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Abstract
Developing parallel software using current tools can be challeng-
ing. Even experts find it difficult to reason about the use of locks
and often accidentally introduce race conditions and deadlocks into
parallel software. We present OoOJava, a new approach to paral-
lel programming inspired by out-of-order processors. Out-of-order
processors have long extracted unstructured parallelism from se-
quential instruction streams. In our approach, a developer annotates
code blocks as tasks to decouple these blocks from the parent exe-
cution thread. OoOJava extracts all data dependences through static
analysis to generate an executable that is guaranteed to preserve the
behavior of the original sequential program.

We have implemented OoOJava and achieved an average
speedup of 15.3× on our nine benchmarks. The combination of a
simple parallelism model, compiler feedback, and speedups are in-
dications that out-of-order execution-based programming models
can become mainstream.

1. Introduction
Mainstream processors currently ship with as many as twelve cores
and processors with as many as 1,000 cores will become common-
place within a few years [7]. Software development tools lag be-
hind hardware platforms; developing parallel software using cur-
rent tools is both difficult and error-prone. They require developers
to reason carefully about the interactions of many parallel threads
to write correct software — a task which even the best developers
find extremely difficult. Experience shows that applications written
using existing models are prone to both races and deadlocks.

Deterministic programming models have been recognized to
simplify developing parallel code by eliminating race condi-
tions [6]. Deterministic parallel programming systems exist today
that strive to take sequential code with parallelization annotations
and generate a parallel implementation with the same behavior but
better performance. However, much of this work either limits the
structure of the code that can be parallelized (loops only) [10], con-
strains the usage of data structures [17, 4], requires extensive an-
notations [22, 6], or only guarantees determinism under unchecked
conditions (disjoint data structures) [25, 12, 20].

Hardware has long extracted unstructured parallelism from se-
quential instruction streams through out-of-order execution [26].
Processors dynamically extract dependences between sequential
instructions and then execute the instructions out-of-order while
preserving the dependences. This paper leverages the same proven
techniques at a coarser granularity to parallelize software.

OoOJava is a compiler-assisted approach that leverages devel-
oper annotations along with static analysis to provide a determinis-
tic parallel programming model. OoOJava extends sequential Java
with a single annotation, a task, to instruct the compiler to consider
a code block for out-of-order execution. OoOJava executes tasks as
soon as their data dependences are resolved and guarantees that the
execution of an annotated program preserves the exact semantics
of the serial elision, the sequential program obtained by removing

all annotations. Therefore, annotations never affect the program’s
correctness, but merely its performance.

This basic approach has been known for some time. We leverage
a new extension to pointer analysis, disjoint reachability analysis,
to augment our modified approach to effects [15]. OoOJava uses
the results of disjoint reachability analysis to generate a handful
of lightweight comparisons that allow it to safely dynamically ex-
tract parallelism even when the heap accesses cannot be statically
determined to be disjoint. We combine this with a new value for-
warding approach that is analogous to register renaming and elim-
inates write-after-write and write-after-read hazards for variables.
Together, these techniques allow OoOJava to parallelize a wide-
range of programs while requiring few changes to sequential code.

This paper makes the following contributions:
• OoOJava: It presents a deterministic parallel programming

model that extends Java with the task annotation while preserv-
ing the program’s sequential semantics. Because OoOJava’s sim-
ilarity to Java, developers will likely find it easy to use.

• Dependence Analysis: OoOJava uses static analysis to discover
data dependences.

• Software-Based Out-of-Order Execution: Processors execute
instructions out-of-order to extract fine-grained, unstructured
parallelism. OoOJava adapts out-of-order execution techniques
in software to parallelize code blocks and guarantees that the ex-
ecution respects all dependences.

• An Implementation and Evaluation: We have implemented
OoOJava and evaluated its performance on nine benchmarks.
The remainder of the paper is organized as follows. Section 2

presents an example. Section 3 presents an overview of our ap-
proach. Section 4 presents our approach to managing variable de-
pendences. Section 5 presents our approach to managing heap de-
pendences. Section 6 discusses various aspects of our system. Sec-
tion 7 evaluates the approach on several benchmark applications.
Section 8 discusses related work; we conclude in Section 9.

2. Example
We present a compiler example to illustrate OoOJava. Figure 1
presents the typeCheckAndFlatten method that iterates over
a set of methods and performs the initial stages of compiling those
methods. Consider this method without the task keyword or the
associated curly braces. The loop retrieves the abstract syntax tree
(AST) associated with a method in Line 5, type checks the AST
in Line 7, and finally flattens the AST into a control flow graph
in Line 8. If different loop iterations operate on different AST’s
and the AST’s do not share mutable data, Lines 7 through 8 from
different loop iterations can run in parallel.

However, the loop iterations are not completely independent.
Line 11 stores the control flow graph for every loop iteration into
the same hashtable and therefore has a dependence on itself from
the previous loop iteration.

OoOJava extends the sequential programming model with the
task annotation that hints to the compiler that it can decouple the
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annotated block of code from the parent thread’s execution. A task
is declared with the keyword task, followed by a name for the
task and a pair of braces enclosing the block. Task names have no
semantic meaning but are useful for communicating feedback about
dependences between tasks to the developer. Tasks do not introduce
a new variable scope — variables declared in a task can be accessed
outside of the task. Task must have a single exit.

In our example, we enclosed Lines 7 and 8 in the task tpar to
decouple their execution from the main thread. An instance of the
task tpar can be safely executed in parallel if the variable ast
references a different object than it does in previous iterations, and
the objects in the AST that are updated are only reachable from one
AST object. Parallelizing this loop poses a problem for most auto-
matic parallelization systems — it is difficult to statically determine
that different loop iterations access different AST objects.

Line 11 poses a challenge for parallelization — it has a depen-
dence on the result of flattening the AST and a sequential depen-
dence on itself from the previous loop iteration. We enclose Line 11
in a second task named tser to allow the main thread to continue
past this statement and to separate it from the parallel work in task
tpar. The sequential dependence will force all instances of tser
to execute serially.

It is important to note that OoOJava guarantees that the anno-
tated program always preserves the semantics of the serial elision.
Annotations in OoOJava never affect the program’s correctness, but
merely its performance.

3. Execution Model
OoOJava’s execution model is inspired by out-of-order processors.
An out-of-order processor takes as input an instruction stream.
When the processor issues the next instruction in the stream, it
records any dependences of the instruction on previously issued in-
structions. When an instruction’s dependences are resolved and the
required functional unit is available, the instruction is dispatched
to the functional unit. When completed, the instruction retires by
updating the processor’s state.

Similarly, when a thread reaches the definition of a task, it al-
locates a record for the task and makes a runtime count of all out-
standing dependences the task has on its sibling tasks. The thread
then issues the task and skips to the end of the task declaration to
immediately resume executing its own code. OoOJava dispatches a
task when its dependences are fully resolved. When a task finishes
execution, it waits for all of its children to retire before it retires.

Tasks can be nested and there is an implicit top-level task for the
main method. Tasks in OoOJava form a tree at runtime. A parent is
responsible for issuing its children and managing the dependences
among its children and itself.

A key component to our approach is conservatively extracting
dependences between tasks to ensure that parallel execution pre-

1 p u b l i c vo id t y p e C h e c k A n d F l a t t e n ( ) {
2 I t e r a t o r <MethodDesc> m e t h o d s I t r = a l l M e t h o d s . i t e r a t o r ( ) ;
3 whi le ( m e t h o d s I t r . hasNext ( ) ) {
4 MethodDesc m = m e t h o d s I t r . n e x t ( ) ;
5 AST a s t = m2ast . g e t ( m ) ;
6 ta sk tpar {
7 a s t . typeCheck ( ) ;
8 CFG c f g = a s t . f l a t t e n ( ) ;
9 }

10 ta sk tser {
11 m2cfg . p u t ( m, c f g ) ;
12 }
13 }
14 m2cfg . s e r i a l i z e T o D i s k ( ) ;
15 }

Figure 1. Compiler Example

serves the behavior of the program’s serial elision. Program depen-
dences can take two forms: control dependences and data depen-
dences. OoOJava handles control dependences implicitly by con-
straining a task to have a single exit. One implication is that a task
should not throw an exception that it does not catch. Section 6 dis-
cusses the constraints OoOJava places on exceptions in more detail.

