
AFID: An Automated Fault Identification Tool

Alex Edwards
University of California, Irvine

afedward@uci.edu

Sean Tucker
University of California, Irvine

shtucker@uci.edu

Sébastien Worms
Ecole Nationale Supérieure de

Techniques Avancées
sebastien.worms@ensta.fr

Rahul Vaidya
University of California, Los

Angeles
rvaidya@ucla.edu

Brian Demsky
University of California, Irvine

bdemsky@uci.edu

ABSTRACT
We present the Automatic Fault IDentification Tool (AFID).

AFID automatically constructs repositories of real soft-

ware faults by monitoring the software development process.

AFID records both a fault revealing test case and a faulty

version of the source code for any crashing faults that the de-

veloper discovers and a fault correcting source code change

for any crashing faults that the developer corrects. The test

cases are a significant contribution, because they enable new

research that explores the dynamic behaviors of the software

faults.

AFID uses a ptrace-based monitoring mechanism to mon-

itor both the compilation and execution of the application.

The ptrace-based technique makes it straightforward for

AFID to support a wide range of programming languages

and compilers. Our benchmark results indicate that the

monitoring overhead will be acceptable for most developers.

We performed a short case study to evaluate how effectively

the AFID tool records software faults. In our case study,

AFID recorded 12 software faults from the 8 participants.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Documentation, Measurement

Keywords
Fault Collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

1. INTRODUCTION

Our research community has traditionally relied upon

anecdotal information and intuition about the relative im-

portance of software faults to guide our research. Re-

searchers even sometimes evaluate prototype fault location

tools on a few hand-selected faults or synthetically-injected

faults. Even when researchers use their tools to detect new

faults in existing systems, they must manually verify that

the software faults the tool discovers are both real and im-

portant. Moreover, the researcher must still provide a proof

or other evidence that the tool does not miss important

faults. The community has traditionally avoided using large

sets of real software faults because few data sets of software

faults exist. Furthermore, the data sets that are available

typically lack test cases to reproduce the faults or contain

manually-injected synthetic faults.

Programming language and software engineering re-

searchers have recently begun to use empirical methods to

explore large data sets of software faults. These recent stud-

ies have mined fault data from CVS archives that have be-

come available in recent years due to the creation of large,

open software systems by the open-source community.

Empirical software fault data sets have the potential

to provide a powerful new tool for software engineering

and programming language researchers. Traditionally, soft-

ware engineering and programming language researchers

first identify a class of faults to research based on anecdotal

evidence that the particular class is important in practice.

Fault data sets would provide quantitative data to help re-

searchers identify which classes of software faults pose the

greatest problems in practice. Currently, researchers often

create a set of simple applications with simplified, seeded

software faults that they use to develop their new tool or

technique. With a fault data set, researchers could extract

several real instances of the given fault class to discover the

nuances that appear in practice. We expect that this ex-

ploration process will lead to the creation of new, sophisti-

cated analyses that are optimized for the intricacies of real

software faults. Finally, researchers often evaluate their re-

search either by hand selecting a few real software faults or

by simply injecting seeded software faults. The fault data

set would provide many real software faults that researchers

could use to evaluate their tools in an automated fashion.

One problem with most existing data sets is that they

lack test cases that reveal software faults. In an attempt to

remedy this situation, we tried to manually create a data

set of real software faults. Our approach was to ask gradu-

ate students to record the faults that they corrected while

developing software for their research. For each fault, we

asked the students to record: (1) the test case that revealed

the fault, (2) a copy of the source code that contained the

fault, and (3) the source code change that removed the fault.

They found recording this information to be tedious, and in-

stead they often focused on the development task at hand

and forgot to record any information. The lesson from this

experience is that the successful collection of software faults

must be automated.

1.1 Basic Approach

In this paper we introduce a novel approach that monitors

the software development process to automatically record

software fault data. For each fault, our approach records:

(1) a test case that reveals the fault, (2) a version of the

source code that contains the fault, and (3) a change to the

source code that corrects the fault.

Execution
Monitor

Fault Revealing
Test Case

Compilation
Monitor

Revision
History

Replay
Component

Fault
Characterization

Figure 1: Overview of Fault Characterization

We have implemented this approach in the Automated

Fault IDentification Tool (AFID). AFID automatically

records software faults by monitoring the compilation and

execution steps of the software development process. The

underlying design principle for AFID is to record as much

software fault data as possible while imposing minimal run-

time overheads and requiring minimal assistance from the

developer. The final goal of the AFID project is to collect

fault data from a wide range of software developers working

on real projects. Therefore, requiring the developer to ac-

tively participate in recording faults would potentially make

finding developers to use AFID much more difficult. Ac-

cording to this principle, AFID has been designed to only

detect faults that actually cause crashes. AFID does not

recognize more subtle correctness faults because that would

burden the developer with describing the desired behavior

of an application. We expect that we can learn much inter-

esting information from crashing faults alone.

