
Inference and enforcement of
data structure consistency specifications

Brian Demsky1, Michael D. Ernst2, Philip J. Guo2,
Stephen McCamant2, Jeff H. Perkins2, Martin Rinard2

1University of California at Irvine, Irvine, CA, USA
2MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA

bdemsky@uci.edu, {mernst,pgbovine,smcc,jhp,rinard}@mit.edu

ABSTRACT
Corrupt data structures are an important cause of unacceptable pro-
gram execution. Data structure repair (which eliminates inconsis-
tencies by updating corrupt data structures to conform to consis-
tency constraints) promises to enable many programs to continue
to execute acceptably in the face of otherwise fatal data structure
corruption errors. A key issue is obtaining an accurate and compre-
hensive data structure consistency specification.

We present a new technique for obtaining data structure consis-
tency specifications for data structure repair. Instead of requir-
ing the developer to manually generate such specifications, our
approach automatically generates candidate data structure consis-
tency properties using the Daikon invariant detection tool. The de-
veloper then reviews these properties, potentially rejecting or gen-
eralizing overly specific properties to obtain a specification suitable
for automatic enforcement via data structure repair.

We have implemented this approach and applied it to three siz-
able benchmark programs: CTAS (an air-traffic control system),
BIND (a widely-used Internet name server) and Freeciv (an inter-
active game). Our results indicate that (1) automatic constraint gen-
eration produces constraints that enable programs to execute suc-
cessfully through data structure consistency errors, (2) compared
to manual specification, automatic generation can produce more
comprehensive sets of constraints that cover a larger range of data
structure consistency properties, and (3) reviewing the properties is
relatively straightforward and requires substantially less program-
mer effort than manual generation, primarily because it reduces the
need to examine the program text to understand its operation and
extract the relevant consistency constraints. Moreover, when eval-
uated by a hostile third party “Red Team” contracted to evaluate
the effectiveness of the technique, our data structure inference and
enforcement tools successfully prevented several otherwise fatal at-
tacks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’06, July 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms
Experimentation, Languages, Reliability

Keywords
dynamic invariant detection, data structure repair

1. INTRODUCTION
Data structure consistency is a crucial program property: cor-

rupt data structures can cause a program to behave unacceptably or
even fail. Approaches to ensuring data structure consistency have
included program testing and monitoring techniques to detect and
localize errors (which the developer would then correct) [11, 1],
rebooting to clear corrupted volatile data structures [2], dynamic
checks to roll back transactions that corrupt data structures [36],
and static analysis to verify that the program is free of any errors
that may corrupt the data structures [37, 26].

We have recently developed a new approach — data structure re-
pair [13]. Given a specification of data structure consistency prop-
erties and a data structure that violates these properties, our data
structure repair algorithm updates the data structure so that it satis-
fies the properties. This technique can enable programs to continue
to execute successfully through otherwise fatal data structure cor-
ruption errors [13]. It is especially useful for repairing nonvolatile
data structures that persist through system restarts (corrupting such
data structures can completely disable a system), for enabling sys-
tems to remain operational in the face of recurrent problematic in-
puts that trigger data structure inconsistency errors, and for situa-
tions in which it is undesirable or unacceptable to restart the sys-
tem.

In previous work, the developer must manually generate the data
structure consistency specifications [12, 13]. A potential drawback
of this approach is that the developer may inadvertently produce
incorrect or incomplete specifications. Incorrect specifications may
introduce new data structure corruption errors into an otherwise
correct program. Incomplete specifications may leave the program
vulnerable to otherwise repairable data structure corruption errors.

This paper presents a new technique using the Daikon invari-
ant detection tool to (1) reduce or even eliminate developer effort
in constructing data structure consistency specifications, (2) reduce
the possibility that the developer may produce incorrect data struc-
ture consistency specifications, and (3) increase the coverage of the

data structure consistency specifications. The basic idea is as fol-
lows:

• Dynamic Analysis: The developer runs the program on a
range of test inputs for which the program is known to pro-
duce correct results. The Daikon dynamic analysis tool pro-
cesses the test runs to produce a candidate set of data struc-
ture consistency specifications.

• Review: The generated data structure consistency specifica-
tions are satisfied in all of the sample executions, but may be
overly specific to the test inputs. The developer may there-
fore review the generated specifications to discard or gener-
alize any overly specific properties.

• Translation: Our tools translate the generated consistency
properties from the Daikon specification language into the
repair system’s data structure consistency specification lan-
guage. Whereas Daikon reports properties over the concrete
variables and object fields of the program, the data structure
repair system works with an abstract model of the state (the
abstract model simplifies the repair algorithm). Our tools
bridge this abstraction gap.

• Monitoring and Repair: Our tools augment the program
with automatically generated code that implements our data
structure repair algorithm. As the program runs, this code
monitors its data structures for consistency property viola-
tions, repairing any violations as necessary to keep the pro-
gram executing acceptably.

We have applied our technique to three software systems: the
CTAS air-traffic control system (Section 2), the BIND Domain
Name Service (DNS) server (Section 4.2), and the Freeciv inter-
active game (Section 4.3).

As the most widely used DNS server on the Internet, BIND is
the target of many security attacks. Our technique was able to ame-
liorate or eliminate two known security vulnerabilities in BIND.

Freeciv is an interactive multi-player game. Our evaluation of
our technique as applied to Freeciv included an adversarial Red
Team exercise in which an outside organization attempted to de-
velop data structure corruption attacks that would cause Freeciv to
fail. Our results show that our techniques significantly reduced the
vulnerability of Freeciv to these attacks.

The evaluations of BIND and Freeciv both use the automatically
generated data structure consistency specifications with no devel-
oper modifications. Because of earlier development efforts, we also
have a manually generated specification for Freeciv. In comparison
with our manually generated specification, the automatically gener-
ated specification is more comprehensive (i.e., covers a wider range
of important data structure consistency properties) and equally un-
derstandable to the developer. For Freeciv, automatically generat-
ing the data structure consistency specification decreases the engi-
neering effort required to use data structure repair and increases the
coverage of the resulting data structure consistency specifications
(and therefore the overall effectiveness of data structure repair).

This paper makes the following contributions:

• Generation: It shows how to automatically generate data
structure consistency specifications, then use these specifica-
tions to enable data structure repair to deliver more robust,
resilient programs.

• Translation: It shows how to automatically translate spec-
ifications from the concrete domain of the program into the
abstract domain of the repair tool.

• Comparison: It compares the automatically generated con-
sistency specifications with the manually generated specifi-
cations. This comparison indicates that the automatically
generated properties are more comprehensive and equally
understandable.

• Evaluation: It presents our experience using unmodified au-
tomatically generated specifications to repair data structure
corruptions in the BIND and Freeciv software systems. In
both cases, the specifications enabled the repair algorithm to
keep the systems executing through otherwise fatal corrup-
tions.

The remainder of the paper is structured as follows. Section 2
presents an example that illustrates our technique. Section 3 dis-
cusses our automatic consistency constraint generation algorithm.
Section 4 presents our experience using the combination of auto-
matic constraint generation and data structure repair to enable ap-
plications to survive otherwise fatal data structure corruption errors.
Section 5 reviews related work, and Section 6 concludes.