A task may have a data dependence on another task through a
variable or through conflicting heap accesses to the same object.
Different runtime instances of the same task reference the same
variables. Like register renaming in out-of-order hardware, a crit-
ical component of parallelization is to eliminate write-after-write
and write-after-read hazards on variables by forwarding values di-
rectly to the consuming task. Section 4 presents our compiler anal-
ysis for extracting variable dependences and our runtime strategy
for respecting them.

OoOJava structures task dependence relations to minimize over-
heads. Nested task annotations can generate dynamic trees of tasks.
If we allow dependences between arbitrary tasks in the hierarchy
then the maintenance of dependences becomes a global problem
and a potential bottleneck. OoOJava restricts task dependence rela-
tions to be only parent-child or sibling-sibling in nature. OoOJava
enforces this structure by attributing a child’s dependences to its
parent and only retiring a task after all of its children have retired.
This structure simplifies the management of dependences by local-
izing the problem; a parent manages the dependences between itself
and its children. Moreover, it allows our implementation to paral-
lelize dependence tracking and therefore support scaling to systems
with a large number of cores.

4. Variable Dependences
A task has a variable dependence on a second task if it reads a
variable that was last written to by the second task. In the example
presented in Section 2, task tser reads the value of variable cfg
that the most recent instance of task tpar wrote. Therefore, the
task tser has a variable dependence on the most recent instance
of the task tpar for the value of the variable cfg. The variable de-
pendence analysis statically extracts a conservative set of variable
dependences between tasks.

4.1 Variable Dependence Analysis
Variable dependence analysis abstracts the source of a variable’s
current value with a variable source tuple. A variable source tu-
ple contains three parts: (1) the name of the task that produced the
value, (2) which instance of that task, relative to the most recent
dynamic instance, produced the value, and (3) which variable it
wrote the value to. Variable source tuples are useful as they stati-
cally characterize how the program’s execution propagates values
in variables between tasks.

To be more precise, the variable source for the variable v1 has
the form 〈t, g, v2〉 ∈ S ⊆ T ×G × V . The combination of a task
t ∈ T and an age g ∈ G of that task (i.e. how many instances
of that task have been issued between the source instance and
the current program point) together statically specify a dynamic
instance of a task. To bound the analysis, g is taken from the set
G = {0, 1, . . . , k}, where a variable source with g = k means an
instance with an unknown age and g = 0 means the most recent
instance. The variable v2 ∈ V specifies which variable at the exit
of the task given by t and g contains the relevant value. A variable
source provides a complete abstract address for the variable’s value.

Each task has a set of in-set variables and a set of out-set vari-
ables. A task’s in-set variables are variables read by the task that
were written to before it began executing. Similarly, out-set vari-
ables are variables a task writes values to that may be read outside
of that task. Our analysis calculates in-set and out-set variables by
examining variable sources at a task’s enter and exit points. In the
example, task tpar has the in-set {ast} and the out-set {cfg}
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while task tser has the in-set {m2cfg, m, cfg}. Task in-sets and
out-sets combined with variable source tokens provide the neces-
sary information to route the values of variables between tasks.

4.1.1 Abstract Domains
The analysis is structured as a standard forward dataflow analysis.
There is a set L for each program point of the live variables at the
entrance to that program point. The analysis computes a mapping
M ⊆ V × S at each program point. The relation M maps a vari-
able to the set of variable source tokens that describe the possible
sources of the variable’s value. At program entry, M is empty.

The mapping M forms a lattice. The partial order (v) is defined
by the subset relation (⊆); join(t) is set union (∪); bottom(⊥) is the
empty set(∅); and top(>) is the maximally full set. The lattice M
has a finite height because both the set of live variables and the set
of variable source tuples are finite.

4.1.2 Program Representation
To simplify the transfer functions we decompose program state-
ments into simple operations: variable reads, variable writes, and
variable copy statements. For example, the analysis views method
invocations as a read of every argument followed by a write to the
return value. A read from variable x is denoted by rd(x), likewise
a write to x is wr(x). The analysis recognizes the variable copy
statement x=y as a special case. Finally, the entry and exit points
of tasks are relevant; for task t the analysis recognizes enter(t)
and exit(t).

4.1.3 Transfer Functions
Figure 2 presents the transfer functions for the variable source
analysis, each of the form M ′ = (M − KILL) ∪ GEN. We define
the convenience function M(x) = {s | 〈x, s〉 ∈ M}.

Write Statement: When a statement writes to a variable the
enclosing task becomes the new source of that variable’s value.
The GEN set for the statement wr(x) creates the tuple 〈x, 〈t, 0, x〉〉,
indicating that the current value of x was written to by most recent
instance of the task t and was stored in the variable x at the exit
of task t. Writing a new value to a variable removes the old values
of that variable. Therefore, the KILL set for the statement wr(x)
removes all of the previous sources for the variable x.

Read Statement: Our compiler implements several optimiza-
tions to reduce the overhead of communicating values through vari-
ables from one task to another. The transfer functions for statements
that read from variables must take these optimizations into account.
If a statement reads from a variable whose value was written by a
child task of the current task, the statement must stall (wait) for the
child task to complete and then copy the value from the child. If the
compiler can statically determine the exact child task the statement
reads from, it can optimize the code to eliminate future dynamic
checks by copying the values for all other variables that it can also
determine are written to by the same task. The single child source
rule gives the transfer function for this case. The KILL part of the
transfer function for the single child source for rd(x) kills the vari-
able sources for all variables with the same task source as the vari-
able x. The GEN part of the transfer function replaces the variable
sources for these variables with a new source for the current task to
indicate that the variables reference currently available values.

If the compiler determines that a variable may contain a value
written to by a child task but cannot statically determine the exact
task it can only copy the value for the current variable. The mixed
source case gives the transfer function for this case. The KILL part
of the transfer function for the statement rd(x) removes the old
variable sources for the variable x. The GEN part of the transfer
function for the statement rd(x) adds a new variable source for
the current task to indicate that the variables reference currently
available values.

st M
′
= (M − KILL) ∪ GEN

wr(x) KILL = {x} ×M(x)

GEN = {〈x, 〈tcurr, 0, x〉〉}
rd(x) Single child sources:

If M(x) ={〈tchild, g, v1〉, . . . , 〈tchild, g, vm〉}∧

tchild is a child of tcurr,

Y ={∀y ∈ L | ∃w1, . . . , wk,

M(y) = {〈tchild, g, w1〉, . . . ,

〈tchild, g, wk〉}}

KILL ={〈y, s〉 | ∀y ∈ Y, ∀s ∈M(y)}

GEN ={〈y, 〈tcurr, 0, y〉〉} | ∀y ∈ Y }.
Mixed sources case:
If M(x) ={〈tchild, g1, v1〉, 〈t2, g2, v2〉, . . . }∧

tchild is a child of tcurr,

KILL ={x} ×M(x),

GEN ={x} × {〈tcurr, 0, x〉}.
No child sources case:

KILL = GEN = ∅
x = y KILL ={x} ×M(x)

GEN ={〈t, g, v〉 ∈M(x) | t is a child tcurr}∪

{〈tcurr, 0, x〉 | 〈t, g, v〉 ∈M(x)∧

¬t is a child tcurr}
enter(tcurr) KILL ={〈t, g, w〉 | ∀〈t, g, w〉 ∈M ∧ t = tcurr}

GEN ={〈t, g ⊕ 1, w〉 | ∀〈t, g, w〉 ∈M ∧ t = tcurr}

g1 ⊕ g2 =

(
g1 + g2 if g1 + g2 < k,

k otherwise.

exit(tcurr) Z ={z ∈ L |M(z) = {〈t, g, v〉, . . . }∧

(t is a child of tcurr ∨ t = tcurr)}

KILL ={〈z, s〉 | ∀z ∈ Z, ∀s ∈M(z)}

GEN ={〈z, 〈tcurr, 0, z〉〉 | z ∈ Z}.

