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Abstract
Writing low-level concurrent code is well known to be
challenging and error prone. The widespread deploy-
ment of multi-core hardware and the shift towards us-
ing low-level concurrent data structures has moved the
problem into the mainstream. Finding bugs in such code
may require Þnding a speciÞc bug-revealing thread in-
terleaving out of a huge space of parallel executions.

Model-checking is a powerful technique for exhaus-
tively testing code. However, scaling model checking
presents a signiÞcant challenge.

In this paper we present a new and more scalable
technique for model checking concurrent code, based on
concrete execution. Our technique observes concrete be-
haviors, builds a model of these behaviors, encodes the
model in SAT, and leverages SAT solver technology to
Þnd executions that reveal new behaviors. It then runs
the new execution, incorporates the newly observed be-
havior, and repeats the process until it has explored all
reachable behaviors.

We have implemented a prototype of our approach
in the SATCheck tool with support for both the Total
Store Order (TSO) and Sequentially Consistent (SC)
memory models and use SATCheck to test several con-
current data structure implementations. We compare
SATCheck to the original DPOR stateless model check-
ing algorithm implemented in CDSChecker, the source
DPOR algorithm implemented in Nidhugg, and Check-
Fence. Our experiments show that SATCheck scales
better than previous approaches while at the same time
operating on concrete executions.

1. Introduction
Testing concurrent code can be challenging: exposing
bugs often requires driving program execution to a spe-
ciÞc interleaving. However, bug-revealing interleavings
may account for a vanishingly small proportion of a
large interleaving space. Model checking can be an e!ec-
tive way of testing concurrent code, but current model
checking approaches are typically best suited for small
unit tests. In this work, we present a novel approach

that leverages SAT solving technology to explore only
the interleavings that expose new concrete behaviors.

Current approaches to model checking concurrent
code primarily take one of three approaches:

• Explicit State: Early work on model checking con-
current code explicitly modeled program state. This
approach is not often used directly on software, as
encoding the entire state can be problematic. Fur-
thermore, encoded state can lead to a combinatorial
state explosion even when all operations commute.

• Stateless: Stateless approaches to model checking
eliminate the need to explicitly encode program state
and instead explore all interleavings of conßicting
(i.e. non-commutative) operations. In the context of
stateless model checking, researchers have developed
several partial order reduction techniques to reduce
exploration of redundant executions [1, 16Ð18].

Partial order reduction techniques for stateless
model checking reason locally about the commuta-
tivity of individual operations and e!ectively assume
that any operation may depend on all previous oper-
ations. There remains further potential for improve-
ment in partial order reduction by incorporating rea-
soning about the programÕs dependency structure.

To be more precise, consider a program with two
threads that both Þrst perform an operation on a
concurrent queue and then each perform an inde-
pendent operation on a concurrent stack. Existing
POR approaches will explore every interleaving of
the stack operations in the context of every inter-
leaving of the queue operations even though these
operations are independent!

• SAT-Based Approaches: Researchers have im-
proved on stateless model checking by developing
SAT-based approaches to model checking [9, 28]. The
key insight is that, by encoding a program as a SAT
formula, the model checker can leverage the SAT
solverÕs heuristics to avoid wasting time exploring
redundant executions.
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Current SAT-based approaches translate the entire
program to a SAT formula. This is non-ideal in
that many programs contain arithmetic expressions,
which signiÞcantly complicate the SAT formula and
limit the scalability of this approach. Moreover, the
approach is not applicable to code that calls library
functions whose source is not available.

A second downside of existing SAT-based approaches
is that they are all or nothingÑif the generated
SAT equation is too complex for the SAT solver to
analyze, the model checker provides the developer
with no information.

We introduce a new approach to model checking
concurrent code that leverages two key insights from
the previous approaches:

• Reasoning about dependences is necessary for
scalability: Approaches that na¬õvely run code donÕt
scale because they waste too much e!ort exploring
redundant executions. Scalable approaches must rea-
son about how operations depend on each other to
avoid wasting e!ort on redundant executions.

• Encoding the entire program in SAT can
add significant complexity from the non-
concurrent parts of the code: Approaches that
try to encode the entire program into SAT incur com-
plexity from the non-concurrent parts of the compu-
tation (e.g., arithmetic on integers). In many cases,
concurrent executions of a given test case cannot
drive arbitrary values through the program, and thus
it is not necessary to encode how the computation
operates on all values, but rather just the values that
actually arise in concurrent executions.

1.1 Our Approach
This paper presents our novel SAT-based approach
to model checking for concurrent code. Unlike pre-
vious SAT-based approaches, we use the SAT solver
to encode the execution, not the program. Our ap-
proach was inspired by concolic testing as well as pre-
vious work on model checking concurrent code [27].
SATCheck leverages dependency information provided
in program instrumentation, and we have developed
a compiler frontend that instruments C code for use
with SATCheck. SATCheck accepts as input an in-
strumented program including stores, loads, atomic
Read-Modify-Write (RMW) operations, uninterpreted
functions, equality comparisons, structured conditional
branches, while loops, and phi functions.

Our approach, like similar approaches in stateless
model checking, (DPOR [16, 35], Chess [23], SourceD-
POR [2], Optimal DPOR [ 1], Maximal Causality Re-
duction [20], etc.) begins by Þxing a set of user-provided
inputs, and concretely executing the program under test

with these inputs. We then use the results of the con-
crete execution to construct an event graph represen-
tation of the programÕs observed behaviors. The event
graph captures the observed control ßow paths of the
program; observed input-output relations for uninter-
preted functions; observed memory operations, condi-
tional branches, and loops; and dependences between
each of these components. SATCheck then translates
the event graph into a SAT formula that captures the
observed behaviors of the program. SATCheck next
adds clauses to this SAT formula, that, when satis-
Þed, generate an execution that expands SATCheckÕs
knowledge of the programÕs behaviorÑeither by taking
a new (unexplored) direction on a branch, by visiting
a novel interleaving, or by learning a new input-output
relation for an uninterpreted function. SATCheck uses
an o!-the-shelf SAT solver to solve the SAT formula.
If there is no solution, then no interleaving will yield
new behaviorsÑSATCheck has explored all program
behaviors (for the given program input). If there is a
solution, SATCheck generates a interleaving from the
solution and repeats the process. Once SATCheck has
converged, the SAT formula describes all observable be-
haviors of the program under test for a particular set of
inputs to that program.

1.2 Contributions
This paper makes the following contributions:

• Basic Approach: It presents a new technique
for model checking concurrent code. The approach
learns the behaviors of the program through con-
crete executions and uses a SAT solver to search for
executions that reveal new program behaviors.

• TSO Support: After developing the algorithm
for the sequentially consistent memory model, it
presents an extension of the algorithm to Total Store
Ordering (TSO).

• SATCheck Implementation: It presents
SATCheck, a prototype implementation of our
model checking technique. Our implementation
includes a Clang-based frontend that instruments C
programs for use with SATCheck.

• Evaluation: It presents an evaluation of the
SATCheck implementation on several concur-
rent data structures. Our evaluation shows that
SATCheck scales to much larger problem sizes and
runs more quickly than previous concrete execution-
based approaches.

2. Example
We explain how SATCheck works using the simple
spin lock example shown in Figure1. This example
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1 typedef struct lock_t {
2 int lock ;
3 } lock ;
4
5 lock a;
6
7 void ini t lock ( lock * l ) {
8 l -> lock = 0;
9 }

10 bool trylock ( lock * l ) {
11 int val=cas (&l -> lock , 0, 1) ;
12 return val ==0;
13 }
14 void unlock ( lock * l ) {
15 store (&l -> lock , 0) ;
16 }
17 void foo () {
18 if ( t rylock (&a)) {
19 unlock (&a);
20 }
21 }

Figure 1. C spin lock implementation.

implements methods trylock and unlock, which are
called by the driver foo method.