2. EXAMPLE
We next present an example that shows how to apply our tech-

nique. The example system is the CTAS air-traffic control system,
a set of air-traffic control tools developed at the NASA Ames Re-
search Center [8]. Versions of this system are deployed at air-traffic
control centers throughout the United States and are in daily opera-
tional use. Among other functionality, CTAS maintains a flight plan
for each aircraft in a given airspace. The flight plan data structure
contains a total of 38 fields including the category field (which
denotes the type of flight, such as an arriving or departing flight),
the origin field (which denotes the originating airport), and the
destination field (which denotes the destination airport).

The first step in using Daikon to generate specifications for data
structure repair is to identify the data structures that are of interest.
For CTAS, we identified the flight plan data structure to be of inter-
est. Figure 1 presents the specification that Daikon then generates
for this data structure. The specification itself consists of a set of
properties. The first property requires arriving flights (i.e., flights
with the category 2, 4, or 6) to have the destination airport index
set to either 0 or 1. The second property requires all other flights to
have the destination airport index set to the special “uninitialized”
value of -999999. The remaining properties impose similar con-
straints on the origin field and specify all of the legal values of
the category field.

2.1 Abstract Model
Daikon generates invariants over concrete variables and object

fields. The data structure repair system takes as input data struc-
ture consistency constraints expressed in terms of an abstract model
of the data structure. Our translation algorithm translates the con-
crete variables in the Daikon properties into expressions over the
model’s sets and relations. It does so in three steps: generating an
abstract model, defining the relations of the model, and producing
constraints over the relations.

Figure 2 presents the generated set and relation declarations for
CTAS. In this case, the algorithm abstracts the variable fp by the
singleton set Sfp0. The set declaration set Sfp0(flightplan);

declares the set Sfp0 to contain pointers to flightplan data struc-
tures. Similarly, the algorithm abstracts the field category by
the relation Rcategory1, the field destination by the relation
Rdestination3, and the field origin by the relation Rorigin5.
The declaration Rcategory1: Sfp0->int defines the relation
Rcategory1 to map objects in the set Sfp0 to integers.

fp.category one of { 2,4,6 } => fp.destination one of { 0,1 } arriving flights have a destination
fp.category one of { 1,3,5,7,8,9 } => fp.destination == -999999 non-arriving flights have no destination
fp.category one of { 1,6,7 } => fp.origin one of { 0,1 } departing flights have an origin
fp.category one of { 2,3,4,5,8,9 } => fp.origin == -999999 non-departing flights have no origin
fp.category one of { 1,2,3,4,5,6,7,8,9 } all possible types of flights

Figure 1: Partial Daikon dynamic analysis output for the CTAS air traffic controller example.

set Sfp0(flightplan);
Rcategory1: Sfp0->int;
Rdestination3: Sfp0->int;
Rorigin5: Sfp0->int;

true => fp in Sfp0;
forall s in Sfp0, true =>

<s,s.category> in Rcategory1;
forall s in Sfp0, true =>

<s,s.destination> in Rdestination3;
forall s in Sfp0, true =>

<s,s.origin> in Rorigin5;

Figure 2: Abstract model automatically generated from the
CTAS air traffic control code. The set and relation declara-
tions appear at the top of the figure, and the model definition
rules appear at the bottom.

The algorithm then generates model definition rules to define a
translation from the concrete data structure to the abstract model.
Figure 2 gives the model definition rules for the example. The
model definition rules are evaluated to construct the set and rela-
tions in the abstract model. A model definition rule consists of
optional quantifiers, followed by a guard condition on the con-
crete data structure (in this example, the guard is always true),
followed by a set or relation inclusion condition. The model con-
struction process evaluates the model definition rules for each pos-
sible binding of the quantifiers. If the guard of the model defini-
tion rule is true for a particular binding, then the model process
adds the object (or tuple) to the set (or relation) specified in the
inclusion condition. The first model definition rule true => fp

in Sfp0 constructs a singleton set Sfp0 that contains the flight
plan object. The remaining model definition rules construct the
Rcategory1, Rdestination3, and Rorigin5 relations that ab-
stract the category, destination, and origin fields, respec-
tively. These relations map the flight plan object in Sfp0 to the
value of the field that the relation abstracts.

2.2 Model Constraints
Given the abstract model of Section 2.1, the algorithm translates

the Daikon invariants into model constraints. The first step of this
translation is to translate the Daikon variable names (which are typ-
ically the same as variable names in the target program) into equiv-
alent expressions on the sets and relations in the abstract model.
For example, the algorithm translates the Daikon variable fp into
the quantifier variable fp7 over the singleton set Sfp0. It then uses
fp7 to translate the Daikon variable fp.category into the expres-
sion fp7.Rcategory1.

Then the translation algorithm generates a model constraint with
the equivalent meaning as the Daikon invariant. In this example,
the one of Daikon invariant is translated into a disjunction of the
different possible equalities, and the implication in Daikon invari-
ant is translated into an equivalent boolean expression. Figure 3
gives the translated model constraints for the example.

forall fp7 in Sfp0, (!(fp7.Rcategory1=2 or
fp7.Rcategory1=4 or fp7.Rcategory1=6)) or
fp7.Rdestination3=0 or
fp7.Rdestination3=1;

forall fp0 in Sfp0, (!(fp0.Rcategory1=1 or
fp0.Rcategory1=3 or fp0.Rcategory1=5 or
fp0.Rcategory1=7 or fp0.Rcategory1=8 or
fp0.Rcategory1=9)) or
fp0.Rdestination3=-999999;

forall fp2 in Sfp0, (!(fp2.Rcategory1=1 or
fp2.Rcategory1=6 or fp2.Rcategory1=7)) or
fp2.Rorigin5=0 or fp2.Rorigin5=1;

forall fp5 in Sfp0, (!(fp5.Rcategory1=2 or
fp5.Rcategory1=3 or fp5.Rcategory1=4 or
fp5.Rcategory1=5 or fp5.Rcategory1=8 or
fp5.Rcategory1=9)) or
fp5.Rorigin5=-999999;

forall fp21 in Sfp0, (fp21.Rcategory1=1 or
fp21.Rcategory1=2 or fp21.Rcategory1=3 or
fp21.Rcategory1=4 or fp21.Rcategory1=5 or
fp21.Rcategory1=6 or fp21.Rcategory1=7 or
fp21.Rcategory1=8 or fp21.Rcategory1=9);

Figure 3: Model constraints corresponding to the 5 properties
of Figure 1.

2.3 Monitoring and Repair
Our repair algorithm generator takes as input the abstract model

and the model consistency constraints and generates as output an
algorithm that automatically monitors the data structures to find and
repair any inconsistencies [13]. The actual monitoring and repair
can take place either at specified places in the execution or when the
program recognizes that it has encountered an error (for example,
an addressing error or null dereference error).

We used fault insertion to mimic the effect of errors in the flight
plan processing (earlier versions of CTAS contained at least one
such error). These errors produce illegal values in the flight plan
data structures.