Figure 2. Transfer Functions for Variable Dependence Analysis
(tcurr denotes the currently executing Task)

If none of the sources for a variable’s value is a child, then the
value is currently available and the read has no effect. The transfer
function for this case does not change M .

Copy Statement: The variable dependence analysis uses a sep-
arate transfer function for the variable copy statement x = y
rather than decomposing it into the combination of a read and a
write statement, because the semantics of a variable copy can be
utilized by the analysis to potentially eliminate stalls. The key ob-
servation is that copy statements do not immediately need the value
of a variable and therefore can be lazily evaluated. Our compiler
leverages this observation to delay stalls for copy statements when
possible. This optimization can allow the program to possibly is-
sue more tasks and improve parallelism or even eliminate the stall
completely if the variable is overwritten. The transfer function for
the copy statement copies the abstract variable sources from y to x
if the variable y includes a child task source. Otherwise, the vari-
able’s value is currently available and it operates the same as the
transfer function for wr(x).

Enter Statement: When a source from a task flows across
a back edge and reaches the enter statement for the same task,
OoOJava must perform some bookkeeping. The problem is that
variable sources name a dynamic instance of a task; when the enter
statement to a task creates a new instance, previous instances of
the same task age by one. The transfer function for the statement
enter(tcurr) in Figure 2 increments the age of previous variable
sources from tcurr. The analysis becomes finite by bounding the age
by k; a variable source with the age k is interpreted as an unknown
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age. In Section 4.2 we discuss how the compiler generates code to
dynamically track such sources.

Exit Statement: Recall the discussion in Section 3 of the de-
sign decision to simplify the management of task dependence re-
lations by attributing a child task’s dependences to its parent. An
implication of this decision is that the transfer function for an exit
statement must reflect that a parent task becomes the source for all
of its children’s values. The transfer function for the exit(tcurr)
statement finds variables with at least one child source and changes
such variables to have exactly one source, the current task instance.
The compiler generates code to copy the values from the child tasks
to the current task. Other variable’s sources remain unchanged.

4.1.4 Virtual Reads
We introduce virtual reads to simplify the runtime management of
variable dependences. Recall that OoOJava handles control depen-
dences between tasks implicitly by forcing them to have a single
exit. However, a problem remains: which task is the source of a
variable when a later task conditionally writes to that variable? We
want to avoid the overhead of searching through a series of tasks at
runtime to find a variable’s value.

Our solution is to treat a conditional write to a variable as a
virtual read. The variable dependence analysis identifies this case
in the exit(tcurr) transfer function: it occurs when a live variable at
the task exit has a mixture of sources that are from both (1) outside
of the current dynamic task instance and (2) from inside the current
instance and its children. The transfer function forces such a task to
require the variable’s value before starting to execute and therefore
when the task exits, it has the variable’s value.

4.2 Code Generation
We next describe how the compiler uses the results of the variable
dependence analysis to generate code. We divide code generation
for accessing a variable x within task tcurr into three categories
based on M(x) at the relevant program point:

Immediate Access: When all of the sources in M(x) are from
the current task tcurr, its ancestors, or their siblings, the variable
stores a currently available value. Therefore, the compiler simply
generates normal code to access the variable x immediately.

Optimized Stall: When all of the sources in M(x) are from
a single instance of a child tchild with an age less than k, then the
compiler statically knows which dynamic task instance will provide
the value for variable x. In this case the generated code should stall
the current task until tchild retires and copy the value of x before
generating a normal access to x. If the same task is statically known
to be the source of other variables, the compiler generates code to
also read those values. This optimization avoids the overhead of
extra dynamic checks for future accesses to those variables.

Dynamic Tracking: Otherwise, the variable dependence anal-
ysis cannot track the variable’s source statically. In this case, the
compiler identifies the points in the control flow graph at which the
statically known sources for the variable became unknown. At these
points, the compiler inserts code to dynamically track which task
generates the variable’s value. The compiler must also handle the
case in which it is statically unknown whether the variable’s value
is currently available — in this case the code tracks (1) whether the
variable has a value, (2) the actual value if it is available, and (3)
the source of the value if the value is not currently available. Then
code is generated just prior to the access of x to check whether the
value is available or whether a task instance will provide the value
and the task must stalled for it.

To complete code generation for variable accesses, the compiler
generates bookkeeping code at the exit statement of each task. As
mentioned in our discussion of the task exit transfer function, a
parent becomes the source for the values of its children, so the
compiler generates code to stall a task until all of its children have

retired. Then the task copies the values from the children to itself
and makes them available for other tasks to access.

At the entrance to each task, the compiler generates code to
issue the task. Each task has a count of its unresolved dependences.
This count is initialized to a bias value that is larger than the number
of dependences and then updated using atomic operations. The
issue code iterates over all of the sibling tasks that the issued task
depends on. If the sibling task has not retired, the newly issued
task is added to its forwarding list. When the sibling task retires,
it decrements the dependence count of all tasks on its forwarding
list. Finally, the code subtracts off the bias value minus the number
of outstanding dependences. When the dependence count becomes
zero, the task is dispatched for execution.

5. Heap Dependence Analysis
Heap dependences have long posed a challenge to automatically
parallelizing code that manipulates data structures. OoOJava rea-
sons about a heap access in terms of the heap root used to reach
the accessed heap object; a heap root is an object referenced by a
live variable through which deeper heap references are obtained.
Heap roots occur in two contexts: a heap root is either referenced
by a variable in the in-set of a task, or it is the first object along a
heap path accessed by a parent task after the exit of a child task.
In the latter case, we refer to the parent statement that accesses the
variable as a potential stall site because the parent task may have to
stall there for a child task to complete.

Two tasks can only have a heap dependence when both of the
following two conditions are true. The first condition is that one
task writes to a field f of an object allocated at site a and a second
task either reads or writes to the field f of an object allocated at
site a. We call the pair of accesses potentially conflicting accesses
and objects allocated at site a potentially conflicting objects. The
second necessary condition is that there must exist a potentially
conflicting object that is reachable from the heap roots of both tasks
that perform the potentially conflicting accesses.

5.1 Heap Dependence Overview
We next present a straightforward dynamic approach for preserving
heap dependences. We will later extend this basic approach with the
static analysis that OoOJava uses to make this approach efficient.

5.1.1 Naive Dynamic Approach
OoOJava uses a static effects analysis extension to a standard
pointer analysis to report all possible heap accesses a task may ex-
ecute. Effects are reported as a 4-tuple consisting of: (1) the heap
root used to access the affected object, (2) the allocation site of the
affected object, (3) the effect type (read or write), and finally (4)
the affected field.

In our example from Section 2, the effects analysis would re-
port write effects to objects in the AST allocated at several allo-
cation sites due to the call to the typeCheck method at Line 7.
The analysis would also report read effects to the objects in the
AST allocated at several allocation sites due to the calls to both
the typeCheck method at Line 7 and the flatten method at
Line 8. In both cases, the program reached the affected objects
through the AST object referenced by the ast in-set variable of
the task tpar.

