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Abstract—Self-stabilizing programs are guaranteed to recover
from state corruption caused by software bugs or other events and
eventually reach the correct state. Many real-world applications
including embedded controllers and multimedia applications can
be designed to make key components self-stabilizing.

Type systems and static analyses can automatically check
whether a program is self stabilizing. The existing approach
for checking self-stabilization requires developers to manually
annotate code. We present an annotation inference algorithm
that automatically derives an initial set of annotations and
therefore lowers the effort to build self-stabilizing systems. Our
experience with the algorithm indicates that it effectively inferred
annotations for our benchmarks.

I. Introduction
Self-stabilizing programs are guaranteed to recover from

state corruption to reach the correct state after a bounded
number of steps [3]. Statically checking self-stabilization pro-
vides a new approach for improving the reliability of certain
classes of software systems. In general, software bugs or other
events can corrupt a program’s state. After the program’s
state is corrupted, key invariants may have been violated and
the program can behave arbitrarily. Despite extensive testing
of software in industry, unusual and not so unusual inputs
commonly trigger bugs in the field.

Prior work presented a combination of a type system and
static analyses that together could check if a program self-
stabilizes with respect to rarely triggered software bugs and
certain classes of transient hardware errors [8].

Designing programs to be self-stabilizing is intended to
complement and not replace existing approaches to software
reliability. For example, we expect that software developers
would still perform the same testing procedures on programs.
Self-stabilization then gives developers more mileage out of
the same testing process — even if the testing process misses a
bug, the effects of that bug are guaranteed to be limited in time.
Of course, if the system receives further fault-revealing inputs,
the user will have to wait for it to self-stabilize again. Even
statically verified programs can benefit from self-stabilization,
transient faults could potentially introduce erroneous values
into an execution of a verified program.

A. Overview of Previous Work
SJava [8] is a system for checking self-stabilization. The

key components of SJava are as follows:
i) Arrange State into a Lattice: The approach uses annota-

tions to define a location lattice. The location lattice con-
tains edges that constrain how information flows between
memory locations in the program. The location lattice
is acyclic, prohibiting cyclic information flows. In SJava,
every memory location (fields, arrays and variables) has a
location type in additional to its Java type. The programmer
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Fig. 1. Self-Stabilizing Execution Trace

uses location type annotations to map memory locations to
lattice locations.

ii) Constrain Information to only Flow Down this Lattice:
A type checker then checks that assignments only flow
information down this lattice(hereafter referred to as the
flow-down rule). The approach enforces the flow constraint
on both the explicit flows caused by assignments and the
implicit flows caused by conditional branches.

iii) Eviction: A separate static analysis then ensures that the
program evicts values from a given location within a
bounded time.

Figure 1 graphically illustrates how these properties ensure
self-stabilization. The red ×’s in the figure indicate corrupted
values and the green X’s indicate correct values. The top
trace shows the effect of a bug on a program execution while
the bottom trace shows the corresponding desired bug-free
execution. The effect of the bug is on the program’s state is
illustrated by the red ×’s in the figure. The bug then continues
to affect the execution for a period of time as indicated by the
divergence of the execution traces at the bug transition.

The self-stabilization checks ensure that after a period of
time, the highest levels of the lattice must have correct values
because they must be overwritten and can only depend on new
input data. An inductive argument can then be made that if all
levels above a given level have correct values, then after a
bounded time period the given level must also have a correct
value. The combination of the base case and the inductive case
plus a location lattice of finite height ensures self-stabilization.
This inductive argument can be seen graphically in Figure 1 as
the red ×’s appear in lower portions of the location lattice until
they finally disappear. Ultimately, this induction guarantees
that the buggy execution converges with the correct execution.

B. Scope
Many programs maintain long term persistent state and are

not inherently self-stabilizing. However, there are important
domains that are likely to be self-stabilizing. These domains
include embedded systems, multimedia codecs, and safety
critical systems. Embedded systems often operate in environ-
ments that do not allow for frequent human intervention. Self-



stabilization can ensure that bugs never cause embedded con-
trollers to transition into states in which they cannot function.
Most multimedia codecs are at the design-level self-stabilizing
as they must handle channel errors such as dropped frames
caused by network failures or media damage. Self-stabilizing
implementations of these codecs might fail to process short
periods of a stream, but such failures will be transient and not
affect the remainder of the stream.

C. Inferring Annotations
The previous work on checking self-stabilization required

developers to manually annotate the program’s code. While
the number of annotations is not prohibitive, it does present
a barrier to adoption. Moreover, annotating legacy systems
requires first understanding how information flows through
the program. Understanding legacy systems can be quite time
consuming and present a significant barrier to adoption.