Our workload consisted of a recorded midday radar feed from
the Dallas–Ft. Worth center. Without repair, CTAS fails because of
an addressing exception (leaving the controller completely without
any of the CTAS functionality). With repair, CTAS continues to
execute in a largely acceptable state. Specifically, the effect of the
repair is to potentially change the origin or destination airport of the
aircraft with the faulty flight plan. Even with this change, contin-
ued operation is clearly a better alternative than failure. First, one
of the primary purposes of the system, visualizing aircraft flow, is
left completely unaffected by the repair. Second, only the origin
or destination airport of the plane whose flight plan triggered the
error is affected — CTAS processes all other aircraft with no errors
at all. Finally, augmenting our system to graphically highlight re-
paired values would alert the air-traffic controller to any potentially
unreliable data.

Note that in this situation rebooting CTAS is not a viable op-
tion. It takes CTAS several minutes to reacquire the flight plans
and radar data. Moreover, when CTAS reacquires the problematic
flight plan that triggered the data structure corruption error, it will
simply fail again before it comes completely up. Without repair,
a simple data structure corruption error can render this version of
CTAS completely inoperable.

3. SPECIFICATION GENERATION
We have implemented the automatic specification generation tool

as a new output format for Daikon. This output format has been dis-
tributed as a part of Daikon since Daikon version 3.1.4, released on
October 1, 2004.

The primary challenge in generating a specification is to bridge
the gap between the abstractions used by the two tools. Daikon gen-
erates invariants in terms of concrete program variable names. The
repair system uses consistency properties that are specified in terms
of an abstract model of the concrete data structure. This model
represents data structures in terms of sets of objects and relations
between these objects. The consistency specification uses a set of
model definition rules to specify a translation between the concrete
data structure and the abstract model.

3.1 Generating an Abstraction
Our algorithm constructs a straightforward abstraction: for each

Daikon variable the algorithm constructs a set that contains the ob-
jects that the Daikon variable refers to, and for each field in the
Daikon variable the algorithm constructs a relation that maps the
object containing the field to the value or object referenced by the
field.

For example, transforming the Daikon expression m.tiles re-
quires three steps. First, the algorithm constructs a singleton set M
that contains the value of m. To construct this set, it generates the
model definition rule: true => m in M. Second, the algorithm
constructs the relation RTiles to model the field tiles. To con-
struct this relation, it generates the model definition rule: forall
m in M, true => <m, m.tile> in RTiles. Third, the algo-
rithm constructs the set STiles to model the values of m.tiles.
To construct this set, it generates the model rule: forall m in

M, true => m.tile in STiles.

3.1.1 Local and Global Variables
The model constraint language only supports algebraic constraints

that are expressed in terms of relations. These relations map objects
or primitive values to other objects or primitive values. In the case
of constraints on local or global variables, there is no object to ap-
ply the relation to. In this case, the algorithm constructs a singleton
set containing a special value. The value in this singleton set is
mapped by relations to the values of local or global variables.

3.1.2 Arrays
The algorithm treats arrays of primitive values specially by con-

structing a relation to model the array. This relation maps the in-
dex of the array to the value of the corresponding element. For
example, for the Daikon invariant x.array[] > 0, the trans-
lation algorithm would construct a relation Array that maps a
natural number to the corresponding array element. To con-
struct this relation, the algorithm would generate the model defi-
nition rule: forall x in X, for i=0 to x.array.length,

true => <i,x.array[i]> in Array. The translation algo-
rithm would then translate the Daikon invariant into the model con-
straint for i=0 to x.array.length, i.Array > 0.

3.2 Translating Constraints
The model constraint language supports algebraic constraints on

relations. To translate most Daikon invariants, the algorithm trans-
lates the Daikon variables into the evaluation of a relation on a
quantified variable. The algorithm then adds the appropriate quan-
tifier for this variable. For example, the algorithm would translate
the invariant m.tiles.elem[].terrain>=0 into the model con-
straint forall q in SElem,q.Terrain>=0, where the relation
Terrain models the terrain field and the set SElem contains the
contents of m.tiles.elem[].

3.2.1 Non-null Invariants
The set and relation abstraction used by the repair tool does not

allow null values to appear in a set or relation. As a result, an
invariant of the form p!=null, which states that a variable p is not
equal to null, must be translated to a constraint that specifies that
the size of the set that abstracts the variable is greater than 0. For
example, the translation step would translate this invariant into the
model definition rule p != null => p in P, which constructs
the set P, and the model constraint sizeof(P)>0, which ensures
that the set P is not empty.

3.2.2 Sequence–Index Invariants
Sequence–index invariants involve a comparison between a num-

ber (to be used as an array index) and an array element indexed
by that number. For other types of invariants, there is a degree
of freedom in choosing the set to quantify over. For sequence–
index invariants, the constraint must quantify over the array in-
dex because the value of the variable is compared to the array
index. For example, the algorithm would translate the invariant
x.array[i].value>i into the model constraint forall i in

indexset, i.Array.Value>i, where the Array relation maps
an integer i in the indexset to the value of x.array[i].

3.3 Extracting Data Structure Layouts
We have developed a tool that extracts the layout of the data

structures in a program from Dwarf-2 debugging information, de-
rived from the Fjalar toolkit [19]. The tool automatically generates
the data layout specification in the correct format.

4. EXPERIENCE
This section presents our experience automatically generating

data structure consistency specifications and using these data struc-
ture consistency specifications for data structure repair in the BIND
and Freeciv software systems.

4.1 Methodology
For each system, we selected an initial fault-free workload and

identified the data structures of interest. We then executed the sys-
tems on this workload and used the Kvasir front end (a part of
Daikon) to record a trace of the execution. We ran Daikon to auto-
matically extract a consistency specification for the data structures
of interest from this trace. We manually reviewed this consistency
specification and (for these systems) found nothing we wanted to
change. We next ran the data structure repair tool to compile the
consistency specifications into C code that detects and repairs any
inconsistencies in the data structures, then augmented the programs
with the repair code.

Finally, we tested the ability of the resulting data structure repair
algorithm to enable the system to recover from data structure cor-
ruptions. For BIND, we used a workload that exercised known data
structure corruption errors. For Freeciv, we used fault injection to
corrupt the data structures, and a Red Team contracted to test the

system did likewise. We then observed the continued execution of
the program after the resulting repair. Note that the entire process
of obtaining and enforcing the data structure consistency specifica-
tion, with the exception of the specification review, is completely
automated.

For Freeciv we had previously developed a manual specification.
We evaluate the automatically generated manual specification, in
part, by comparing it to this manual specification. Our evalua-
tion focuses on the coverage of the properties in the automatically
generated specification and the difficulty of developing the manual
specification from scratch compared with reviewing the automati-
cally generated specification.

4.2 BIND
The Domain Name System (DNS) is the Internet service re-

sponsible for translating human-readable computer names (such
as www.mit.edu) into numeric IP addresses (such as 18.7.22.83).
BIND (http://www.isc.org/sw/bind) is an open-source soft-
ware suite that includes the most commonly used DNS server on
the Internet. Because of BIND’s ubiquity on the Internet, it is a fre-
quent target of security attacks, and a number of serious flaws have
been found in it over its decades of use. The most recent major re-
vision of BIND, version 9, is an almost complete rewrite, intended
among other changes to be more secure.