Figure 1 presents an overview of our approach. Our ap-

proach contains the following key components:

• Execution Monitor: The execution monitor traces

executions of the application under development. The

execution monitor records the inputs to the applica-

tion. If the application crashes, the execution monitor

uses the recorded inputs to create a test case that re-

produces the observed failed execution. At this point,

AFID records (1) a test case that contains the appli-

cation inputs that reveal the fault and (2) the source

code version in which the fault was discovered.

• Compilation Monitor: The compilation monitor

traces executions of the compiler to automatically dis-

cover which source files comprise the application un-

der development. Whenever the application is recom-

piled, the compilation monitor records both a list of

any new source files it discovers and a list of all source

files that have changed since the last compilation. The

compilation monitor then updates its internal subver-

sion repository with any changes that have been made

to the application. Finally, the compilation monitor

invokes the replay component to check if the recent

changes correct any known software faults.

• Replay Component: The replay component exe-

cutes the newly compiled version of the application

on all of the unresolved fault revealing test cases. If

the application executes one of the fault revealing test

cases without crashing, the replay component assumes

that the most recent code change corrected the under-

lying fault. The replay component records the current

version identifier as the fault correcting code change.

The replay component then marks the test case as re-

solved. Researchers have developed many replay sys-

tems for debugging applications [1, 15, 6]. These other

systems replay the exact execution, while AFID gen-

erates test cases from the application inputs with the

goal of running different versions of the application

on the same test case. The exact executions of these

new versions can potentially differ from the version in

which the test case was first recorded.

1.2 Contributions

This paper makes the following contributions:

• Automated Fault Collection Strategy: It

presents heuristics that monitor the development pro-

cess to automatically record fault revealing test cases

and automatically detect which code changes correct

these software faults.

• Process Monitoring Technique: It presents a lan-

guage and tool chain independent technique to monitor

both the executions of the application under develop-

ment and the evolution of its source code.

• Automated Recording of Test Cases: It presents

a technique to automatically record test cases from

failed executions. These test cases can potentially

be incorporated into the application’s regression test

suite.

• Monitoring Overhead Measurement: It presents

measurements of the runtime overhead of AFID’s mon-

itoring for both a computationally bound benchmark

and an I/O bound benchmark.

• Experience: It presents our experience using the tool

to collect software faults.

The remainder of the paper is structured as follows. Sec-

tion 2 presents an example to illustrate how the approach

works. Section 3 presents the automatic fault collection tool

AFID. Section 4 discusses possible privacy concerns. Sec-

tion 5 presents both overhead measurements and our initial

experiences using AFID to collect software faults. Section 6

presents related work; we conclude in Section 7.

2. EXAMPLE

We next use an example to illustrate our approach. Let’s

suppose that the developer uses a text editor to write the

program shown in Figure 2. This program takes a command

parameter that specifies its input file. The program then

opens this file and reads a series of commands from it. These

commands instruct the program to either write a digit to

an array element, print an array element, or sum the array

elements. Note that line 20 is missing a break statement,

which would cause the execution of the sum command to

erroneously continue into the code for the read command.

2.1 Monitoring Compilation

After a developer finishes writing the program, he/she

would typically compile the program using one of many Java

compilers. AFID tracks the evolution of the program’s code

by monitoring the execution of the compiler. When the com-

piler compiles the example program, it would make a system

call to the operating system to open Example.java for read

access. AFID intercepts the open system calls made by the

compiler to detect when the developer adds new source files

to the application. AFID then examines the file’s extension

to determine that this file contains source code for the ap-

plication. The primary benefit of this approach is that it

enables AFID to support most compilers while not requir-

ing the developer to manually identify the source files that

comprise the application’s source code.

1 public class Example {

2 public static void main(String[] arg)

3 throws IOException {

4 int array[]=new int[10];

5 FileReader fr=new FileReader(arg[0]);

6 while(true)

7 switch(fr.read()) {

8 /* Write to array element. */

9 case ’W’:

10 int woff=fr.read()-’0’;

11 int val=fr.read()-’0’;

12 array[woff]=val;

13 break;

14 /* Sum array. */

15 case ’S’:

16 int sum=0;

17 for(int i=0;i<10;i++)

18 sum+=array[i];

19 System.out.println(sum);

20 /* This line is missing a break. */

21 /* Print array element. */

22 case ’R’:

23 int roff=fr.read()-’0’;

24 System.out.println(array[roff]);

25 break;

26 case -1:

27 return;

28 }

29 }

30 }

Figure 2: Faulty Example Program

2.2 Monitoring Program Execution

In the normal development process, we expect that the

developer would next execute the example program on an

input file. Figure 3 presents an input file for the example

program. The input file contains a sequence of three com-

mands: W23 instructs the program to write the value 3 to

array element 2, S instructs the program to sum the array

elements, and R2 instructs the program to print the second

array element. Note that this input file invokes the sum

functionality and reveals the fault in the sum functionality

of the example program.