Assume a program which creates two threads, both
of which call foo. SATCheck starts by concretely exe-
cuting the program. Assume that in the Þrst execution
(1) Thread 1 Þrst executes the CAS operation in its
trylock, then (2) Thread 2 executes the CAS opera-
tion in its trylock, and Þnally (3) Thread 1 executes
the store in unlock. After SATCheck observes this ex-
ecution, it constructs the initial event graph in Figure 2.

2.1 Event Graph Construction

<tid=1,1>, x0=cas(r(0)w(1))

<tid=1,2>, x1=f(x0) (0  1)

<tid=1,3>, branch(x1)

<tid=1,4>, merge <tid=1,3,br(1),0>, store(0)

<tid=2,1>, y0=cas(r(1)w(1))

<tid=2,2>, y1=f(y0) (1  0)

<tid=2,3>, branch(y1)

<tid=2,4>, merge <tid=2,3,br(0),0>, nop

Figure 2. Event graph summarizes Þrst execution (T
1

CAS, T

2

CAS, T

1

store) with unconditionally executed
nodes (connected by solid black arrows) and condition-
ally executed nodes (dashed blue arrows).

Each operation instance in the execution is as-
signed a uniqueexecution point (or EP) tuple, shown
in <bolded angle brackets> in Figure 2. EP tu-
ples allow SATCheck to match equivalent operation
instances between di!erent executions and reßect the
nested structure of the programming language. An EP
tuple starts with the thread identiÞer and includes a se-
quence of counts. SATCheck maintains per-thread EP
counters during the programÕs execution. The execution
counter for a thread starts as a 2-tuple consisting of the
thread identiÞer along with a single counter set to 1.

Figure 2 shows that Thread 1Õs Þrst CAS operation
gets EP <tid=1,1>. Since this operation runs Þrst, it
reads the value 0 and writes the value 1, as indicated by
the label r(0)w(1). Also, SATCheck assigns a unique
identiÞer for the output of each event graph node.
Thread 1Õs Þrst CAS operation gets the identiÞerx

0

.
After a normal operation (e.g. load, store, RMW, or

function invocation), SATCheck increments the last el-
ement of the EP. Thus, the second operation, an un-
interpreted function that evaluates val==0, gets EP
<tid=1,2>. The label x1=f(x0) indicates that the func-
tion depends on the valuex0 produced by the previous
CAS operation and that the identiÞer x1 gets the output
of the function. SATCheck remembers the input-output
relation of the function: the label 0 æ 1 indicates that
SATCheck has observed that for an input of 0, function
f produces output 1.

The following branch operation gets EP tuple
<tid=1,3>. After a branch operation, SATCheck ap-
pends the direction of the branch and a new zeroed
counter to the EP. Thus, the conditionally executed
store operation has EP<tid=1,3,br(1),0>. The frag-
ment br(1) indicates that this operation is only exe-
cuted when the enclosing conditional branch is taken.
We graphically indicate conditionally executed code
with a dashed blue arrow. The black arrow shows the
next statement to be executed after the code enclosed
by the conditional branch Þnishes.

The event graph also includes information on Thread
2Õs execution. The explanation is analogous to that for
Thread 1.

From this event graph, SATCheck deduces the pos-
sibility of behaviors that it has not yet observed: (1)
an execution where Thread 1 skips the body of itsif

statement; (2) an execution where Thread 2 executes
the body of its if statement; and (3) executions where
the two uninterpreted functions are evaluated on input
values that di!er from the current inputs. An execu-
tion with a di!erent interleaving will allow SATCheck
to evaluate the uninterpreted functions on di!erent in-
puts.

2.2 Translation to SAT
SATCheck next translates the event graph into a SAT
formula that describes the observed behaviors of the
program and the execution interleaving. It then adds
goal clauses that encode a set of constraints that, when
satisÞed, ensure that the program exhibits a new behav-
ior. New execution interleavings potentially yield new
program behaviors that satisfy these goal clauses Ñ the
SAT solver searches for such interleavings that drive the
program to produce new behaviors.

Like CheckFence [9], SATCheck represents the ex-
ecution interleaving by assigning a single booleanin-

terleaving variable to every pair of memory opera-
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tions from di!erent threads. If the boolean variable
is true, the Þrst memory operation appears earlier
in the interleaving. If it is false, the second memory
operation appears earlier in the interleaving. (Unlike
CheckFence, our approach operates on concrete ex-
ecutions.) For our running example, SATCheck gen-
erates the SAT variable v<tid=1,1>,<tid=2,1>, which is
true when operation <tid=1,1> occurs before opera-
tion <tid=2,1>. SATCheck also generates the variable
v<tid=1,3,br(1),0>,<tid=2,1> for the store in Thread 1. Fi-
nally, SATCheck generates constraints between these
variables to enforce transitivity properties (to ensure
that the interleaving is a total order).

SATCheck uses a potential value set analysis on the
event graph to determine the values that variables (in-
cluding addresses) may take, in the absence of novel be-
haviors. Novel behaviors create new, previously unseen
values. Potential value sets do not capture all possible
values, only the values a variable may have if the exe-
cution does not encounter new program behaviors. The
potential value set analysis does not need to account for
new values; they will be generated in later iterations by
concrete program iterations. In particular, SATCheck
assumes that uninterpreted functions do not generate
new values.

On our running example, the analysis tells us that
(1) the CAS and store operations only access one ad-
dress, (2) the values written to that address are 0 and 1,
and (3) the input values to the memory operations are
Þxed. Note that new values are created by generating
executions that create these values and SATCheck gen-
erates goal clauses to ensure that it produces all possible
values. Future runs of the potential value set analysis
would then include those values.

Because the example uses Þxed addresses for its
memory operations, SATCheck does not need to allo-
cate any SAT variables for addresses. Since the mem-
ory operations only store two possible values ({0, 1}),
SATCheck encodes them using a single SAT variable to
index into the set.

We also allocate value variables for memory opera-
tions, and allocate two variables per CAS operation (one
for the value read, r<tid=1,1> and r<tid=2,1>, and one for
the value stored,w<tid=1,1> and w<tid=2,1>) and one SAT
variable w<tid=1,3,br(1),0> for the store, representing the
value it stores. For each load operation, we encode the
store it reads-from using SAT variables. The CAS op-
eration <tid=1,1> can read-from one of two stores: the
CAS operation <tid=2,1> or the initialization store.
Thus we can use a SAT variable¸<tid=1,1> to represent
which of these two stores it reads-from. If variablȩ indi-
cates that a load reads-from a given store, then (1) their
values must match, (2) the store must be ordered be-
fore the load, and (3) there cannot be a conßicting store

to the same address ordered between them. SATCheck
generates constraints to capture these properties.

The uninterpreted functions take as input the value
returned by the CAS operation (0 or 1 from the po-
tential value set). Consider the uninterpreted function
<tid=1,2>x

1

= f(x
0

)(0 æ 1). We model this functionÕs
output as either the previously observed value 1 or a
special value to represent an as-yet unobserved output.
One SAT variable can represent these two cases.

This graph contains two branches. Both branches
have taken one direction each; the remaining direc-
tions are unexplored. Thus we represent the state of
the branch with two values: either the explored direc-
tion, or a new direction. We can therefore allocate one
SAT variable per branch. From the current execution,
we know that if the uninterpreted function returns 1,
then the if body will be executed. Thus we can build
an implication constraint from the SAT variable for the
output of the uninterpreted function to the SAT vari-
able for the branch direction.

The e!ect of store <tid=1,3,br(1),0> store(0)
must be predicated on taking the branch. Thus the
branch SAT variable appears in the constraints for loads
to ensure that if some executed load reads from this
store, then the store was in fact executed.

