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Abstract
Many concurrent data structures are initially designed for the
sequential consistency (SC) memory model. Developers of-
ten then implement these algorithms on real-world systems
with weaker memory models by adding sufficient fences to
ensure that their implementation on the weak memory model
exhibits the same executions as the SC memory model.

Recently, the C11 and C++11 standards have added a
weak memory model to the C and C++ languages. Devel-
oping and debugging code for weak memory models can be
extremely challenging. We present AutoMO, a framework to
support porting data structures designed for the SC memory
model to the C/C++11 memory model. AutoMO provides
support across the porting process: (1) it automatically in-
fers initial settings for the memory order parameters, (2) it
detects whether a C/C++11 execution is equivalent to some
SC execution, and (3) it simplifies traces to make them eas-
ier to understand. We have used AutoMO to successfully in-
fer memory order parameters for a range of data structures
and to check whether executions of several concurrent data
structure implementations are SC.

1. Introduction
With the wide scale deployment of multi-core processors,
software developers must write parallel software to lever-
age the benefits provided by additional cores. While it is
relatively straightforward to use locks to protect concur-
rent data accesses, locks are often an impediment to writing
code that effectively scales to many cores. A consequence
of Amdahl’s law is that even small regions of code that
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use coarse grain locking can significantly limit the overall
speedup achieved from parallelism.

Careful data structure design can improve scalability by
supporting multiple simultaneous operations and by reduc-
ing the time taken by individual operations. Researchers and
practitioners have developed a wide range of concurrent data
structures designed to meet these goals [12, 27, 30, 36–
38, 48].

Concurrent data structures often use a number of so-
phisticated techniques including the careful use of low-level
atomic instructions (e.g. compare and swap (CAS), atomic
increment, etc.), careful orderings of loads and stores, and
fine-grained locking. For example, while the standard Java
hash table implementation can limit program scalability to
a handful of processor cores, carefully designed concurrent
hash tables can scale to many hundreds of cores [30]. Tra-
ditionally, developers had to target their implementations to
a specific platform and compiler as the implementations re-
lied on low-level platform details and often required coding
components in assembly.

In 2011, the C/C++ standardization committees extended
the C/C++ language standards with support for low-level
atomic operations [2, 3, 13], which allow experts to craft
efficient concurrent data structures that avoid the overheads
of locks. The new C/C++ memory model provides memory
operations with weaker semantics than the sequential consis-
tency (SC) memory model to support real-world processors
and compiler optimizations.1

1.1 Implementing Data Structures
Designing data structures directly for a weak memory model
is extremely difficult. Weak memory models admit a num-
ber of surprising and non-intuitive behaviors [10]. A num-
ber of researchers have hypothesized that the predominant
development model for concurrent data structures on weak
memory models is that algorithm experts first design data
structures for the much stronger, more intuitive SC mem-
ory model [14, 17]. Developers then implement the SC data
structure design on a weaker language or hardware mem-
ory model by adding sufficient fences or memory order con-

1 We are somewhat relaxed in our usage of the abbreviation SC and also use
it to mean sequentially consistent.



straints to ensure that behaviors that arise from relaxed mem-
ory models do not break the data structure.

Moreover, we expect that developers will commonly use
the following development methodology:

1. Developers will find an already existing concurrent data
structure design that solves the problem at hand or design
one based on their intuitions. Note that such designs often
assume the SC memory model.

2. The developers may make minor adaptations to the basic
design to fulfill their needs.

3. The developers then attempts to tune the memory or-
der parameters to ensure that their implementation only
admits the SC executions assumed in the original de-
sign. Although C++11 provides SC in the absence
of data races by default (all memory accesses use
memory order seq cst), overly restrictive memory
order constraints can incur significant performance over-
heads, and thus it is typically preferable to use the weak-
est constraints that still guarantee correctness.

A key challenge is avoiding mistakes in Step 3. There
is anecdotal evidence that getting Step 3 correct is difficult
(while optimizing for performance). Solving the problem in
Step 3 for the Chase-Lev deque was a subject of an academic
paper [28], and the published code in that paper for the
C11 memory model contained errors in the memory order
constraints [40].

We present an algorithm that takes as input a data struc-
ture implementation and a set of test cases and then automat-
ically infers memory order parameters for the data structure
that ensure that all executions of these test cases are equiva-
lent to executions under the SC memory model.

1.2 Debugging Data Structures
The C/C++ memory model is formalized in terms of a reads-
from (rf ) relation that maps stores to the loads that read-from
them [2, 3, 9]. The reads-from relation is then constrained by
a number of constraints that ensure cache coherence, define
the semantics of synchronization, and implement various
memory order constraints.

Researchers have developed a range of testing tools for
exploring the behaviors of code under the C/C++ mem-
ory model including CDSChecker [40], CPPMEM [9], and
Relacy [49]. These tools dump execution traces2 that list
the memory operations and tell which store each load reads
from. These traces can be very difficult to understand as they
contain non-intuitive behaviors including (1) loads that read
from stores older than the last store to the location and (2)
loads that read from stores that appear after the load.

When a bug is discovered in a data structure implemen-
tation, these tools provide the developer with an execution
trace that exposes the bug. To debug the implementation, it

2 We use trace to informally refer to the order in which these tools print out
memory operations. The C/C++ memory model does not define a trace.

is often important to understand whether the buggy behav-
ior arises because of the relaxed memory model or the trace
is allowed by the SC memory model. Moreover, if the de-
veloper ported a data structure designed for the SC memory
model, the presence of any execution that is not allowed by
the SC memory model is worth investigating further.

Unfortunately, it can be surprisingly difficult to figure out
whether a given trace (even relatively short with tens of op-
erations) is allowed by the SC memory model. Even if loads
may read from stores other than the last prior store to the
same location, it may be possible to permute the operations
such that the trace is consistent with the SC memory model
while maintains the same reads-from relation.

Even if parts of a trace are prohibited by the SC memory
model, rewriting the trace to be mostly SC with only a few
violations eliminates the need to jump all over the trace when
examining which store a load reads from.

It is known that the problem of checking whether an ex-
ecution is SC even when the reads-from mapping is given is
NP-complete[24, 25], and hence the complexity of checking
whether a C/C++ trace is allowed by the SC memory model
is NP-complete if the order of stores to a given location is
not known.

We present an algorithm that efficiently solves the prob-
lem for traces produced by real-world concurrent data struc-
tures. We prove the correctness of our algorithm and evaluate
it on a number of C/C++ data structure implementations.

Our SC checking approach is not specific to the C/C++
memory model — we essentially check whether there ex-
ists an SC trace that is consistent with the reads-from re-
lation. Therefore, our approach generalizes to all axiomatic
memory models that are formalized in terms of a reads-from
relation. Of course, for stronger memory models it may be
possible to lower the complexity bound of checking whether
a trace is allowed by the SC memory model.
1.3 Contributions
This paper makes the following contributions:

• Memory Order Parameter Inference: It presents an ap-
proach that automatically infers memory order parame-
ters, automating one of the more difficult aspects of using
the C/C++ memory model.

• Sequential Consistency Trace Checking: It presents
a new technique that checks whether a given trace un-
der the C/C++ memory model is consistent with the SC
memory model. It primarily targets unit testing and de-
bugging concurrent data structures implementations.

• Formalization: It proves the correctness of the SC trace
checking algorithm.

• Trace Simplification: It explores several approaches for
reordering traces to make it easier for developers to un-
derstand an execution. When a trace is not allowed by
the SC memory model, our algorithm prints a more read-
able trace with fewer gratuitous SC violations and guar-



antees that the SC violations are not flagged in an obvi-
ously wrong place.

• Evaluation: It presents an evaluation of the algorithm
on traces of several real-world data structures. It found
two bugs that it automatically fixed for one benchmark,
one incorrect claim in an academic paper and it infers
no worse (sometimes better) memory order parameters
than the original manually developed versions for most
benchmarks (9 out of 11).

2. Overview
Choosing memory order parameters often involves trading
off weaker semantics for improved performance. For exam-
ple, a wide range of C/C++ data structures implementations
admit some behaviors that are prohibited by the sequentially
consistent memory model. For example, queue implemen-
tations often only provide release/acquire synchronization
between the enqueuing and dequeuing threads. Non-SC be-
haviors can be observed in test cases involving multiple such
queues.

A key observation of this work is that although many data
structure implementations do admit non-SC executions, this
often arises only when the data structures are composed with
others. Many practical data structure implementations are in-
ternally SC — such data structure implementations can view
their internal behavior as sequentially consistent and blame
any non-SC behaviors that are exposed by compositions on
the external data structures.

All executions involving a single instance of an internally
SC data structure in isolation are equivalent to SC execu-
tions. The key insight is that internally SC suffices to avoid
breaking the internals of a data structure design.

2.1 Inference of Memory Order Parameters
Developers often have given some thought to the corner
cases for their implementations. They know that resizing of
concurrent data structures, dequeuing the last element, or
dequeuing from an empty queue are all cases that must be
given careful consideration. They sometime even write unit
tests to cover such corner cases.

Many developers do not understand the subtle details
of the C/C++ memory model. Reading developer blogs or
StackOverflow threads regarding the topic reveals numerous
examples of sophisticated developers who do not understand
the key elements of the C/C++ memory model.

We have designed AutoMO to address this issue. Au-
toMO takes as input a data structure and a set of unit tests.
It then outputs a set of assignments to the memory order pa-
rameters that make all of the test case executions SC.

Figure 1 presents AutoMO’s basic approach. The ap-
proach taken is structured as follows:

1. Initialize the memory order parameters using the input
parameter assignments generated from the previous test
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Figure 1. AutoMO system overview

case. If this is the first test case, then AutoMO initializes
the memory order parameters to relaxed.

2. Run the unit test using the CDSChecker model checking
tool to exhaustively explore the legal executions of the
test case.

3. Check each execution to detect whether the execution is
equivalent to some SC execution.

4. If the execution is not equivalent to some SC execution,
determine one or more memory operations to blame for
the non-SC behavior. While AutoMO is not always guar-
anteed to blame the correct memory operation, it is guar-
anteed to blame a memory operation that can be repaired.
Blaming a set of memory operations that are all already
specified to be memory_order_seq_cst is not help-
ful as they cannot be strengthened.