W23SR2

Figure 3: Fault Revealing Input File input.txt

Typically, the developer would next execute the exam-

ple program on this input file by typing java Example

input.txt. AFID’s execution monitor would then record

the command line used to execute the program. The pro-

gram’s execution opens the file input.txt for read access

using the open system call. AFID’s process monitor inter-

cepts this call and records that the execution reads from

the file input.txt. When the program processes the sum-

mation command, the fault causes the program to continue

into the array element printing code. The program then

uses the byte intended to specify the read command as an

index. This causes the program to exit due to an array out of

bounds exception. AFID inspects the execution’s exit value

to determine that the program crashed.

The goal is to create a test case that can reproduce the

crash. AFID records the command line that was used to

invoke the fault revealing execution, makes copies of all the

input files that the program opened, stores a trace of any

console user interactions, and stores the mapping from the

pathnames of the files that the program opened to the copies

made by AFID.

2.3 Detecting Fault Corrections

We expect that the developer will eventually correct any

important software faults. Figure 4 gives the source code for

the corrected example. The developer has corrected the fault

in this program by changing line 20 to a break statement.

When the developer compiles the corrected program, AFID

would then detect that line 20 of the Example.java file has

been changed.

1 public class Example {

2 public static void main(String[] arg)

3 throws IOException {

4 int array[]=new int[10];

5 FileReader fr=new FileReader(arg[0]);

6 while(true)

7 switch(fr.read()) {

8 /* Write to array element. */

9 case ’W’:

10 int woff=fr.read()-’0’;

11 int val=fr.read()-’0’;

12 array[woff]=val;

13 break;

14 /* Sum array. */

15 case ’S’:

16 int sum=0;

17 for(int i=0;i<10;i++)

18 sum+=array[i];

19 System.out.println(sum);

20 break;

21 /* Print array element. */

22 case ’R’:

23 int roff=fr.read()-’0’;

24 System.out.println(array[roff]);

25 break;

26 case -1:

27 return;

28 }

29 }

30 }

Figure 4: Corrected Example Program

AFID then invokes its replay component to replay the

fault revealing test cases on the new version of the exam-

ple program. The replay component executes the example

program using the recorded command line. When the ex-

ample program executes, it makes a system call to open the

input.txt file. AFID intercepts this system call before the

operating system processes it and changes the filename to

the name of the copy in the test case. Because the devel-

oper corrected the underlying software fault, the program

executes correctly on the test case. AFID inspects the pro-

gram’s return value to determine that the underlying fault

was corrected.

At this point, AFID has identified that the most recent

source code change corrects the underlying software fault.

AFID has recorded the following information for the exam-

ple fault: (1) the buggy version of the example program

from Figure 2, (2) the test case that reveals a fault in the

buggy version from Figure 3, and (3) a diff that gives the

source code change that corrects the fault (for this exam-

ple, replacing line 20 with break;). AFID records all of this

information in its record for this fault. It then (optionally)

uploads this fault information to a centralized fault reposi-

tory.

3. AUTOMATED FAULT IDENTIFICA-
TION

We have architected AFID as three basic components: (1)

the execution monitor, which detects crashes and creates

fault revealing test cases to reproduce these crashes, (2) the

compilation monitor, which identifies new source files and

tracks changes to the source code, and (3) the replay com-

ponent, which detects when a source code change corrects a

fault. Each component of AFID uses the same basic mon-

itoring strategy — they intercept the system calls that the

application or compiler uses to communicate with the un-

derlying operating system. This approach enables AFID to

easily support many different compilers, virtual machines,

and programming languages with only small configuration

changes.

The goal of AFID is to collect complete information for

software faults. AFID collects the following information for

each fault:

• Fault Revealing Test Case: For each reported

fault, AFID records the test case that reveals this fault.

• Version of the Application with the Fault: For

each reported fault, AFID records a copy of the source

code of the application version that contains the fault.

For space efficiency, this is stored as a version identifier

to a version control system repository.

• Fault Correction: For each reported fault, AFID

records the source code change that corrected the fault.

For space efficiency, this is stored as a version identifier

to the version control system update that stores the

correction.

• Revision History of the Application: AFID

records a fine-grained revision history of changes to

the application’s source code.

3.1 Recording Test Cases

AFID’s execution monitor traces the executions of the ap-

plication under development to generate fault revealing test

cases. The execution monitor records the inputs to the ap-

plication’s execution by intercepting the system calls from

the application to the underlying operating system.

Operating System

Ptrace

Application

Monitor
Process

System
Calls

Figure 5: Ptrace Interface

The execution monitor uses the ptrace system call to

monitor executions of the application under development [5].

Figure 5 presents an overview of the approach. The ptrace

interface allows the execution monitor to intercept system

calls made by the application under development before the

operating system processes the call. We next describe our

ptrace-based approach in more detail.

The execution monitor begins by forking a new child pro-

cess, the child process calls ptrace with the PTRACE_TRACEME

option to request tracing, and then the child process calls

the exec system call to execute the application under de-

velopment. When the child calls the exec system call, the

previous invocation of ptrace with the PTRACE_TRACEME op-

tion causes the child process to stop before executing the

new application image.