Forcing Novel Executions The key novelty of our
approach is that we model sets of observed concrete exe-
cutions of the program (including dependencies between
computed values) and iterate to Þnd new, interesting ex-
ecutions. This greatly reduces the state space that must
be explored. To support this approach, SATCheck gen-
erates a clause whose satisfaction implies the existence
of a new execution. We have designed SATCheckÕs en-
coding so that it is simple to generate such a clause. The
clause simply needs to evaluate to true when a branch or
an uninterpreted function takes on a novel value. These
conditions are explicitly represented in our encoding.
The interleaving that drives the program to a novel ex-
ecution can then be recovered from the SAT solution
Ñ the truth assignments for the interleaving variables
directly encode the desired interleaving.

2.3 Iterating Concrete Executions
Having encoded a SAT formula whose satisfaction im-
plies a novel execution, SATCheck calls the SAT solver
to request a satisfying assignment of that formula and
converts that assignment back into an execution inter-
leaving. It repeats the execute/encode/solve loop until
it exhausts all possible novel behaviors.

In our example, SATCheck might learn from the SAT
solver that the branch in Thread 2 would take a di!er-
ent direction if Thread 2 executes trylock Þrst. The
satisfying assignment encodes properties of the inter-
leavings which would cause this novel behavior. In one

4 2015/8/12



<tid=1,1>, x0=cas(r(0)w(1))

<tid=1,2>, x1=f(x0) (0 ��  1)

<tid=1,3>, branch(x1)

<tid=1,4>, merge <tid=1,3,br(1),0>, store(0)

<tid=2,1>, y0=cas(r(1,0)w(0,1))

<tid=2,2>, y1=f(y0) (1 ��  0, 0 ��  1)

<tid=2,3>, branch(y1)

<tid=2,4>, merge <tid=2,3,br(0),0>, nop <tid=2,3,br(1),0>, store(0)

Figure 3. Second execution adds new behaviors for
tid=2, including new uninterpreted function outputs
and a store node.

Figure 4. Complete event graph after third execution,
summarizing all behaviors for given program input.

such interleaving, (1) Thread 2 executes the CAS op-
eration in trylock, (2) Thread 2 executes thestore

in unlock, (3) Thread 1 executes the CAS operation
in trylock, and (4) Thread 1 executes thestore in
unlock. SATCheck then executes the program under
this new interleaving and incorporates this new execu-
tion into its event graph. Figure 3 presents the resulting
event graph.

From this graph, SATCheck observes that it still has
not explored an execution in which Thread 1 skips the
body of the if statement and may not have evaluated
the uninterpreted functions on all possible input values.
Thus, SATCheck repeats the process. The new solution
from the SAT solver generates the following interleav-
ing: (1) Thread 2 executes the CAS operation in its
trylock, (2) Thread 1 executes the failed CAS oper-
ation in its trylock, and (3) Thread 2 executes the
store in its unlock.

After SATCheck executes that interleaving, it has
explored all possible branches in the program. The
Þnal event graph shown in Figure4 reßects the third
interleaving and shows that all branches are taken in
all directions.

However, it is not immediately obvious from the
event graph that SATCheck has evaluated the uninter-
preted functions on all possible input values. SATCheck
thus generates a new query for the SAT solver. The SAT
solver then reports that it is not possible to evaluate the
uninterpreted function nodes on any new inputs.

At this point, SATCheck terminates, having explored
all possible behaviors for the given program input. Fur-
thermore, SATCheck has produced a SAT model of all
possible executions.

cond branchn(Èi
0

, ..., ikÍ) = Èi
0

, ..., ik, n, 0Í
mergel(Èi0

, ..., il≠1

, ..., ikÍ) = Èi
0

, ..., il≠1

+ 1 Í
loop enter(Èi

0

, ..., ikÍ) = Èi
0

, ..., ik, 0Í
loop exit l(Èi0

, ..., il≠1

, ..., ikÍ) = Èi
0

, ..., il≠1

+ 1 Í
others(Èi

0

, ..., ikÍ) = Èi
0

, ..., ik + 1 Í

Figure 5. Rules for Updating Operation Tuples

3. Event Graph
As SATCheck executes a program, it dynamically builds
an event graph representation for each thread which
captures the threadÕs behavior over observed program
executions. The event graph consists of a set of nodesN
and set of edgesE ™ N ◊ N . Nodes in the event graph
represent dynamically executed program operationsÑ
there is a unique node for each dynamic instance of
a program operation in an execution (even if nodes
correspond to the same static source code operation).
The encoding is SSA-like: all nodes (except phi nodes)
accept inputs from exactly one node in the event graph.

The nodes represent the following program opera-
tions: (1) stores, (2) loads, (3) atomic RMWs, (4) con-
ditional branches, (5) control ßow merges from condi-
tional branches, (6) uninterpreted function invocations,
(7) equals comparisons, (8) loop entries, (9) loop exits,
and (10) phi functions.

When operations in these nodes take values from
variables or temporaries, an event graph node records
the source node for that value. SATCheck uses phi
function nodes to ensure that there is always exactly
one source node for each variable for non-phi nodes.

To merge a new execution into the event graph,
SATCheck must match equivalent operations from dif-
ferent executions. SATCheck does this by deÞning ex-
ecution point (EP) tuples. A thread starts with the
EP Ètid, 0Í. Figure 5 presents the rules for updat-
ing a threadÕs operation tuple during an execution.
SATCheck identiÞes operations at the same EP with
the same event graph node, even across executions.

Event graph nodes record all values that SATCheck
has observed as output for the operation that corre-
sponds to the node. For function nodes, SATCheck also
records, for each previously observed assignment of val-
ues to inputs, the output value of the function.

3.1 Potential Value Set Analysis
The SAT translation process begins with a Þxed point
computation of potential value sets for each variable
over the event graph. These sets enable the translation
to Þx encodings for the generated SAT instance. As
discussed in the previous section, potential value sets
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do not include all possible values for a variable. They
only include all possible values under the current set
of executions. SATCheck lazily generates the remaining
possible values in future iterations as it encounters new
program behaviors that create those values.

Encoding all possible values of program variables
would increase the size of the SAT encoding. However,
encoding only previously-observed values would a!ect
the SAT solverÕs ability to reason about new execu-
tions (requiring more iterations). Thus, we compute a
potential value set for the operation corresponding to
each event graph node that includes (1) values we have
observed for that operation from previous executions,
(2) values that could be propagated by rearranging the
reads-from relation between loads and stores without
evaluating uninterpreted functions on new values, and
(3) values that could propagate through phi functions.
Our computed value sets encoded existing behaviors
and did not require too many needless iterations.

• Load/Stores/CAS: The potential value set for the
value read by a load is the union of the potential
value sets for the values written by all stores (or
RMW operations) that may write to an address that
the load may read from. To determine where a load
may read from or where a store may write to, we use
the potential value sets of the addresses.

• Atomic Add: SATCheck approximates the output
values written at an atomic add using the values
SATCheck has observed from the atomic add in pre-
vious executions. This ensures termination, which
would not otherwise be guaranteed by using the po-
tential value set for the addÕs inputs. This design
choice has a costÑSATCheck must treat new out-
puts of atomic adds as new behaviors that the SAT
solver explicitly searches for executions to generate.

• Functions: The potential value set for the output
of a function is the set of values it has generated in
previous executions.

• Equals: The potential value set for an equals oper-
ation is true or false.

• Phi Functions: The potential value set for a phi
function is the union of the potential value sets of all
of its inputs.

