short life spans.

On the other hand, the data path, while simple in code
logic, is the main source of object creation. Furthermore,
objects created by it do not follow the generational hy-
pothesis. Previous work [16] reports that more than 95%
of the objects in Giraph [4] are created in supersteps that
represent graph data with Edge and Vertex objects. The
execution of the data path often exhibits strong epochal
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Figure 1: Graphical illustration of control and data paths.

behavior — each piece of data manipulation code is re-
peatedly executed. The execution of each epoch starts
with allocating many objects for its input data and then
manipulating them. These objects are often held in large
arrays and stay alive throughout the epoch (cf. §3), which
is often not a short period of time.

State-of-the-art GC State-of-the-art garbage collec-
tion algorithms, such as generational GC, collect the heap
based on the generational hypothesis. The GC splits ob-
jects into a young and an old generation. Objects are
allocated in the young generation initially. When a nurs-
ery GC runs, it identifies all young-generation objects that
are reachable from the old generation, promotes them to
the old generation, and then reclaims the entire young
generation. Garbage collection for the old generation oc-
curs infrequently. As long as the generational hypothesis
holds, which is true for many large conventional applica-
tions that make heavy use of short-lived temporary data
structures, generational GCs are efficient: a small number
of objects escape to the old generation, and hence, most
GC runs only need to traverse a small portion of the heap
to identify and copy these escaping objects.

The Hypothesis Mismatch We find that, while the gen-
erational hypothesis holds for the control path of a data-
intensive application, it does not match the epochal be-
havior of the data path, where most objects are created.

This mismatch leads to the fundamental challenge en-
countered by state-of-the-art GCs in data-intensive appli-
cations. Since newly created objects often do not have
short life spans, most GC runs spend significant time for
identifying and moving young-generation objects into
the old generation, while reclaiming little memory space.
As an example, in GraphChi [39], a disk-based graph
processing system, graph data in the shard defined by a
vertex interval is first loaded into memory in each iter-
ation, followed by the creation of many vertex objects
to represent the data. These objects are long-lived and
frequently visited to perform vertex updates. They cannot

be reclaimed until the next vertex interval is processed.
There can be dozens to hundreds of GC runs in each inter-
val. Unfortunately, these runs end up moving most objects
to the old generation and scanning almost the entire heap,
while reclaiming little memory.

The epochal behavior of the data path also points to
an opportunity not leveraged by existing GC algorithms –
many data-path objects have the same life span and can be
reclaimed together at the end of an epoch. We call this the
epochal hypothesis. This hypothesis has been leveraged
in region-based memory management [3, 9, 15, 26, 27,
29, 30, 31, 33, 38, 45, 46, 53], where objects created in
an epoch are allocated in a memory region and efficiently
deallocated as a whole when the epoch ends.

Unfortunately, existing region-based techniques need
sophisticated static analyses [3, 9, 15, 26, 27, 29, 30],
which cannot scale to large systems, or heavy manual
refactoring [29, 46], to guarantee that epoch objects are
indeed unreachable at the end of the epoch. Hence, such
techniques have not been part of any garbage collector.

1.2 Our Solution: The Yak GC

This paper presents Yak,1 a high-throughput, low-latency
GC tailored for managed Big Data systems. While GC has
been extensively studied, existing research centers around
the generational hypothesis, improving various aspects of
the collection/application performance based on this hy-
pothesis. Yak, in contrast, tailors the GC algorithm to the
two very different types of object behavior (generational
and epochal) observed in modern data-intensive work-
loads. Yak is the first hybrid GC that splits the heap into a
control space (CS) and a data space (DS), which employ,
respectively, generation- and region-based algorithms to
automatically manage memory.

The developer marks the beginning and end points of
each epoch in the program. This is a simple task that even
novices can do in minutes, and it is already required by
many Big Data infrastructures (e.g., the setup/cleanup
APIs in Hadoop [5]). Objects created inside each epoch
are allocated in the DS, while those created outside are
placed in the CS. Since the number of objects to be traced
in the CS is very small and only escaping objects in the
DS need tracing, the memory management cost can be
substantially reduced.

While the idea appears simple, there are many chal-
lenges developing a practical solution. First, we need
to make the two styles of heap management for CS and
DS smoothly co-exist inside one GC. For example, the
generational collector that manages the CS in normal
ways should ignore some outgoing references to avoid
getting in the way of DS management and also keep track

1Yak is a wild ox that digests food with multiple stomachs.



of incoming references to avoid deallocating CS objects
referenced by DS objects (§5.4).

Second, we need to manage the DS region correctly.
That is, we need to correctly handle the small number of
objects that are allocated inside an epoch but escape to
either other epochs or the control path. Naı̈vely deallo-
cating the entire region for an epoch can cause program
failures. This is exactly the challenge encountered by past
region-based memory management techniques.

Existing Big Data memory-management systems, such
as Facade [46] and Broom [29], require developers to
manually refactor both user and system programs to take
control objects out of the data path, which, in turn, re-
quires a deep understanding of the life spans of all objects
created in the data path. This is a difficult task, which
can take experienced developers weeks of effort or even
longer. It essentially brings back the burden of manual
memory management that managed languages freed de-
velopers from, imposing substantial practical limitations.

Yak offers an automated and systematic solution, re-
quiring zero code refactoring. Yak allocates all objects
created in an epoch in the DS, automatically tracks and
identifies all escaping objects, and then uses a promotion
algorithm to migrate escaping objects during region deal-
location. This handling completely frees the developers
from the stress of understanding object life spans, making
Yak practical enough to be used in real settings (§5).

Third, we need to manage the DS region efficiently.
This includes efficiently tracking escaping objects and
migrating them. Naı̈vely monitoring every heap access
to track escaping objects would lead to prohibitive over-
head. Instead, we only require light checking before every
heap write, but not on any heap read (§5.2). Yak also em-
ploys a lightweight “stop-the-world” treatment when a
region is deallocated to guarantee memory safety without
introducing significant stalls (§5.3).

Summary of Results We implemented Yak inside Or-
acle’s production JVM, OpenJDK 8. The JVM-based
implementation enables Yak to work for all JVM-based
languages, such as Java, Python, or Scala, while systems
such as Facade [46] and Broom [29] work only for the
specific languages they are designed for. We have eval-
uated Yak on three popular frameworks – Hyracks [2],
Hadoop [5], and GraphChi [39], with various kinds of
applications and workloads. Our results show that Yak
reduces GC latency by 1.4 – 44.3× and improves overall
application performance by 12.5% – 7.2×, compared to
the default Parallel Scavenge production GC in the JVM.

2 Related Work
Garbage Collection Tracing garbage collectors are the
mainstream collectors in modern systems. A tracing GC
performs allocation of new objects, identification of live
objects, and reclamation of free memory. It traces live

objects by following references, starting from a set of
root objects that are directly reachable from live stack
variables and global variables. It computes a transitive
closure of live objects; objects that are unreachable during
tracing are guaranteed to be dead and will be reclaimed.