In many cases, the compiler can statically determine that two
effects cannot conflict. However, statically checking that the up-
dates to the ASTs do not conflict is difficult because two instances
of the task tpar may both write to the same AST objects. We next
describe a dynamic approach that can rule out such conflicts.

To issue an instance p of task tpar, the system would dynam-
ically check for conflicts between p and all instances of tasks that
have not retired: take, for example, an earlier instance p0 of the
task tpar. The runtime would traverse the heap reachable from
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the in-set variable ast to identify all concrete objects that the ef-
fects can apply to; the dynamic check would use the allocation site
information to prune the set of objects that an effect could apply to.
If this dynamic check shows that there are no conflicting accesses
between the instance p and all previous non-retired task instances
to the same object, then it is safe to immediately dispatch p. One
potential concern is that a data structure may not yet contain all ob-
jects that it will when the task is supposed to run. However, in this
case there will be a conflict detected on some existing object that
will eventually reference the additional objects.

This dynamic approach is not practical because it can incur
significant overhead for large data structures. In the next section,
we describe how OoOJava uses static analysis to make this basic
approach practical.

5.1.2 Optimization
The key insight behind OoOJava is to use reachability results from
static analysis combined with simple dynamic checks to make the
previous approach practical. For example, if we can determine (1)
that all affected objects in an AST are only reachable from at most
one AST object through static analysis and (2) that different in-
stances of the task tpar operate on different AST objects through
a dynamic check, then there is no conflict between the tasks.

We introduce an effects analysis in Section 5.2 to discover a set
of effects that conservatively summarizes the heap effects of a task.
Section 5.3 presents an overview of the approach to reachability
analysis that we use to statically compute the reachability of objects
from the heap roots in the effects. Section 5.3.2 presents rules
for determining whether two effects conflict. Finally, Section 5.4
describes how OoOJava efficiently implements the dynamic checks
to preserve all heap dependences between tasks.

5.2 Effects Analysis
OoOJava uses heap effects to conservatively abstract the read and
write heap accesses a task may perform.

5.2.1 Abstract Domains
To be more precise, OoOJava represents effects as the 4-tuple
〈h, aaff, o, f〉 ∈ U ⊆ H×A×O×F , where h is the heap root used
to access the affected object, aaff ∈ A is the allocation site of the
affected object, o ∈ O = {read, write, strong} is the operation,
and f ∈ F is the affected field.

Recall that the analysis uses two different types of heap roots.
The first type of heap root abstracts the objects referenced by a
task’s in-set variables. The second type abstracts objects referenced
by live variables between two task declarations. Formally, a heap
root h is given by the tuple 〈st, v, a〉 ∈ H ⊆ ST × V ×A, where
st is either a stall site or the entrance to a task, v is the stall site or
in-set variable, and a is the allocation site of the object referenced
by v at location st.

The analysis assumes the presence of a pointer analysis. We
assume the pointer analysis abstracts objects with a set of heap
nodes n ∈ N and heap references with a set of edges e ∈ E ⊆
V ×N∪N×F×N . We define helper functions E(x) = {〈x, n〉 ∈
E} and E(x, f) = {〈n, f, n′〉 ∈ E | 〈x, n〉 ∈ E}. We also
assume that the pointer analysis provides a function A that maps
a heap node to an allocation site. Though we assume a heap node
only abstracts objects allocated at one site, modifications to support
pointer analyses in which heap nodes abstract objects allocated at
multiple sites are straightforward. The analysis computes at each
program point the mapping R ⊆ E ×H from an edge to the heap
roots that were used to reach the edge’s target.

The analysis also computes at each program point a set of vari-
ables L that the application may have to stall for before accessing
the object they reference if the variables reference data structures
for which there is a conflict.

st R
′
= (R− KILL) ∪ GEN

x = ... KILL = {∀〈e, h〉 ∈ R | e ∈ E(x)}
x = new GEN = ∅

L′
= L\{x}

x = y GEN = {〈〈x, n〉, h〉 | ∀〈y, n〉 ∈ E, 〈〈y, n〉, h〉 ∈ R}

L′
= {v ∈ V | (v ∈ L ∧ v 6= x) ∨ (y ∈ L ∧ v = x)}

x = y.f Ra = R ∪ {〈〈y, n〉, 〈st, y,A(n)〉〉 | ∀〈y, n〉 ∈ E, y ∈ L}

GEN = {〈〈x, n
′〉, h〉 | ∀〈n, f, n

′〉 ∈ E(y, f),

〈〈n, f, n
′〉, h〉 ∈ Ra}

L′
= L\{x, y}

x.f = y Ra = R ∪ {〈〈x, n〉, 〈st, x,A(n)〉〉 | ∀〈x, n〉 ∈ E, x ∈ L}

∪ {〈〈y, n〉, 〈st, y,A(n)〉〉 | ∀〈y, n〉 ∈ E, y ∈ L}

KILL = ∅

GEN = {〈〈n, f, n
′〉, h〉 | ∀〈x, n〉 ∈ E, ∀〈y, n

′〉 ∈ E,

〈〈y, n〉, h〉 ∈ Ra}

L′
= L\{x, y}

enter(tcurr) KILL = {〈e, 〈st, v,A(n)〉〉 | st is a stall site}

GEN = {〈〈v, n〉, 〈tcurr, v,A(n)〉〉 | v is an in-set variable for

tcurr ∧ 〈v, n〉 ∈ E}

L′
= ∅

exit(tcurr) KILL = {〈e, 〈st, v,A(n)〉〉 | st is a stall site ∨ v is an in-set

variable for the current instance of tcurr}

GEN = ∅

L′
= V

Figure 3. Transfer Functions for Computing Heap Roots

The mapping R and set L both form lattices. The partial order
(v) is defined by the subset relation (⊆); join(t) is set union (∪);
bottom(⊥) is the empty set(∅); and top(>) is the maximally full set.
The lattices have finite heights because their domains are finite.

The analysis generates a set of effects U for the program. Note
that there is only one set of effects for the entire program.

5.2.2 Transfer Functions
We decompose the effects analysis into two passes. The first pass
computes the mapping R from edges to the heap roots used to
access the edges’ target objects. The second pass then uses the
mapping R to compute the application’s set of effects U .

Figure 3 presents the transfer functions for computing the map-
ping R from reference edges in the points-to graph to heap roots.
The analysis introduces new heap roots into points-to graphs at two
classes of statements: (1) task enter statements and (2) statements
of a parent task that may have to stall to avoid heap conflicts with
a child task. These statements create new heap roots for the corre-
sponding variable’s edges. Heap roots are then subsequently prop-
agated to newly created references because we are interested in de-
termining which heap root was used to access an affected object.

The heap roots analysis uses a simple supporting analysis that
pre-computes which variables may require stalls. This supporting
analysis is relevant for sections of a task following the exit of
a child task. The goal of this analysis is to compute the set of
variables L for which accesses to the objects referenced by these
variables may require the generation of a stall. Figure 3 presents
the transfer functions for computing the set L. At the exit of a child
task, the set L contains all live variables that reference objects. At
the entrance of a task, the set L is empty because all data structures
can be accessed without needing to stall for child tasks. The transfer
functions for L remove a variable at a statement that reads the
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st U
′
= U ∪GEN

x=y.f GEN = {〈h,A(n), read, f〉 | ∀〈y, n〉 ∈ E,

〈〈y, n〉, h〉 ∈ R}
weak
x.f=y

GEN = {〈h,A(n), read, f〉 | ∀〈x, n〉 ∈ E,

〈〈x, n〉, h〉 ∈ R}
strong
x.f=y

GEN = {〈h,A(n), read, f〉 | ∀〈x, n〉 ∈ E,

〈〈x, n〉, h〉 ∈ R} ∪ {〈h, n, strong, ∗〉 |

∀〈x, n0〉 ∈ E, ∀n ∈ N, 〈〈x, n0〉, h〉 ∈ R∧

n’s reachability decreases}

Figure 4. Transfer Functions for Effects

variable and therefore serves as a potential stall site for the data
structure referenced by the variable.