BIND’s basic operation is straightforward: it listens for DNS
requests on a network socket and sends reply packets containing
information from the DNS database. Each Internet domain (such
as .uk, .google.com, or .csail.mit.edu) has one or more
“authoritative” servers that provide information about hosts (com-
puters) in that domain and point to its sub-domains. In addition,
most networks have “caching” servers which handle requests from
clients (such as desktop computers), communicate with authorita-
tive servers, and retain results for a limited time period so that re-
peated requests can be processed more efficiently. Currently most
DNS traffic on the Internet does not use any form of strong authen-
tication, but an extended version of the DNS protocol, known as
DNSSEC, allows authoritative information to be cryptographically
signed by a domain’s owner.

4.2.1 BIND Errors
The BIND developers maintain a list of security-critical bugs at

http://www.isc.org/sw/bind/bind-security.php. Many
earlier BIND security bugs were classic buffer overruns. Existing
tools can detect and correct such problems [32, 35, 14], which have
also become less common in recent BIND versions, perhaps be-
cause of more careful coding practices and auditing.

Our evaluation considers attacks based on higher-level data struc-
ture changes, which represent a greater proportion of recent vulner-
abilities.1 We selected two previously-discovered (and -corrected)
problems: a “negative caching bug” (section 4.2.2) and an “NSEC
validation bug” (section 4.2.3). Both of these represent denial-
of-service vulnerabilities: a malicious user interacting with BIND
could prevent the server from handling legitimate requests. The
bugs existed in historical versions of BIND; to simplify our exper-
iments, we reproduced them by introducing the same defects into
the most recent version of BIND, 9.3.1.

1Code-level techniques such as ours probably are not effective in addressing protocol
errors — fundamental algorithmic or design errors — which are another category of
common problems.

4.2.2 Negative Caching Error
An authoritative DNS server can return either positive results

(for instance, www.mit.edu exists and its address is 18.7.22.83)
or negative ones (for instance, no host qq.mit.edu exists). Both
positive and negative results may be cached, and both positive and
negative replies contain a field (called the TTL, or “time-to-live”)
indicating for how long they should be cached. Versions of BIND
8 prior to 8.4.3 contained a bug in the way they cached some neg-
ative results. When a caching server received domain information
in a reply from an authoritative server, it performed several checks
on the consistency of the data: for instance, the server from which
the data originated should be the authoritative server for the domain
the results refer to, and the results should pertain to the domain as
the original query. If these checks fail, the results are considered
illegitimate, and discarded. Because of a logic error in vulnerable
versions of BIND, however, a packet that had been determined to
be illegitimate was sometimes still added to the cache of negative
information.

To exploit this bug, an attacker who controls an authoritative
server for some domain modifies it so that when replying to re-
quests, it returns negative results about some unrelated domain.
For instance, if the attacker controls the authoritative server for
attacker.com, then when the victim queries that domain’s server
for the address of mailserver.attacker.com, the attacker can
send a reply saying that “www.mit.edu does not exist”. The at-
tacker then gets a vulnerable caching server to make a request to the
malicious server, for instance by sending an email with a “From”
address at mailserver.attacker.com to a host that uses the vul-
nerable caching DNS server. The caching server will incorrectly
retain the negative information, so that any attempts by other users
of the caching server to access the target host (www.mit.edu in
the example) will fail until the information expires from the cache.
Normally, negative results have a small TTL, and so would expire
quickly, but in this attack the TTL for the incorrect reply is chosen
by the attacker, and can be arbitrarily long.

4.2.2.1 Obtaining Specifications.
We selected components of the message data structure of inter-

est. Daikon then observed the execution of BIND as it responded to
several dozen queries, mostly for domain names that did not exist.
We instructed Daikon to observe the dns ncache add() function,
which runs every time a query for a non-existent address arrives.
This function adds an entry for that address to the negative cache.

The resulting specifications included bounds on the time-to-live
(TTL) field of a message that is added to the BIND negative cache.

message.sections[2].head.list.head.ttl <= 900
message.sections[2].head.list.head.ttl >= 29

The exact numbers may differ from the ones shown (900 sec-
onds, which is 15 minutes), depending on conditions in the server’s
environment. In particular, different authoritative servers will sup-
ply different (valid) TTL values.

4.2.2.2 Effect of Repair.
Without repair, we verified that an attacker can set an arbitrarily

large time-to-live on a (bogus) negative reply; as a result, the at-
tacked DNS server will retain (and propagate) the bogus negative
reply for days, weeks, or longer.

When our tool’s repair code is active, the effects of the negative
caching bug are ameliorated. The repair code detects that the hos-
tile server’s response has an excessive TTL value; it repairs the data
structure holding the TTL, setting the TTL to the inferred upper
bound of 900 seconds. Though the malicious reply is still cached,

its TTL is limited to the maximum TTL obtained by observing le-
gitimate data (such as 15 minutes), rather than the very long TTL
chosen by the attacker. After this period expires, the incorrect in-
formation is flushed from the cache, and the DNS server again op-
erates properly.

4.2.3 NSEC Validation Error
The NSEC validation error, reported in early 2005, is part of the

validation that BIND can perform when processing authoritative
replies. Under the DNSSEC security extensions, each piece of data
returned by a server may be accompanied by a cryptographic sig-
nature, which can be checked to verify its authenticity. A particular
complication in DNSSEC concerns negative results: since there is
normally no record corresponding to a negative result, there is no
obvious object to be signed. To allow the authentication of neg-
ative results, DNSSEC introduces a new kind of record, of type
“NSEC”, to record negative information. For each name that exists
in a domain, there is an NSEC record that lists the next name in the
domain, in a cyclic alphabetical order, as well as which kinds of
data exist for the name. When a request for a nonexistent name is
received, a DNSSEC-compliant server can send the NSEC record
for the alphabetically closest previous existing name, and its sig-
nature, to convince a recipient that no such data exists; similarly
an NSEC record can prove that while a name exists, no data of the
requested type is available.

BIND version 9.3.0 contained a bug in the code to check such
signed negative responses. Normally, a secure negative reply DNS
packet would contain a section with four records: an NSEC record
verifying the nonexistence of the requested record, an SOA record
indicating that the server that generated the reply data is the legit-
imate authority for the domain in question, and two RRSIG sig-
nature records containing signatures for the aforementioned other
records. The DNS protocol places no requirements or significance
on the order of the four records, but by convention BIND and other
servers usually use the order SOA, RRSIG, NSEC, RRSIG.

The code in BIND 9.3.0 processes the records in the order in
which they appear in the reply packet. At one point, it performs a
check that is meant to determine whether the record currently be-
ing examined is an NSEC record, but because of a coding error, the
check instead succeeds whenever an NSEC record has been seen
so far in the entire section. If a malicious server sends the records
in an unconventional order, such as NSEC, RRSIG, SOA, RRSIG,
and the NSEC record fails to verify, the vulnerable server will at-
tempt to perform NSEC verification on an SOA record: the code
that performs this verification checks the type tag on the record,
sees that it is unexpected, and triggers an internal assertion failure
that causes the server to immediately terminate. The server will of
course then be unable to respond to any requests until it is restarted
(e.g., manually).

4.2.3.1 Obtaining Specifications.
We selected fields of the nsecset and rdataset data structures

to be of interest. Daikon then observed executions of a BIND server
that was communicating with a second BIND server. The server be-
ing observed was configured to cache DNSSEC entries. The second
server was configured to provide authoritative DNSSEC data for a
domain. The observed server was configured to forward requests
to the second server, and to consider the second server’s public key
valid for authentication. Our testing made various queries of the
first server, and we instructed Daikon to observe two functions:
nsecnoexistnodata() and isc rdatalist first().