The monitoring process then calls the ptrace system call

with the PTRACE_SYSCALL option and then calls wait. The

next time the child process makes a system call, the oper-

ating system suspends the child process and wakes up the

monitoring process. When the execution monitor is awoken,

it uses ptrace’s PTRACE_GETREGS option to read the system

call parameters to determine the type of the system call. If

the child process is opening a file, the execution monitor in-

spects both the name of the file and the file access mode.

The execution monitor uses ptrace’s PTRACE_PEEKDATA op-

tion to read the file’s name out of the monitored process’s

memory space.

If the monitored application has requested to open the file

for write access, the execution monitor must immediately

make a copy of that file. If AFID delays copying the file to

check if the monitored application crashes, the monitored

application would likely have already changed the contents

of the file. If the monitored application has requested to

open the file for read access, the execution monitor uses a

lazy copy strategy. It delays the overhead of copying the file

until the monitored application actually crashes.

When the monitored application exits, the execution

monitor inspects its return value to determine whether it

crashed. If the monitored application has crashed, the exe-

cution monitor makes copies of all of the files that the mon-

itored application read. It then stores the mapping between

the pathnames that the monitored application used to ac-

cess the files and the files’ copies in a text file in the test

case.

3.1.1 Recording User Interactions

We next describe how AFID records user interactions.

AFID uses the same ptrace-based mechanism to record a

trace of read events from standard input and write events to

standard output. One potential issue with simply replaying

the exact user interaction is that changes in the program

(or even the time) may change the text that the program

outputs. If we require that the output match exactly, the

test case will have significant problems generalizing to fu-

ture versions of the program. Instead, for each input event

AFID computes the shortest suffix of the program output

since the last input event that uniquely identifies when the

input occurred. This fuzzy matching approach allows the

recorded test case to generalize over small changes to the

program’s output.

3.1.2 Duplicate Test Cases

One potential issue is that the developer may rerun the

same test case multiple times. To avoid storing multiple

copies of the same test case, the monitor computes a hash-

code for each test case. The monitor then compares this

hashcode to a list of hashcodes for the other test cases. If

AFID detects a hashcode match, it deletes the new test

cases. AFID makes the assumption that the hash values

do not collide. In the unlikely event that two different test

cases have the same hash value, AFID only stores the first

test case.

3.1.3 Filtering Inputs

The monitored application’s execution typically reads

many files that would not be considered inputs to the ap-

plication. For example, the dynamic linker may load library

files or a virtual machine may load class files, virtual machine

components, virtual machine configuration files, and various

system files. These extraneous input files would make the

test cases very large. Moreover, recording input files from

dynamic libraries or virtual machine internals could make

the test case specific to the exact execution environment.

AFID employs a filtering mechanism to remove these ex-

traneous files. The filter mechanism uses a configuration

file that contains a list of regular expressions that match the

filenames to exclude from the test cases. AFID can automat-

ically generate this configuration file for Java applications by

monitoring the execution of a dummy Java application and

then generating a list of files that are loaded by the JVM.

AFID then adds some default expressions that exclude class

files and other known extraneous files.

3.2 Monitoring Compilation

AFID stores a copy of the source code each time the de-

veloper compiles the application. To efficiently store mul-

tiple versions of the application’s source code, AFID main-

tains an internal subversion repository. Subversion is an

open-source version control system with support for atomic

commits [2]. Each time the developer compiles the appli-

cation, the compilation monitor component of AFID mon-

itors the compiler to determine which files contain the ap-

plication’s source code. The compilation monitor uses the

ptrace-based monitoring technique described in Section 3.1

to detect application source files.

When the compilation monitor discovers a new source file,

it adds the file to its internal subversion repository. Then the

compilation monitor commits all of the source code changes

since the last compile to its internal subversion repository.

Finally, the compilation monitor calls the replay component

to replay all of the unresolved fault-revealing test cases on

the new version of the application.

One challenge is that the subversion version control sys-

tem that AFID uses to store its internal repository for the

application creates hidden directories in the source code tree.

If the developer also uses subversion, the directories for the

developer’s repository and AFID’s internal repository would

conflict. To maintain compatibility with subversion, the

compilation monitor makes its own copy of the source code

tree to use for its internal subversion repository. To avoid

the overhead of copying large files, the compilation monitor

makes hardlinks from the filename in its internal copy of

the source code tree to the original in the developer’s source

code tree. The compilation monitor then calls subversion

to build its internal repository using this copy of the source

code tree.

3.3 Replaying Test Cases

The replay component checks whether the most recent

source code changes correct any of the faults AFID has

recorded. The basic strategy is to execute the new version

of the application on each of the unresolved fault revealing

test cases. If the application executes successfully, the re-

play component has determined that the most recent code

change corrects the fault revealed by that test case. The re-

play component then stores the subversion version identifier

of the source code version that corrects the fault in the test

case and marks the test case as resolved.