5. Leverage repair patterns to strengthen memory order pa-
rameter assignments to fix the problem. In general, prob-
lematic executions cannot always be fixed with a single
repair action. However, AutoMO repair actions guaran-
tee that they will eventually ensure that the same mem-
ory operations cannot be blamed again in the future. This
suffices to guarantee that AutoMO will always converge
on a repair for a given execution.

6. After a given test case only exhibits SC executions, move
to different unit tests.

7. When all test cases are completed, AutoMO outputs the
final parameter assignments.

A key challenge behind AutoMO was developing an anal-
ysis that can quickly check whether an execution is SC, re-
organize non-SC executions to be mostly-SC, and automati-
cally discover operations that are likely to be responsible for
introducing non-SC behaviors into an execution. These core
technologies also have the potential to be useful for debug-
ging or understanding concurrent data structures. Checking
SC can identify executions that may be worth more careful
inspection and presenting non-SC executions as mostly SC
(plus blaming the appropriate operations) can greatly sim-
plify understanding executions under weak memory models.



3. Definitions
We begin with a brief summary of the relations that com-
prise the formalization of the C/C++ memory model. We
then continue with several definitions that we make use of
throughout the paper.

3.1 Summary of C/C++ Memory Model
The C/C++ memory model describes a series of atomic oper-
ations and the corresponding allowed behaviors of programs
that utilize them. Note that throughout this paper, we primar-
ily discuss atomic memory operations that perform either a
write (referred to as a store or modification operation) or a
read (referred to as a load operation). The discussion gen-
eralizes to operations that perform both a read and a write
(read-modify-write, or RMW, operations). Any operation on
an atomic object will have one of six memory orders, each
of which falls into one or more of the following categories.

seq-cst: memory_order_seq_cst – strongest memory
ordering, there exists a total order of all operations with
this memory ordering. Loads that are seq cst either read
from the last store in the seq cst order or from some store
that is not part of seq cst total order.

release: memory_order_release, memory_order_
acq_rel, and memory_order_seq_cst – a store-
release may form release/consume or release/acquire
synchronization. When a load-acquire reads from a store-
release, it establishes a happens-before relation between
the store and the load.

consume: memory_order_consume – a load-consume
may form release/consume synchronization.

acquire: memory_order_acquire, memory_
order_acq_rel, and memory_order_seq_cst
– a load-acquire may form release/acquire synchroniza-
tion.

relaxed: memory order relaxed – weakest memory
ordering. The only constraints for relaxed memory oper-
ations are a per-location modification order total ordering
that is equivalent to cache coherence.

The C/C++ memory model expresses program behavior
in the form of binary relations or orderings. We briefly sum-
marize the relations:

• Sequenced-Before: The evaluation order within a pro-
gram establishes an intra-thread sequenced-before (sb)
relation—a strict preorder of the atomic operations over
the execution of a single thread.

• Reads-From: The reads-from (rf ) relation consists of
store-load pairs (X,Y ) such that Y takes its value from
the effect of X—or X

rf−→ Y . In the C/C++ memory
model, this relation is non-trivial, as a given load oper-
ation may read from one of many potential stores in the
program execution.

• Synchronizes-With: The synchronizes-with (sw) rela-
tion captures the synchronization that occurs when cer-
tain atomic operations interact across threads.

• Happens-Before: In the absence of memory opera-
tions with the consume memory ordering, the happens-
before relation is the transitive closure of the union of the
sequenced-before relation and the synchronizes-with re-
lation.

• Sequentially Consistent: All operations that declare the
memory_order_seq_cst memory order have a total
ordering (sc) in the program execution.

• Modification Order: Each atomic object in a program
has an associated modification order (mo)—a total order
of all stores to that object—which informally represents
an ordering in which those stores may be observed by the
rest of the program.

Program executions directly observe the reads-from re-
lation by observing the values that loads return. The
synchronizes-with, happens-before, sequentially consistent,
and modification order orderings constrain the reads-from
relation and are only indirectly observable by the effect that
they have on the reads-from relation. As the SC memory
model is strictly stronger than the C/C++ memory model, if
we can find an SC execution trace that is consistent with both
the reads-from relation and the sequenced-before relation of
a C11 trace, then any constraints related to the remaining
relations will also be satisfied.

Specifically, the synchronizes-with and happens-before
relations are trivially satisfied by any SC trace as executions
in the SC memory model essentially behave as if every load
synchronizes with the store from which it reads. The sequen-
tially consistent relation is satisfied because the SC trace re-
quires all operations to have a total order that is consistent
with the reads-from and sequenced-before relations. A con-
sistent modification ordering exists for each memory loca-
tion as the SC trace ensures that a total ordering exists for
all operations. Thus, the subsequence of the SC total order-
ing containing all operations for a given memory location
gives a consistent modification order for that memory loca-
tion. Hence, the rest of this paper can focus on the prob-
lem of finding an SC ordering that is consistent with just the
sequenced-before ordering and the reads-from relation.
3.2 Formalizing Traces
Figure 2 presents a simplified version of the memory oper-
ations that can appear in the input C/C++ execution traces.
C/C++ traces have two basic types of operations: StoreOps
and LoadOps. It is possible for a single atomic operation to
perform both a load and store — such RMW operations are
members of both sets. The input trace τ specifies both the
intrathread sb partial order and the reads-from rf partial or-
der. We can safely assume that the order of operations in the
input trace τ is consistent with the intrathread ordering sb,
but in general it may not be consistent with the reads-from



s ∈ StoreOps = {store} × Address× Value ∪
{rmw} × Address× Value

l ∈ LoadOps = {load} × Address ∪
{rmw} × Address× Value

op ∈ Ops = StoreOps ∪ LoadOps

Figure 2. Sets of memory operations in the input trace

sb : Ops× Ops

rf : StoreOps× LoadOps

τ = τ(1); ...; τ(i); ...; τ(n),

where τ(i) ∈ Ops and the trace τ is consistent with the

intrathread execution order.

Figure 3. Relationships that define the input trace

SC(τ) = ∀i, s, 1 ≤ i, s ≤ n,
(〈τ(s), τ(i)〉 ∈ rf⇒ s < i) ∧
(∀j.s < j < i, τ(j) /∈ StoreOps ∨
address(τ(j)) 6= address(τ(i))))

preserves sb(τ) = ∀i, j, 1 ≤ i, j ≤ n,
〈τ(i), τ(j)〉 ∈ sb⇒ i < j

Figure 4. Trace predicates. The first predicate checks that
each loads reads from a store that precedes the load and that
there are no stores to the same address between the original
load and the store. The second predicates checks that the
reordering preserves the intrathread ordering.

rf ordering. Figure 3 presents these two partial orders along
with the trace τ . The notation τ(i) indicates the ith operation
in the trace τ .

The output of the algorithm is an execution trace τisc that
totally orders the Ops to be consistent with the SC memory
model and the intrathread sb ordering. The algorithm func-
tions by inferring a partial order isc, which is denoted as the
ordering constraints that the SC memory model places on
the operations and shown in Figure 8. Note that the order isc
is distinct from the sc order defined by the C/C++11 mem-
ory model. Figure 4 presents the predicate SC that checks
that each load in the trace reads from the last prior store to
the same memory location and hence that trace is consistent
with the SC memory model.

3.3 Checking Sequential Consistency
A key component of our approach is checking whether there
exists a reordering φ of the operations in a C/C++ trace
that is consistent with the sequenced-before relation such
that the SC predicate is true for the reordered trace τφ. If
such an ordering exists, we say that the original trace τ is
sequentially consistent.

Definition 3.1. (Reordering) A reordering of a trace τ is
a permutation φ on {1, ..., n} and the reordered trace τφ is
τ(φ(i)).

Definition 3.2. (SC) A trace τ is sequentially consistent
(SC) if there exists a reordering φ such that SC(τφ) and τφ

is consistent with the original intrathread ordering sb (i.e.,
satisfies the predicate preserves sb).

4. Example
Figure 5 presents a single-producer single-consumer queue
example that we will use to illustrate our approach. Lines 1
through 8 define a node struct with an atomic field index
and an atomic field next pointing to the next node.
Lines 10 through 32 define the spsc queue class to main-
tain a head and a tail pointer. The enqueue() method
initializes a new node, reads the tail pointer, stores the
new node to the tail’s next field, and updates the tail
pointer. The dequeue() method reads the head, reads its
next field, and if it is not NULL, updates the head and
returns the value of the index field.

This data structure is trivially correct under the SC mem-
ory model, however, with the memory order parameters in
the Figure, it is buggy under C/C++11. Consider the test case
from Lines 34 through 44. This test case has two threads.
One thread updates an array element and enqueues an index
of 0, and the other thread tries to dequeue an item, and if
successful, loads the array element of the dequeued index.

However, without establishing proper synchronization,
this implementation can have non-SC behaviors and lead to
the buggy behavior of reading uninitialized values. We use
this as a running example throughout the paper to present
how AutoMO checks whether traces are SC, simplifies non-
SC traces and then automatically infers memory order pa-
rameters.

5. SC Analysis Algorithm
Our algorithm takes as input a C/C++11 execution trace and
determines (1) whether the trace is SC and if so (2) generates
a reordered trace that satisfies the SC predicate.

As an example, Figure 6 presents a trace of one of the exe-
cutions of the test case shown in Figure 5. In this trace, while
the atomic load in Operation 2 (from Line 25) reads from the
atomic store in Operation 7 (from Line 19), the atomic load
in Operation 5 (from Line 28) reads from an uninitialized
value instead of from the atomic store in Operation 4 (from
Line 4). We denote Operation 0 as the store of uninitialized
values, and we assign 0 to uninitialized values. While Op-
eration 2 (reads from a later store) and Operation 5 (reads
from an old store) obviously violate the SC predicate in this
trace, we cannot rely on this fact to trivially decide whether
the execution is SC or not since in general it might be pos-
sible to shuffle the order of the statements such that their
behavior is consistent with the SC memory model while still
maintaining the same reads-from relation.