The function nsecnoexistnodata() checks a record set con-
taining an NSEC record to determine whether that record correctly

authenticates the nonexistence of a name, or the nonexistence of
some particular data type at that name. In this case, the record
set is implemented as an “rdatalist” data structure. The function
isc rdatalist first() initializes an iterator on an rdatalist to
point to the first record in the list, or returns an error condition if
the list is empty.

The inferred specifications were as follows.

validator.c.nsecnoexistnodata():::ENTER
nsecset != null
nsecset.type == 47

..isc__rdatalist_first():::ENTER
(rdataset.private1.rdata.head != null) ==>

(rdataset.type ==
rdataset.private1.rdata.head.type)

rdataset != null
rdataset.type >= 0
rdataset.private1 != null
(rdataset.private1.rdata.head != null) ==>

(rdataset.private1.rdata.head.type >= 0)

Two properties are relevant for the repair. The first property,
nsecset.type == 47, indicates that the type of the record set
passed to nsecnoexistnodata() must always be 47, which de-
notes an NSEC record. A second property, rdataset.private1.
rdata.head != null =⇒ rdataset.type == rdataset.

private1.rdata.head.type, indicates that if a record set of the
“rdatalist” class contains a record, that record’s type must be the
same as the type of the record set overall.

4.2.3.2 Effect of Repair.
Without repair, we verified that an attacker can crash the BIND

server by sending records in an unexpected but legal order in a reply
packet. This results in a complete denial of service until the BIND
server is restarted.

When our tool’s repair code is active, the NSEC validation bug
is rendered harmless. In the nsecnoexistnodata() function, the
repair code detects that the record field type is unexpected, and
changes it to 47. Then, at the isc rdatalist first() function,
the repair code detects that rdataset.private1.rdata.head.
type 6= rdataset.type, and so sets the rdataset.private1.
rdata.head field to null — in other words, it removes the offend-
ing record. Existing code in BIND then sees that the record set
is empty, so that verification cannot continue. BIND rejects the
packet as invalid, and continues normal operation without failing.

4.3 Freeciv
Freeciv is a freely distributed, multiplayer, client-server strat-

egy game (http://www.freeciv.org/). It contains a total
of 93,612 lines of code of which the Freeciv server uses 78,555
lines. This server maintains a map of the game world. Each tile
in this map has a terrain value chosen from a set of legal terrain
values. Additionally, cities may be placed on the tiles.

4.3.1 Obtaining Specifications
We selected the civmap, tile, and map positions data struc-

tures as being of interest. Together, these data structures hold most
of the game’s state. Within these data structures Daikon observed
all primitive data type fields (int, char, etc.). It did not observe
pointer fields — the data structure repair algorithm automatically
protects against basic pointer corruption by enforcing the constraint
that pointer fields must either be null or point to a valid region of
memory.

Daikon observed runs of Freeciv in a non-interactive execution
mode in which several computer-generated players play against

each other. We presented it with runs with a variety of parame-
ter settings; these settings include values such as the number of
players, the random seeds, the size of the game map, the percent-
age of various types of terrain, the map generation algorithm, and
the time when the game ended. Running the game with a variety
of parameters avoided the overspecialization that could otherwise
result if Daikon only observed runs with fixed parameter values.

A review of the generated specifications revealed that there was
still some overspecialization in the automatic specification genera-
tion process. But all of the overspecialized properties happened to
be filtered out by a component of the repair algorithm generator that
discarded properties that might cause the repair algorithm to loop
forever if enforced. We therefore used the automatically generated
specifications without change.

4.3.2 Comparison with Manual Specifications
In previous work, we manually generated specifications for the

Freeciv program. We found automatically inferring specifications
to require less effort, to be more complete, and to be more likely to
accurately capture the important consistency properties.

The first advantage is that automatically inferring the specifica-
tion took less effort. We developed a test suite containing 11 differ-
ent game configurations; ran Freeciv to generate execution traces
for each of these test suites; and used Daikon to automatically infer
these invariants. We then reviewed the invariants, using the proper-
ties as a foundation from which to build enough of an understand-
ing of the program’s operation to verify that the properties were not
overly specialized to the test suite.

To manually generate specifications, we had to deeply under-
stand how Freeciv manipulated the data structures and then write
the appropriate invariants. In our experience manually generating
the specification required significantly more effort than obtaining
the specification automatically via Daikon. Manually generating a
specification for Freeciv that contained only 6 constraints took a
few days, and these constraints were limited to the constraints that
could be easily inferred from reading the data structure declarations
with a basic high level understanding of the game play. In order to
use Daikon, we spent one day reviewing the automatically generate
specifications and refining the required test case suite. Daikon was
then able to infer many more constraints, and many of these con-
straints would have required us to read a significant amount of code
to manually generate them. Note that the original Freeciv specifica-
tion was written by the developer of the repair system; we imagine
that manually generating specifications would be more difficult for
novice users and, therefore, they would find even greater benefit.

The second advantage is that the inferred specification includes
significantly more invariants than the original manually-generated
specification: the inferred specification consists of 21 constraints
while the original manually-generated specification only contains
6 constraints. The manually-generated specification contained con-
straints that ensure that the map data structure and tile array existed,
that tiles have valid terrain values (i.e., that the terrain value of a tile
is between an upper and lower bound), that cities are referenced by
exactly one tile, and that cities are not placed in the ocean. The au-
tomatically inferred specification specification contained 13 con-
straints on 14 fields in the map data structure, 6 constraints on 5
fields (including the terrain constraints) in the tile data structures,
and 2 constraints on 2 fields in the start positions data structure.
These constraints all ensured that numerical fields had legal val-
ues. Many of these constraints were missing from the manually-
generated specification, because we were simply unaware of them.

The third advantage is that inferred specifications may be more
likely to accurately capture appropriate consistency specifications.

Automatically inferring specifications eliminates the errors that a
developer may make when developing a specification. For ex-
ample, a developer may make a mistake in writing a constraint
and may not adequately test the specification to discover the er-
ror. Moreover, manual review by the developer may serve as an
secondary check to the automatically generated specifications.

However, automatic inference of specifications has limitations.
The inferred specifications are limited to the invariants that Daikon
supports. For example, the inferred Freeciv specification is missing
two such invariants, which are present in the manually-generated
specification: an invariant that states that a city is referenced by
at most one tile and an invariant that ensures that cities are not
placed on tiles with ocean terrain values. Daikon also requires the
application to have a test suite; however, we expect that in most
cases that a developer will have a pre-existing test suite that could
be used. Finally, this technique does not eliminate all manual effort.
The developer may still need to manually review the specifications
to ensure that the invariants are not overspecialized; however, our
experience indicates that it is much less effort to review than to
create specifications.

4.3.3 Overhead of Data Structure Repair
The repair algorithm has two primary sources of overhead: the

overhead of checking the consistency properties, and the overhead
of wrapping the memory allocation calls in the application to deter-
mine which memory addresses are valid. The checking overhead
depends on the amount of data that must be abstracted (converted
from concrete form to the abstract model) and the complexity of the
consistency properties that must be checked on the abstract model.
Checking Freeciv’s map data structure has a rather large overhead:
the algorithm must build a model of the 14 fields and check the 13
consistency properties over these fields for each of the 5,525 tiles.