Figure 4 presents the transfer functions for computing heap ef-
fects. Load statements and store statements are the only statements
that operate on object fields in the heap and therefore are relevant
for collecting effects. These transfer functions record for each field
access: the heap root that was used to reach the object, the alloca-
tion site of the object, the operation, and the field that the statement
accessed. The analysis simply accumulates effects into a global set
U . The effects analysis treats array operations as normal field ac-
cesses on a special array field. Section 5.3.2 discusses the reasons
for the strong update rule.
5.2.3 Interprocedural Extension
We next present the interprocedural extension to the effects anal-
ysis. The pointer analysis we used handles method calls by tak-
ing a snapshot of the portion of the caller’s heap reachable by the
callee just prior to the method invocation and labeling the heap el-
ements with predicates—these predicates are initially tautologies.
For example, the predicate for an edge 〈n1, f, n2〉 is that the edge
〈n1, f, n2〉 existed in the caller. Then the heap contexts for all of a
method’s callers are merged. The predicates serve to preserve anal-
ysis precision by preventing the erroneous propagation of edges
from one caller to another. The interprocedural extension also adds
predicates to heap roots: heap root predicates specify that a given
edge in the caller had the given heap root. There is a special pred-
icate for heap roots created in the current method context — the
analysis uses this predicate to determine which heap roots to prune
at task exits (in case of recursive tasks).
5.2.4 Basic Effect Conflict Elimination
OoOJava considers a task to have a heap dependence on an earlier
task when an effect of one task conflicts with an effect of the other.
Consider an task t0 with the effect 〈h0, a

aff
0 , o0, f0〉 and a task t1

with the effect 〈h1, a
aff
1 , o1, f1〉:

1. If aaff
0 6= aaff

1 , then there is no conflict because the objects must
be different if they were allocated at different sites.

2. If o0 = o1 = read, then there is no conflict because reads do
not conflict.

3. If f0 6= f1, then there is no conflict because the two effects
access different fields.
When these rules cannot eliminate a conflict, OoOJava will

consider reachability to possibly eliminate the conflict or generate
a simple dynamic check for the conflict.
5.3 Reachability-based Conflict Detection
Disjoint reachability analysis is a new static analysis that conserva-
tively extracts reachability properties between heap objects. OoO-
Java uses these reachability properties to generate lightweight dy-
namic checks that can rule out conflicts. When OoOJava cannot
eliminate a conflict between two effects using the basic conflict
detection rules, it uses disjoint reachability analysis to compute
the reachability from the heap nodes that correspond to the allo-

cation sites in the effects’ heap roots. Section 5.3.1 presents an
overview of disjoint reachability analysis. Section 5.3.2 presents
the reachability-based conflict detection rules that OoOJava uses to
eliminate the possibility of conflicts between effects when the basic
conflict resolution rules cannot.

5.3.1 Disjoint Reachability Analysis
Disjoint reachability analysis extends a standard pointer analysis
with reachability states. An object’s reachability state conserva-
tively characterizes the set of objects that can possibly reach the
given object through heap references. Disjoint reachability analysis
is demand-driven — it only computes reachability from objects of
interest to the compiler. OoOJava uses the results from the effects
analysis to generate a set of allocation sites of interest.

A reachability state is a set of heap node-arity pairs with the
constraint that no two pairs have the same heap node. The arity el-
ement of the pair is taken from the set {0, 1, MANY}. A reachability
state that abstracts the reachability of an object o that includes the
pair 〈n1, µ〉 means that at most µ objects abstracted by heap node
n1 have paths through the heap to object o. The arity 0 means ex-
actly zero, 1 means at most one, and MANY means any number of
objects. We omit reachability tuples with arity 0.

The analysis associates a set of reachability states Sn with
each heap node n in the points-to graph. For each object o that
is abstracted by heap node n there is a reachability state s ∈ Sn

that conservatively abstracts the reachability of o.
The analysis also associates a set of reachability states Se with

each edge e ∈ E in the points-to graph. Reachability states associ-
ated with an edge characterize the reachability of the objects reach-
able from that edge. Intuitively, these reachability states provide
a precise way to propagate reachability changes through the heap
abstraction. For each object o and for each sequence of references
r1; r2; ...; rj in the heap that form a path to o, there is a reacha-
bility state s ∈ Se that conservatively abstracts the reachability of
object o in the set of reachability states for each edge e1; e2; ...; ej ,
where each edge ei abstracts reference ri. A complete presentation
of disjoint reachability analysis is available in a technical report [3].

1 x = new SharedObj ( ) ; / / o b j s a b s t r a c t e d by n1
2 y = new Foo ( ) ; / / o b j s a b s t r a c t e d by n2
3 z = new Bar ( ) ; / / o b j s a b s t r a c t e d by n3
4 i f ( . . . ) {
5 y . f = x ; / / o b j i n n2 r e a c h e s o b j i n n1
6 } e l s e {
7 z . b = x ; / / o b j i n n3 r e a c h e s o b j i n n1
8 }

Figure 5. Code Fragment for Reachability Example

Figure 5 presents an example that we will use to illustrate dis-
joint reachability analysis. At the exit of Line 8 the set of reacha-
bility states for heap node n1, which abstracts the shared objects in
this short example, only includes [〈n2, 1〉] and [〈n3, 1〉]. This set of
reachability states shows that a shared object from allocation site 1
cannot be reachable from both an object from site 2 and site 3 at this
program point. If that were possible (by moving Line 7 to just after
Line 5, for instance), then the reachability state [〈n2, 1〉, 〈n3, 1〉]
would be present in the set of reachability states associated with n1

at the exit of Line 8.

5.3.2 Reachability-based Effect Conflict Elimination
In the running example presented in Section 2 we noted that a nec-
essary condition for safely executing instances of task tpar in par-
allel is to ensure two given instances do not have heap dependences,
specifically with respect to objects in an AST. Assume AST objects
are allocated at the same site and are summarized in the points-to
graphs by heap node nAST. Next assume that an AST object serves
as a data structure root object for a collection of TreeNode objects
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summarized by nTN. Disjoint reachability information associated
with nTN is critical to OoOJava for deciding when to safely execute
instances of task tpar. If the set of reachability states associated
with nTN includes a state with reachability tuple 〈nAST, MANY〉 then
a given TreeNode object may be reachable from any number of
AST header objects, and therefore we cannot be certain whether
any two instances of tpar might access a common TreeNode
object. However, in the running example we find only 〈nAST, 1〉,
meaning a given TreeNode object is reachable from at most one
AST object. If a dynamic check determines two instances of tpar
have references to distinct AST objects then we can be sure they
access disjoint sets of TreeNode objects, and therefore are safe to
execute concurrently.

If the basic conflict detection rules cannot eliminate a possible
conflict between two effects, the results of disjoint reachability
analysis may rule out a conflict by stating whether the effects of
the tasks in question operate on disjoint sets of objects or not.

Consider the two effects: 〈〈st0, v0, a
root
0 〉, aaff, o0, f〉 and

〈〈st1, v1, a
root
1 〉, aaff, o1, f〉. OoOJava inspects the set of reacha-

bility states S for each heap node associated with aaff to decide
whether the effects conflict:
1. If aroot

0 6= aroot
1 ∧ ∀s ∈ S.s ∩ ({〈aroot

0 , 1〉, 〈aroot
0 , MANY〉} ×

{〈aroot
1 , 1〉, 〈aroot

1 , MANY〉}) 6= ∅, then there is no conflict. If there
is no reachability state that contains both heap roots, then the two
heap roots cannot access the same object allocated at allocation
site aaff and therefore the effects do not conflict.