3.2 Partitioning Memory Operations
SATCheck next partitions load, store, and RMW ac-
tions such that if two actions can access the same mem-
ory address, they are in the same partition. For this
computation, we use the set of addresses computed by
the potential value set analysis. All memory operations
from the same partition share the same value and ad-
dress encodings.

4. Encoding the Event Graph into SAT
We next discuss how SATCheck encodes the event
graph into SAT. The encoding has two components: (1)
SATCheck Þrst chooses SAT variables to encode execu-
tions (Section 4.1); and (2) SATCheck formulates SAT
clauses to ensure that executions are valid (Section4.2).

4.1 Representing Executions with SAT
Variables

Encoding Interleavings (Execution Order) For
any two memory operations ni, nj œ N

memory

, where
ni is performed by thread i and nj is performed by
thread j: if i < j, and ni and nj are not ordered by
thread creation or thread joins, then SATCheck creates
a SAT variable vni ,nj that is true if ni is executed before
nj (i.e., ni

sc≠æ nj) and false if nj is executed before
ni. This SAT interleaving variable e!ectively encodes
the execution interleaving. Note that execution graphs
describe the behaviors of multiple di!erent executionsÑ
a given store may not be executed in a given execution.
Our encoding orders all memory operations including
those that are not executedÑmemory operations that
are not executed simply do not have any e!ects.

Encoding Control Flow The event graph summa-
rizes all observed executions. For example, if SATCheck
has explored both sides of a conditional branch, the
event graph will contain the events for both sides. A so-
lution to the SAT formula describes a single execution,
and thus the SAT formula must encode all potential
executionsÕ control ßows.

In a given execution, a conditional branch operation
can either: (1) not be executed, (2) take the same
direction as we have observed in a previous execution,
or (3) take a new direction down the branch (if there
exist unexplored directions for that branch).

Conditional branches in SATCheck are used to model
if statements andswitch statements, and thus support
more than 2 directions. Our encoding uses one state to
model the case that the branch was not executed and
one state for each of the possible directions the branch
has been observed to take. For branches that still have
unexplored directions, our encoding also uses one state
to model the branch taking a new direction.

Thus, for a conditional branch br with m possi-
ble directions of which we have observedn directions,
we encoder = 1 + min( m, n + 1) possible behaviors.
SATCheck usesÁlog

2

(r)Ë SAT variables to model each
of these possible behaviors.

Values of Program Variables As mentioned in
Section 3.1, encoding all possible values for program
variables signiÞcantly increases the size of the encoding.
Instead, SATCheck Þrst computes the potential values
Sv for a variable using the potential value analysis from
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Section 3.1. It then creates Álog

2

(|Sv|)Ë SAT variables
to encode the value of variablev. The SAT variable
encodes the variablevÕs value as an index intoSv.

For the output of uninterpreted functions or atomic
adds, we add a special value toSv to encode new
outputs that have not yet been observed.

Encoding Memory Operations For each memory
operation partition p, we have both a set of addresses
Ap that the operations may access and a set of values
Vp that a load may read or that a store may write.
SATCheck usesÁlog

2

(|Ap|)Ë SAT variables to encode
addresses andÁlog

2

(|Vp|)Ë SAT variables to encode val-
ues. SATCheck encodes addresses and values by the bi-
nary encoding of their index in the corresponding value
set.

Note that memory operations may operate on SAT
variables expressed in di!erent encodings. For example,
a store operation may take its input value and address
from operations that use a di!erent encoding than the
storeÕs memory partition. SATCheck generates implica-
tion constraints to translate between di!erent encod-
ings. Load operations induce a set of SAT variables for
values read and addresses read from, each in an ap-
propriate encoding for the operation. Store operations
induce SAT variables for values written and addresses
written to.

Encoding the Reads-From Relation For each load
¸, SATCheck computes storesR¸ whose potential ad-
dress set has a nonempty intersection with the potential
address set for loaḑ . SATCheck then usesÁlog

2

(|R¸|)Ë
SAT variables to encode which store loaḑ reads-from.
SATCheck encodes the reads-from relation as the bi-
nary encoding of the storeÕs index in the setR¸.

4.2 SAT Clauses Ensuring Valid Executions
We next describe how SATCheck encodes executions in
terms of constraints on the SAT variables described in
the previous section.

Branch Constraints As the event graph summa-
rizes the behavior of all executions SATCheck has pre-
viously explored, a given execution will typically not
execute all the events in the event graph. We next de-
scribe the constraints that capture the path of a given
execution through the event graph.

SATCheck assumes that conditional branches have
a nested structure. Thus at each evente in the event
graph, we can compute a nested stackse of conditional
branches and directions that were taken to reach the
given event node. For each conditional branchb, we
have an input variable vb, and potentially a required
preceding conditional branch b

Õ that took direction d

(e.g., branch b is only reachable when branchb

Õ takes
direction d).

We can encode the behavior of branchb using the
following two constraints:

1. If branch b

Õ did not take direction d, then branch b

was not executed.

2. If branch b

Õ took direction d, then branch b takes the
direction vb speciÞed by its input variable.

Transitive Ordering Constraints for Interleav-
ings We next describe the transitive ordering con-
straints that ensure that the ordering sc≠æ, i.e., the ex-
ecution interleaving, totally orders all memory opera-
tions.

For any three memory operations ni, nj , nk œ N ,
SATCheck generates a set of transitive ordering con-
straints. These constraints capture the following prop-
erty: ni

sc≠æ nj · nj
sc≠æ nk ∆ ni

sc≠æ nk.

Load Read-From Constraints We next describe
several consistency constraints between the reads-from
relation, the sc≠æ total order, the values read by loads
and written by stores, and the addresses accessed by
loads and stores. These constraints are the Þnal compo-
nent of encoding the execution interleavingÑthey en-
sure that the behaviors of memory operations are con-
sistent with sc≠æ (the execution interleaving).

SATCheck begins by computing a set of stores that
each load may potentially read from. For each such
store, SATCheck instantiates the following constraints:

1. If load b reads-from store a, then store a must
be sc ordered before load b:

a

rf≠æ b ∆ a

sc≠æ b

2. A load must read the same value as the store
it reads-from:

a

rf≠æ b ∆ value(a) = value(b)

3. If a load reads from a store, then both the
load and store must access the same memory
address:

a

rf≠æ b ∆ address(a) = address(b)

4. To read from a store, it must have been exe-
cuted:

a

rf≠æ b · was-executed(b) ∆ was-executed(a)

5. There cannot be a conflicting store between a
load and the store it reads from:
a

rf≠æ b ∆ (’c œ Stores. ¬was-executed(c) ‚
¬a

sc≠æ c ‚ ¬c

sc≠æ b ‚ address(c) ”= address(b))

6. Every executed load must read from some
store:

was-executed(b) · is-load(b) ∆ ÷a. a

rf≠æ b
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Load/Store Value and Address Encoding Each
load takes an address as an input and each store takes
both an address and a value as inputs. SATCheck uses
the results of the potential value set analysis to compute
the potential values of the input variable (unless a new
value is generated via a new behavior). For each poten-
tial value of the input variable, SATCheck generates an
implication that, if the input variable has value v, then
the relevant address or value variables for the load or
store must also have valuev. As mentioned above, the
encodings for the memory operation and for the parti-
tions need not march.

For example, for a storeÕs input value
variable v

input

, SATCheck generates impli-
cations of the form value(v

input

) = n ∆
value(storeÕs SAT value variables) = n for all n in
v

input

Õs potential value set, to convert the encoding
of the input variables into the encodings used by the
storeÕs memory partition.

Function Constraints For each uninterpreted func-
tion, SATCheck stores the relation between speciÞc in-
put value assignments and the corresponding observed
output values. For each known assignment of the input
values, SATCheck generates an implication that, if the
input variables match the assignment, then the func-
tionÕs output value matches the previous output.