Therefore, we need a systematic approach to check
whether traces are SC. We begin by computing the partial



1 struct node {
2 node(int idx) {
3 next.store(NULL, memory_order_relaxed);
4 index.store(idx, memory_order_relaxed);
5 }
6 atomic<node*> next;
7 atomic<int> index;
8 };
9

10 class spsc_queue {
11 node *head, *tail;
12 public:
13 spsc_queue() {
14 head = tail = new node(-1);
15 }
16 void enqueue(int idx) {
17 node* n = new node(idx);
18 // Store of next field should be release
19 tail->next.store(n, memory_order_relaxed);
20 tail = n;
21 }
22 bool dequeue(int *idx) {
23 node *tmp = head;
24 // Load of next field should be acquire
25 node *n = tmp->next.load(memory_order_relaxed);
26 if (NULL == n) return false;
27 head = n;
28 *idx = n->index.load(memory_order_relaxed);
29 delete (tmp);
30 return true;
31 }
32 };
33

34 spsc_queue *q;
35 atomic_int arr[2];
36 void thrd1() { // Thread 1
37 arr[1].store(1, memory_order_relaxed);
38 q->enqueue(1); // Enqueue index 1
39 }
40 void thrd2() { // Thread 2
41 int idx;
42 if (q->dequeue(&idx))
43 arr[idx].load(memory_order_relaxed);
44 }

Figure 5. A buggy single-producer single-consumer queue

# Thread Operation Order Addr Value rf
1 1 atomic store relaxed 0x2080 0x1
2 2 atomic load relaxed 0x5c08 0x6020 7
3 1 atomic store relaxed 0x6020 0
4 1 atomic store relaxed 0x6028 0x1
5 2 atomic load relaxed 0x5c08 0 0
6 2 atomic load relaxed 0x2078 0 0
7 1 atomic store relaxed 0x5c08 0x6020

Figure 6. Original execution trace for example test case

order isc−→ as the union of the reads-from partial order
rf−→, the

sequenced-before partial order sb−→, and the synchronization
created by thread starts and joins. We then use a fixed-point
algorithm combined with inference rules to infer additional
edges in the partial order isc−→.

We use the partial order isc−→ to reorder the trace of mem-
ory operations. Figure 7 presents the edges that comprise
the isc−→ relation for the example. Note that the load in Oper-
ation 5 should have an isc−→ edge to the store in Operation 4
because SC constrains the load to read from the last store. In
this graph, there exists a cycle (4→ 7→ 2→ 5→ 4), mean-

0. Uninitialized values

1. T1: arr[1].store

hb

2. T2: tmp->next.load

hb

5. T2: n->index.load

rf

6. T2: arr[0].load

rf

3. T1: next.store

sb

4. T1: index.store

sb

7. T1: tail->next.store

sb

rf

sb

isc sb

Figure 7. Edges in the isc−→ relation for the example test case

ing that this execution is non-SC because it is impossible to
generate a total order that is consistent with the isc−→ relation
when there exist a cycle.

5.1 Algorithm
The first component of the algorithm is a set of inference
rules that build up the partial order isc−→. Figure 8 presents
these inference rules. The sequenced-before inference rule
ensures that the isc partial order is consistent with sb. The
reads-from inference rule and the write ordering inference
rule together ensure that a load reads from the latest store
to the given location. The join rule ensures that the end of a
thread happens before the join operation returns. The thread
creation rule ensures that creation of a new thread occurs
before the new thread starts execution. Notably, for tools
such as CDSChecker, CppMem, and Relacy, the reads-from
information is provided and need not be extracted.

A simple topological sort of the isc−→ relation generated by
the inference rules in Figure 8 is not sufficient to compute
a total SC execution order as the inference rules may not
have established a total order on all of the stores to a given
location. Figure 9 presents an example where the inference
rules do not establish an ordering between the stores to z,
yet ordering the store to z in Line 1 first yields traces that do
not satisfy the predicate SC.

Figure 10 presents our algorithm for checking whether an
execution trace is allowed by SC and, if so, reordering the
trace to be SC while maintaining the same intrathread order
(sb). The algorithm begins by initializing a set of actions and
then calling the SEARCHSC procedure to check whether the
trace is SC. The SEARCHSC procedure begins by calling the
UPDATESC procedure in Line 6 using the inference rules
to compute the partial order isc−→. In Line 10, those actions
that are not ordered after any other actions in isc−→ form
a set (searchset) of candidate actions to incrementally
build up the execution trace τSC in seq. If it selects a store
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W: x.store()

R: x.load()
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Join

F: t1.finish()

J: t1.join()

=⇒

F: t1.finish()

J: t1.join()

isc

Thread Creation

C: t1=create()

S: t1.start()

=⇒

C: t1=create()

S: t1.start()

isc

Figure 8. Implications for constructing the partial order isc−→

operation, Lines 15 through 19 add edges to the isc−→ relation
between the current store operation a and all other store
operations to the same location in the actions set. These
edges may cause other inference rules to add additional
edges to the isc−→ relation. Line 21 then recursively calls the
SEARCHSC procedure to reorder the remainder of the trace.
If at any point, the isc−→ relation contains a cycle the search
algorithm backtracks.

If the isc−→ relation does not uniquely specify the next
operation to add to seq, the algorithm uses backtracking-

Initially x=y=z=0.
T1:

1: z.store(1, relaxed);
2: x.store(1, relaxed);
3: y.store(1, relaxed);
4: r1=z.load(relaxed);//Reads from Line 1

T2:
5: z.store(2, relaxed);
6: x.store(2, relaxed);
7: r2=x.load(relaxed); //Reads from Line 2

T3:
8: z.store(2, relaxed);
9: y.store(2, relaxed);

10: r3=y.load(relaxed); //Reads from Line 3

Figure 9. Example of a trace where search is required

1: procedure CHECKSC
2: isc := {}
3: seq := {}
4: actions := Ops
5: return SEARCHSC(isc, seq, actions)
6: end procedure
1: function SEARCHSC(isc, seq, actions)
2: if actions = {} then
3: Output(seq)
4: return true
5: end if
6: isc=UPDATESC(isc)
7: if isc = NULL then
8: return false
9: end if

10: searchset = {a′ ∈ actions | ¬∃a′′ ∈ actions.〈a′′, a′〉 ∈ isc}
11: for all a ∈ searchset do
12: seq’ := seq ; a
13: isc’ := isc
14: if a ∈ StoreOp then
15: for all a′′ ∈ actions ∩ StoreOp do
16: if address(a) = address(a′′) then
17: isc’ := isc’ ∪ {〈a, a′′〉}
18: end if
19: end for
20: end if
21: if SEARCHSC(isc’,seq’,actions \{a}) then
22: return true
23: end if
24: end for
25: return false
26: end function
1: function UPDATESC(isc)
2: while ∃ a rule application r that adds a new edge e to isc do
3: if adding e to isc does not create a cycle then
4: isc := isc ∪ {e}
5: else
6: return NULL
7: end if
8: end while
9: return isc

10: end function

Figure 10. Algorithm for checking whether a trace is SC

based search to explore all possibilities for the next operation
using the loop in Line 11.3

3 Note that the algorithm can be further optimized to prune from the search
(1) all loads and (2) stores that are ordered before all other stores to the
same location.



The partial order isc−→ can be implemented using clock
vectors for efficiency [34]. Our implementation takes this ap-
proach. A clock vector is a map from threads to the operation
identifiers. More precisely, if the clock vector for operation
o contains the operation identifier ot for thread t, then ot ap-
pears before o in the isc−→ relation. We prove the correctness
of the algorithm in Appendix A.

5.2 Discussion
The constructions used for complexity proofs in [24, 25] are
somewhat contrived in that they blindly perform stores to
the same memory location without any mechanism to pre-
vent conflicts that cause backtracking. Real-world concur-
rent data structures often either: (1) use RMW operations to
update a single location thus implicitly ordering the RMW
operations or (2) use another mechanism typically involving
a load to make sure that no other thread will perform a con-
flicting store and thereby establish an order for the stores.
Thus our rules for generating the isc−→ relation were able to
infer a strong enough ordering to avoid backtracking for our
benchmark concurrent data structures.

6. Simplifying Non-SC Traces
In previous sections, we have described an algorithm for
checking whether a trace is SC and proved its correctness.
However, in addition to checking whether a trace is SC,
it can be helpful to present a non-SC trace as mostly SC
and then mark the parts of the trace that violate SC. In our
experience, understanding a trace with a handful of reads
that violate SC is far easier than understanding a trace where
loads appear to read from almost arbitrary stores (e.g. the
raw traces produced by CDSChecker) because simplified
traces can save developers from jumping all over the traces
while reasoning about the cause of the SC violations.

Recall the example trace and the isc−→ graph from Figure 6
and Figure 7. Although there exists a cycle in the isc−→ partial
order, if we reorder the original trace by dropping the isc−→
edge from Operation 5 to Operation 4, we produce an execu-
tion trace in which only Operation 5 reads from an old value
(showed in Figure 11). We can see that such a reordered trace
can be easier to understand than the original trace with two
messy violations (Operation 2 and 5). More importantly, by
simplifying the trace, we can see that it now blames only one
SC violation (Operation 5) which is the correct SC violation
in the trace.

# Thread Operation Order Addr Value rf
1 1 atomic store relaxed 0x2080 0x1
3 1 atomic store relaxed 0x6020 0
4 1 atomic store relaxed 0x6028 0x1
7 1 atomic store relaxed 0x5c08 0x6020
2 2 atomic load relaxed 0x5c08 0x6020 7
5 2 atomic load relaxed 0x5c08 0 0
6 2 atomic load relaxed 0x2078 0 0

Figure 11. Reordered trace to be mostly SC.