There are four kinds of canonical tracing collec-
tors: mark-sweep, mark-region, semi-space, and mark-
compact. They all identify live objects the same way as
discussed above. Their allocation and reclamation strate-
gies differ significantly. Mark-sweep collectors allocate
from a free list, mark live objects, and then put reclaimed
memory back on the free list [25, 43]. Since it does not
move live objects, it is time and space efficient, but sac-
rifices locality for contemporaneously allocated objects.
Mark-region collectors [8, 12, 14] reclaim contiguous
free regions to provide contiguous allocation. Some mark-
region collectors such as Immix [12] can also reduce frag-
mentation by mixing copying and marking. Semi-space
[6, 7, 11, 18, 23, 35, 51] and mark-compact collectors
[20, 37, 50] both move live objects. They put contempo-
raneously allocated objects next to each other in space,
providing good locality.

These canonical algorithms serve as building blocks for
more sophisticated algorithms such as the generational
GC (e.g., [51]), which divides the heap into a young and
an old generation. Most GC runs are nursery (minor)
collections that only scan references from the old to the
young generation, move reachable objects into the old
generation, and then free the entire young generation.
When nursery GCs are not effective, a full-heap (major)
collection scans both generations.

At first glance, Yak is similar to generational GC in
that it promotes objects reachable after an epoch and then
frees the entire epoch region. However, the regions in Yak
have completely different and much richer semantics than
the two generations in a generational GC. Consequently,
Yak encounters completely different challenges and uses
totally different designs. Specifically, in Yak, regions are
thread-private; they reflect nested epochs; many regions
could exist at any single moment. Therefore, to efficiently
check which objects are escaping, we cannot rely on a
traditional tracing algorithm; escaping objects may have
multiple destination regions, instead of just the single
old generation; and region reclamation cannot use the
stop-the-world strategy, as discussed in §1.

Connectivity-based garbage collection (CBGC) [34] is
a family of algorithms that place objects into partitions by
performing connectivity analyses on the object graph. A
connectivity analysis can be based on types, allocations,
or the partitioning introduced by Harris [32]. Garbage
First (G1) [23] is a generational algorithm that divides the
heap into many small regions and gives higher collection
priority to regions with more garbage. While CBGC,
G1, and Yak all use some notions of region, they have



completely different region semantics and hence different
designs. For example, objects inside a G1 region are not
expected to have similar lifespans.

Region-based Memory Management Region-based
memory management was first used in the implemen-
tations of functional languages [3, 53] such as Stan-
dard ML [31], and then was extended to Prolog [42],
C [26, 27, 30, 33], Java [19, 49], as well as real-time
Java [9, 15, 38]. Existing region-based techniques rely
heavily on static analyses. However, these analyses either
analyze the whole program to identify region-allocable
objects, which cannot scale to Big Data systems that all
have large codebases, or require developers to use a brand
new programming model, such as region types [9, 15].
On the contrary, Yak is a pure dynamic technique that eas-
ily scales to large systems and only needs straightforward
epoch marking from users.

Big Data Memory Optimizations A variety of data
computation models and processing systems have been
developed in the past decade [2, 5, 17, 21, 22, 36, 47, 48,
52, 54, 55, 56, 57]. All of these frameworks were devel-
oped in managed languages and can benefit immediately
from Yak as demonstrated in our evaluation.

Bu et al. studied several data processing systems [16]
and showed that a “bloat-free” design (i.e., no objects
allowed in data processing units), which is unfortunately
impractical in modern Big Data systems, can make the
system orders of magnitude more scalable.

This insight has inspired recent work, like our own
work Facade [46] and Broom [29], as well as Yak. Facade
allocates data items into iteration-based native memory
pages that are deallocated in batch. Broom aims to replace
the GC system by using regions with different scopes to
manipulate objects with similar lifetimes. While promis-
ing, they both require extensive programmer intervention,
as they move most objects out of the managed heap. For
example, users must annotate the code and determine
“data classes” and “boundary classes” to use Facade or
explicitly use Broom APIs to allocate objects in regions.
Yak is designed to free developers from the burden of
understanding object lifetimes to use regions, making
region-based memory management part of the managed
runtime.

NumaGiC [28] is a new GC for “Big Data” on NUMA
machines. It considers data location when performing (de-
)allocation. However, being a generational GC, NumaGiC
shares with modern GCs the same problems discussed in
§1. Another orthogonal line of research on reducing GC
pauses is building a holistic runtime for distributed Big
Data systems [40, 41]. The runtime collectively manages
the heap on different nodes, coordinating GC pauses to
make them occur at times that are convenient for appli-
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Figure 2: Memory footprint for GraphChi [39] execution
(GC consumes 73% of run time). Each dot in (a) repre-
sents the memory consumption measured right after a GC;
each bar in (b) shows how much memory is reclaimed by
a GC; dotted vertical lines show the epoch boundaries.
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Figure 3: Eclipse execution (GC takes 2.4% of time).

cations. Different from these techniques, Yak focuses on
improving per-node memory management efficiency.

3 Motivation
We have conducted several experiments to validate our
epochal hypothesis. Figure 2 depicts the memory foot-
print and its correlation with epochs when PageRank and
ConnectedComponent were executed on GraphChi to pro-
cess a sample of the twitter-2010 graph (with 100M edges)
on a server machine with 2 Intel(R) Xeon(R) CPU E5-
2630 v2 processors running CentOS 6.6. The state-of-
the-art Parallel Scavenge GC was used. In GraphChi,
we defined an epoch as the processing of a sub-interval.
While GraphChi uses multiple threads to perform vertex
updates in each sub-interval, different sub-intervals are
processed sequentially.

In the GraphChi experiment, GC costs 73% of run time.
Each epoch lasts about 20 seconds, denoted by dotted
lines in Figure 2. Clear correlation can be observed be-
tween the end points of epochs and the significant memory
drops (Figure 2 (a)) as well as the large memory reclama-
tions (Figure 2 (b)). During each epoch, many GC runs
occur and only reclaim little memory (Figure 2 (b)).

For comparison, we also measured the memory usage
of programs in the DaCapo benchmark set [10], a widely-
used benchmark suite for evaluating JVM techniques.
Figure 3 shows the memory footprint of Eclipse under
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Figure 4: Hyracks WordCount (GC takes 33.6% of time).

large workloads provided by DaCapo. Eclipse is a popular
development IDE and compiler frontend. It is an example
of applications that have complex logic but process small
amounts of data. GC performs well for Eclipse, taking
only 2.4% of total execution time and reclaiming much
memory in each GC run. No epochal patterns can be
found in Figure 3. While other DaCapo benchmarks may
exhibit some epochal behavior, epoches in these programs
are often not clearly defined and finding them is not easy
for application developers who are not familiar with the
system codebase.