If an execution generates a new assignment to the
inputs of an uninterpreted function, then none of the
implications apply. The functionÕs output can therefore
take on any value. Recall that for the output of each
uninterpreted function, SATCheck includes a special
value that serves a placeholder for a new output value.

Equals Constraints One assumption of SATCheck
is that either a Þxed program input will lead to a small
set of inputs for uninterpreted functions over the set
of concurrent executions, or that the outputs of the
uninterpreted function on a maximal range of inputs
is interesting. In our experience, this is generally true,
but equality comparisons (if modeled as uninterpreted
functions) can sometimes be an exception.

Concurrent data structure implementations often use
equality comparisons on counters to see whether any-
thing has changed. While such computations can feed
many combinations of values into the comparison, the
only interesting information is whether the inputs to
the comparison are equal.

We therefore provide a built-in comparison operation
which enables SATCheck to avoid generating all possi-
ble inputs for the comparison operation.

Constraints for Atomic Add and CAS opera-
tions To simplify SATCheckÕs treatment of CAS op-
erations, we model a failed CAS operation as a store of
the old value. We then handle CAS operations by com-

bining the techniques we have used for load and store
operations. The key di!erence is that SATCheck gener-
ates a constraint that sets the value written by the CAS
operation to newvalue if the value read matches the
oldvalue, and otherwise simply stores the same value
that the CAS read. We assume a strong CAS operation
here; it is straightforward to modify the encoding to
support weak CAS operations with spurious failures.

Although it is conceptually straightforward to com-
pute the output of an atomic add operation given its
inputs during the potential value computation, doing
so can prevent the potential value computation from
terminating. SATCheck treats atomic add operations
as a combination of a load operation, an uninterpreted
function invocation, and a store operation.

Yields Like many model checkers, SATCheck uses
yields to avoid the problem of unfair schedules caus-
ing the program to loop. Break statements out of
conditionally-executed loops complicate our treatment
of yields: SATCheck may not be aware of their existence
when it discovers a yield. Thus, SATCheck generates a
constraint that an execution should not contain a yield
unless the thread that calls yield Þrst explores a new
branch direction.

4.3 Generating New Behaviors via Goal
Expressions

SATCheck iteratively generates complete event graph
models by recording past program behaviors in the
event graph and generating clauses (goal expressions)
that, when true, indicate executions that demonstrate
new behaviors. There are two ways that the event graph
for a program can be incomplete:

• Untaken Conditional Branch Directions: If no
previous program execution has taken a given direc-
tion of a conditional branch, the event graph will
miss events reachable via that branch direction.

• Unknown Behaviors for Uninterpreted Func-
tions or Atomic Add Operations: If there is
an input assignment to an uninterpreted function or
atomic add operation that can be generated by an
execution and SATCheck has not explored an exe-
cution that generates that input assignment, then
SATCheckÕs model of that uninterpreted function is
incomplete.

For conditional branches, SATCheck generates a goal
expression that evaluates to true if the branch takes a
new direction. For uninterpreted functions, SATCheck
generates a goal expression that evaluates to true if the
function outputs the unknown-output placeholder.

After exploring the entire event graph, SATCheck
generates a SAT formula that is true if at least one goal
expression is true.
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5. Exploring Concrete Executions
After SATCheck encodes the event graph as a SAT
formula, it passes this formula to a SAT solver. If the
SAT solver Þnds that the formula is unsatisÞable, then
the event graph is complete: it is impossible to construct
an interleaving such that uninterpreted functions see
new input value assignments or that branches take new
directions. Thus, SATCheck has explored all reachable
behaviors of the program.

If the SAT solver Þnds a solution to the SAT formula,
the solution can be converted to an execution exhibit-
ing behavior that is not currently modeled. SATCheck
converts the SAT solution into paths through the event
graph for each thread. Each path traverses a set of mem-
ory operations, and the truth assignments for the inter-
leaving variables specify the execution interleaving that
generates the desired new behavior. SATCheck repre-
sents the interleaving as a set ofwait pairs. A wait pair
consists of two memory operations: astop point and a
notify point. A threadÕs execution stops at a stop point
until its partner thread has reached the notify point.

The SATCheck scheduler then performs a concrete
execution using the wait pairs. Note that the interleav-
ing generated by the SAT formula is only guaranteed
to be realizable until the point at which the execution
deviates from previous behavior. After the execution
exhibits a new behavior, there is no guarantee that the
execution will continue to follow the path modeled by
the SAT solution.

To extend a concrete execution, the SATCheck
scheduler executes events from a threadÕs execution un-
til that thread reaches a memory operation. At a mem-
ory operation, the scheduler may choose a new thread.
SATCheckÕs scheduler uses a round robin approach to
select a new thread for execution, respecting constraints
on thread selection imposed by wait pairs.

When an execution deviates from the interleaving
speciÞed by the SAT formula due to a new behavior,
it is possible that all threads may get stuck waiting at
wait pairs. Recall that wait pairs are based on previous
executions and may no longer be valid. Hence, if no
threads are runnable because of wait pair constraints,
SATCheck can ignore these constraints and arbitrarily
pick a thread to run.

Note that SATCheck does not choose which new
behavior to explore ÞrstÑit explores whichever new
behavior the SAT solver discovers. When SATCheck
observes a new behavior, it integrates that behavior into
the event graph, ensuring that the corresponding goal
does not get generated in the future.

6. Extensions
We next describe several extensions we have imple-
mented to the core SATCheck algorithm to improve
performance and to support TSO.

6.1 Field Support
The base algorithm can handle loads and stores to Þelds
through uninterpreted functions. Failing to di!erentiate
the objects containing the generated Þelds will cause
SATCheck to explore executions that actually access
all of the objects that each load or store can access.

Instead, explicitly modeling Þeld accesses can greatly
reduce the number of executions that SATCheck needs
to explore. We have therefore added explicit support
for Þelds. This embeds the address computation di-
rectly into the SAT encoding for the memory access.
SATCheck then only needs to generate executions that
access the Þelds of interesting structures.

6.2 Sharing Between Instances of
Uninterpreted Functions

In many programs, the same uninterpreted functions
are accessed many times during an execution. The base
algorithm doesnÕt share information between di!erent
dynamic instances of the same uninterpreted function
and thus attempts to generate executions that generate
the same inputs for di!erent instances of the same un-
interpreted function. We have added support for unin-
terpreted function identiÞers that signal to SATCheck
that inputs learned from one instance of an uninter-
preted function can be shared with other instances.

6.3 Incremental Solving
Many SAT solvers support incremental solving modes in
which variations of an initial SAT problem can be solved
more e"ciently by leveraging clauses learned from the
initial problem.

SATCheck can leverage incremental solving capabil-
ities by reusing the same SAT encoding to generate ad-
ditional executions that achieve goals that were not cov-
ered by the previous solutions.

While this optimization often improves performance,
it can harm performance. In general SATCheck must
fail to Þnd a solution to a new encoding before it can
terminate as the reused encodings do not incorporate
newly discovered behaviors. If SATCheck encounters
hard incremental SAT problems to solve, the e!ort
may have been better spent on solving the updated
SAT constraints that incorporate the newly learned
behaviors.

6.4 TSO Extension
Modern x86 processors implement the Total Store Or-
dering memory model. In the TSO memory model,
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stores are placed in a store bu!er before main mem-
ory is updated. This allows loads to be reordered above
previous stores from the same thread.

We have implemented TSO support in SATCheck.
The key idea is to separate store operations into two
components: a locally visible store action and a globally
visible update that moves the store from the local store
bu!er to update shared memory. Abdulla et al [2] use
a similar approach to extend DPOR for TSO.