2. If aroot
0 = aroot

1 ∧ ∀s ∈ S.s ∩ {〈aroot
0 , MANY〉} = ∅, then the

compiler can generate a simple dynamic check to eliminate the
possibility of a conflict. If aroot

0 6= aroot
1 at runtime, then there is

no conflict. We call conflicts that can be eliminated by a dynamic
check fine-grained conflicts.

3. If neither basic nor reachability-based conflict detection elimi-
nates a conflict, we say the effects have a coarse-grained conflict.
It is important to note that reachability states are not generally

comparable between different program points. We make the obser-
vation that if there is no strong update, and therefore no decrease
in reachability information, on any control path from one program
point to another, then it is safe to compare reachability states at dif-
ferent times. Extended effects analysis adds strong to the domain
of possible effects and generates a strong update effect whenever
a write effect decreases the reachability state obtained at that same
program point. Effects of type strong always conflict with other
effects on the same affected object allocation site and result in a
coarse-grained conflict.

5.4 Code Generation
OoOJava assembles all effect conflicts between tasks (including an
instance of a task with previous instances of itself) into a heap ef-
fect conflict graph, discussed in Section 5.4.1. A set of heap depen-
dence queues implements the conflict graph efficiently at runtime.
Section 5.4.2 discusses the queue properties and Section 5.4.3 gives
the algorithm for finding a minimal set of heap dependence queues
that covers the conflict graph. Section 5.4.4 presents the process
for generating code to issue a task by inserting it into relevant heap
dependence queues.

5.4.1 Conflict Graphs
OoOJava generates conflict graphs from the results of the effects
analysis and the disjoint reachability analysis. There is a conflict
graph for each task that summarizes the heap dependences between
that task and its child tasks. There is a node in a conflict graph
for each heap root. There are two types of edges in the conflict
graph: coarse-grained edges indicate that the corresponding code
blocks cannot be reordered and fine-grained edges indicate the
code blocks can only be reordered if the corresponding heap roots
refer to different objects. Without loss of generality, whenever there

read

scc
parent-read

write-�ne

write-coarse

parent-write-coarse

parent-write-�ne

Figure 6. Heap Dependence Queue Ordering Constraints

is both a fine-grained and coarse-grained edge between the same
two nodes, we drop the fine-grained edge because the ordering
constraints of the coarse-grained edge dominate.

5.4.2 Heap Dependence Queues
OoOJava compiles each conflict graph into a set of heap depen-
dence queues that enforce the conflict graph’s ordering constraints.
Each heap dependence queue accepts the following types of en-
tries: read, write-fine, write-coarse, parent-read, parent-write-fine,
parent-write-coarse, and self-conflicting-coarse. Figure 6 illustrates
the ordering constraints that a single heap dependence queue en-
forces between entries of different types. A dashed edge indicates a
fine-grained ordering constraint that accesses associated with the
heap roots of the corresponding types can be only reordered if
the heap roots refer to different objects. A solid edge indicates a
coarse-grained ordering constraint that accesses associated with the
heap roots of the corresponding types can never be reordered. Sec-
tion 5.4.4 further discusses how we efficiently implement the heap
dependence queues.

5.4.3 Compiling the Conflict Graph into Queues
We formulate compiling a conflict graph into a set of heap de-
pendence queues as a graph covering problem. Each edge in the
conflict graph must be enforced by an edge in a heap dependence
queue’s constraint graph. The compiler maps nodes in the conflict
graph to nodes in the heap dependence queues. An edge in the con-
flict graph is enforced by the heap dependence queue if the edge’s
endpoints in the conflict graph map to nodes in a heap dependence
queue with the same type of edge between them.

Figure 7 presents a greedy algorithm for heuristically solving
the graph covering problem with a minimal set of heap dependence
queues. The algorithm covers edges in the conflict graph until the
given heap dependence queue cannot cover any more edges; the
process repeats until every conflict edge in the conflict graph has
been covered.

Line 2 creates a new heap dependence queue. Lines 3-13 cover
the fine-grained edges in the conflict graph that the heap depen-
dence queue will enforce. Line 3 checks for an uncovered fine
grained edge. If an uncovered fine-grained edge is discovered,
Line 4 adds one of its endpoints to the set U . The loop in Line 5
removes a node from the set U and the rest of the loop attempts
to map the conflict graph node to a node in the heap dependence
graph. Lines 6-9 try to map a node to a write node in the heap de-
pendence queue, and Lines 10-13 try to map a node to a read node.
A constraint on mapping a node in the conflict graph to a node in
the heap dependence queue is that the mapping will not introduce
a new ordering constraint that is not present in the conflict graph.
Lines 6 and 10 verify that the mapping preserves this constraint.

Lines 14-16 perform the initial mapping of a node to a queue
in the case that there was no fine-grained edge to cover. Line 17
computes the initial set of nodes that serve as end-points to coarse-
grained edges that are incident to nodes mapped to the current
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Cover(conflict graph C = (V, Vp, E, Ef , Ec))
1. Set of covered edges E′ ← ∅
2. create new queue q ← (rd = ∅, wr = ∅, crs = ∅, par rd = ∅,

par wr = ∅, par crs = ∅, scc = ∅)
3. if ∃(u, v) ∈ Ef\E′ then
4. U ← U ∪ {u}
5. while U 6= ∅ remove u from U
6. if (u, u) ∈ E ∧ ∀x.QCovFine(q, x) =⇒ (u, x) ∈ E then
7. E′ ← E′ ∪ {(u, v) | ∀v ∈ V, QCovFine(q, v)}
8. U ← U ∪ {v | (u, v) ∈ Ef\E′}
9. if u ∈ Vp then par wr ← par wr ∪ {u} else wr ← wr ∪ {u}
10. else if (u, u) /∈ E ∧ ∀x.QCovFnWr(q, x) =⇒ (u, x) ∈ E then
11. E′ ← E′ ∪ {(u, v) | ∀v ∈ V, QCovFnWr(q, v)}
12. U ← U ∪ {v | (u, v) ∈ Ef\E′}
13. if u ∈ Vp then par rd← par rd ∪ {u} else rd← rd ∪ {u}
14. else ∃(u, v) ∈ Ec\E′

15. if (u, u) ∈ Ec then scc← {u}
16. else if u ∈ Vp then par rd← {u} else rd← {u}
17. U ← {u | ∀(u, v) ∈ Ec\E′, QCovFine(v)}
18. while U 6= ∅ remove u from U
19. if u ∈ Vp∧∀x.QCovFnCh(q, x) =⇒ (u, x) ∈ Ec then
20. E′ ← E′ ∪ {(u, v) | ∀v ∈ V, QCovFnCh(q, v)}
21. U ← U ∪ {v | (u, v) ∈ Ef\E′}
22. par crs← par crs ∪ {u}
23. else if u /∈ Vp ∧ (u, u) /∈ Ec ∧ ∀x.QCovFine(q, x) =⇒ (u, x) ∈ Ec then
24. E′ ← E′ ∪ {(u, v) | ∀v ∈ V, QCovFine(q, v)}
25. U ← U ∪ {v | (u, v) ∈ Ec\E′}
26. crs← crs ∪ {u}
27. else if u /∈ Vp ∧ (u, u) ∈ Ec ∧ ∀x.QCov(q, x) =⇒ (u, x) ∈ Ec then
28. E′ ← E′ ∪ {(u, v) | ∀v ∈ V, QCov(q, v)} ∪ {(u, u)}
29. U ← U ∪ {v | (u, v) ∈ Ec\E′}
30. scc← scc ∪ {u}
31. Q← Q ∪ {q}
32. if ∃e ∈ E.e /∈ E′ then goto 2 else return Q

QCov((rd, wr, crs, par rd, par wr, par crs, scc), u) =
(u ∈ rd ∨ u ∈ wr ∨ u ∈ crs ∨ u ∈ par rd ∨ u ∈ par wr∨
u ∈ par crs ∨ u ∈ scc)

QCovFine((rd, wr, crs, par rd, par wr, par crs, scc), u) =
(u ∈ rd ∨ u ∈ wr ∨ u ∈ par rd ∨ u ∈ par wr)

QCovFnWr((rd, wr, crs, par rd, par wr, par crs, scc), u) =
(u ∈ wr ∨ u ∈ par wr)

QCovFnCh((rd, wr, crs, par rd, par wr, par crs, scc), u) =
(u /∈ Vp ∧ (u ∈ rd ∨ u ∈ wr))

Figure 7. Conflict Graph Covering Algorithm

queue. Lines 18-30 then proceed to cover coarse-grained edges in
the conflict graph by mapping conflict graph node to the current
heap dependence queue.