3.3.1 Sandboxing Replay

A naive replay implementation would simply copy the files

in the test case back to their original locations and then ex-

ecute the application. However, this strategy has serious

potential consequences — the replay component could po-

tentially overwrite important files when copying the test case

files or the execution of the application could overwrite im-

portant files. AFID prevents the replay of applications from

overwriting important data by using the same ptrace-based

technique to partially sandbox the application. This sand-

box is not intended to isolate a hostile application — it is

intended to prevent the replay of normal applications from

accidentally overwriting important files.

The replay component implements the sandbox by inter-

cepting file open requests. If the application makes a file

open request for one of the test case files, the replay com-

ponent will redirect the request to the file in the test case.

If the application makes a request for an excluded file, the

replay component will pass the open request unmodified to

the operating system. Note that if the application is modi-

fied or the fault is corrected, the application can open files

that were neither present in the test case nor filtered by the

filter expressions. It is straightforward to modify the replay

component to make a copy of that file and redirect the re-

quest to the copy. This sandbox provides the application

with the illusion that the test case files are in the same lo-

cation as the files in the original execution — a secondary

benefit of this approach is that it enables the test case to

reproduce software faults that depend on the exact location

of the input files.

We next discuss how we implement the sandbox using the

ptrace system call. The replay component begins by making

a copy of the test case. It then starts the monitored applica-

tion’s execution inside the partial sandbox. The basic idea

is to use the technique described in Section 3.1 to intercept

open system calls. When the replay component intercepts an

open system call, it retrieves the requested filename. If the

filename is contained in the test case, the replay component

will modify the system call’s parameters to open the copy

in the test case. The replay component changes the open

system call’s filename by using ptrace’s PTRACE_SETREGS

option to modify the register that stores the pointer to the

filename to point to a new memory location. Then the re-

play component uses ptrace’s PTRACE_POKEDATA command

to write the filename of the copy to this new memory loca-

tion. The replay component then restarts the application to

allow the operating system to service the system call.

Note that the replay tool must obtain memory in the other

application’s memory space to store the filenames of the

copies. The replay system obtains this memory by inter-

cepting the first system call that the application performs.

The replay system rewrites this system call’s parameters to

change it into a brk1 system call to obtain the initial bottom

of the heap. The replay system restarts the application and

then the operating system executes the injected brk call.

The application is halted after the system call is performed

and control is returned to the replay tool. The replay tool

then modifies the program counter to cause the application

to re-execute the same system call. The replay tool then

1The brk system call is used to read and set the bottom of
the heap. This system call is the primitive that underlies
library-based memory allocation functions such as malloc.

repeats the same system call injection strategy to inject a

second brk system call that sets the new bottom of the heap.

The replay system has now allocated its own space in the

application’s memory space. The replay system then resets

the program counter another time to perform the initial sys-

tem call. If the application later uses the exec system call

to load a new binary, the replay system repeats the same

procedure to obtain space in the newly loaded application’s

memory space.

If the application’s execution is successful, the replay com-

ponent has discovered that the most recent source code

change corrects the fault. Note that the test case may not

contain some files that were present on the local disk. In

this case, it is straightforward for the replay component to

add copies of these files to the test case.

3.3.2 Termination

It is possible that the developer may make a source code

change that causes the application to loop on an unre-

solved test case. To address this issue, AFID records the

elapsed time for each execution of the application. The

replay component then uses this record of execution times

to estimate an upper bound on the application’s execution.

When the application executes for longer than this bound,

AFID assumes that the application is looping. This pre-

vents the replay component from waiting indefinitely for a

non-terminating computation. Note that in the worst case,

when a timeout is used to incorrectly identify an execution

as looping, the effect is only to prevent AFID from recog-

nizing a fault correction.

3.4 AFID Server

AFID uses a web-based server application that aggregates

the faults discovered by the AFID client. AFID supports

two update modes: automated and manual. The automated

mode automatically uploads a test case once the client has

discovered the fault correcting code change. The manual

mode allows the developer to manually control the upload-

ing process. We developed the manual mode in anticipa-

tion that some developers will wish to maintain control over

when uploads are performed. The client uploads the fault

revealing test case, the version identifier for the source code

version whose execution generated the fault revealing test

case, the version identifier for the code change that corrects

the fault revealing test case, and the latest version of AFID’s

internal subversion repository for the application.

3.5 Recording Regression Tests

The design of AFID is focused on recording fault data for

research. However, we expect that practitioners may also

find AFID beneficial for recording regression tests. In par-

ticular, AFID’s fault data set includes test cases for each

fault that the developer has discovered and corrected. We

expect that this library of test cases may be a useful addi-

tion to the application’s regression test suite. AFID’s exe-

cution monitor provides the functionality to cleanly bundle

the component files into test cases. AFID’s replay compo-

nent allows the test cases to be easily replayed on future

versions of the application. Practitioners may find AFID

particularly useful for test cases that contain files that are

scattered throughout the directory structure or that involve

the modification of common configuration files or any other

files that are shared with other applications.