Without loss of generality, SATCheck executes lo-
cally visible store actions immediately after the previ-
ous load operation from the same thread. Because they
are only locally visible, local stores commute with op-
erations from other threads. SATCheck then encodes
a search (to determine when the store should become
globally visible) into the SAT formula.

Loads may be reordered in front of the update ac-
tions for previous stores from the same thread. Thus
we introduce ordering variables between loads and the
update actions from previous stores in the same thread.
We also change the meaning of the existing execution
order variables for threadsÑthese variables now model
when the update is ßushed to shared memory. This does
increase the number of potential executions to explore
as a given thread may now have more than one opera-
tion it can execute beforeÑeither an update from the
store bu!er or a load operation.

TSO also includes a fence that ßushes the store bu!er
and makes all previous stores globally visible. RMW
actions on x86 also have the e!ect of ßushing the store
bu!er. To account for these, we treat loads slightly
di!erently. If the update action for a store has not
been evicted from the store bu!er, later loads from the
same address from that thread must read from the local
store bu!er. Fence operations and RMW operations
have the e!ect of ßushing the store bu!er if executed.
We implement this behavior as an implicationÑif the
fence or RMW action is executed, then we force order
variables for the updates of previous stores ahead of
the fence or RMW to order them before loads after the
fence or RMW.

7. Memory Models
Although SATCheck was implemented to support the
SC and TSO memory models, its techniques are appli-
cable to more relaxed memory models. It is straight-
forward to support processor memory models, as long
as the output of uninterpreted functions must depend
solely on their inputs. Processors must not reorder a
store depending on an uninterpreted function before a
load that provides the functionÕs input.

Handling language memory models is a more com-
plex issue, as the mainstream language memory mod-
els are known to be incompatible with formal reason-

ing [3, 8, 29] due to out-of-thin-air (OOTA) behav-
iors [7]. With the addition of reasonable constraints
that forbid OOTA behaviors, such as those suggested
by [6, 7], it should be possible to adapt the techniques
in SATCheck for use in checking programs against re-
laxed language-level memory models.

8. Test Schedule Generation
An advantage of combining concrete execution with a
SAT solver to guide exploration of executions is that,
even if the resulting program is too complex to fully an-
alyze, the SAT solver will generate schedules that can
be useful for testing. Approaches that are solely based
on SAT will either provide a complete answer or gen-
erate a query that is too complex for the SAT solver
to handle. In that case, the query itself is not of inde-
pendent interest. Stateless model checking approaches
based on DPOR do yield vast numbers of executions,
but many of these executions are redundant.

On the other hand, each execution of SATCheck ex-
plores some new aspect of the input programÑby mod-
ifying the programÕs scheduling, SATCheck either exer-
cises a new control ßow path or produces new and po-
tentially interesting inputs to uninterpreted functions.
These executions could generate speciÞcations of inter-
esting test cases in an appropriate test case speciÞcation
language [12].

9. Instrumentation
While SATCheck builds models of program execu-
tion by observing and guiding its dynamic behavior,
it also requires program instrumentation to propa-
gate dependency information and to identify uninter-
preted functions, branches, and loops. We have imple-
mented a Clang-based frontend which accepts C code
and produces instrumented C code suitable for use with
SATCheck. Our frontend generates all of the instrumen-
tation for the benchmarks that we present in Section10.

Although the current implementation is a research
prototype, it is based on the industrial-strength Clang
frontend. We have started with benchmarks in idiomatic
C and gotten them through our frontend without dif-
Þculty; getting a new benchmark through the fron-
tend may require a modest amount of straightforward
benchmark modiÞcation or frontend development (if the
benchmark uses parts of C that we do not currently
handle).

The instrumentation records provenance information
for values that come from the heap or depend on shared
variables. Before each access to a shared variable, the
instrumenter inserts a call to the SATCheck runtime li-
brary with identiÞers for the accessÕs input state. The
runtime library returns an identiÞer for the output
state. At conditional branches, our instrumenter refac-

10 2015/8/12



tors the condition into a temporary variable if neces-
sary and inserts code to notify the SATCheck runtime
library about the condition and the direction that the
branch eventually takes.

Most importantly, the instrumentation notiÞes the
runtime library about computations on values that
come from shared state. After each computation that
depends on shared state, the instrumenter generates an
accompanying uninterpreted function notiÞcation with
the identiÞers for the computationÕs inputs and out-
puts, thus enabling the creation of function constraints
as described in Section4.2.

Example. We continue with an example demonstrat-
ing the operation of our instrumenter. Figure 6 presents
the uninstrumented code for the read routine for the se-
qlock benchmark in Section10, while Figure 7 presents
the output of our instrumenter. The compiler frontend
inserts MCID variables, which are used by the model
checker to represent dependences.

In Figure 6, line 5 contains an if statement whose
condition needs refactoring. The instrumenter pulls out
the condition into variable cond30 and reports an unin-
terpreted function to the model checker at line9 of Fig-
ure 7. The instrumenter also adds branch annotations
at lines 11 and 15 and merge annotations at lines13
and 32. Line 16 (and many others) are shared variable
access notiÞcations added by the instrumenter. Finally,
the instrumenter inserts a custom uninterpreted func-
tion, MC2 equals, for the equality condition at line 11
of Figure 7.

1 int seqlock_read () {
2 int res ;
3 int old_seq = load_32 (& _seq ); // acquire
4
5 if ( old_seq % 2 == 1) {
6 res = -1;
7 } else {
8 res = load_32 (& _data ) ;
9 int seq = load_32 (& _seq );

10
11 if ( seq == old_seq ) {
12 ;
13 } else {
14 res = -1;
15 }
16 }
17 return res ;
18 }

Figure 6. Uninstrumented seqlock read.

Implications. Our front-end enables the model
checking of realistic concurrent C code to a scale be-
yond that achieved by previous techniques. It requires
that the code to be veriÞed use a Þxed set of primitives
to perform shared memory operations (loads, stores
and rmws, or read-modify-writes). The user must pro-
vide a driver that exercises the functionality of interest
in the code to be checked. The driver must also supply
all needed inputs.

1 int seqlock_read (MCID * retval ) {
2 MCID _mres ; int res ;
3 MCID _mold_seq ;
4 _mold_seq = MC2_nextOpLoad ( MCID_NODEP );
5 int old_seq = load_32 (& _seq ); // acquire
6
7 MCID _br30 ;
8 int _cond30 = old_seq % 2 == 1;
9 MCID _cond30_m = MC2_funct ion_id (31 , 1, ΩÚ

sizeof ( _cond30 ) , _cond30 , _mold_seq );

10 if ( _cond30 ) {
11 _br30 = MC2_branchUsesID ( _cond30_m , 1, ΩÚ

2, true ) ;

12 res = -1;
13 MC2_merge ( _br30 ) ;
14 } else {
15 _br30 = MC2_branchUsesID ( _cond30_m , 0, ΩÚ

2, true ) ;

16 _mres = MC2_nextOpLoad ( MCID_NODEP ) ,
17 res = load_32 (& _data ) ;
18 MCID _mseq ;
19 _mseq = MC2_nextOpLoad ( MCID_NODEP );
20 int seq = load_32 (& _seq );
21 MCID _br31 ;
22 MCID _cond31_m ;
23 int _cond31 = MC2_equals (_mseq , (ΩÚ

uint64_t )seq , _mold_seq , ( uint64_t ) ΩÚ
old_seq , & _cond31_m );

24 if ( _cond31 ) {
25 _br31 = MC2_branchUsesID ( _cond31_m ,ΩÚ

1, 2, true ) ;
26 MC2_merge ( _br31 ) ;
27 } else {
28 _br31 = MC2_branchUsesID ( _cond31_m ,ΩÚ

0, 2, true ) ;
29 res = -1;
30 MC2_merge ( _br31 ) ;
31 }
32 MC2_merge ( _br30 ) ;
33 }
34 * retval = _mres ;
35 return res ;
36 }

Figure 7. Instrumented seqlock read; instrumentation
calls have a MC2 preÞx.