Strawman Can we solve the problem by simply forcing
GC runs to happen only at the end of epochs? This simple
approach would not work due to the multi-threaded nature
of real systems. In systems like GraphChi, each epoch
spawns many threads that collectively consume a huge
amount of memory. Waiting until the end of an epoch to
conduct GC would easily cause out-of-memory crashes.
In dataflow systems like Hyracks, different threads have
various processing speeds and reach epoch ends at differ-
ent times. Invoking the GC when one thread finishes an
epoch would still make the GC traverse many live objects
created by other threads, leading to wasted effort. This
problem is illustrated in Figure 4, which shows memory
footprints of one slave node when Hyracks [13], a dis-
tributed dataflow engine, performed word counting over a
14GB text dataset on a 11-node EC2 cluster. Each node
was configured to run multiple Map and Reduce workers
and have a 12GB heap. There are no epochal patterns in
the figure, exactly because many worker threads execute
in parallel and reach epoch ends at different times.

4 Design Overview
The overall idea of Yak is to split the heap into a normal
CS and a region-based DS, and use different mechanisms
to manage them.

When to Create & Deallocate DS Regions? A region
is created (deallocated) in the DS whenever an epoch
starts (ends). This region holds all objects created by the
epoch.

An epoch is the execution of a block of data transfor-
mation code. The notion of an epoch is well-defined in
Big Data systems. For example, in Hyracks [13], the body

of a dataflow operator is enclosed by calls to open and
close. Similarly, a user-defined (Map/Reduce) task in
Hadoop [5] is enclosed by calls to setup and cleanup.

To enable a unified treatment across different big
data systems, Yak expects a pair of user annotations,
epoch start and epoch end. They will be translated into
two native function calls at run time to inform the JVM
of the start/end of an epoch. Placing these annotations
requires negligible manual effort. Even a novice, without
much knowledge about the system, can easily find and
annotate epochs in a few minutes. Furthermore, Yak guar-
antees execution correctness regardless of where epochs
are placed. Of course, the locations of epochs do affect
performance: if objects in an epoch have very different
life spans, many of them need to be copied when the
epoch ends, creating overhead.

In practice, we need to consider a few more issues
about the epoch concept. One is the nested relationships
exhibited by epochs in real systems. A typical example
is GraphChi [39] in which a computational iteration natu-
rally represents an epoch. Each iteration iteratively loads
and processes all shards, and hence, the loading and pro-
cessing of each memory shard (i.e., termed interval in
GraphChi) forms a sub-epoch inside the computational
iteration. Since a shard is often too large to be loaded en-
tirely into memory, GraphChi further breaks it into several
sub-intervals, each of which forms a sub-sub-epoch.

Yak supports nested regions for performance benefits
– unreachable objects inside an inner epoch can be re-
claimed long before an outer epoch ends, preventing the
memory footprint from aggressively growing. Specifi-
cally, if an epoch start is encountered in the middle of an
already-running epoch, a sub-epoch starts; subsequently
a new region is created, considered a child of the existing
region. All subsequent object allocations take place in the
child region until an epoch end is seen. We do not place
any restrictions on regions; objects in arbitrary regions
are allowed to mutually reference.

The other issue is how to create regions when multiple
threads execute the same piece of data-processing code
concurrently. We could allow those threads to share one
region. However, it would introduce complicated thread-
synchronization problems; it may also delay memory
recycling when multiple threads exit the epoch at different
times, causing memory pressure. Yak creates one region
for each dynamic instance of an epoch. When two threads
execute the same piece of epoch code, they each get their
own regions without worrying about synchronization.

Overall, at any moment of execution, multiple epochs
and hence regions could exist. They can be partially
ordered based on their nesting relationships, forming a
semilattice structure. As shown in Figure 5, each node
on the semilattice is a region of form 〈ri j, tk〉, where ri j
denotes the j-th execution of epoch ri and tk denotes the



for (…) {

    epoch_start();

    while (…) {

        epoch_start();

        for (…) {

            epoch_start();

            …

            epoch_end();

        }

        epoch_end();

    }

    epoch_end();

}

(a)

r2 r3r1
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<r3w,tn>

<CS, *>

(b)

Figure 5: An example of regions: (a) a simple program
and (b) a region semilattice at some point of the execution.

thread executing the epoch. For example, region 〈r21, t1〉
is a child of 〈r11, t1〉, because epoch r2 is nested in epoch
r1 in the program and they are executed by the same thread
t1. Two regions (e.g., 〈r11, t1〉 and 〈r12, t2〉) are concurrent
if their epochs are executed by different threads.

How to Deallocate Regions Correctly and Efficiently?
As discussed in §1, a small number of objects may out-
live their epochs, and have to be identified and carefully
handled during region deallocation. As also discussed
in §1, we do not want to solve this problem by an it-
erative manual process of code refactoring and testing,
which is labor-intensive and error-prone, as was done in
Facade [46] or Broom [29]. Yak has to automatically
accomplish two key tasks: (1) identifying escaping ob-
jects and (2) deciding the relocation destination for these
objects.

For the first task, Yak uses an efficient algorithm to
track cross-region/space references and records all incom-
ing references at run time for each region. Right before
a region is deallocated, Yak uses these references as the
root set to compute a transitive closure of objects that can
escape the region (details in §5.2).

For the second task, for each escaping object o, Yak
tries to relocate o to a live region that will not be deal-
located before the last (valid) reference to o. To achieve
this goal, Yak identifies the source regions for each in-
coming cross-region/space reference to o, and joins them
to find their least upperbound on the region semilattice.
For example, joining 〈r21, t1〉 and 〈r11, t1〉 returns 〈r11, t1〉,
while joining any two concurrent regions returns the CS.
Intuitively, if o has references from its parent and grand-
parent regions, o should be moved up to its grand-parent.
If o has two references coming from regions created by
different threads, it has to be moved to the CS.

Upon deallocation, computing a transitive closure of
escaping objects while other threads are accessing them
may result in an incomplete closure. In addition, mov-
ing objects concurrently with other running threads is
dangerous and may give rise to data races. Yak employs
a lightweight “stop-the-world” treatment to guarantee
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Figure 6: The heap layout in Yak.

memory safety in deallocation. When a thread reaches
an epoch end, it pauses all the other threads, scans their
stacks, and computes a closure that includes all potential
live objects. These objects are moved to their respective
target regions before the other threads are resumed.

5 Yak Design and Implementation
We have implemented Yak in Oracle’s production JVM
OpenJDK 8 (build 25.0-b70). In addition to implementing
our own region-based technique, we have modified the
two JIT compilers (C1 and Opto), the interpreter, the
object/heap layout, and the Parallel Scavenge collector (to
manage the CS). Below, we discuss how to split the heap
and create regions (§5.1); how to track inter-region/space
references, how to identify escaping objects, and how to
determine where to move them (§5.2); how to deallocate
regions correctly and efficiently (§5.3); and how to modify
the Parallel Scavenge GC to collect the CS (§5.4).