We benchmarked the repair algorithm on a 3.06 GHz Pentium
4 Linux box. Our repair algorithm takes 10.4 milliseconds to per-
form a single consistency check, and in the execution of Freeciv it
performs 31 such checks. The overall overhead of the consistency
checking and memory allocation instrumentation increased the ex-
ecution time of Freeciv from 1.23 seconds without repair to 1.59
seconds with repair. We expect that actual data structure repairs
will remain an infrequent operation, and therefore will not signifi-
cantly affect the performance of the application. We measured the
time taken to check the consistency properties and perform a repair
to the terrain field Freeciv to be 24.6 milliseconds.

Building the abstract model and recording which memory ad-
dresses are valid imposes a memory overhead. The repair algorithm
and memory instrumentation used a maximum of 1,129 kilobytes
of memory out of a total of 5,692 kilobytes used by the repair-
enabled Freeciv application.

4.3.4 A Fault Injection Experiment
To support our fault injection experiments, we developed a fault

injection API that allowed an attacker to easily corrupt fields of in-
terest. We then used this API to explore the ability of our technique
to enable Freeciv to recover from data structure corruptions. Our
experiments evaluate a wide range of simultaneous corruptions —
we present the repair algorithm with tens to hundreds of simulta-
neous corruptions. In practice, however, we expect to run the data
structure consistency checking and repair algorithm frequently to
detect any corruptions quickly after they appear. In this case we
would expect the repair algorithm to encounter relatively few si-
multaneous corruptions.

To gauge success we counted the number of program crashes
that the repair system was able to avert. We measured this quantity

Simultaneous Crashes out of 100 executions
corruptions Original With repair Crashes averted

10 68 2 66
20 77 9 68
30 85 13 72
40 95 16 79
50 92 12 80

100 95 41 54
150 98 42 56
200 97 62 35
250 97 56 41
300 99 85 14
350 100 80 20
400 98 83 15
450 100 89 11
500 99 82 17

Figure 4: Number of executions that crash, after a given num-
ber of data structure corruptions are simultaneously applied.
The table indicates how often the original program crashed,
and how often the program crashed if augmented with data
structure repair.

by adding the corruption API both to the original program and also
to a version of the program that had been instrumented with repair
code. We then applied the same corruptions to both programs and
counted the number of times that each one crashed.

Figure 4 reports the results. These results show that, for small
numbers of simultaneous corruptions, the repair algorithm is ex-
tremely effective at producing data structures that enable the pro-
gram to continue to execute without crashing. Even when the num-
ber of simultaneous corruptions becomes as high as 50 memory
locations simultaneously corrupted, the version with repair crashes
only 12% of the time. In contrast, the original version crashes 92%
of the time.

In general, the number of crashes in both the original version and
the version with repair increases as the number of corrupted mem-
ory locations increases. Note, however, the fragility of the original
version — it almost always crashes regardless of the number of cor-
rupted memory locations. Our results show that repair can avert a
substantial number of these crashes.

4.3.5 Red Team Activities
We also participated in a Red Team activity in which a team of

engineers attempted to use the corruption API to cause Freeciv to
fail. This activity involved a Blue Team (the authors) and an out-
side three-person Red Team whose responsibility it was to attack
the system provided by the Blue Team. The Red Team was given
complete information about the system they were attacking, includ-
ing the following:

• All tools used by the Blue Team (in source and binary form)
including Daikon and the repair compiler, and the manu-
als/instructions for their use.

• Freeciv source code (the version that we are using).
• The Freeciv test cases used to obtain the data structure con-

sistency specifications.
• The data structure consistency specification. This is the out-

put of Daikon, and is the input to the repair compiler. It indi-
cates exactly what properties the instrumented version of the
program will check and will attempt to re-establish if found
to be false.

• The corruption API. This API lets the Red Team directly
modify the contents of memory, by specifying a variable/field
and a new value for it. The API also permits examining data
structures and logging repair tool actions, permitting under-
standing and confirmation of the system’s behavior.

The Red Team was given the various materials and documents
between 3 months and 1 week in advance. They were on-site at
MIT for three days. Note that by examining the specification and
the tool documentation and source code, and by running the system,
the Red Team could determine which corruptions our system would
detect and what actions it would take.

We used failures of the program as our measure of success. The
Red Team performed many attacks, and an attack was said to suc-
ceed if it crashed the program, and to fail if it did not crash the
program. All parties knew which attacks crashed the original, un-
protected program, so the Red Team focused on those.

The Red Team used the provided corruption API (as well as
other mechanisms, see below) to inject corruptions into the data
structures of the running Freeciv program. The Red Team devised
the corruptions using techniques including intuition, examination
of the specification and the repair tool, and random generation.

Our repair system detected 80% of the data structure corruptions
that were introduced by the Red Team and took successful correc-
tive action (repaired the data structure sufficiently for the program
to continue without crashing) in 75% of those cases. Examples of
corruptions that were successfully repaired included random cor-
ruptions, wholesale replacement of certain data structures, attempts
to violate specific properties that the Red Team had seen in the in-
ferred specification, and setting data structures to null.

The Red Team was unable to induce a non-terminating repair —
that is, a data structure corruption such that in repairing the struc-
ture, the system enters an endless loop of repairs. The Red Team
was also unable to mount an additive attack, in which a sequence of
repairs (in response to a sequence of corruptions) were made that
satisfied the specification but which degraded system behavior to
the point of a later failure.

The Red Team’s main successes in defeating the repair system
(and crashing Freeciv) fell into two main categories. The first in-
volved corruptions that triggered assertion violations in the target
program. In retrospect, it may have been possible to avoid these
kinds of failures by simply disabling assertions. The second in-
volved corruption of all redundant copies of some information. For
example, as illustrated in Figure 4, it is possible to overwhelm the
repair system with an enormous amount of lost information.

Several other crash examples highlight kinds of corruptions that
our system had some difficulty handling successfully. In one case,
the Red Team used the GDB debugger to corrupt arbitrary memory
locations far (in the execution stream) from the point in the execu-
tion that checked and repaired the data structures. The effect was
either a failure before the repair code was encountered (it might be
possible to address this problem by invoking the repair algorithm
when the program fails in an attempt to resuscitate the program) or
the propagation of corruption into so many data structures that suc-
cessful recovery was not possible. In another case, the Red Team
corrupted both of the x and y values for the board map. In this case
the repair algorithm was able to use the size of the allocated map
data structure to detect the corruption, but was unable to come up
with an effective repair — the original x and y values were the only
values that enabled the program to continue successfully, and there
was not enough information remaining in the corrupted data struc-
tures to select the original x and y values from the set of x and y
values that satisfied the board size constraints.

4.4 Discussion
The two target programs exemplify very different ways in which

automatically generated data structure consistency specifications in
combination with data structure repair can affect the execution of
the program.

• In BIND, our techniques ameliorated or even eliminated the
effects of security attacks. Intriguingly, one of these attacks
is arguably not even a data structure corruption attack — it
simply injects an undesirable (but arguably not inconsistent)
value into a data structure. By keeping this value within ob-
served bounds, our technique ameliorates the negative im-
pact of this value and may keep the program’s behavior closer
to its anticipated behavior.