4. PRIVACY CONCERNS

Privacy may be a concern when using AFID for software

fault user studies. Because AFID records all source code

changes along with the application inputs, it may be pos-

sible to discover the actual identity of a study participant

from the comments, coding style, project, and test cases.

We expect that user studies will not use AFID to monitor

the development of applications that contain sensitive source

code or that may process sensitive inputs. Because a devel-

oper may accidentally input private information into the ap-

plication under development, AFID supports a manual test

case transfer mode that allows the developer to maintain

complete control over including test cases in a data set.

5. EXPERIENCE

We next discuss our experience using the AFID implemen-

tation. The AFID implementation consist of approximately

3,100 lines of C code and shell scripts. The implementa-

tion is available for download at http://demsky.eecs.uci.

edu/afid/. In this section, we report our measurements of

AFID’s monitoring overhead on two applications and then

discuss our experiences using AFID to monitor software de-

velopers.

5.1 Monitoring Overhead

We measured AFID’s monitoring overheads on a worksta-

tion with a 2.2 GHz Core 2 Duo, 1 GB of RAM, and De-

bian Linux running kernel version 2.6.23. We used version

1.5.0 13 of Sun’s HotSpot JDK.

We used two different benchmarks: the Jasmin byte

code assembler and the Inyo ray tracer. We used ver-

sion 2.3 of the Jasmin bytecode assembler. It contains

11,450 lines of code and is available for download at http:

//jasmin.sourceforge.net/. We selected Jasmin because

assembling bytecode involves a relatively large amount of

I/O and therefore is likely to incur a significant monitor-

ing overhead under AFID. The Inyo ray tracer contains

5,843 lines of code and is available for download at http:

//inyo.sourceforge.net. We selected Inyo to give results

for a longer-running, computational-bound benchmark.

Table 1 presents the overhead measurements. Without

monitoring, we measured the time to compile Jasmin as 1.07

seconds and the time to compile Inyo 0.77 seconds. With

monitoring and updating AFID’s internal SVN repository,

we measured the time to compile Jasmin as 4.32 seconds and

Inyo as 3.54 seconds. We then measured the time to com-

pile with monitoring but without updating the internal SVN

Jasmin Inyo

Normal compile 1.07 s 0.77s

Monitored compile with svn 4.32 s 3.54 s

Monitored compile without svn 1.40 s 0.95 s

Normal execution 0.22 s 31.88 s

Monitored execution 0.47 s 32.64 s

Table 1: Monitoring Overhead

repository for Jasmin as 1.40 seconds and for Inyo as 0.95

seconds. This number is important because it measures how

long the developer must wait for the application to be com-

piled. Indeed, it is conceptually straightforward for AFID

to return control to the developer at this point and perform

the SVN repository updates in the background.

Our workload for Jasmin consisted of all of the examples

contained in the Jasmin distribution. Without monitoring,

Jasmin took 0.22 seconds to execute on this workload. With

monitoring, Jasmin took 0.47 seconds to execute on this

workload. Our workload for Inyo consisted of the model file

included with the Inyo distribution. Without monitoring,

Inyo took 31.88 seconds to execute on this workload. With

monitoring, Inyo took 32.64 seconds to execute on this work-

load. We expect that Jasmin’s monitoring overhead of 113%

represents a worst case and Inyo’s monitoring overhead of

2% represents the best case. We expect that this range of

overhead will be acceptable in most development environ-

ments.

5.2 Case Study

Our case study attempts to explore the most basic ques-

tion one can ask about the AFID tool: Does it effectively

record real software faults? To answer this question, we re-

cruited a population of software developers and had each de-

veloper complete a programming problem while being mon-

itored by AFID.

5.2.1 Developer Population

One goal of this case study is to verify that AFID’s fault

identification heuristics work with the wide range of debug-

ging approaches used by developers. We attempted to rep-

resent this wide range in our study population by recruiting

8 students with diverse backgrounds: the study participants

had widely varying educational backgrounds, industrial ex-

perience, years of programming experience, and countries

of education. Their educational backgrounds ranged from

current undergraduate students to doctorates. Several par-

ticipants had industrial experience while other participants

had only academic experience. The study participants were

educated in the United States, China, and India.

5.2.2 Methodology

We installed the AFID tool in each developer’s account

and instructed the developer in the use of the AFID tool.

We then asked each developer to complete a programming

problem in Java while using the AFID monitoring tool. We

selected the programming problems from practice program-

ming contest problems and basic data structure implemen-

tation problems.

5.2.3 Fault Breakdown

After a developer completed the problem, we asked the

developer to go through the fault reports that AFID had

collected, verify that the recorded corrections were correct,

and if so, to describe the underlying programming error.

We then examined their responses and attempted to classify

the faults by their underlying programming errors. Table 2

presents a breakdown of the recorded faults by the type of

the underlying programming error. One the two largest cat-

egories were errors in the logic for parsing the input and null

pointer dereference errors. The parsing errors typically in-

volved errors in reading the specification of the input format.