5.1 Region & Object Allocation
Region Allocation When the JVM is launched, it asks
the OS to reserve a block of virtual addresses based on
the maximum heap size specified by the user (i.e., -Xmx).
Yak divides this address space into the CS and the DS,
with the ratio between them specified by the user via JVM
parameters. Yak initially asks the OS to commit a small
amount of memory, which will grow if the initial space
runs out. Once an epoch start is encountered, Yak creates
a region in the DS. A region contains a list of pages whose
size can be specified by a JVM parameter.

Heap Layout Figure 6 illustrates the heap layout main-
tained by Yak. The CS is the same as the old Java heap
maintained by a generational GC, except for the newly
added remember set. The DS is much bigger, containing
multiple regions, with each region holding a list of pages.

The remember set is a bookkeeping data structure main-
tained by Yak for every region and the CS space. The
remember set of a region/space r is implemented as a hash
table that maps an object o in r to all references to o that
come from a different region/space. The remember set
is used to determine what objects escape r and where to
relocate escaping objects. The remember set of CS will
help identify live objects in the CS.



Note that a remember set is one of the many possible
data structures to record such references. For example,
the generational GC uses a card table that groups objects
into fixed-sized buckets and tracks which buckets contain
objects with pointers that point to the young generation.
Yak uses remember sets, because each region has only a
few incoming references; using a card table would require
us to scan all objects from the CS and other regions to
find these references.

Allocating Objects in the DS We redirect all allocation
requests to the Eden space (e.g., young generation) to
our Region Alloc function when the execution is in an
epoch. Yak filters out JVM meta-data objects, such as
class loader and class objects, from getting allocated in
the region. Using a quick bump pointer algorithm (which
uses a pointer that points to the starting address of free
space and bumps it up upon each allocation), the manager
attempts to allocate the object on the last page of its page
list. If this page does not have enough space, the manager
creates a new page and appends it to the list. For a large
object that cannot fit into one page, we request a special
page that has the size of the object. For performance,
large objects are never moved.

5.2 Tracking Inter-region References
Overview As discussed in §4, Yak needs to efficiently
track all inter-region/space references. At a high level,
Yak achieves this in three steps. First, Yak adds a 4-byte
field re into the header space of each object to record the
region information of the object. Upon an object alloca-
tion, its re field is updated to the corresponding region ID.
A special ID is used for the CS. Second, we modify the
write barrier (i.e., a piece of code executed with each heap
write instruction a. f = b) to detect and record heap-based
inter-region/space references. Note that, in OpenJDK, a
barrier is already needed by a generational GC to track
inter-generation references. We modify the existing write
barrier as shown in Algorithm 1.

Algorithm 1: The write barrier a. f = b.
Input: Expression a.f , Variable b

1 if REGION(Oa) 6= CS OR REGION(Ob) 6= CS then
2 if REGION(Oa) 6= REGION(Ob) then
3 Record the reference ADDR(Oa) + OFFSET( f )

REGION(Oa)−−−−−−−→ ADDR(Ob) in the remember set rs of
the Ob’s region

4 ... // Normal OpenJDK logic (of marking card table)

Finally, Yak detects and records local-stack-based inter-
region references as well as remote-stack-based refer-
ences when epoch end is triggered. These algorithms are
shown in Lines 1 – 4 and Lines 5 – 10 in Algorithm 2.

1 a = . . . ;
2 / / epoch start
3 b = new B ( ) ;
4 i f ( /∗ condition ∗ / ) {
5 a = b ;
6 }
7 / / epoch end
8 c = a ;

1 Thread T :
2 / / epoch start
3 a = A. f ;
4 a . g = new O( ) ;
5 / / epoch end
6

7 Thread T ′ :
8 / / epoch start
9 p = A. f ;

10 b = p . g ;
11 p . g = c ;
12 / / epoch end

(a) (b)

Figure 7: (a) An object referenced by b escapes its epoch
via the stack variable a; (b) An object o created by thread
T and referenced by a.g escapes to thread T ′ via the load
statement b = p.g.

Details We now discuss in detail how Yak can track all
inter-region references, following the three places where
the reference to an escaping object can reside in – the
heap, the local stack, and a remote stack. The semantics of
writes to static fields (i.e., globals) as well as array stores
are similar to that of instance field accesses, and the details
of their handling are omitted. Copies of large memory
regions (e.g., System.arraycopy) are also tracked in
Yak.

(1) In the heap. An object Ob can outlive its region
r if its reference is written into an object Oa allocated
in another (live) region r′. Algorithm 1 shows the write
barrier to identify such escaping objects Ob. The algo-
rithm checks whether the reference is an inter-region ref-
erence (Line 2 – 3). If it is, the pointee’s region (i.e.,
REGION(Ob)) needs to update its remember set (Line 3).

Each entry in the remember set has a form a r−→ b where
a and b are the addresses of the pointer and pointee, re-
spectively, and r represents the region the reference comes
from. In most cases (such as those represented by Algo-
rithm 1), r is the region in which a resides and it will
be used to compute the target region to which b will be
moved. However, if a is a stack variable, we need to cre-
ate a place holder reference with a special r, determined
based on which stack a comes from. Such cases will be
discussed shortly in Algorithm 2.

To reduce overhead, we have a check that quickly filter
out references that do not need to be remembered. As
shown in Algorithm 1, if both Oa and Ob are in the same
region including the special region CS (Line 1 – 2), we
do not need to track that reference, and thus, the barrier
proceeds to the normal logic.

(2) On the local stack. An object can escape by being
referenced by a stack variable declared beyond the scope
of the running epoch. Figure 7 (a) shows a simple exam-
ple. The reference of the object allocated on Line 3 is
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Figure 8: Examples showing potential problems with
references on a remote stack: (a) moving object D is
dangerous; and (b) object E, which is also live, is missed
in the transitive closure.

assigned to stack variable a. Because a is still live after
epoch end, it is unsafe to deallocate the object.

Yak identifies this type of escaping objects through
analysis at each epoch end mark. Specifically, Yak scans
the local stack of a thread for the set of live variables at
epoch end and checks if an object in r can be referenced
by a live variable (Lines 1 – 4 in Algorithm 2). For each
escaping object Ovar, Yak adds a place holder incoming
reference whose source comes from r’s parent region (say
p) into the remember set rs of r (Line 4). This will cause
Ovar to be relocated to p. If the variable is still live when
p is about to be deallocated, O will be detected by this
same algorithm and be further promoted to p’s parent.

(3) On the remote stack. A reference to an object o
created by thread t could end up in a stack variable in
thread t ′. For example, in Figure 7 (b), object o created on
Line 4 escapes t through the store at the same line and is
loaded to the stack of another thread in Line 10. A naı̈ve
way to track these references is to monitor every read (i.e.,
a read barrier), such as the load on Line 10 in Figure 7
(b), which would often incur a large overhead.