• The Freeciv evaluation illustrates that our technique can help
systems recover from surprisingly extensive damage, in par-
ticular much more extensive damage than is likely to result
from any single data structure corruption error. We were sur-
prised at this result (we anticipated that, even with repair, the
system would be much more brittle than it turned out to be)
and consider it to be an encouraging indication of the effec-
tiveness of our technique.

Our case studies focus on specific data structures — particu-
larly the BIND case study. Ideally, the inference and repair sys-
tem would cover all data structures in a program, and check them
frequently for violations. Our tools do not currently scale to that
challenge, but the results of our case studies are suggestive of how
such a scaled-up system would perform.

The repair algorithm statically generates a repair strategy that is
guaranteed to terminate no matter what data structure exists at run
time. Essentially, it ensures this by considering all possible interac-
tions among the data structure properties and determining whether
there are any possible dependence cycles between repair actions
for the properties. This static guarantee is useful, but it means that
if the specification is very rich (there are many properties or the
properties are very detailed), then the repair actions are likely to
interact in many ways. As a result, the algorithm may state that it
cannot statically guarantee termination (even if termination could
be guaranteed dynamically or always occurred in practice). While
our current repair system deals with this issue, in part, by discard-
ing properties that might lead to an infinite repair loop, it might be
worthwhile to consider alternate approaches that abandon the static
guarantee of termination in return for handling more properties.

There is no guarantee that the inferred specifications accurately
capture appropriate consistency properties; they might be violated
by an anomaly rather than a true corruption. This is a general prob-
lem with program assertions. Changing a legal data structure to
satisfy an incorrect specification could degrade the quality of the
target program. Previous research suggests that dynamic analysis,
even on modest test suites, is surprisingly accurate. Furthermore,
we propose a manual review step, which tends to be much easier
and more effective than writing the specifications from scratch. In-
ferred specifications could be merely checked at first, and the repair
code enabled at a later date, when the specifications inspire more
confidence.

We chose to use the crash metric as our measure of success be-
cause it was an objective, easily measured indication of whether the
program satisfied a basic acceptability property (continued execu-
tion). We acknowledge that the absence of a crash does not nec-
essarily mean that the program is executing completely acceptably.
For example, it is possible for the repair algorithm to produce data

structures that do not allow the program to support all of the func-
tionality its users desire. It is even possible for the current repair
algorithm to destroy meaningful information as part of the repair
process. We saw no evidence of such problems. For example, there
were no later crashes, and the Red Team failed to trigger such a
situation.

In some cases, crashing may be preferable to some kinds of con-
tinued execution. In some contexts external monitoring and in-
tervention is readily available, so it is feasible to respond to data
structure consistency violations by crashing and waiting for some
external entity to repair any damage and bring the system back up.
In other contexts, it may be important for the program to continue
to execute successfully through recurrent inputs that trigger data
structure corruption errors, it may not be economically desirable to
invest in monitoring and recovery systems, it may be unacceptable
for the program to go out of service for a significant period of time,
or there may be little chance of any repaired data structure anoma-
lies persisting for long periods of time or propagating into persis-
tent data structures. As with any technique, data structure repair
should only be applied where it is appropriate. In such situations,
data structure repair may enable the delivery of substantially more
robust systems that continue to execute successfully after their data
structures first corrupted, then repaired. And automatically learn-
ing the data structure consistency constraints may substantially re-
duce the time, effort, and cost required to successfully apply data
structure repair.

5. RELATED WORK
We survey related work in invariant inference, software error de-

tection [6, 10, 22, 5], traditional error recovery, manual data struc-
ture repair, and databases.

5.1 Invariant Inference
Our technique uses dynamic (runtime) analysis to extract seman-

tic properties of the program’s computation. This choice is arbi-
trary; for example, one could alternately perform a static analysis
(such as abstract interpretation [7]) to obtain semantic properties.

We use the Daikon dynamic invariant detector to generate run-
time properties [15]. Its outputs are likely program properties, each
a mathematical description of observed relationships among val-
ues that the program computes. Together, these properties form an
operational abstraction that, like a formal specification, contains
preconditions, postconditions, and object invariants.

Daikon detects properties at specific program points such as pro-
cedure entries and exits; each program point is treated indepen-
dently. The invariant detector is provided with a trace that contains,
for each execution of a program point, the values of all variables in
scope at that point.

The properties are sound over the observed executions but are not
guaranteed to be true in general. In particular, different properties
are true over faulty and non-faulty runs. The Daikon invariant de-
tector uses a generate-and-check algorithm to postulate properties
over program variables and other quantities, to check these proper-
ties against runtime values, and then to report those that are never
falsified. Daikon uses additional static and dynamic analysis to fur-
ther improve the output [16, 20].

5.2 Traditional Error Recovery
Reboot, potentially augmented with checkpointing [36], is a tra-

ditional approach to error recovery. In the reboot approach, the
user simply reboots a crashed or corrupted software system. This
returns the system to a known consistent state, the initial state. One
drawback of this approach is that all of the volatile state in the soft-

ware system is lost. Database systems use a combination of logging
and replay to avoid the state loss normally associated with rolling
back to a previous checkpoint [17]. There has recently been re-
newed interest in applying many of these classical techniques in
new computational environments such as Internet services [31] and
in extending these techniques to reboot a minimal set of compo-
nents rather than the complete system [2].

5.3 Manual Data Structure Repair
The Lucent 5ESS telephone switch [23, 21, 27, 18] and IBM

MVS operating system [30] use inconsistency detection and repair
to recover from software failures. The software in both of these
systems contains a set of manually coded procedures that periodi-
cally inspect their data structures to find and repair inconsistencies.
The reported results indicate an order of magnitude increase in the
reliability of the system [17].

5.4 Constraint Programming
Many researchers have incorporated constraint mechanisms into

programming languages. One such system is Kaleidoscope [28].
Kaleidoscope allows the developer to specify constraints that the
system should maintain. The developer is intended to write pro-
grams using a hybrid of imperative style programming and con-
straints where appropriate. Kaleidoscope does not include any ana-
log of our model-based approach, and as a result it can be very
difficult, if not impossible, to express constraints on recursive data
structures or other heap structures containing multiple elements.
Another example of a constraint maintenance system as a program-
ming abstraction is Alphonse [24]. Rule based programming [29,
9] is a related technique in which the developer defines a test con-
dition and an action to take in response.

5.5 Integrity Maintenance in Databases
Database researchers have developed integrity management sys-

tems that enforce database consistency constraints. These systems
typically operate at the level of the tuples and relations in the data-
base, not the lower-level data structures that the database uses to
implement this abstraction. One approach is to provide a system
that assists the developer in creating a set of production rules that
maintain the integrity of a database [4]. This approach has been
extended to enable the system to automatically generate both the
triggering components and the repair actions [3]. Researchers have
also developed a database repair system that enforces Horn clause
constraints and schema constraints (which can constrain a relation
to be a function) [34]. Our system supports a broader class of con-
straints — logical formulas instead of Horn clauses. It also supports
constraints that relate the value of a field to an expression involving
the size of a set or the size of an image of an object under a relation.
Finally, it uses partition information to improve the precision of the
termination analysis, enabling the verification of termination for a
wider class of constraint systems.