5.4.4 Implementation
We next discuss the code OoOJava generates to issue a task. There
is a record for each task that maintains a count of the task’s unre-
solved dependences. When this count reaches zero, all of the task’s
dependences have been resolved and it can be safely dispatched.
The count is updated using atomic operations — the thread that
performs the atomic decrement that causes the count to reach zero
is responsible for dispatching the task.

OoOJava first generates code to forward or copy the values of
in-set variables to the new task as described in Section 4.2. OoO-
Java next generates code to preserve heap dependences. This code
adds the newly issued task to each of the relevant heap dependence
queues as determined by the conflict graph compilation algorithm.

OoOJava uses a similar code generation strategy for stall sites.
At a stall site, a task adds itself to each heap dependence queue as
determined by the conflict graph compilation algorithm. It passes
a lock and a condition variable into each queue. It then waits to be
notified by the heap dependence queue.

A potential issue arises with the read and write-fine states — it is
possible that the value of the pointer in a variable will be forwarded
by another task and is unknown when the task is issued. In this case,

the heap dependence queue must maintain the total ordering of this
task until it determines the actual value of the variable. It can then
safely allow reorderings of the task.

The heap dependence queue manages heap dependences to de-
termine which tasks may be safely executed out-of-order. Heap
dependence queues are designed to provide constant-time opera-
tions. Heap dependence queues are implemented internally as a
linked-list of hashtables for fine-grained entries (read, write-fine,
parent-read, and parent-write-fine), vectors for coarse-grained en-
tries (write-coarse and parent-write-coarse), and single entries for
self-conflicting coarse-grained entries (self-conflicting-coarse).

A consecutive sequence of fine-grained entries in a heap de-
pendence queues are grouped into a hashtable. The hash keys are
unique object IDs that persist across garbage collections, and in the
case of collisions, tasks are placed on a linked-list for that bin which
preserves their execution order. Hash collisions can cause false de-
pendences — we size the hashtable to be large enough that false
collisions do not significantly limit parallelism relative to the num-
ber of processor cores that are available. This hash-based strategy
enables OoOJava to respect fine-grained heap dependences with
constant time hashtable operations.

Any consecutive sequence of coarse-grained entries inserted
into the heap dependence queue are grouped into one list element.
No fine-grained conflicts inserted into the heap dependence queue
before or after coarse-grained elements may be reordered across
the coarse-grained elements.

All entries except parent entries remain in the queue after the
corresponding task dispatches and are removed only when that task
retires. A special property of parent entries is that they can be
removed from the heap dependence queues as soon as their conflict
is resolved. The observation is that a parent entry cannot conflict
with later tasks as they have not been dispatched.

The self-conflicting-coarse entry may never be reordered with
any other entries. Therefore, each task inserted with type self-
conflicting-coarse is a single element in the heap dependence queue
and nothing may be reordered across it.

6. Discussion
At this point, we have not discussed parallelizing programs that
perform I/O. We present one strict and one relaxed strategy for
handling I/O in OoOJava. The strict strategy is to serialize all I/O
operations in the program. In this strategy, every I/O operation
is serialized and the trace of I/O operations will match the serial
elision. The strict strategy prohibits parallelism when unrelated
tasks access disjoint sets of file descriptors.

We can relax our I/O strategy to expose additional parallelism
if the application satisfies the following two conditions: (1) the
developer annotates whether different file descriptors may access
the same file and (2) external programs do not depend on the
exact ordering of accesses across different files. This strategy is
straightforward to implement in OoOJava — simply model native
methods that implement file operations as writing to a special field
in the file descriptor object. We expect that the relaxed strategy is
sufficient for the correct behavior of many programs and has the
potential to expose significantly more parallelism.

OoOJava can be extended to safely support applications that
combine threads and tasks. The basic idea is that threaded programs
could call into libraries that are implemented using tasks. In this
model, the developer is responsible for using locks to ensure that
the threaded parts of the program do not concurrently modify data
structures accessed by tasks. OoOJava would then analyze the task
part of the program in isolation assuming a maximally aliased heap
at entry. Before exiting the task part of the program, the parent
thread would stall until all tasks retire.
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Benchmark Measured Speedup Lines
RayTracer 20.76× 2,832
Tracking 16.64× 4,747
Power 16.98× 1,846
KMeans 11.89× 3,220
Barnes-Hut 10.01× 3,162
Crypt 12.78× 2,035
MergeSort 12.34× 1,895
Labyrinth 10.31× 4,315
MonteCarlo 26.39× 5,669

Figure 8. Speedups on Benchmarks (Higher is Better)

Parallelization requires revisiting Java’s exception model. It is
helpful to divide exceptions into two categories: expected excep-
tions that developers write handlers for and unexpected exceptions
that cause an application to simply exit. Expected exceptions that
are caught inside the same task do not pose an issue for OoOJava.
As a result, the common use of exceptions to recover from expected
error conditions is largely unaffected by OoOJava.

Nearly all Java statements can potentially throw some type of
unexpected exception (null pointer exception, array bound excep-
tions, division by zero). Developers typically do not write excep-
tion handlers for such exceptions and simply allow them to halt the
program. Precisely handling such exceptions requires support for
rollback because an application may execute past a task that later
throws an uncaught exception. OoOJava gives such exceptions im-
precise semantics to improve performance.

It is of course possible to efficiently support imprecise try-catch
blocks that enclose a large number of dynamic tasks. Such blocks
catch the exceptions of all enclosed tasks, but allow the enclosed
tasks to be executed out-of-order. Such a block is implemented by
simply waiting until all enclosed tasks have retired.

7. Evaluation
We have implemented OoOJava and evaluated it on a 1.9 GHz
24-core AMD Magny-Cour Opteron with 16 GB of memory. Our
compiler generates C code which is then compiled by GCC. We
enabled all optimization in GCC and classic compiler optimizations
in our compiler. Our implementation and benchmarks are available
on the web. We report times averaged over 10 runs.

7.1 Benchmarks
We selected a diverse set of benchmarks to provide an interesting
cross-section of application behaviors and a variety of algorithmic
structures and ported them to OoOJava. We took Crypt, RayTracer,
and MonteCarlo from the Java Grande Benchmark suite [24]. We
took Barnes-Hut from the Lonestar benchmark suite [16]. We took
both KMeans and Labyrinth from the STAMP benchmark suite [9]
to explore benchmarks with irregular parallelism. We took Power
from the JOlden [8] benchmark suite and MergeSort from DPJ
suite [6]. We took Tracking from SD-VBS [27].

7.2 Performance Discussion
Figure 8 summarizes the measured speedups and lines of code
including libraries for each of our benchmarks. We report speedups
relative to a sequential version compiled using the Java frontend of
the same compiler.