6.1 Approach to Reordering Trace
Our first naı̈ve approach to this problem was to modify the
algorithm to allow the isc−→ relation to have cycles and then
topologically sort the isc−→ relation into strongly connected
components (SCCs). We initially attempted this approach
and it has two problems: (1) the inference rules typically
expand the cycles in the isc−→ relation to cover operations
completely unrelated to the actual SC violation and (2) a
cyclic isc−→ relation does not provide any ordering between
operations in the same SCC leading to traces that arbitrarily
(and confusingly) order operations.

6.2 Forcing isc to be Acyclic
Our next refinement was to modify the basic algorithm from
Figure 10 to continue building the isc−→ relation even after
discovering that the isc−→ relation contains cycles if there are
no more backtracking points. However, the modified version
never actually adds an edge to the isc−→ relation to realize the
cycle. The algorithm then prints out the execution sequence
seq and flags any loads that read from a store other than the
last prior store to the given location.

This approach generates a mostly SC execution trace and
makes explicit the few violations of SC that are present.
We found these traces were easier to understand because we
could think of most of the trace as SC (i.e., most loads read
from the last store to the same location, and loads that violate
this property were clearly marked) and only focus on the few
operations that actually violate SC.

6.3 Preserving sc and hb
Although this refinement significantly improves the output,
it can still be confusing. Consider the common idiom —
store buffering (SB) example code shown in Figure 12. In
any SC execution, one of the stores in either Line 3 or
Line 1 must execute first, and the load performed by the
other thread must see the value of that store. In the execution
shown, both loads read from the initial values, and therefore
it cannot be represented as an SC execution and the isc
relation will contain a cycle.

If the algorithm breaks this cycle by dropping the isc
edge from the sequentially consistent load in Line 2 to the
sequentially consistent store in Line 3, it will generate the
reordered trace in Figure 13.

If a developer looks at this trace with the goal of making
the code only have SC executions, it can be very confusing
because it shows the sequentially consistent load from y in
Line 2 returning an old value. However, the load and store to
y have the memory order seq cst memory order and
the initial store to y happens before the load and the store.
So it is not possible to strengthen the operations on y and
indeed the problematic behavior arises due to the operations
on the variable x.

5 The highlighted row indicates that the load operation reads from a store
that was not the last store operation in the trace to that location.



Initially x=y=0.
T1:

1: x.store(1, relaxed);
2: r1=y.load(seq cst);//Reads from initial value.

T2:
3: y.store(1, seq cst);
4: r2=x.load(relaxed);//Reads from initial value.

Figure 12. Code for confusing SC example (store buffering)

# Thread Operation Order Addr Value rf
3 2 atomic store seqcst 0x60a8 1
4 2 atomic load relaxed 0x60a0 0 init
1 1 atomic store relaxed 0x60a0 1
2 1 atomic load5 seqcst 0x60a8 0 init

Figure 13. A reordered trace for the confusing SC example

Initially x=y=0.
T1:

1: r1=x.fetch add(2, relaxed);//Reads from Line 4
2: y.store(1, relaxed);

T2:
3: r2=y.load(relaxed);//Reads from Line 2
4: r3=x.fetch add(2, relaxed);//Reads from Line 6

T3:
5: r4=x.load(acquire);//Reads from Line 1

T4:
6: x.store(1, release);

Figure 14. Code for confusing hb example

# Thread Operation Order Addr Value rf
1 1 atomic rmw5 relaxed 0x1060 3 4
6 3 atomic load acquire 0x1060 5 1
2 1 atomic store relaxed 0x1064 1
3 2 atomic load relaxed 0x1064 1 2
5 4 atomic store release 0x1060 1
4 2 atomic rmw relaxed 0x1060 1 5

Figure 15. A reordered trace for the confusing hb example

Figure 14 presents an example involving happens before
that yields a confusing trace. The modification orders for the
add operations on x and the store and load operations on
y in Threads 1 and 2 are not compatible. The SC analysis
processes the operations on y first and adds a corresponding
isc edge. This prevents adding the isc edge to x. The end
result is the generation of the trace shown in Figure 15
that does not respect happens-before — the load acquire
appears before the corresponding store release.

The problems in the two examples arise because the isc
relation does not necessarily contain all of the sc or hb edges
from the original execution. A key question is whether a
reordered trace will always respect both the original sc and
hb edges. Since hb is a subset of the transitive closure of rf
and sb (plus thread joins and mutexes), a reordered trace will
always respect hb.

The sc order presents a challenge — a reordered trace
may not always respect the sc order as non-sequentially con-
sistent loads and stores can interact with sequentially consis-
tent operations. However, since sc is only indirectly observ-
able via the rf behavior, there is no need for isc to be strictly
consistent with sc for SC traces because an alternative sc or-

der may produce a reordered trace that is consistent with the
observed rf behaviors. However, as shown in Figure 12, if
isc is cyclic we do not want to produce a trace where SC
operations are falsely blamed for the non-SC behavior. Thus
our approach is to add all hb edges to the isc partial order
and to prioritize sc edges such that the isc inference rules
add the sc edges to the isc partial order before adding any
other edges.

7. Inferring Memory Order Parameters
Under the C/C++11 memory model, inferring the
order parameters to obtain SC behaviors is essen-
tially a search problem. In the absence of con-
sume operations, memory order parameters for
atomic operations can be only one of the following:
memory order relaxed, memory order release,
memory order acquire, memory order acq rel
and memory order seq cst. A naı̈ve approach that
enumerates all possible memory order parameters is guar-
anteed to discover all the possible inferences of parameters
that ensure SC behaviors for a specific test case. However,
this approach obviously leads to an impractical exponen-
tial search space. Fortunately, there exist heuristics for
strengthening parameters for the purpose of only admitting
SC behaviors. These heuristics may not always achieve the
optimal memory order parameters, but they are guaranteed
to repair any SC violation. AutoMO uses a search-based
approach combined with heuristics to fix the non-SC
behaviors to reduce the search space. Figure 16 shows the
core search algorithm.

The idea of our algorithm is that AutoMO iteratively in-
fers parameters test case by test case. It takes an optional
input of parameter assignments. If no input is provided, Au-
toMO begins the inference process by setting all order pa-
rameters to memory order relaxed (Line 4). For each
test case, AutoMO maintains a set of possible inferences ini-
tialized by the input parameter assignments (Line 7), and
for each potential candidate, it uses CDSChecker to ex-
plore traces and applies the SC analysis algorithm to check
whether there exists any non-SC trace. If so, AutoMO calls
the function StrengthenParam (Line 13) to find out po-
tential repairs and insert them to the candidates set. It is
possible for a given repair to be made redundant. Thus, Au-
toMO calls the WeakenOrderParams routine (Line 15)
to find out potential weaker results. We discuss later how Au-
toMO strengthen order parameters (Line 24) in Section 7.1,
and the WeakenOrderParams routine in Section 7.3.
Note that AutoMO uses the temporary output as the input
for the next test case (Line 18). After exploring all test cases,
AutoMO returns the final inference results (Line 20).

The challenge then becomes the following: given an SC
violation in a reordered trace, how can we discover potential
repairs that eliminate the violation? For example, with the re-
ordered trace in Figure 11, we can prevent the SC violation



1: function INFERPARAMS(testcases, initialParams)
2: inputParams := initialParams
3: if inputParams is empty then
4: inputParams := the weakest parameters
5: end if
6: for all test case t in testcases do
7: candidates := inputParams
8: results := {}
9: while candidates is not empty do

10: Candidate c := pop from candidates
11: run CDSChecker with c and check SC
12: if ∃ SC violation v then
13: STRENGTHENPARAM(v, c, candidates)
14: else
15: results += WEAKENORDERPARAMS(c)
16: end if
17: end while
18: inputParams := results
19: end for
20: return results
21: end function
22: procedure STRENGTHENPARAM(v, c, candidates)
23: while ∃ a fix f for violation v do
24: possible repairs := strengthen c with fix f
25: candidates += possible repairs
26: end while
27: end procedure

Figure 16. Algorithm for inferring order parameters

in Operation 5 by specifying memory order release in
Line 19 and memory order acquire in Line 25 of the
SPSC example shown in Figure 5. Thus, when the load of
the next field reads its value from the corresponding store
of the next field, it establishes a happens-before relation-
ship (release/acquire synchronization), eliminating the pos-
sibility of Operation 5 reading from an uninitialized value.
We next discuss how AutoMO strengthen parameters.

7.1 Inference Rules
As discussed above, when AutoMO discovers a non-SC
trace for a test case, the goal of the inference algorithm is to
figure out a weakest strengthening to the memory order pa-
rameters that will disallow those traces. A weakest strength-
ening for a test case is a strengthening of parameters that
disallows the non-SC behavior but will admit some non-SC
behavior if any parameter instance of that strengthening is
weakened. Note that since the parameter assignments are fi-
nite, a weakest strengthening must exist but is not necessar-
ily unique.

This problem can be viewed as detecting and eliminating
the cycles in isc−→. The first step is to discover which atomic
operations are responsible for cycles in isc−→. In Section 6,
we show that our analysis can reorder a non-SC trace to

preserve sc and hb while it indicates where a bad reads-from
edge happens, and hence we can use the simplified trace to
discover the non-SC violations in the original trace.

Figure 17 shows the two universal patterns that cover all
non-SC behavior in reordered traces. The Stale Read Pattern
covers the case in which a load takes its value from an old
store rather than the most recent store in the reordered trace.
The Future Read Pattern covers the case in which a load
takes its value from a store that is ordered after the load.

A: v.store(0)

B: v.store(1)

isc

C: v.load()

rf

isc

A: v.load()

B: v.store(1)

isc rf

Stale Read Pattern Future Read Pattern

Figure 17. Cycle patterns for non-SC behaviors

Fortunately, for either pattern of SC violation, two repair
approaches exist: 1) eliminating the reads-from edge; or 2)
strengthening memory order parameters to reorder the trace
in a new way.