Our use of uninterpreted functions enables the wrap-
ping of arbitrary binary blobs (including library calls).
If some code to be veriÞed calls a binary blob, or library
function, that is known to be pure, then the insertion
of an uninterpreted function after the binary blob will
enable the veriÞcation of that code.

10. Evaluation
We have implemented SATCheck and plan to make it
available as open source. We evaluated the performance
of SATCheck on a number of benchmarks and compare
it to previous work. Our results (see Table1) show that
SATCheck greatly outperforms previous work: it can
explore larger problem sizes and runs more quickly than
the related work. We ran our evaluations on identically
conÞgured Ubuntu Linux 14.04 machines with Intel
Xeon E3-1246 v3 CPUs and 32GB of RAM. We ran
each tool on each benchmark with a timeout of 1 hour.
We wrote the benchmark drivers so that they would
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take no inputs; the behavior of some benchmarks do
depend on scheduling, i.e. on whether a lock is available
or not at the time of the request. Most of the benchmark
drivers start 2 threads; exceptions are the CAS spinlock,
where we started up to 90 threads, and seqlock, where
we used 3 threads. Some runs failed in less than an hour
(e.g. due to solver problems). This section presents the
results from the sequentially consistent (SC) memory
model. Appendix A presents the results from the Total
Store Ordering (TSO) model.

We compare SATCheck with:

1. CDSCheckerÕs implementation [24] of Flanagan and
GodefroidÕs dynamic partial order reduction al-
gorithm [16] that incorporates support for sleep
sets [17] as described in the addendum [15]. We
use sequentially consistent atomic operations in CD-
SChecker, implemented directly using DPOR and
sleep sets.

2. NidhuggÕs implementation of source DPOR [2]. We
present results for both NidhuggÕs SC and TSO
memory models.

3. An enhanced version of CheckFence that has been
extended to support atomic addition operations
to e"ciently support our benchmarks. CheckFence
uses an iterative lazy algorithm to determine loop
bounds. We conÞgured CheckFence for the SC mem-
ory model.

We evaluated SATCheck on these benchmarks:

CAS spinlock This benchmark (seen in Section2)
uses a compare-and-swap instruction to acquire a lock,
and a store instruction to release the lock.

To test this benchmark we create two threads that
both attempt to acquire and then release the lock.
We vary the number of times each thread attempts to
acquire and release the lock from 1 time up to 250 times.

Figures 8 and 13 present the results for this bench-
mark. For SC, SATCheck was able to model check a
test in which 2 threads attempted to acquire and re-
lease a lock 250 times. We do not report results for
CheckFence for more than 60 trylock/unlock pairs as it
was unable to analyze the execution for 70 pairs. The
DPOR implementations were only able to scale up to 8
trylock/unlock pairs.

We also explored scaling up the number of threads
for this benchmark. See Figure 18 in the Appendix
for results: SATCheck scales similarly when either data
structure ops per thread or number of threads increase.
In one hour, SATCheck veriÞed a 90-thread run.

MSQueue We ported the Michael & Scott lock-free
queue [22] from CheckFenceÕs version to CDSChecker
and SATCheck. The benchmark starts two threads.
One thread enqueues values, while the other dequeues

����

��

���

����

�����

������

��� ��� ������ ��� ������ ��� ���� ���� ���� ����

��
�
��
��
�

�����������������������������

�����������
�����������

��������
��������

Figure 8. SC CAS spinlock: SATCheck scales to 4◊
more data structure operations and runs 10◊Ð347◊
faster than next best tool, CheckFence. (Lower is better,
y-axis is log scale.)
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Figure 9. SC MSQueue: SATCheck scales to 62%
more data structure operations in an hour and runs up
to 17◊ faster than Nidhugg. (Lower is better, y-axis is
log scale.)

values. The standard version makes extensive use of
pointer arithmeticÑoutside of CheckFenceÕs limited
support for pointer arithmetic. Although SATCheck
supports the standard version, we report results from
the ported version, which omits the pointer arithmetic,
to enable comparisons with CheckFence.

Figures 9 and 14 present results for MSQueue.
SATCheck was able to verify 13 operations per thread
within the hour. CDSChecker was able to verify 7 op-
erations per thread and Checkfence and Nidhugg were
able to verify 8 operations per thread within the allo-
cated hour.

Linux reader-writer lock A reader-writer lock al-
lows multiple readers or a single writer to hold the lock.
No reader can share the lock with a writer. We ported
our reader-writer lock benchmark from an implementa-
tion in the Linux kernel. However, the kernel implemen-
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Table 1. SATCheck scales to larger maximum problem sizes than previous tools.

CheckFence Nidhugg SATCheck
Max problem sizes for: CDSChecker (SC) (TSO) (SC) (TSO) (SC) (TSO)
CAS Spinlock 8 40 40 8 8 250 100
MSQueue 7 8 8 8 8 13 13
Linuxrwlock 7 15 15 6 6 20 20
Dekker 5 10 10 5 4 30 40
Seqlock 3 25 25 3 3 60 60
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Figure 10. SC Linux RW Lock: SATCheck scales to
33% more data structure operations than CheckFence
and takes about the same time, except at 15 operations,
where SATCheck is 3.8◊ faster. (Lower is better, y-axis
is log scale.)

tation is written in assembler for various platforms. We
translated the implementation into standard C code.

To test the reader-writer lock, our test driver runs
two identical threads, with a single rwlock t protecting
a shared variable v. Each thread repeatedly does a
trylock on the lock and then frees it.

CheckFence was unable to run the unmodiÞed ver-
sion of the Linux reader-write locks as the bias value
used by the locks exceeded the built-in range threshold
for CheckFence. The reported results for CheckFence
are for a modiÞed benchmark version that uses a smaller
bias.

Figures 10 and 15 present the results for this bench-
mark. SATCheck can analyze 20 pairs. CDSChecker can
analyze 7 trylock/unlock pairs, Nidhugg 6, and Check-
fence 15 pairs within the allocated hour.

Dekker Dekker implements a simple critical section
using DekkerÕs algorithm [31], where a pair of non-
atomic data accesses are protected from concurrent
data access. Our driver for this benchmark is simply
two threads each repeatedly calling the critical section
routine. Figures 11 and 16 present results for Dekker.
SATCheck can verify up to 30 operations, while Check-
Fence only veriÞes up to 10 operations; beyond that
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Figure 11. SC Dekker Critical Section: SATCheck
scales to 3◊ more operations than CheckFence and runs
10◊Ð86◊ faster. (Lower is better, y-axis is log scale.)

number, it returns ÒInconclusiveÓ. CDSChecker and
Nidhugg were only able to check up to 5 operations
per thread within the allocated hour.

Seqlock Seqlocks are used in Linux to avoid writer
starvation. They allow writers to update without wor-
rying about readers and thus allow the kernel to com-
municate with user-space applications.

To test this benchmark, we run one writing thread
and two reading threads. Figure12 and 17 present the
results. The seqlock benchmark scales to fewer data
structure operations per thread because there are more
threads. SATCheck could verify up to 60 operations
per thread. CDSChecker and Nidhugg were only able to
verify up to 3 operations per thread, while Checkfence
could verify up to 40 operations per thread. At 40
operations per thread, SATCheck was 2.6◊ faster than
Checkfence.

Discussion. Our results show that SATCheck runs
much faster and hence scales better than previous tools.
The main reason for its performance is that it uses a
concolic execution approach to Þnding novel behaviors.
It therefore does not need to explore redundant exe-
cutions, nor does it need to encode values that do not
occur in observed executions.
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Figure 12. SC Linux Seqlock: SATCheck scales to
1.5◊ more data structure operations than CheckFence
and runs 2◊Ð9◊ faster. (Lower is better, y-axis is log
scale.)