Yak avoids the need for a read barrier whose overhead
could affect the practicality and acceptable performance
of Yak. Before proceeding to discuss the solution, let us
first examine the potential problems of missing a read
barrier. The purpose of the read barrier is for us to un-
derstand whether a region object is loaded on a remote
stack so that the object will not be mistakenly reclaimed
when its region is deallocated. Without it, a remote thread,
which references an object o in region r, may cause two
potential issues when r is deallocated.

Problem 1: Moving escaping objects at region deallo-
cation is dangerous. Figure 8(a) illustrates this problem.
Variable v on the stack of thread t2 contains a reference to
object D in region 〈r21, t1〉 (by following the chain of ref-
erences starting at object A in the CS). When this region
is deallocated, although D is in the escaping transitive
closure, its target region, as determined by the region
semi-lattice, is its parent region 〈r11, t1〉. Obviously, mov-

Algorithm 2: Region deallocation.
Input: Region r, Thread t

1 Map〈Var,Object〉 stackObjs← LIVESTACKOBJECTS()
2 foreach 〈var,Ovar〉 ∈ stackObjs do
3 if REGION(Ovar) = r then
4 Record a place holder reference ADDR(var)

r.parent−−−−→ ADDR(Ovar) in r’s remember set rs

5 PAUSEALLOTHERTHREADS()
6 foreach Thread t′ ∈ THREADS() : t ′ 6= t do
7 Map〈Var,Object〉remoteStackObjs← SCANSTACK(t ′,

r)
8 foreach 〈var,Ovar〉 ∈ remoteStackObjs do
9 if REGION(Ovar) = r then

10 Record a place holder reference ADDR(var)
CS−→ADDR(Ovar) in r’s remember set rs

11 CLOSURECOMPUTATION()
12 RESUMEALLPAUSEDTHREAD()
13 Put all pages of r back onto the available page list

ing D at the deallocation of 〈r21, t1〉 is dangerous, because
we are not aware that v references it and thus cannot
update v with D’s new address after the move.

Problem 2: Live objects remotely referenced may not
be in the closure. Figure 8(b) shows this problem. Object
E is first referenced by D in the same region 〈r21, t1〉.
Hence, the remote thread t2 can reach E by following the
reference chain starting at A. Suppose t2 loads E into a
stack variable v and then deletes the reference from D
to E. When region 〈r21, t1〉 is deallocated, E cannot be
included in the escaping transitive closure while it is being
accessed by a remote stack. E thus becomes a “dangling”
object that would be mistakenly treated as a dead object
and reclaimed immediately.

Solution Summary Yak’s solution to these two prob-
lems is to pause all the other threads and scan their stacks
when thread t deallocates a region r. Objects in r that are
also on a remote stack need to be explicitly marked as
escaping roots before the closure computation because
they may be dangling objects (such as E in Figure 8(b))
that are already disconnected from other objects in the
region. The detailed algorithms of region deallocation
and thread stack scanning will be discussed shortly in
§5.3.

5.3 Region Deallocation
Algorithm 2 shows our region deallocation algorithm that
is triggered at each epoch end. This algorithm computes
the closure of escaping objects, moves escaping objects
to their target regions, and then recycles the whole region.

Finding Escaping Roots There are three kinds of es-
caping roots for a region r. First, pointees of inter-



region/space references recorded in the remember set of
r. Second, objects referenced by the local stack of the
deallocating thread t. Third, objects referenced by the
remote stacks of other threads.

Since inter-region/space references have already been
captured by the write barrier, here we first identify objects
that escape the epoch via t’s local stack, as shown in
Lines 1 – 4.

Next, Yak identifies objects that escape via remote
stacks. To do this, Yak needs to synchronize threads
(Line 5). When a remote thread t ′ is paused, Yak scans
its stack variables and returns a set of objects that are
referenced by these variables and located in region r.
Each such (remotely referenced) object needs to be ex-
plicitly marked as an escaping root to be moved to the
CS (Line 10) before the transitive closure is computed
(Line 11).

No threads are resumed until t completes its transitive
closure computation and moves all escaping objects in r
to their target regions. Note that it is unsafe to let a remote
thread t ′ proceed even if the stack of t ′ does not reference
any object in r. To illustrate, consider the following sce-
nario. Suppose object A is in the CS and object B is in
region r, and there is a reference from A to B. Only A is
on the stack of thread t ′ when r is deallocated. Scanning
the stack of t ′ would not find any new escaping root for
r. However, if t ′ is allowed to proceed immediately, t ′

could load B onto its stack through A and then delete the
reference between A and B. If this occurs before t com-
pletes its closure, B would not be included in the closure
although it is still live.

After all escaping objects are relocated, the entire re-
gion is deallocated with all its pages put back onto the
free page list (Line 13).

Closure Computation Algorithm 3 shows the details
of our closure computation from the set of escaping roots
detected above. Since all the other threads are paused,
closure computation is done together with object mov-
ing. The closure is computed based on the remember set
rs of the current deallocating region r. We first check
the remember set rs (Line 1): if rs is empty, this region
contains no escaping objects and hence is safe to be re-
claimed. Otherwise, we need to identify all reachable
objects and relocate them.

We start off by computing the target region to which
each escaping root Ob needs to be promoted (Lines 2 – 4).

We check each reference addr r′−→ Ob in the remember set
and then join all the regions r′ carried in these references
based on the region semilattice. The results are saved in a
map promote.

Algorithm 3: Closure computation.
Input: Remember Set rs of Region r

1 if The remember set rs of r is NOT empty then
2 foreach Escaping root Ob ∈ rs do
3 foreach Reference ref : addr r′−→ADDR(Ob) in rs

do
4 promote(Ob)← JOIN (r′, promote(Ob))

5 foreach Escaping root Ob in topological order of
promote(Ob) do

6 Region tgt← promote(Ob)
7 Initialize queue gray with {Ob}
8 while gray is NOT empty do
9 Object O← REMOVETOP(gray)

10 Write tgt into the region field of O
11 Object O∗←MOVE(O, tgt) /*Move O to

region tgt*/
12 Put a forward reference at ADDR(O)
13 foreach Reference addr x−→ADDR(O) in r’s rs

do
14 Write ADDR(O∗) into addr
15 if x 6= tgt then
16 Add reference addr x−→ADDR(O∗)

into the remember set of region tgt

17 foreach Outgoing reference e of object O∗

do
18 Object O′ ← TARGET(e)
19 if O′ is a forward reference then
20 Write the new address into O∗

21 Region r′ ← REGION(O′)
22 if r′ = r then
23 Add O′ into gray

24 else if r′ 6= tgt then
25 Add reference ADDR(O∗)

tgt−→
ADDR(O′) into the remember set of
region r′

26 Clear the remember set rs of r

We then iterate through all escaping roots in topological
order of their target regions (the loop at Line 5).2 For each
escaping root Ob, we perform a BFS traversal inside the
current region to identify a closure of transitively escaping
objects reachable from Ob and put all of them into a set
gray. During this traversal (Lines 8 – 23), we compute
the regions to which each (transitively) escaping object
should be moved and conduct the move. The details will
be discussed shortly.