(1) Eliminate Reads-from I

A: v.store(0)

B: v.store(1)

mo||hb/sc

C: v.load()

hb||sc
=⇒

A: v.store(0)

C: v.load()

  ✘rf

(2) Impose Modification Order

A: v.store(0)

B: v.store(1)

hb/sc =⇒

A: v.store(0)

B: v.store(1)

mo

(3) Eliminate Reads-from II

A: v.load()

B: v.store(1)

hb/sc =⇒

A: v.load()

B: v.store(1)

  ✘rf

(4) Flip isc Order (Preserves hb & sc)

A: operation()

B: operation()

isc hb/sc =⇒

A: operation()

B: operation()

isc

Figure 18. Inference rules for non-SC traces



Figure 18 presents a set of rules that we can use to
strengthen memory order parameters for memory accesses,
and Appendix B describes the rules to support fences.
Each row means if the operations satisfy the condition on
the left, then the property on the right holds. We denote
mo as the modification-order relation, hb as the happens-
before relation, sc as the total order of operations with
memory order seq cst order, rf as the reads-from rela-
tion and isc as the order in the reordered trace. For example,
Rule 1 means that if: 1) operation A is modification order
before operation B, and operation B happens before C; or
2) operation A happens before or is sc before operation B,
and operation B is sc before operation C, then it ensures
that operation C is not allowed to read from operation A.
Note that due to partial order reduction in CDSChecker, the
modification order relation is a subset of the union of the
happens-before and sc relation.

We present the detailed reasons why each rule holds
in case readers are interested. We derive Rule 1 from
§1.10p18 [3] (write-read coherence) and §29.3p3 [3] (SC
constraint on loads), Rule 2 from §1.10p15 [3] (write-
write coherence) and §29.3p3 [3] (SC constraint on mo),
and Rule 3 from §1.10p17 [3] (read-write coherence) and
§29.3p3 [3] (SC constraint on loads). For Rule 4, the isc edge
specifically means the order in the reordered trace. As dis-
cussed in Section 6, if operation A is ordered before B in
the reordered trace, and we can enforce either hb or sc edge
from B to A, AutoMO will flip the order of A and B since
the reordered trace is guaranteed to preserve hb and sc.

AutoMO searches on the rule applications to generate
memory order assignments that repair the SC violation. We
next discuss some cases of how AutoMO can apply these
rules to iteratively eliminate the SC violations for the two
patterns shown in Figure 17.
Stale Read Pattern: For this pattern, we have a load opera-
tion C that reads from store operation A, and there exists at
least one store operation B that is between A and C in the
reordered trace. Note that A, B, and C are operations on the
same memory location. Thus, we can apply Rule 1 by im-
posing mo from A to B and imposing either hb or sc from
B to C such that C is no longer allowed to read from A. If
A is not modification order before B, we then apply Rule 2,
which leads to imposing either hb or sc from A to B. There-
fore, we can end up imposing a combination of either hb or
sc from A to B and from B to C. If between A and C there
exist other store operations (B′) that are on the same mem-
ory location as B, AutoMO applies the same rule on them
and potentially generate more possible repairs.
Future Read Pattern: For this pattern, we have a load oper-
ation A and a store operation B that is ordered after A in the
reordered trace, andA reads fromB. AutoMO has two ways
to repair this violation: 1) eliminate the reads-from edge by
applying Rule 3, meaning that it imposes either hb or sc edge
from A to B if possible; 2) flip the order of A and B in the

reordered trace by applying Rule 4 such that the reordered
trace does not blame this exact same violation again. By flip-
ping the order of A and B, it can either fix the violation or
expose another new violation.

These rules boil down to strengthening specific isc edges
to either hb or sc. Without considering the C/C++ fences,
imposing sc requires both operations to have stronger pa-
rameters, i.e., memory_order_seq_cst, than imposing
hb. Imposing hb between Operations A and B requires that
there exist a path in the graph of reads-from and sequence-
before edges from A to B. We then either 1) strength ac-
cording to the definition of release sequence (§1.10p7 [3]) if
possible; or 2) strengthen store and load operations along
this path to memory_order_release and memory_
order_acquire. Whenever not necessary, AutoMO does
not impose the stronger sc order between operations.

7.1.1 Correctness of Repair Approaches
Although our repair approach is limited to the test cases pro-
vided, it does guarantee that the executions of the given test
cases are SC. Each time AutoMO detects an SC violation,
the violation is visible in the trace as one of the two patterns
shown in Figure 17.

For the Stale Read pattern, we have the blamed load (op-
eration C), the store it reads from (operation A), and the last
preceding store (operation B) to the same memory location.
According to the semantics of the C/C++11 memory model,
the following two conditions cannot hold at the same time:
1) A is modification order before B; and 2) B is sc before
C or happens before C. If the first condition is false, the hb
and sc relation between A and B must not have been estab-
lished (since the modification order relation must be consis-
tent with the hb and sc relation), and thus AutoMO will be
able to apply Rule 2 to enforce the hb or sc relation between
A and B. If the second condition is false, AutoMO will be
able to apply Rule 1 to enforce hb or sc between B and C.

For the Future Read pattern, we have the blamed load
(operationA) and the future store (operationB). The seman-
tics of the C/C++11 memory model requires that A does not
happen before B and that A is not sc before B. Thus, Au-
toMO will be able to apply Rule 3 to enforce hb or sc be-
tween A and B to eliminate that reads-from edge. Also, as
the reordered trace preserves the hb and sc relation, B does
not happen before A and is not sc before A in such a trace.
Therefore, AutoMO will also be able to apply Rule 4 to en-
force hb or sc between A and B.

Since the reordered trace is consistent with both hb and
sc, it is guaranteed that repair rules can always be applied to
the memory operations that have been for the SC violation
(and that after the repair actions are fully performed that the
same operations cannot be repetitively blamed for the SC
violation).

As a result, AutoMO’s repair actions will always
strengthen some memory order parameter in each rule ap-
plication. Since there are a finite number of memory or-



der strengthenings before all memory parameters become
memory order seq cst (and the trace becomes trivially
SC), this process must terminate. Since the algorithm runs
on all provided test cases incrementally, it provides SC for
all provided test cases.

7.1.2 Different Parameter Assignments
As shown above, there can exist different parameter assign-
ments that provide SC for the given test cases. AutoMO
keeps track of the parameter assignments that can be gener-
ated by applying the inference rules, and outputs those that
are not strictly stronger than others. It can become very com-
plex to consider the run-time effects of different parameter
choices because they differ from platform to platform and
may even depend on the choice of compiler. For example,
under x86, operations naturally have the release/acquire se-
mantics, so a relaxed load has minimal advantage over an
acquire load.

7.2 Normal Memory Accesses
We use CDSChecker as the underlying model checker to
check for non-SC traces and it differentiates between nor-
mal memory access and atomic memory access. A key as-
pect of assigning memory orders to atomics is to ensure
that normal memory accesses do not race. As we do not
require any compiler frontend that could be used to in-
strument these accesses, we need the developer to man-
ually instrument the accesses. We solve the instrumenta-
tion problem as follows. Developers expose non-atomic
accesses to our inference tool by using special wrapper
functions, which are similar to C/C++11 atomic opera-
tions with a special parameter memory order normal.
For example, the statement “x = 1” would be rewrit-
ten as “x.store(1, memory order normal)”. Our
tool then ensures that we establish synchronization between
conflicting normal memory accesses. This instrumentation
could conceptually be performed automatically at the cost of
requiring the developer to use a specific compiler frontend.

7.3 Weakening Memory Order Parameters
Although iteratively applying the inference rules to fix SC
violations eventually infers order parameters that guarantee
SC for the corresponding test case, we may end up inferring
overly strong parameters. This can happen if a later repair
attempt makes the initial repair unnecessary. We solve this
issue by introducing a routine to weaken order parameters.

More specifically, after inferring a preliminary result for
the test case, we explore all possible parameter assignments
that are strictly weaker than that result while no weaker
than the corresponding input parameter assignment for that
test case. If there exist any weaker parameter assignments
that are SC, we weaken the preliminary result. Note that
the complexity of the weakening process for a test case is
independent of the total number of parameters to be inferred

but only depends on the strengthened parameters, whose
number in our experience is small.

7.4 Allowing Non-SC Behaviors
While most data structures are internally SC, in some cases
it can be desirable to allow a few controlled SC violations. In
our experience, a few data structures have SC violations that
do not affect correctness because the data structures detect
SC violations and retry the operation. Such code snippets
often occur in spin loops that perform a CAS operation
on exit. In this case, we only need to check that the other
operations have SC behaviors to ensure correctness.

Therefore, we provide a simple annotation framework in
AutoMO that users can use to specify the region of code that
allows SC violations. We then extend the SC analysis algo-
rithm such that it does not infer isc−→ edges for load operations
that are allowed to violate SC, and extend the parameter in-
ference algorithm such that it does not repair allowed SC
violations in the reordered trace. However, if those loads can
be strengthened to prevent other SC violations, namely in-
troducing cycles elsewhere, AutoMO may strengthen the pa-
rameters of such loads to to eliminate cycles. Note that this
mechanism mainly provides means for more advanced users
to provide more information to obtain further optimizations.
Novices may very well not use this functionality and will
simply obtain an SC implementation.

7.5 Implementation of the Inference Framework
As discussed above, AutoMO requires a model checker
that can exhaustively enumerate executions allowed by the
C/C++11 memory model and output a trace with the reads-
from mapping and the sc and hb relations. We imple-
mented AutoMO as a backend analysis of CDSChecker.
We extended the memory order parameters to support spe-
cial wildcard parameters to indicate which parameters Au-
toMO should infer. To use AutoMO, instead of using a
concrete memory order parameter, a developer writes a
C/C++ atomic operations with a special wildcard mem-
ory order. For example, a load operation, which requires
one actual memory order parameter, can be written as
“x.load(wildcard(1))”, to indicate the load opera-
tion uses the first wildcard parameter. A given wildcard pa-
rameter should only be used for one atomic operation, e.g.,
the next operation would use wildcard(2). After execut-
ing given test cases, AutoMO outputs a set of assignments to
the wildcards that ensure all executions are equivalent to SC.
Developers can then run a script that automatically replaces
the wildcards with the corresponding inferred parameters.