Because most of SATCheckÕs execution time is in the
SAT solver, reported running times arenÕt perfectly reg-
ular. Generally, its performance scales as expected when
we increase the number of data structure operations.

11. Related Work
In the Introduction, we described three approaches
to model checking concurrent data structures: explicit
state, stateless, and SAT-based. Our approach is SAT-
based but uses concrete program executions to guide a
search for novel behaviors. State-based model checkers
such as SPIN [19] can debug concurrent data structure
implementations. Inspect combines stateless and state-
ful model checking to model-check C and C++ code [30,
33, 34]. Related approaches includeChess [23], which
Þnds and reproduces concurrency bugs in C, C++, and
C# by systematically exploring thread interleavings.
However, it can miss concurrency bugs as it does not
explore all thread interleavings.

CheckFence [9] is the most closely related approach
to ours. It focuses on verifying concurrent data struc-
ture implementations for relaxed memory models, in-
cluding usage of memory fences. The primary di!er-
ence between our approach and CheckFence is that our
approach uses the SAT solver to guide concrete pro-
gram executions, while CheckFence encodes entire ab-
stract program executions with SAT. Due to its static
approach, CheckFence must lazily unroll loops when
the SAT solver indicates that it is possible for a loop
to execute more times than the current unrolling. Like
us, CheckFence also uses a range analysis to compute
ranges for variables. However, because CheckFenceÕs
range analysis operates on the static program, we found
that it often computes too large of a range for a vari-
able. CheckFence then refuses to analyze the program.
Also, as CheckFence must encode the entire program

into SAT, it requires source for the entire program, and
the program must be amenable to compilation to SAT.

MemSat [28] uses constraint solvers to reason about
programs under weak memory models. It targets very
complex memory models (Java Memory Model) and
very simple programs. Our work explores a new ap-
proach for handling large test cases.

DPOR [16] and ODPOR [1] are two dynamic ap-
proaches to partial order reduction that reduce the
number of program executions to be explored by a state-
less model checker. These approaches avoid exploring
executions that can be generated by reordering com-
muting operations in some other explored execution.
Recent work has extended the DPOR algorithm to han-
dle the TSO and PSO memory models [2, 35]. Our work
can be viewed as exposing the interleaving operations
to the SAT solver, iteratively building a model of the
executions, and letting the SAT solverÕs heuristics avoid
the redundant behaviors (rather than doing the partial
order reduction via reordering ourselves). Alternatively,
our work can also be viewed as dynamically generating
a SAT formula that describes all possible executions.

Researchers have recently proposed maximal causal-
ity reduction to improve on POR [ 20]. The key insight
behind maximal causality reduction is that a threadÕs
behavior does not depend on the speciÞc stores that the
threadÕs loads take its values from, but rather the values
that these loads read. This approach uses a constraint
solver to generate executions in which the loads of a
thread read di!erent combinations of values than pre-
viously explored executions. It conservatively assumes
that any store may depend on previous loads, and thus
must explore vastly more executions that SATCheck.
The author has not made an implementation available,
but a quick calculation reveals that it will be many or-
ders of magnitude slower than SATCheck. For example,
for the 250 pair spinlock example that SATCheck an-
alyzes in 4.5 minutes, the maximal causality reduction
approach would need to explore at least 2250 executions.

Researchers have developed a tool based on Nitpick
for translating C/C++11 code to SAT to model check
litmus tests [5]. Litmus tests are small tests that con-
tain only a handful of memory operations. Their work
focuses on automatically building SAT formulas directly
from a formalization of the memory model; it does not
focus on tool performance.

Industry tools like IBM ConTest tool support testing
concurrent software. While such tools may increase the
likelihood of Þnding races, they are not exhaustive.
Like the related work in our Þeld, SATCheck deÞnitely
explores all behaviors for a given input.

Several tools detect data races in code that uses stan-
dard lock-based concurrency control [11, 13, 14, 21, 26].
These tools generally take one of two approaches: (1)
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they verify that all accesses to shared data are pro-
tected by a locking discipline or (2) they verify that a
happens-before relation separates conßicting accesses.
Another way to mitigate potential data races is the
approach proposed by stable and deterministic multi-
threading systems [4, 10, 25, 32], which constrain the
allowed interleavings. Work on data race detection and
stable multithreading systems is largely orthogonal to
SATCheck, since SATCheck seeks to verify data struc-
tures that leverage low-level atomics to access memory
without the use of locks.

12. Conclusion
Threads commonly communicate with each other
through concurrent data structures. Developing correct
concurrent data structure implementations is known to
be challenging and testing tools are critical for Þnding
implementation bugs.

SATCheck leverages concrete executions to build an
event graph model of concurrent code and uses a SAT
solver to guide executions towards discovering novel
behaviors. SATCheck scales better than other tools that
leverage concrete execution while avoiding the need to
compile the entire program to SAT.
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A. TSO Results
In Section 10 we presented results under the sequen-
tially consistent (SC) memory model. We have also
collected results for Total Store Ordering (TSO) and
present them in Figures13 through 17of this Appendix.

B. Scaling Threads
In Section 10 we presented results that keep the number
of threads Þxed and scale the number of operations per
thread. We also explored scaling the number of threads
for the CAS Spinlock: each thread performs one pair of
lock and unlock operations.

Figure 18 presents the result of this experiment.
The results show that SATCheck scales well with the
addition of extra threads.

C. Soundness
Theorem C.1 (Reachability) . If there exists some ex-

ecution e that can reach a statement st, then SATCheck

will explore some execution that executes statement st.
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Figure 14. TSO MSQueue Results (lower is better, y-
axis is a log scale)
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Figure 15. TSO Linux RW Lock Results (lower is
better, y-axis is a log scale)

����

��

���

����

�����

������

�� �� �� �� �� �� �� �� ��� ��� ��� ��� ���

���
���

���
���

���
�

�����������������������������

�����������
��������
��������

Figure 16. TSO Dekker Critical Section Results
(lower is better, y-axis is a log scale)
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Figure 17. TSO Linux Seqlock Results (lower is bet-
ter, y-axis is a log scale)
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Figure 18. SATCheck analyzes a 90-thread run of
Linux Locks (SC) in one hour. (lower is better, y-axis
is a log scale)

Proof Sketch. By contradiction. Suppose that
SATCheck does not explore any execution that
executes statement st. Consider the execution e.
There must exist some conditional branch in e that
SATCheck has not explored, or it would have reached
the statement st.

Consider the Þrst such unexplored conditional
branch b or unexplored input i to an uninterpreted func-
tion in execution e. By the design of SATCheck, the
branch b or input i is a goal to SATCheckÕs sat for-
mula. Consider an execution preÞxeÕ of the execution
e up to the branch br or input i. This execution preÞx
satisÞes the branchbr or input i goal of the generated
SAT formula Ñ up until the new event, all of e

ÕÕs be-
havior is modeled by the event graph. The clauses that
model the event graph after the preÞxe

Õ are all struc-
tured as implications from past events to future events.
If none of the conditions in the implications on a past
event are satisÞed, the constraint is trivially true.

Thus there must be solution to the SAT constraints
that drives SATCheck to produce the execution preÞx
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e

Õ and thus SATCheck exploreseÕ unless it Þrst explores
some other execution that reachesb or i.

Theorem C.2 (Reachability) . If there exists some ex-

ecution e that generates input i to uninterpreted func-

tion f , then SATCheck will explore some execution that

generates input i to uninterpreted function f .

Proof Sketch. Same proof as TheoremC.1.
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