RayTracer computes rows of a scene in parallel and executes a
checksum operation that must be serialized; the speedup of 20.76×
indicates OoOJava is able to efficiently execute RayTracer across
the available cores.

Tracking extracts motion information from a sequence of im-
ages. We targeted the most computationally expensive stage of the
algorithm and obtained a 16.64× speedup.

KMeans, Power, and Barnes-Hut all execute many iterations
of a parallel computation followed by a sequential computation.

Though the repeated sequential portions of these benchmarks limit
available parallelism, the speedups for these benchmarks are still
significant. Our version of KMeans is 1.70× faster than the paral-
lelized TL2 version included in the STAMP benchmark suite even
though our version incurs significant additional overheads to imple-
ment array bounds checks. With array bounds checking disabled,
our version is 2.62× faster than the parallelized TL2 version.

Crypt consists of an encryption phase and a decryption phase,
both of which are followed by a sequential reconstruction of the full
message. Although the sequential reconstruction limits available
parallelism, the benchmark still achieves significant speedups.

The MergeSort taken from DPJ implements a sequential merge
operation. This sequential code has a non-trivial overhead and
limits parallelism at all levels of recursion.

Labyrinth is an interesting case of employing a speculative strat-
egy in a deterministic environment. Each iteration launches an in-
dependent parallel routing computation, some of which may com-
pute conflicting routes. In series, compatible routes are added to
the master solution and conflicting routes are rescheduled for the
next parallel iteration. Both the sequential computation and con-
flicts between routes limit available parallelism. OoOJava achieved
a speedup of 10.31× for this speculative algorithm. Our version
is 1.51× faster than the parallelized TL2 version included in the
STAMP benchmark suite even though our version incurs signifi-
cant additional overheads to implement array bounds checks. With
array bounds checks disabled, OoOJava is 2.08× faster than the
parallelized TL2 version.

The speedup for MonteCarlo reflects that the individual simula-
tions are independent and that there is much parallelism.

To quantify the overhead of our research compiler, we compared
the generated code against the OpenJDK JVM 14.0-b16 and GCC
4.1.2. The sequential version of Crypt compiled with our compiler
ran 4.6% faster than on the JVM. We also developed a C++ ver-
sion compiled with GCC and found our compiler’s version ran
25% slower than the C++ version. Our compiler implements ar-
ray bounds checking; with array bounds checking disabled, the bi-
nary from our compiler runs only 5.4% slower than the C++ binary.
We used the optimization flag -O3 for the C++ version as well as
for the underlying C code generated by our compiler. This is close
agreement with more extensive experiments on six benchmarks that
we performed in earlier publications. Those experiments measured
an average overhead for our compiler with array bounds checks
disabled of 4.9% relative to GCC.

7.3 Parallelization Discussion
We typically began our parallelization efforts by using a profiler to
identify computationally intensive sections of code. From there we
manually inspected the hot spots and added task annotations to ex-
pose expected parallelism. The reported dependences informed us
when the annotations did not result in the implementation we ex-
pected. In this way we incrementally parallelized a benchmark until
the implementation matched our expectation of the available paral-
lelism in the benchmark’s core algorithms. Parallelization efforts
typically required on the order of one to two dozen line changes.

Our experience porting RayTracer demonstrated the value of
OoOJava’s developer feedback. We enclosed the work for each row
of pixels in a task and expected its instances to have no depen-
dences; OoOJava reported the instances had conflicting accesses to
a global scratch pad object. We simply moved the allocation of the
scratch pad object into the task and obtained the implementation
reported on above.

Labyrinth was more challenging. The original version of
Labyrinth from STAMP intentionally used data races to read a
shared map for route planning and then later used safe reads to ver-
ify that a planned route was valid. We modified the benchmark to
maintain the same basic speculative algorithm, but in a safe, easy-
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to-debug, deterministic form. Our modified version uses rounds of
parallelized route planning followed by sequential code to apply the
routes from the previous parallel round. Our version is both much
simpler to debug and faster than the original STAMP version.

8. Related Work
Parallel functional languages [17] can offer strong correctness
guarantees for parallel applications. However, these languages
place onerous restrictions on the mutation of data structures, and
therefore make it difficult to efficiently express many algorithms.

Kendo [18] addresses challenges of developing parallel soft-
ware by enforcing deterministic interleavings for the widely used
explicit thread and lock model. Models that generate parallel imple-
mentations from sequentially expressed code, like OoOJava, make
reasoning about program behavior easier for the programmer.

Coarse-grained or macro-dataflow languages [11, 14] compose
several sequential operations together to construct larger granular-
ity code segments for dataflow execution. OoOJava can be viewed
as a combined dynamic-static approach to translating imperative
code into macro-dataflow code.

Deterministic, speculative models [29, 13, 28, 5] offer sim-
ple programming models, but incur potentially significant dynamic
overheads to support recovery from mis-speculation and to dynam-
ically check for potential conflicts. Static analysis enables OoOJava
to parallelize applications without incurring these overheads.

Several non-speculative models including OpenMP [10],
Cilk [20], or JCilk [12] rely upon correct developer annotations. Er-
rors in these annotations can cause these models to silently produce
incorrect results. Annotation errors in a OoOJava program never af-
fect its correctness.

Other systems require extensive developer annotations to avoid
unchecked access to data structures [22, 6] or additional code to
create serialization sets [2]. OoOJava requires minimal annotations,
which will likely improve developer productivity.

CellSs dynamically schedules function invocation when a func-
tion’s operands are available [4]. CellSs does not perform heap de-
pendence analysis and therefore it must restrict superscalar func-
tions to pass-by-value and does not permit passing data structures
that contain pointers. CellSs restricts superscalar execution to func-
tions to avoid variable hazards; OoOJava’s variable analysis and
value forwarding allow tasks to be freely used wherever a devel-
oper finds it convenient.

OoOJava addresses parallelism opportunities that can be dif-
ficult for similar systems to take advantage of. For example,
OpenMP, Cilk, and CellSs require explicit synchronization before
accessing the results of parallel computations. Cilk with inlets and
OpenMP with reductions do support limited aggregation of results
in a parallel loop, however the aggregation operations in these sys-
tems do not necessarily execute in the same order as prescribed
by the serial elision which would break non-commuting opera-
tions. Moreover, neither OpenMP nor Cilk can schedule an arbi-
trary chain of out-of-order computations, while OoOJava can.

OoOJava differs from inspector-executor approaches [21, 23]
in that it supports complex object-oriented data structures, uses
the results of static analysis to avoid inspecting nearly all memory
accesses, and does not require a runtime preprocessing phase.

Decoupled software pipelining (DSWP) [19] maps memory op-
erations in a loop that may conflict to the same thread of a soft-
ware pipeline. While this approach simplifies the necessary heap
analysis, it limits parallelism — at most one thread can write to a
statically identified heap region. In contrast, OoOJava can execute
instances of write instructions across many cores. OoOJava also
uses a sophisticated heap dependence analysis that can determine
that some write statements of a loop are conflict-free where DSWP

cannot. DSWP extracts very fine-grained parallelism compared to
OoOJava; the techniques are likely synergistic.

In an earlier position paper [1] we explored an out-of-order
software model without providing technical details. In this current
work we describe in detail the necessary analysis and runtime
support to implement OoOJava, and present a complete evaluation.

9. Conclusion
For parallel programming to become mainstream, parallel pro-
gramming tools must become easy to use. We presented an ap-
proach to parallel programming that uses annotations to suggest
parallelization of a sequential program. OoOJava automatically
handles the details of implementing the parallelization and guaran-
tees that the parallel version has the same behavior as the original
sequential version. We have successfully parallelized nine applica-
tions and achieved significant speedups. Moreover, we found that
parallelizing applications with OoOJava was straightforward and
required only minor modifications to our benchmark applications.
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