Identify Target Regions When a transitively escaping
object O′ is reachable from only one escaping root Ob,

2The order is based on the region semilattice. For example, CS is
ordered before any DS region.
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Figure 9: An example of (a) before and (b) after the region
deallocation.

we simply use the target region of Ob as the target of
O′. When O′ is reachable from multiple escaping roots,
which may correspond to different target regions, we use
the highest target among them as the target region of O′.

The topological order of our escaping root traversal is
key to our implementation of the above idea. By com-
puting closure for a root with a “higher” region earlier,
objects reachable from multiple roots only need to be
traversed once – the check at Line 22 filters out those
that already have a region r′ (6= r) assigned in a previous
iteration of the loop because the region to be assigned
in the current iteration is guaranteed to be lower than r′.
When this case happens, the traversal stops further tracing
the outgoing references from O′.

Figure 9 (a) shows a simple heap snapshot when re-
gion 〈r21, t1〉 is about to be deallocated. There are two
references in its remember set, one from region 〈r11, t1〉
and a second from 〈r12, t2〉. The objects C and D are the
escaping roots. Initially, our algorithm determines that C
will be moved to 〈r11, t1〉 and D to the CS (because it is
reachable from a concurrent region 〈r12, t2〉). Since the
CS is higher than 〈r11, t1〉 in the semilattice, the transitive
closure computation for D occurs before C, which sets
E’s target to the CS.

Update Remember Sets and Move Objects Because
we have paused all threads, object moving is safe
(Line 11). When an object O is moved, we need to update
all (stack and heap) locations that store its references.
There can be three kinds of locations from which it is ref-
erenced: (1) intra-region locations (i.e., referenced from
another object in r); (2) objects from other regions or the
CS; and (3) stack locations. Here we discuss how each of
these types is handled by Algorithm 3.

(1) Intra-region locations. To handle intra-region ref-
erences, we follow the standard GC treatment by putting
a special forward reference at O’s original location (Line
12). This will notify intra-region incoming references
of the location change – when this old location of O is

reached from another reference, the forward reference
there will be used to update the source of that reference
(Line 20).

(2) Objects from another region. References from these
objects must have been recorded in r’s remember set.
Hence, we find all inter-region/space references of O in
the remember set rs and update the source of each such
reference with the new address O∗ (Line 14). Since O∗

now belongs to a new region tgt, the inter-region/space
references that originally went into region r now go into
region tgt. If the regions carried in these references are
not tgt, these references need to be explicitly added into
the remember set of tgt (Line 16).

When O’s outgoing edges are examined, moving O to
region tgt may result in new inter-region/space references
(Lines 24 – 25). For example, if the target region r′ of
a pointee object O′ is not tgt (i.e., O′ has been visited
from another escaping root), we need to add a new entry
ADDR(O∗)

tgt−→ADDR(O′) into the remember set of r′.
(3) Stack locations. Since stack locations are also

recorded as entries of the remember set, updating them
is performed in the same way as updating heap locations.
For example, when O is moved, Line 14 would update
each reference going to O in the remember set. If O has
(local or remote) stack references, they must be in the
remember set and updated as well.

After the transitive closure computation and object
promotion, the remember set rs of region r is cleared
(Line 26).

Figure 9 (b) shows the heap after region 〈r21, t1〉 is
deallocated. The objects C, D, and E are escaping objects
and will be moved to the target region computed. Since D
and E belong to the CS, we add their incoming references
2 and 3 into the remember set of the CS. Object F does
not escape the region, and hence, is automatically freed.

5.4 Collecting the CS
We implement three modifications to the Parallel Scav-
enge GC to collect the CS. First, we make the GC run
locally in the CS. If the GC tracing reaches a reference to
a region object, we simply ignore the reference.

Second, we include references in the CS’ remember set
into the tracing roots, so that corresponding CS objects
would not be mistakenly reclaimed. Before tracing each
such reference, we validate it by comparing the address of
its target CS object with the current content in its source
location. If they are different, this reference has become
invalid and is discarded. Since the Parallel Scavenge GC
moves objects (away from the young generation), Yak
also needs to update references in the remember set of
each region when their source in the CS is moved.

The third modification is such that we forbid the CS
collection to interrupt a region deallocation. If the collec-
tion occurs during a deallocation, objects can be moved



FW P Description
ES Sort a large array of data that cannot be held in memory

Hyracks WC Count word occurrences in a large document
DG Find matches based on user-defined regular expressions

IC Count word frequencies in a corpus using local aggregation
Hadoop TS Select a number of words with most occurrences

DF Return text with user-defined words filtered out

PR Compute page ranks (SpMV kernel)
GraphChi CC Identify strongly connected components (label propagation)

CD Detect communities (label propagation)

Table 1: Our frameworks, programs, and their descrip-
tions.

FW Dataset Size Heap Configs
Hyracks Yahoo Webmap 72GB 20GB, 24GB
Hadoop StackOverflow 37GB 2/1GB, 3/2GB

GraphChi Sample twitter-2010 (E, V) = 6GB, 8GB
(100M, 62M)

Table 2: Datasets and heap configurations used to run our
programs; for Hadoop, the configurations a/b GB are the
max heap sizes for each map (a) and reduce task (b).

in the CS, which may invalidate the computation already
done in the region deallocation. Yak also implements
a number of optimizations on the remember set layout,
large object allocation, as well as region/thread ID lookup.
The details of these optimizations are omitted.

6 Evaluation
This section presents an evaluation of Yak on real-world
widely deployed systems.

6.1 Methodology and Benchmarks
We have evaluated Yak on Hyracks [13], a parallel
dataflow engine powering the Apache AsterixDB [1] soft-
ware stack, Hadoop [5], a popular distributed MapRe-
duce [22] implementation, and GraphChi [39], a disk-
based graph processing system. These three frameworks
were selected due to their popularity and diverse character-
istics. For example, Hyracks and Hadoop are distributed
frameworks while GraphChi is a single-PC disk-based
system. Hyracks runs one JVM on each node with many
threads to process data while Hadoop runs multiple JVMs
on each node, with each JVM using a small number of
threads.

For each framework, we selected a few representative
programs, forming a benchmark set with nine programs
– external sort (ES), word count (WC), and distributed
grep (DG) for Hyracks; in-map combiner (IC), top-word
selector (TS), and distributed word filter (DF) for Hadoop;
connected components (CC), community detection (CD),
and page rank (PR) for GraphChi. These programs and
their descriptions are listed in Table 1.

Table 2 shows the datasets and heap configurations in
our experiments. For Yak, the heap size is the sum of the
sizes of both CS and DS. Since we fed different datasets
to various frameworks, their memory requirements were

also different. Evidence [12] shows that in general the
heap size needs to be at least two times as large as the
minimum memory size for the GC to perform well. The
heap configurations shown in Table 2 were selected based
on this observation – they are roughly 1.5× – 2.5× of the
minimum heap size needed to run the original JVM.