8. Evaluation
In this evaluation, we focus on three aspects of AutoMO:
1) how efficient is our algorithm? and 2) how do the results
compare to the manual versions of the data structures? and 3)
as a component of AutoMO, how efficient is the SC analysis



Benchmark # Wildcard Inference time (sec)
Chase-Lev 40 536.322
SPSC 7 0.015
Barrier 5 0.019
Dekker 12 396.756
MCS lock 9 4.056
MPMC 8 0.143
M&S queue 20 4.808
Linux RW lock 16 24.982
Seqlock 8 0.095
Concurrent hashtable 13 0.016
Treiber stack 8 0.018

Figure 19. Benchmark results of inference algorithm

algorithm (since it can also be useful for debugging as a
separate part)?

We have implemented our algorithm as an analysis plugin
for the CDSChecker model checker, and ran our experiments
on an Ubuntu 14.04 Linux machine with an Intel Core i7
3770 processor.

To test our algorithm on real-world code, we used CD-
SChecker’s benchmark suite along with three additional
benchmarks. The benchmark suite includes six data structure
implementations—a synchronization barrier, a mutual ex-
clusion algorithm, a contention-free lock, and two different
types of concurrent queues, and a work stealing deque [28].
Additionally, the benchmark suite contains a port of the
Linux kernel’s reader-writer spinlock from its architecture-
specific assembly implementation and the Michael and Scott
queue from its original C and MIPS source code [38]. We
have added three additional benchmarks — a seqlock, a con-
current hashtable, and the Treiber stack.

8.1 Performance of Inference Algorithm
Figure 19 presents the results of the inference algorithm. The
second column shows the number of operations that require
inference, and the third column shows the time taken to
finish the inference for each benchmark in seconds. We can
see that 8 out of our 11 benchmarks finish within 5 seconds,
and the benchmark that takes the longest time (Chase-Lev
Deque) finishes with 536.322 seconds (less than 9 minutes).
These results show that our inference algorithm is efficient
and can finish in a reasonable amount of time for real-world
data structures.

8.2 Inference Results Compared to Manual Versions
In this section, we briefly describe each data structure, our
test clients for both the inference algorithm and the SC
analysis, and the inference results. Due to the absence of
formal techniques that can prove that the data structures
only exhibit SC behaviors under any execution, we manually
review the correctness of the inference results.

Chase-Lev Deque: This implementation was taken from
a peer-reviewed, published C11 adaptation of the Chase-
Lev deque [28]. It utilizes relaxed operations (for efficiency)
while utilizing fences and release/acquire synchronization to
establish order. While the paper proves that an ARM imple-
mentation is correct, it does not contain a correctness proof

for its C11 implementation. A bug was discovered in the
published version in the deque resize implementation [40].

This benchmark has three API methods: push, take
and steal, and we use 6 test clients to infer the parameters
as follows: 1) there is a main thread with one push method
call and a stealing thread with one steal method call;
2) the deque is initialized with three items, and a main
thread (with one take method call) and a stealing thread
(with two steal method calls) race for the elements; 3)
the deque is initialized with three items, and a main thread
(with one take method call) and two stealing threads (each
with one steal method call) race for the elements; 4) a
main thread has three push and two take method calls,
and a stealing thread with one steal method call; 5) the
deque is initialized with one item, and a main thread with
one takemethod call and a stealing thread with one steal
method call race for it; and 6) the deque is initialized with
one element, and a main thread has one take, push and
another take method calls along with two stealing threads
that each have one steal method call. We also use the
fourth test client of the above six to test the SC analysis for
both the original buggy version and a bug fixed version of
the Chase-Lev Deque.

We ran AutoMO on these test clients. Upon man-
ual review, the inferred result appears to be correct. The
inference result requires three stronger parameters, one
load to be memory order acquire and two stores
to be memory order release. Our result also infers
two weaker parameters as memory order relaxed,
one is a load with memory order acquire and the
other is a CAS with memory order seq cst in the
original paper. The interesting difference is that we
inferred that the load operation right before a fence
(memory order seq cst) should be memory_order_
relaxed rather than memory order acquire. The
stronger memory order acquire parameter in [28] is
redundant because the fence already suffices to generate the
necessary synchronization. We contacted the paper’s authors
and they confirmed that the stronger parameter is not neces-
sary and that they believe AutoMO’s version to be correct.

This shows that AutoMO can be useful in practice by in-
ferring close enough parameters since in less than 10 min-
utes it can infer suitable assignments for a data structure
whose porting effort justified a research paper.

SPSC queue: The single-producer, single-consumer
queue allows concurrent access by one reader and one
writer [7]. In the CDSChecker’s benchmark suite, there
are two versions, a buggy version and a bug-fix version.
Both implementations utilize methods signal and wait
to communicate between enqueuers and dequeuers, and the
buggy version can potentially miss a signal. We use a test
client with two threads—one to enqueue a single value and
the other to dequeue it and verify the value.



We ran AutoMO on the buggy version, and Au-
toMO inferred an assignment in which four opera-
tions were memory order seq cst. The bug-fix ver-
sion fixed the bug by changing a plain load with
memory order relaxed to a fetch add operation
with memory order seq cst, and it also has four op-
erations with memory order seq cst. We reviewed
the buggy version and found that our inference re-
sult is the optimal way to repair the bug without
changing the operations because the stronger parameters
(memory order seq cst) are necessary to eliminate the
possibility of missing a signal.

Barrier: Barrier implements a synchronizing barrier [1],
where a given set of threads may wait on the barrier, only
continuing when all threads have reached the barrier. The
barrier should synchronize such that no memory operation
occurring after the barrier may race with a memory operation
placed before the barrier. The test client utilizes two threads
with a non-atomic shared memory operation executed on
either side of the barrier, one in each thread.

This implementation utilizes memory_order_seq_
cst order for 5 operations. However, our results show
that we only require one operation to be memory_
order_release, one operation to be memory_order_
acquire and one operation to be memory_order_acq_
rel. After reviewing the code, we found that the original
manual choice of order parameters were overly strong and
our inference result is sufficient to ensure the correctness
property that the invocation of each wait method happens
before the response of any other wait method. The reason
is as follow:

For the first N − 1 threads, they perform a fetch add
on the variable nwait (the number of currently wait-
ing threads) with the parameter memory order acq rel,
and thus threads Ti and Tj (1 ≤ i < j ≤ N ) establish syn-
chronization. The last thread increments the variable step
(the number of barrier synchronizations completed so far) by
performing a fetch add (memory order release)
operation, and then the first N − 1 threads leave its
spinning loop by loading the updated value from step
(memory order acquire). Therefore, the last thread
also synchronizes with the first N − 1 threads. As a result,
all participating threads synchronize with each other.

Dekker critical section: This implements a simple crit-
ical section using Dekker’s algorithm [4], where a pair of
non-atomic data accesses are protected from concurrent data
access. This benchmark successfully utilizes sequentially
consistent, release, and acquire fences to establish ordering
and synchronization.

For the parameter inference, we use two clients: 1) two
identical threads that update a normal memory location for
once; and 2) one thread updates a normal memory location
for once, while the other thread updates that location twice.
We also use the first one to test the SC analysis. AutoMO

infers the exact same result as the manual versions for this
benchmark.

MCS lock: This contention-free lock implements the al-
gorithm proposed by Mellor-Crummey and Scott (known as
an MCS lock) [5, 36]. The lock queues waiting threads like
a concurrent queue in a linked-list fashion. In the test client,
we use two threads, each of which alternates between read-
ing and writing the same variable, releasing the lock in be-
tween operations. We use a test driver with two threads, each
of which alternates between reading and writing the same
variable, releasing the lock in between operations.

AutoMO infers two strictly weaker parameter assign-
ments than the original manually annotated benchmark.
There are two operations with memory_order_acquire
in the original parameter assignment, while our two in-
ference results only require one of the two parameters to
be memory_order_acquire. After careful review, we
found both of our parameter assignments are correct, and
the reason is as follows:

When a thread, followed by waiting threads, releases the
lock, it sets the gate field of the next waiting node to let
it acquire the lock. In order for that waiting thread to see
the the update-to-date value of the gate field, that lock
method must synchronize with the unlock method. Our
review discovered that in the unlock method, either of
the load of the m tail variable or the load of the next
field can be assigned the memory order acquire order
to establish the synchronization. As a result, AutoMO infers
two parameter assignments, meaning that the manual version
was overly strong and AutoMO infers better results.

MPMC queue: This multiple-producer, multiple-
consumer queue allows concurrent access by multiple
readers and writers [6]. Note that the original implementa-
tion admits non-SC traces due to retries. We use a test client
that runs two identical threads, each of which first enqueues
an item and then dequeues an item.

This benchmark has eight memory operations, and Au-
toMO infers stronger parameters (memory_order_seq_
cst) for four of them. Although our inferred parameters
are not ideal in this case, AutoMO can still help users who
do not have intimate knowledge about the C/C++ memory
model because compared to the naı̈ve approach of specifying
memory_order_seq_cst parameter for all operations,
our inference result infers four weaker parameters.

M&S queue: This benchmark is an adaptation of the
Michael and Scott lock free queue [38] to the C/C++ mem-
ory model. The port uses relaxed atomics when possible.
We used the following 3 test clients for this benchmark:
1) two threads each with one enqueue method call and
one thread with one dequeue method call; 2) one thread
with one enqueue method call and two threads each with
one dequeue method call; and 3) one thread has one
enqueue method call while the other thread calls the meth-
ods enqueue, dequeue, and enqueue in order. The third



test client covers the scenario where a node is dequeued, re-
cycled, and enqueued back to the queue again. We used the
first one to evaluate the SC analysis.

We ran AutoMO with the above three test clients, and
it infers the same parameters as the manual version ex-
cept that two operations have stronger parameters, which
are memory_order_acquire and memory_order_
release rather than the original memory_order_
relaxed. After careful review, we found that both are bugs
in the original benchmark, and our result repaired them by
imposing the stronger parameters. We briefly explain the two
bugs as follows.

One bug exists in the dequeue method, in which syn-
chronization is not established for the load of the tail so
that the load of the next field of the head can read an out-
of-date value (e.g. NULL), and that can potentially return
arbitrary values. Another bug is in the enqueue method,
where an initialized node is inserted into the queue without
proper synchronization on the next field (pointing to the
next node).