5.6 File Systems
Some journaling or log-structured file systems are always consis-

tent on the disk, eliminating the possibility of file system corruption
caused by a system crash [25, 33]. Data structure repair remains
valuable even for these systems in that it can enable the system to
recover from file system corruption caused by other sources such
as software errors or disk hardware damage.

6. CONCLUSION
Automatically generating data structure consistency specifica-

tions can reduce or even eliminate the manual specification devel-

opment overhead previously associated with the use of data struc-
ture repair. It can also produce a specification with more compre-
hensive coverage of important data structure consistency properties
and eliminate manual specification development errors.

The key results in this paper are that (1) we were able to auto-
matically obtain data structure consistency specifications, (2) the
process of reviewing these specifications was straightforward and
required little time, (3) the quality of the automatically generated
specifications was comparable to our manually-generated specifi-
cations, and (4) the automatically generated specifications effec-
tively repaired data structure inconsistencies in our benchmarks.

In our experiments, our tools were able to ameliorate the ef-
fects of two real denial-of-service attacks on the BIND DNS server,
which is a widely deployed piece of critical Internet infrastructure.
This successful result validates the technique and the tools and il-
lustrates the potential of combining automatic specification genera-
tion with data structure repair. Our technique also enabled Freeciv
to recover from corruptions that affected many different memory
locations simultaneously in both randomly generated corruptions
and for corruptions produced in the adversarial context of a Red
Team evaluation.

These results indicate that data structure repair can be an effec-
tive technique for enabling programs to recover from data struc-
ture corruption errors and that automatically obtaining the neces-
sary data structure consistency specifications by observing program
executions can be an effective way to reduce the development ef-
fort and potential specification issues such as omitting constraints
otherwise associated with the use of data structure repair.

Acknowledgments
This research was funded by DARPA contract FA8750-04-2-0254.
We thank Lee Badger for his suggestions and encouragement.

7. REFERENCES
[1] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated

testing based on Java predicates. In Proceedings of the 2002
ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2002.

[2] G. Candea and A. Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. In HotOS-VIII, pages
110–115, May 2001.

[3] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic
generation of production rules for integrity maintenance.
ACM Transactions on Database Systems, 19(3), September
1994.

[4] S. Ceri and J. Widom. Deriving production rules for
constraint maintenance. In Very Large Data Bases, pages
566–577, 1990.

[5] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. In Proceedings of
the SIGPLAN ’02 Conference on Programming Languages
Design and Implementation, 2002.

[6] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. In Proceedings of the 22nd
International Conference on Software Engineering, 2000.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proceedings of the Fourth
Annual ACM Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, CA, 1977.

[8] Center-TRACON automation system.
http://www.ctas.arc.nasa.gov/.

[9] D. Litman and A. Mishra and P. Patel-Schneider. Modeling
dynamic collections of interdependent objects using
path-based rules. In Proceedings of the 12th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, October 1997.

[10] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. In Proceedings of
the SIGPLAN ’02 Conference on Programming Languages
Design and Implementation, 2002.

[11] B. Demsky, C. Cadar, D. Roy, and M. Rinard. Efficient
specification-assisted error localization. In Proceedings of
the Second International Workshop on Dynamic Analysis,
May 2004.

[12] B. Demsky and M. Rinard. Automatic detection and repair of
errors in data structures. In Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications, October 2003.

[13] B. Demsky and M. Rinard. Data structure repair using
goal-directed reasoning. In Proceedings of the 27th
International Conference on Software Engineering, 2005.

[14] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic
tool for statically detecting all buffer overflows in C. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 2003.

[15] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software
Engineering, 27(2):99–123, Feb. 2001. A previous version
appeared in ICSE ’99, Proceedings of the 21st International
Conference on Software Engineering, pages 213–224, Los
Angeles, CA, USA, May 19–21, 1999.

[16] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In ICSE 2000,
Proceedings of the 22nd International Conference on
Software Engineering, pages 449–458, Limerick, Ireland,
June 7–9, 2000.

[17] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[18] T. Griffin, H. Trickey, and C. Tuckey. Generating update
constraints from PRL5.0 specifications. Preliminary report
presented at AT&T Database Day, Sept. 1992.

[19] P. J. Guo. Fjalar: A dynamic analysis framework for C and
C++ programs.
http://pag.csail.mit.edu/fjalar/.

[20] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst.
Dynamic inference of abstract types. In ISSTA 2006,
Proceedings of the 2006 International Symposium on
Software Testing and Analysis, Portland, ME, USA,
July 18–20, 2006.

[21] N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss.
Auditdraw: Generating audits the FAST way. In Proceedings
of the 19th International Conference on Software
Engineering, 1997.

[22] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proceedings of the SIGPLAN ’02 Conference on
Programming Languages Design and Implementation, 2002.

[23] G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM)
switching system: Maintenance capabilities. AT&T Technical
Journal, 64(6 part 2):1385–1416, July-August 1985.

[24] R. Hoover. Incremental computation as a programming
abstraction. In Proceedings of the SIGPLAN ’92 Conference
on Programming Languages Design and Implementation,
1992.

[25] M. K. Johnson. Whitepaper: Red Hat’s new journaling file
system: ext3. http://www.redhat.com/
support/wpapers/redhat/ext3/index.html,
2001.

[26] V. Kuncak, H. H. Nguyen, and M. Rinard. An algorithm for
deciding BAPA: Boolean Algebra with Presburger
Arithmetic. In 20th International Conference on Automated
Deduction, CADE-20, Tallinn, Estonia, July 2005.

[27] D. A. Ladd and J. C. Ramming. Two application languages
in software production. In Proceedings of the 1994 USENIX
Symposium on Very High Level Language, October 1994.

[28] G. Lopez. The Design and Implementation of Kaleidoscope,
A Constraint Imperative Programming Language. PhD
thesis, University of Washington, April 1997.

[29] A. Mishra, J. Ros, A. Singhal, G. Weiss, D. Litman,
P. Patel-Schneider, D. Dvorak, and J. Crawford. R++: Using
rules in object-oriented designs. In Proceedings of the 11th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, July 1996.

[30] S. Mourad and D. Andrews. On the reliability of the IBM
MVS/XA operating system. Transactions on Software
Engineering, September 1987.

[31] D. A. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,
J. Traupman, and N. Treuhaft. Recovery-oriented computing
(ROC): Motivation, definition, techniques, and case studies.
Technical Report UCB//CSD-02-1175, UC Berkeley
Computer Science, March 15, 2002.

[32] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee. Enhancing server availability and
security through failure-oblivious computing. In Proceedings
of the 6th Symposium on Operating Systems Design and
Implementation, 2004.

[33] M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. In
Symposium on Operating Systems Principles, Oct. 1991.

[34] S. D. Urban and L. M. Delcambre. Constraint analysis: A
design process for specifying operations on objects. IEEE
Transactions on Knowledge and Data Engineering, 2(4),
December 1990.

[35] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In Proceedings of the Year 2000 Network and
Distributed System Security Symposium, 2000.

[36] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and
C. Kintala. Checkpointing and its applications. In
Proceedings of the 25th Fault-Tolerant Computing
Symposium, 2005.

[37] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard.
Field constraint analysis. In Proc. Int. Conf. Verification,
Model Checking, and Abstract Interpratation, 2006.