In a small number of cases, the JVM uses hand-crafted
assembly code to allocate objects directly into the heap
without calling any C/C++ function. While we have spent
more than a year on development, we have not yet per-
formed any assembly-based optimizations for Yak. Thus,
this assembly-based allocation in the JVM would allow
some objects in an epoch to bypass Yak’s allocator. To
solve the problem, we had to disable this option and force
all allocation requests to go through the main allocation
entrance in C++. For a fair comparison, we kept this op-
tion disabled for all experiments including both Yak and
original GC runs. We saw a small performance degrada-
tion (2–6%) after disabling this option in the JVM.

Hyracks and Hadoop were run on a 11-node cluster,
each with 2 Xeon(R) CPU E5-2640 v3 processors, 32GB
memory, 1 SSD, running CentOS 6.6. As a single-PC
graph system, GraphChi was run on one node of this
cluster. For Yak, we let the ratio between the sizes of the
CS and the DS be 1/10. We did not find this ratio to have
much impact on performance as long as the DS is large
enough to contain objects created in each epoch. The
page size in DS is 32KB by default. Experiments with
different page sizes have also been performed and their
results will be discussed shortly. We focus our comparison
between Yak and Parallel Scavenge (PS) – the JVM’s
default production GC.

We ran each program three iterations. The first iteration
warmed up the JIT. The performance differences among
the last two iterations were negligible (e.g., less than 5%).
This section reports the medians. We have also checked
that no incorrect results were produced by Yak.

6.2 Epoch Specification

We performed our annotation by strictly following exist-
ing framework APIs. For Hyracks, an epoch covers the
lifetime of a (user-defined) dataflow operator (i.e., the
nextFrame method); for Hadoop, it includes the body
of a Map or Reduce task. For GraphChi, we let each
epoch contain the body of a sub-interval specified by
a beginSubInterval callback, since each sub-interval
holds and processes many vertices and edges as illustrated
in §3. A sub-interval creates many threads to load slid-
ing shards and execute update functions. The body of
each such thread is specified as a sub-epoch. It took us
about ten minutes to annotate all of the three programs
on each framework. Note that our optimization for these
frameworks only scratches the surface; vast opportunities



Overall GC App Mem
Hyracks 0.14 ∼ 0.64 0.02 ∼ 0.11 0.31 ∼ 1.05 0.67 ∼ 1.03

(0.40) (0.05) (0.77) (0.78)
Hadoop 0.73 ∼ 0.89 0.17 ∼ 0.26 1.03 ∼ 1.35 1.07 ∼ 1.67

(0.81) (0.21) (1.13) (1.44)
GraphChi 0.70 ∼ 0.86 0.15 ∼ 0.56 0.91 ∼ 1.13 1.07 ∼ 1.34

(0.77) (0.38) (1.01) (1.21)

Table 3: Summary of Yak performance in comparison
with PS. The numbers are Min ∼ Max and (Mean) val-
ues of Yak Overall run time, GC time including Yak
pause time, Application non-GC time, and Memory con-
sumption across all settings on each framework, with
corresponding PS performance as 1. Below 1 means im-
provement; above 1 means degradation.

are possible if both user-defined and the system’s built-in
operators are epoch-annotated.

6.3 Latency and Throughput

Figure 10 depicts the detailed performance comparisons
between Yak and PS. Performance improvements pro-
vided by Yak are summarized in Table 3. For Hyracks,
Yak outperforms PS in all aspects. The GC time is col-
lected by identifying the maximum GC time across runs
on all slave nodes. Data-parallel tasks in Hyracks are
isolated by design and they do not share any data struc-
tures across task instances. Hence, while Yak’s write
barrier incurs overhead, almost all references captured
by the write barrier are intra-region references and do
not trigger the slow path of the barrier (e.g., updating the
remember set). The (non-GC) application performance
was also improved — this is because PS only performs
thread-local allocation for small objects and the allocation
of large objects has to be in the shared heap and protected
by locks. In Yak, however, all objects are allocated in
thread-local regions and thus threads can allocate objects
completely in parallel. Lock-free allocation is the major
contribution of computation time improvements because
large objects (e.g., arrays in HashMaps) are frequently
allocated in such programs.

For Hadoop and GraphChi, while the GC and the over-
all execution time is reduced substantially by Yak, the
application time and memory consumption increase. The
increased application time is expected because (1) mem-
ory reclamation (i.e., region deallocation) is now shifted
from the GC to the application execution and (2) the write
barrier is triggered to record a large number of references.
For example, Hadoop has a state object (i.e., context) in
the control path that holds objects created in the data path,
generating many inter-space references. In GraphChi,
a number of large data structures are shared among dif-
ferent data loading threads, leading to many inter-region
references (e.g., reported in Table 4). Recording these
references makes the barrier overhead stand out.

We envision two approaches that can effectively reduce
the write barrier cost. First, existing GCs all have man-
ually crafted/optimized assembly code to implement the
write barrier. As mentioned earlier, assembly-based opti-
mizations have not yet been added for Yak. We expect the
barrier cost to be much lower when these optimizations
are implemented. Second, adding some extra annotations
that define finer-grained epochs may provide further per-
formance improvement. For example, if objects reachable
from the state object can be created in the CS in Hadoop,
the number of inter-space references can be significantly
reduced. In this experiment, we did not perform any pro-
gram restructuring; it is the developer’s choice how much
annotation effort she needs to make and how much extra
performance gain she wants to achieve.

Yak greatly shortens the pauses caused by GC. When
Yak is enabled, the maximum (deallocation or GC) pauses
in Hyracks, Hadoop, and GraphChi are, respectively, 1.82,
0.55, and 0.72 second(s), while their longest GC pauses
under PS are 35.74, 1.24, and 9.48 seconds, respectively.

As the heap size increases, there is a small performance
improvement of PS due to fewer GC runs. The heap
increase has little impact on Yak’s overall performance,
given that the CS is small anyways.

6.4 Memory Usage
We measured memory by periodically running pmap to
understand the overall memory consumption of the Java
process (including both the application memory and that
used by GC metadata). Figure 11 shows a detailed com-
parison among the memory footprints of Yak and PS
under different heap configurations. For Hyracks and
GraphChi, their memory footprints are generally stable
while Hadoop’s memory consumption fluctuates. This is
because Hadoop runs multiple JVMs and different JVM
instances are frequently created and destroyed. Since the
JVM never returns claimed memory back to the OS un-
til it terminates, the memory consumptions of Hyracks
and GraphChi always grow. The amount of memory con-
sumed by Hadoop, however, drops frequently due to the
frequent creation and termination of its JVM processes.