Linux reader-writer lock: A reader-writer lock allows
either multiple readers or a single writer to hold the lock at
any time—but no reader can share the lock with a writer.
The test client for the parameter inference has two threads
that use lock, trylock and unlock to protect the read/write
of normal memory accesses. Specifically, the test client for
the SC analysis has two threads where one reads the variable
under a reader lock, and the other writes to the variable under
the protection of a writer lock. AutoMO infers the exact
same result as the manual version for this benchmark.

Seqlock: Seqlocks are used in Linux to avoid writer star-
vation. We implemented it with C/C++11 atomics and uti-
lized relaxed operations when possible. We run two writing
threads and one reading thread.

We then ran the inference algorithm on Seqlock and ob-
tained two possible inference results, one of which has the
exact same parameters as the original. The other one has just
one different acquire load operation. After careful review,
we found that both results are correct for the following rea-
son. In the write method, it spins by loading from the seq
variable (the global sequence number) and trying to incre-
ment it with a CAS operation if the value of the seq variable
is an even number. We can use either operation to establish
synchronization between write methods, and the manual
version is just one option of the two. However, AutoMO pro-
vides both options.

Concurrent hashtable: We ported a concurrent
hashtable implemented in Java by Doug Lea from [29] to
C/C++. For the sake of simplicity, we only consider the
fundamental primitive API methods put and get. We use
two test clients for the parameter inference: 1) two threads
update two different keys and then look up the keys updated
in another thread; and 2) same as the first test client except

that the updated keys have been initialized. Also, we use the
first test client to test the SC analysis.

Initially, AutoMO infers stronger parameters than needed
for this benchmark. The result requires a stronger pa-
rameter (memory order seq cst), while it only needs
memory order acquire to establish proper synchro-
nization to ensure it reads the entire list of entries for each
bucket. By reviewing the code, we found that even if the load
of the first element of the entry list reads an old value, it does
not affect correctness since it is fixed by a later clean-up rou-
tine. We then leverage the annotation framework provided by
AutoMO to annotate that this operation is allowed to have an
SC violation.

By adding this information, AutoMO can infer the weak-
est order parameters that guarantee correctness. It infers
memory_order_seq_cst for the load and store of the
value variable, ensuring that the clients observe SC behav-
iors when there are two threads that each update one key and
look up for the other key. It infers the acquire semantics
for the load of the first element of the list, ensuring that it
obtains an intact list. This shows that AutoMO can be useful
for data structures that allow non-SC behaviors if users can
provide the knowledge of which SC violations are tolerable.

Treiber stack: The Treiber stack [47] allows concurrent
push/pop operations in a non-blocking fashion. We imple-
mented it to the C/C++11 memory model and tested it with
three threads, two of which push an item and one of which
pops an item. AutoMO infers the exact same result as the
manual versions for this benchmark.

8.3 Writing Test Clients
To effectively use AutoMO, developers need to provide test
cases that fully exercise the data structure, and here we dis-
cuss our insights for writing these test cases. In general we
started with clients that generate a variety of small normal
usage scenarios. We then examine the data structure to de-
termine potential corner cases (e.g., for a deque these might
include resizes, operations on empty deques, and operations
that race for the last element) and write test cases to exercise
these behaviors. Although writing test cases is not trivial,
developers often have to at least consider these cases in the
design of the original SC data structure and thus have a good
intuition for potential corner cases.

8.4 Performance of SC Analysis
As discussed above, the SC analysis alone can be useful
for developers to understand traces. In order to evaluate the
performance of our SC analysis, we ran the SC checking
algorithm alone in AutoMO in this section.

8.4.1 Results
Figure 20 presents the results. For each benchmark, we
record the total number of executions whose behavior was
consistent with the memory model (# Feasible), the number
of those traces that were not SC, the time taken to run the
SC analysis for all feasible traces, the total model checking



Benchmark # Feasible # Non-SC SC Analysis Total Avg. Trace SC Analysis time
time (s) time (s) Length per trace (s)

Chase-Lev (buggy) 65 24 .0037 .11 68 5.7× 10−5

Chase-Lev (correct) 49 1 .0017 .04 75 3.5× 10−5

SPSC (buggy) 10 2 .0006 .01 26 5.7× 10−5

SPSC (correct) 15 0 .0008 .01 29 5.2× 10−5

Barrier 7 0 .0004 .01 23 5.8× 10−5

Dekker 2,313 0 .0756 8.27 52 3.3× 10−5

MCS lock 12,609 0 .5767 4.08 65 4.6× 10−5

MPMC queue 11,306 6,764 1.0497 9.09 49 9.3× 10−5

M&S queue 114 0 .0051 .06 55 4.4× 10−5

Linux RW lock 1,348 0 .0325 11.84 30 2.4× 10−5

Seqlock 9,124 0 .2669 2.91 38 2.9× 10−5

Concurrent hashtable 66 11 .0051 0.02 89 7.7× 10−5

Treiber stack 29 0 .0013 0.02 54 4.5× 10−5

Figure 20. Benchmark results. Note that all of the non-SC traces for MPMC are due to retries. When restricted to yield-free
executions, MPMC only exhibits SC executions.

time, and the average trace length. The key points are that the
time taken to check whether traces are SC is a small fraction
of the total model checking time for all of our benchmarks.

Although checking whether traces are allowed under the
SC memory model is NP-complete, in practice the algorithm
ran very fast. In fact the SC analysis never even backtracked
on any of our benchmarks or our set of litmus tests. The
only code for which we have observed backtracking is a spe-
cific test case that implements the variable setting compo-
nent used in a proof that the problem is NP-complete. It ap-
pears that for real-world code, the search component of the
algorithm (backtracking) is typically not utilized and hence
the runtime of the algorithm is typically polynomial.
8.4.2 Longer Traces
The benchmarks we exhaustively tested have fairly short
traces. Our algorithm primarily targets helping developers
unit test and debug concurrent data structures implementa-
tions and thus we only expect it to see relatively short traces.
To test our algorithm on longer traces, we modified CD-
SChecker to produce a fixed number of traces and modified
the SPSC queue to repeatedly enqueue and dequeue. We then
varied the number of repeats to generate traces of varying
lengths.

By performing 500 repeated enqueues and dequeues, we
generated traces with an average of 5,945 operations and the
SC analysis took an average of 0.0059 seconds per execu-
tion (averaged over 500 executions). By performing 900 en-
queues and dequeues, we generated traces with an average
of 10,645 operations and the SC analysis took an average
of 0.0122 seconds per execution (averaged over 500 execu-
tions).

9. Related Work
Researchers have formalized the C++ memory model [9]. A
number of tools have been developed to test the behaviors
of C/C++ code under the C/C++ memory model. The CPP-
MEM tool is built directly from the formalized specification
with the goal of allowing researchers to explore implications
of the memory model. It explores all legal modification or-

ders and reads-from relations and therefore must search a
significantly larger search space than CDSChecker which
only explores the space of legal reads-from relations. The
Nitpick tool translates the memory model constraints into
SAT problems and then uses a SAT solver to find legal exe-
cutions [11]. The Relacy race detector [49] explores thread
interleavings and memory operation reorderings for C++11
code. The CDSChecker tool [40] uses partial order reduc-
tion techniques to unit test C/C++ code. All of these tools
would benefit from using the algorithm presented in this pa-
per to present traces to the user. MemSAT [46] is designed
to help debug and reason about relaxed memory models with
axiomatic specifications. However, we cannot use these tech-
niques to verify our inference results since they are also lim-
ited to the provided test cases and cannot verify that the data
structures are robust under any execution.

A number of tools [20–22, 33, 45] have been developed
to detect data races for programs that use lock-based con-
currency, yet they do not extend to low-level atomics. As a
complement to these tools, our work ensures that it can au-
tomatically infer memory order parameters that ensure data-
race-freedom for provided test cases when developers pro-
vide sufficient atomic operations whose parameters can be
strengthened.

Researchers have designed useful techniques [16, 19,
31, 44] for automatic parallelization. These techniques are
primarily targeted to convert sequential code into parallel
(multi-threaded or vectorized) code with the purpose of uti-
lizing multiple processors. Our work is orthogonal in that it
seeks to automate the process of tuning memory order pa-
rameters of C/C++11 data structures to provide SC.

Researchers have explored the complexity of checking
whether a trace is SC in the context of testing shared memory
implementations [18]. Earlier work established that the com-
plexity of checking SC under the assumption that the reads-
from mapping is known is NP-Complete [24]. Although our
algorithm has polynomial complexity for traces it can han-
dle without backtracking and we have not observed back-



tracking for our benchmarks, this result shows that there ex-
ist traces for which it has exponential time complexity.

Although the problem of verifying TSO is NP-hard, re-
searchers have developed polynomial time techniques for
approximately checking whether an execution is allowed by
the TSO memory model [43]. In the absence of the full al-
gorithm, our UPDATESC procedure presented in Figure 10
can be viewed as analogous polynomial-time algorithm for
approximately checking whether a trace is SC.

Researchers have developed a nice property called
triangular-race freedom (TRF) [41] that can precisely char-
acterize programs with SC memory accesses on TSO. How-
ever, TRF is built upon TSO which has a total store order and
allows only relatively few reorderings. The C/C++ memory
model is much weaker and allows more reorderings, mak-
ing an analogous result challenging. Besides, our algorithm
checks a property closer to resultSC. [8] has developed for-
malization that checks SC assuming the modification order
is known, which our algorithm does not rely upon.

Researchers have built tools to verify executions against
axiomatic rules [26]. The approach taken by Gopalakrishnan
et al. is to translate memory model axioms into a SAT prob-
lem instance and then to use a SAT solver to check whether
the execution is consistent with the memory model.

CheckFence [15] explores executions of relaxed memory
models. It does this by bounding loop iterations and translat-
ing the program’s behavior into a SAT formula and solving
the formula. This approach uses extensive static analysis of
code to simplify the SAT formula.