The null pointer dereference errors were not simple omitted

null pointer checks, but instead a wide range of logic errors

that caused the programs to dereference null pointers.

Fault Type Count

Parsing logic error 3

Null pointer dereference error 3

Initialization error 2

Missing condition check 1

Loop bound error 1

Shadowed field 1

Incorrect comparison 1

Table 2: Fault Breakdown

We observed that even though AFID can only detect fail-

ures that cause the application to throw an exception, in our

case study, AFID recorded a rich set of software faults. The

insight is that very high level conceptual errors can cause

software application to exhibit low-level failures. Even in

this small case study, AFID recorded high-level faults includ-

ing errors caused by misunderstandings of the exact format

of the input file.

5.2.4 Fault Detection Errors

We next discuss how often AFID recorded the correct

fault-correcting source code change. For each recorded fault,

we asked the participant to verify whether AFID had cor-

rectly identified this change as fault correcting. We report

the results in Table 3. The table contains a row for each par-

ticipant in the study. The first column gives designators for

each participant, the second column reports the number of

faults AFID recorded for that participant, and the third col-

umn reports how many of these faults contained the correct

fault correcting source code change.

We note from the table that AFID has recorded fault data

entries that contain the wrong fault correcting code change

for two of the study participants. We then examined the

incorrect fault correcting source code changes to better un-

Participant Number of Number of

Recorded Faults Verified

Corrections

A 2 2

B 1 1

C 4 2

D 8 5

E 1 1

F 1 1

G 0 0

H 0 0

Table 3: Fault Counts by Participant

derstand the problem. We found a surprise — these two

study participants employed an experimental approach to

correcting software faults. They made changes to the code

to improve their understanding of why the application threw

an exception. For example, in one case the participant com-

mented out the line of code that was throwing the exception.

AFID then detected that this source code change cause the

program to no longer crash and record the experimental code

change as the fault correcting code change.

AFID currently includes support for calling the compiler

without monitoring. We plan to instruct future AFID users

to use this functionality when they employ such debug-

ging strategies. In response to this case study, we have

extended AFID to verify suspected fault correcting source

code changes with the developer before adding them to the

repository.

5.2.5 Multiple Corrections
When we manually reviewed the fault correcting source

code changes, we noticed one source code change that con-

tained corrections for many different faults. In this case,

what happened was when the developer discovered the first

fault, he realized he had made the same mistake two more

times in the same method and corrected all instances of this

mistake. We observed only a single instance of a source code

change that corrected multiple faults. We foresee that fu-

ture versions of AFID will allow a developer to note when

the developer believes that a source code change corrects

multiple fault instances.

5.2.6 Developer Feedback
The user experience for AFID users is a concern for large

user studies. After the user study, we asked the participants

to provide feedback about their experience using the AFID

monitoring tool. One participant commented that using the

tool was unnoticeable as the user just used the regular javac

and java commands. The participant thought the general

experience was very good. One participant was“amazed...at

how accurately AFID caught my critical bugs”. Several par-

ticipants noticed a slight delay when compiling programs.

We plan to address this delay by performing both the repos-

itory updating and test case replaying in the background.

6. RELATED WORK

Researchers have recently developed tools to mine CVS

repositories to collect some of this information [13, 8, 16,

17, 9]. The CVS mining research identifies CVS commits

that correct software faults through a heuristic analysis of

the CVS checkin comments. Researchers have discovered

many interesting properties including that code changes on

Fridays are more likely to cause problems [11]. Other re-

search discovers implicit interface rules by searching for code

changes that occur together [7]. The primary way that our

work differs from previous work on CVS mining is that our

work provides fault revealing test cases in a format suit-

able for automated tools. The extra information provided

by these test cases will enable empirical software research

to explore software faults in new ways — for example, the

test cases will enable researchers to use dynamic analyses

to explore the faulty executions. Our work also more pre-

cisely characterizes software faults as compared to CVS as

developers sometimes commit CVS updates that both cor-

rect a software fault and make other changes. CVS mining

techniques cannot distinguish between the fault correcting

changes and any other bundled changes and therefore can

extract software fault corrections that are too large.

Researchers have also developed data sets of applications

with seeded faults [4]. These data sets are limited in size be-

cause they are labor intensive to create — researchers must

manually seed faults and create test cases that reveal these

faults. While these data sets have proven to be a useful tool,

potential differences between seeded faults and real software

faults can threaten the validity of experiments. Moreover,

because the software faults are seeded, the data set does

not contain information that can be mined to learn about

real-world software faults.

The iBUGS project is based on the observation that af-

ter developers correct a bug, they often add regression tests

designed to ensure that future changes do not reintroduce

similar bugs [3]. Their approach searches CVS commit mes-

sages for text that indicates that the change corrects a bug.

They then build pre-fix and post-fix versions of the applica-

tion and run the versions on the test suite to identify any

test cases that reveal the given fault. They have successfully

used this technique to build a repository of software bugs.