Note that the end times of Yak’s memory traces on
Hadoop in Figure 11 are earlier than the execution finish
time reported in Figure 10. This is because Figure 11
shows the memory trace of the node that has the highest
memory consumption; the computation on this node often
finished before the entire program finished.

Yak constantly has lower memory consumption than
PS for Hyracks. This is primarily because Yak can re-
cycle memory immediately when each data processing
thread finishes, while there is often a delay before the
stop-the-world GC reclaims memory. For Hadoop and
GraphChi, Yak has slightly higher memory consumption
than PS. The main reason is that there are many control
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Figure 10: Performance comparisons on various programs; each group compares performance between PS and Yak
on a program with two “fat” and two “thin” bars. The left and right fat bars show the running times of PS and Yak,
respectively, which further break down into the GC (in red), the region deallocation (in orange), and the application
(in blue) times, while the left and right thin bars compare their maximum memory consumptions, collected from
periodically running pmap.

Program #CSR #CRR #TR %CSO #R
Hyracks-ES 2051 243 3B 0.0028% 103K

Hyracks-WC 2677 4221 213M 0.0043% 148K
Hyracks-DG 2013 16 2B 0.0034% 101K

Hadoop-IC 60K 0 2B 0% 598
Hadoop-TS 60K 0 2B 0% 598
Hadoop-DF 33K 0 1B 0% 598

GraphChi-CC 53K 25K 653M 0.044% 2699
GraphChi-CD 52K 14M 614M 1.3% 2699
GraphChi-PR 54K 24K 548M 0.060% 2699

Table 4: Statistics on Yak’s heap: reported are numbers
of cross-space references (CSR), cross-region references
(CRR), and total references generated by stores (TR);
average percentages of objects escaping to the CS (CSO)
among all objects in a region when the region retires; and
total numbers of regions created during the execution (R).

objects created in the data path and allocated in regions.
Those objects often have shorter lifespans than their con-
taining regions and, therefore, PS can reclaim them more
efficiently than Yak. We plan to solve this problem by
developing feedback-directed allocation – if objects cre-
ated by an allocation site keep getting allocated in regions
but later copied to the CS, these objects are likely to be
control objects and the allocation site will be redirected
to allocate objects directly in the CS in future executions.

Space Overhead To understand the overhead of the
extra 4-byte field re in each object header, we ran
the GraphChi programs with the unmodified HotSpot
1.8.0 74 and compared its peak heap consumption with
that of Yak (by periodically running pmap). We found
that the difference (i.e., the overhead of the re field) is
relatively small. Across the three GraphChi benchmarks,
this overhead varies from 1.1% to 20.8%, with an average
of 12.2%.

6.5 Performance Breakdown
To provide a deeper understanding of Yak’s performance,
we report various statistics on Yak’s heap in Table 4. Yak
was built based on the assumption that in a typical Big
Data system, only a small number of objects escape from
the data path to the control path. This assumption has been
validated by the fact that the ratios between numbers in
#CSR and #TR are generally very small. As a result, each
region only has very few objects (%CSO) that escape to
the CS when it is deallocated.

Figure 12 (a) compares Yak’s time and memory perfor-
mance when different page sizes are used. The running
time under different page sizes does not vary much (e.g.,
all executions are between 149 and 153 seconds), while
the peak memory consumption generally goes up when
the page size increases (except for the 256KB case).

The write barrier and region deallocation are the two
major sources of Yak’s application overhead. As shown
in Figure 10, region deallocation time accounts for 2.4%-
13.1% of total execution time across the benchmarks.
Since all our programs are multi-threaded, it is difficult
to understand the exact contribution of write barrier. To
solve the problem, we manually modified GraphChi’s ex-
ecution engine to enforce a barrier between threads that
load sliding shards and execute updates. This has an effect
of serializing the threads and making the program sequen-
tial. For all the three programs on GraphChi, we found
that the mutator time (i.e., non-pause time) was increased
by an overall of 24.5%. This shows that write barrier is
the major bottleneck, providing a strong motivation for
us to hand optimize it in assembly in the near future.

Scalability To understand how Yak and PS perform
when datasets of different sizes are processed, we ran
Hyracks ES with four subsets of the Yahoo Webmap with
sizes 9.4GB, 14GB, 18GB, and 44GB respectively. Fig-
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Figure 11: Memory footprints collected from pmap.
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Figure 12: Performance comparisons between (a) different page sizes when Yak ran on GraphChi PR with a 6GB heap;
(b) Yak and PS when datasets of various sizes were sorted by Hyracks ES on a 24GB heap.

ure 12 (b) compares their performance. Yak constantly
outperforms PS and the performance improvement in-
creases with the size of the dataset processed.

7 Conclusion

The paper presents Yak, a hybrid GC that can efficiently
manage memory in data-intensive applications. Data ob-
jects are speculatively allocated into lattice-based regions
while the generational GC only scans and collects the
control space, which is much smaller. By moving all data
objects into regions and deallocating them as a whole
at the end of each epoch, significant reductions in GC
overheads can be achieved. Our experiments on several

real-world systems demonstrate that Yak outperforms the
default production GC in OpenJDK on real Big Data sys-
tems, requiring almost zero user effort.
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KUBIATOWICZ, J. Taurus: A holistic language run-
time system for coordinating distributed managed-
language applications. In ASPLOS (2016), pp. 457–
471.

[42] MAKHOLM, H. A region-based memory manager
for prolog. In ISMM (2000), pp. 25–34.

[43] MCCARTHY, J. Recursive functions of symbolic
expressions and their computation by machine, part
i. Commun. ACM 3, 4 (Apr. 1960), 184–195.

[44] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,
ISARD, M., BARHAM, P., AND ABADI, M. Naiad:
A timely dataflow system. In SOSP (2013), pp. 439–
455.

[45] NGUYEN, K., FANG, L., XU, G., AND DEMSKY,
B. Speculative region-based memory management
for big data systems. In PLOS (2015), pp. 27–32.

[46] NGUYEN, K., WANG, K., BU, Y., FANG, L., HU,
J., AND XU, G. FACADE: A compiler and runtime
for (almost) object-bounded big data applications.
In ASPLOS (2015), pp. 675–690.

[47] OLSTON, C., REED, B., SRIVASTAVA, U., KU-
MAR, R., AND TOMKINS, A. Pig Latin: a not-so-
foreign language for data processing. In SIGMOD
(2008), pp. 1099–1110.

[48] PIKE, R., DORWARD, S., GRIESEMER, R., AND
QUINLAN, S. Interpreting the data: Parallel analysis
with Sawzall. Sci. Program. 13, 4 (2005), 277–298.

[49] QIAN, F., AND HENDREN, L. An adaptive, region-
based allocator for Java. In ISMM (2002), pp. 127–
138.

[50] SACHINDRAN, N., MOSS, J. E. B., AND BERGER,
E. D. Mc2: High-performance garbage collection
for memory-constrained environments. In OOPSLA
(2004), pp. 81–98.
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