Researchers have developed verification techniques for
code that admits only SC executions under relaxed mem-
ory models such as TSO and PSO [14, 17, 23, 32]. The
basic idea is to develop an execution monitor that can detect
whether non-SC executions exist by examining only SC ex-
ecutions. Our work builds upon this work in two aspects: (1)
it supports the C/C++ memory model; (2) it can still provide
useful information even for code that admits non-SC execu-
tions; and (3) it automatically infers necessary order param-
eters to admit only SC executions. Researchers have also de-
veloped hardware support [35, 39, 42] for checking SC. Our
approach differs in that it seeks to determine memory order
parameters that suffice to ensure that a data structure only
exhibits SC behaviors.

[32] presents a framework which can test a program on a
given memory model to expose violations of a given spec-
ification, and synthesize a set of necessary ordering con-
straints that prevent these violations by leveraging a SAT
solver. It only shows that its specification language can spec-
ify hardware memory models (TSO and PSO). However, the
C/C++11 memory model is much more complicated than
hardware models since it introduces more tricky ordering
constraints (atomic operations and fences with memory or-
der parameters) and allows more reorderings. Our work on
the other hand not just supports the C/C++ memory model,

but also provides useful information on non-SC traces for
the purpose of understanding and debugging.

10. Conclusion
The C/C++ memory model makes it possible to write ef-
ficient, portable low-level concurrent data structure imple-
mentations. Many concurrent data structures are initially de-
signed for the SC memory model, and porting them to the
C/C++ memory model can be extremely challenging. We
present AutoMO, a framework that provides support across
the porting process: (1) it automatically infers initial settings
for the memory order parameters, (2) it detects whether a
C/C++11 execution is equivalent to some SC execution, and
(3) it simplifies traces to make them easier to understand.
We have evaluated AutoMO by using it to successfully infer
memory order parameters for a range of data structures.
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A. Correctness of SC Analysis Algorithm
This section proves that our algorithm outputs that a trace is
SC iff the trace can be reordered to satisfy the SC predicate.
We begin the proof by showing in Lemma A.1 that the
inference rules for the isc−→ relation will not generate any
cycles when applied to an SC trace. This proof holds even
when we include the ordering of operations that the SC
trace provides into the isc−→ relation. We then combine this
lemma with the observation that our algorithm enumerates
all orderings of writes that are not already ordered by the
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isc−→ relation in Theorem A.3. This suffices to show that if an
input trace can be shuffled to be SC, then our algorithm will
generate an acyclic isc−→ relation and thus output that the trace
is SC.

Lemma A.1 (Acyclicity of the isc−→ relation for Sequentially
Consistent Executions). The isc−→ relation generated for a
sequentially consistent trace is acyclic.

Proof. We prove this property by showing that the isc−→ rela-
tion is a subset of the order of statements in the SC execution.

As the sb order is included in the SC execution order, all
edges added by the sequenced-before rule to the isc−→ relation
are trivially consistent with the SC order.

The reads from rule only adds edges to the isc−→ relation
that are already in the SC order as the SC constraint s < i
implies that loads always appear in SC after the stores that
they read from.

The read before write rule only adds edges to the isc−→
relation that are in the SC order as the SC constraint shows
that any operation that appears after W2 and before R must
either not be a store or have a different address than W2.
Therefore, W1 must appear after R in the SC order.

The write ordering rule only adds edges to the isc−→ rela-
tion that are in the SC order as the SC constraint implies that
any operation that appears after W2 and before R must either
not be a store or have a different address than W2. Therefore,
W1 must appear before W2 in the SC order.

We also need to show that if our algorithm outputs that a
trace is SC, then the trace really can be reordered to satisfy
the predicate SC. We begin by showing in Lemma A.2 that
if the isc−→ relation orders all writes to the same memory
location and the isc−→ relation is acyclic, then the execution
can be shuffled to satisfy the predicate SC. Theorem A.3
then observes that our algorithm by construction ensures
that the isc−→ relation orders all writes to the same memory
location. It then follows directly from the lemma that if the
algorithm outputs that a trace is SC, that the trace can be
reordered to satisfy the predicate SC.

Lemma A.2 (Correspondence between the isc−→ relation and
Sequentially Consistent Executions). If all StoreOps to a
given location are totally ordered by the isc−→ relation, and
the isc−→ relation is acyclic, then a topological sort of the isc−→
relation produces a trace τSC that satisfies the predicate SC.

Proof. As the isc−→ relation is assumed to be a DAG, we know
that it has at least one topological sort. Take the topologically
sort of the isc−→ relation. Consider a store S with the index s in
the topological sort and a load L with the index i that reads
from S.

By the application of the reads-from rule, we know that
all loads must read from a store that appears earlier in the
topological sorted order and therefore s < i.

We next need to prove that ∀j.s < j < i, τ(j) /∈
StoreOps ∨ address(τ(j)) 6= address(τ(i)). We prove
this by contradiction. Consider an arbitrary operationO with
index j that is larger than s and smaller than i. If the oper-
ation is not a store, the predicate is trivially true. Therefore,
assume that the operation is a store to the same location as
S. Given that we assumed that the isc−→ relation totally orders
stores to the same location, we have S isc−→ O. By the read
before write rule, we also have R isc−→ O and therefore O
must appear after R in the topological sort. This contradicts
j < i.

Theorem A.3 (Algorithm Correctness). The procedure
CHECKSC correctly checks whether a given execution is al-
lowed by SC.

Proof. We have to prove both: (1) that if the CHECKSC
states that an execution is in SC then the execution is SC
and (2) that if an execution is in SC, that CHECKSC returns
true.

The procedure CHECKSC adds edges to the isc−→ relation
between all writes to the same location that are not already
ordered by the isc−→ relation. Therefore, by Lemma A.2, if
CHECKSC discovers that the isc−→ relation is acyclic, then the
trace in seq must satisfy the predicate SC.

If the execution trace is allowed by SC, then there must
exist a total ordering of writes such that the isc−→ relation is
acyclic by Lemma A.1. If the procedure CHECKSC orders
writes in the same order as in SC, then the isc−→ relation that
it computes will be acyclic and therefore it will identify the
trace as SC. Consider two writes to the same location. If the
isc−→ relation orders them, by Lemma A.1 it must order them

in the same order as SC. The procedure CHECKSC will then
naturally process them in that order.

If the writes are not ordered by the isc−→ relation, then
the backtracking algorithm will try both orders and hence
order them in the same way as SC. Therefore, CHECKSC
will return that the execution is allowed by SC.

B. Memory Order Parameters Inference
Rules with Fence

In the body of this paper, we discuss a set of rules that can be
used to strengthen order parameters to memory accesses so
that the SC violations can be eliminated without considering
fences. C and C++ defines an atomic fence operation, which
loosely imitates the low-level fence instructions provided by
processors for ordering memory accesses and can in some
cases allow developers to write code more efficiently.

Fences may use the release, acquire, rel acq,
or seq cst memory orders (relaxed is a no-op and
consume is an alias for acquire, §29.8p5 [3]). Each
memory order imposes different modification order con-
straints and synchronization properties. We will discuss the



inference rules involving fence operations to infer order pa-
rameters in this appendix. When developers use AutoMO
to infer parameters for data structures that have fences, we
assume that they attach some wildcard order parameters to
fence operations, and then AutoMO figures out the proper
parameters for each. Figure 21 and Figure 22 together show
the rules involving fence operations that can be used to elim-
inate SC violations.

Eliminate Reads-from III (A) (Fence)
A: v.store(0)

B: v.store(1)

mo

X: sc_fence()

sb

Y: sc_fence()
sc

C: v.load()

sb

=⇒

A: v.store(0)

C: v.load()

  ✘rf

Eliminate Reads-from III (B) (Fence)
A: v.store(0)

B: v.store(1)

mo

Y: sc_fence()
sc

C: v.load()

sb

=⇒

A: v.store(0)

C: v.load()

  ✘rf

Eliminate Reads-from III (C) (Fence)
A: v.store(0)

B: v.store(1)

mo

Y: sc_fence()
sb

C: v.load()

sc

=⇒

A: v.store(0)

C: v.load()

  ✘rf

Impose Modification Order (D) (Fence)

A: v.store(0)

X: sc_fence()

sb

B: v.store(1)

Y: sc_fence()
sc

sb

=⇒

A: v.store(0)

B: v.store(1)

mo

Figure 21. Fence inference rules for non-SC traces (part I)

Eliminate Reads-From III: We derive these three rules
(Rule A, B and C) from §29.3p4, 29.3p5 and 29.3p6 [3].
To summarize, these rules require that operation C must
read from any operation that is later than operation A in
modification order, and thus the reads-from edge can be
eliminated.
Impose Modification Order (Fence): §29.3p7 [3] requires
explicitly that operation A will be later than operation B in
modification order.
Eliminate Reads-From IV: According to §29.3p3 [3], sc
order must be consistent with happens-before. In Rule E,

Eliminate Reads-from IV (E) (Fence)

A: v.load()

X: sc_fence()

sb

B: v.store(1)

Y: sc_fence()
sc

sb

=⇒

A: v.load()

B: v.store(1)

  ✘rf

Eliminate Reads-from IV (F) (Fence)

A: v.load()

X: sc_fence()

sb

B: v.store(1)
sc

=⇒

A: v.load()

B: v.store(1)

  ✘rf

Eliminate Reads-from IV (G) (Fence)

A: v.load()

X: sc_fence()

sc

B: v.store(1)
sb

=⇒

A: v.load()

B: v.store(1)

  ✘rf

Figure 22. Fence inference rules for non-SC traces (part II)

for example, if operation A reads from operation B, then
according to §29.8 fence Y happens before fence X , and it
has a conflict with the sc edge from X to Y . Therefore, A
is not allowed to read from B. Similar rules apply to Rule F
and Rule G.

To extend AutoMO to support inferring order parameters
for fences with the above discussed rules, we extended the
search for possible repairs such that it also searches for
repairs involving fence operations when possible. Since a
fence operation with memory order relaxed parameter
means a no-op, any inference results that have a relaxed
fence imply that a fence operation is not needed at that
location.
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