Researchers have developed many replay systems for de-

bugging applications [1, 15, 6]. These other systems replay

the exact execution, often with the goal to help develop-

ers deterministically replay software bugs in multi-threaded

programs. AFID’s goal is to execute new versions of the ap-

plication on the same test case. The exact execution of the

replay under AFID will often differ as the underlying code

has likely been modified.

AFID relies on the ptrace interface to monitor both ap-

plication compilation and execution. Researchers have used

the ptrace interface to inject faults into applications [12]

and to safely execute untrusted code [10]. Researchers have

also used similar program monitoring techniques to imple-

ment user space file systems [14].

7. CONCLUSION

Data sets of real software faults have the potential to en-

able the creation of new tools for software engineering and

programming language researchers. Our previous experience

shows that manual efforts to collect such data are tedious.

The AFID tool is a new approach for recording software

fault data. A key benefit of AFID is that the data it collects

includes fault revealing test cases in addition to a faulty ver-

sion of the application and the fault correcting source code

change. The key results in this paper include (1) a technique

to automatically record software faults without requiring de-

veloper intervention, (2) the implementation of this tech-

nique in the AFID tool, (3) an evaluation of the overhead

of these techniques, and (4) our experiences using the tool

to record real software faults. Our measurements of AFID’s

monitoring overhead indicate that this approach is feasible

for many development environments. Our case study re-

sults indicate AFID’s approach to automatically recording

software faults works effectively in practice.

Acknowledgments. We would like to thank the anony-

mous referees for their insightful feedback on our paper.

This work was funded in part by NSF Grant CCF-0725350

and NSF Grant CNS-0720854.

8. REFERENCES
[1] J.-D. Choi and H. Srinivasan. Deterministic replay of

Java multithreaded applications. In Proceedings of the

SIGMETRICS symposium on Parallel and distributed

tools, pages 48–59, New York, NY, USA, 1998. ACM.

[2] B. Collins-Sussman. The Subversion project: Building

a better CVS. Linux Journal, 2002(94):3, 2002.

[3] V. Dallmeier and T. Zimmermann. Extraction of bug

localization benchmarks from history. In Proceedings

of the Twenty-Second IEEE/ACM International

Conference on Automated Software Engineering, 2007.

[4] H. Do, S. Elbaum, and G. Rothermel. Supporting

controlled experimentation with testing techniques:

An infrastructure and its potential impact. Empirical

Software Engineering, An International Journal,

10(4):405–435, October 2005.

[5] M. Haardt and M. Coleman. Ptrace(2). Linux

programmer’s manual, Section 2, November 1999.

[6] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging

parallel programs with instant replay. IEEE Trans.

Comput., 36(4):471–482, 1987.

[7] B. Livshits and T. Zimmermann. Dynamine: Finding

common error patterns by mining software revision

histories. In ACM SIGSOFT Symposium on the

Foundations of Software Engineering, September 2005.

[8] N. Nagappan, T. Ball, and A. Zeller. Mining metrics

to predict component failures. In Proceeding of the

28th International Conference on Software

Engineering, November 2006.

[9] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.

Predicting vulnerable software components. In

Proceedings of the 14th ACM Conference on Computer

and Communications Security, 2007.

[10] R. Sekar, V. N. Venkatakrishnan, S. Basu, S. Bhatkar,

and D. C. DuVarney. Model-carrying code: A

practical approach for safe execution of untrusted

applications, October 2003.

[11] J. Śliwerski, T. Zimmermann, and A. Zeller. When do

changes induce fixes? on fridays. In Proceedings of the

International Workshop on Mining Software

Repositories, 2005.

[12] R. R. Some, W. S. Kim, G. Khanoyan, L. Callum,

A. Agrawal, and J. J. Beahan. A

software-implemented fault injection methodology for

design and validation of system fault tolerance. In

Proceedings of the 2001 International Conference on

Dependable Systems and Networks, 2001.

[13] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh.

Software repository mining with Marmoset: An

automated programming project snapshot and testing

system. SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

[14] R. P. Spillane, C. P. Wright, G. Sivathanu, and

E. Zadok. Rapid file system development using ptrace.

In Proceedings of the 2007 Workshop on Experimental

Computer Science, 2007.

[15] J. Steven, P. Chandra, B. Fleck, and A. Podgurski.

jRapture: A capture/replay tool for observation-based

testing. In Proceedings of the 2000 ACM SIGSOFT

international symposium on Software testing and

analysis, pages 158–167, New York, NY, USA, 2000.

ACM.

[16] C. Williams and J. K. Hollingsworth. Bug driven bug

finders. In In Proceedings of International Workshop

on Mining Software Repositories, May 2004.

[17] A. T. Ying, G. C. Murphy, R. Ng, and M. C.

Chu-Carroll. Predicting source code changes by

mining revision history. IEEE Transactions on

Software Engineering, 30(9):574–586, September 2004.