In this paper we present an approach for automatically
generating annotations. Our approach is static — it infers an-
notations by analyzing the code. While the target of this paper
is inferring information flow annotations for checking self-
stabilization, the same type of information flow annotations
can be used to check security properties.

Existing information flow inference systems [23], [24],
[12], [11], [10] are not suitable for inferring SJava anno-
tations. First, they only infer static types for objects while
SJava allows an object to be created with one label and then
transitioned to a different label. Second, because checking self-
stabilization requires fine-grained types, many of the existing
techniques would generate very complex annotations. Complex
type annotations then complicate modification of the codebase
as the developer is unsure of how to maintain the self-
stabilization property of the code. Our goal is therefore to
generate simple, human-understandable lattices. To avoid infer-
ring overly complex annotations, we developed techniques that
maintain precision where necessary while reducing the overall
complexity of the lattices. Lastly, many existing techniques are
insufficient for checking self-stabilization because they either
track only explicit information flows [12], [11] or extract only
the high-level security summaries [24], [10].

D. Contributions
This paper makes the following contributions:

• New Approach to Building Robust Software: This pa-
per extends a new approach to building reliable software
systems. It eliminates a key manual step in the process by
automatically inferring the annotations for checking self-
stabilization.

• Annotation Inference Algorithm: This paper presents an
algorithm that can automatically infer a set of information
flow annotations that are sufficient to check if a program
self-stabilizes. Inferring information flow annotations is also
potentially useful for checking security properties.

• An Approach to Simplifying Annotations: This paper
presents a technique that simplifies the lattices. It improves
the understandability of the lattices and may make our
technique useful for other domains such as program under-
standing and debugging.

• Implementation and Experience: We have implemented
our annotation inference algorithm and reported our experi-
ence with three benchmark applications.

II. Background on SJava
This section reviews the key ideas behind checking self-

stabilization [8]. The two key ideas are: (1) to use a type system
to arrange the program’s state into a lattice of locations and
then check that information only flows down this lattice and (2)
bound how long information can remain at any given location
in the lattice before it is evicted. The approach is targeted
at programs that are structured with a main event processing
loop. This is not a significant limitation as this is a common
architecture for programs in the target domains. The developer
annotates the event loop using the SJAVA loop label.

We use a weather index calculation example to illustrate
the approach. Figure 2 presents the code for the example. The
example program is structured as an event loop that reads
the current temperature and humidity, computes an average
temperature with the previous temperature, and then computes
a weather index that combines temperature and humidity to
determine the human-perceived temperature.

A. Location Types
The SJava location type system performs three functions.

First, it provides a static location lattice that will be used to
statically partition the program’s state. Second, a set of type
declaration annotations map the program’s state onto locations
in the location lattice. Together these components arrange the
program’s state and encode how information is allowed to flow
between memory locations. Finally, the type rules check that
all information flows in the program respect the location lattice.
We next describe each of these components in more detail.

1) Location Lattice Definition: The location lattice defines
the set of location types and orders them. SJava has two
types of location lattices: method lattices and field lattices.
Method lattices define a method local ordering of the methods’
parameters and local variables.

Method lattices are declared with the annotation
@LATTICE1 that appears immediately before the corresponding
method declaration. This annotation uses the lower than (<)
operator to order two location types. Location types are
implicitly declared by using them in an expression with the
lower than operator in the lattice declaration. Line 11 of
Figure 2 presents the method lattice for the calculateIndex
method. The @LATTICE annotation declares two method
location types, IN and WEA, and orders the type IN higher
than the type WEA. This declaration means that information
can only flow from locations with the type IN to locations
with the type WEA. Each method has its own method lattice.
This provides the necessary compositionality for libraries and
other software components to be developed and annotated
independently from the code that uses them. Compatibility
of the method lattices between a caller and callee is then
checked at the call sites.

Simply using the method lattice would result in all fields
of a given object having the location of the object’s reference.
This would prevent any flow of information between different
fields of the same object. To eliminate this limitation, SJava
includes field lattices that order different fields of the same

1SJava does not add any new syntax to Java. Instead, SJava uses the existing
Java annotation framework and loop labels for its annotations. As a result,
SJava programs are legal Java programs.



1 @LATTICE("ATEMP<PTEMP,L1<ATEMP,L1<CHUM,L2<L1,
2 L3<L2,IDX<L3")
3 public class Weather {
4 @LOC("PTEMP") public float prevTemp;
5 @LOC("ATEMP") public float avgTemp;
6 @LOC("CHUM") public float curHum;
7 @LOC("IDX") public float index;
8 // define constants c1 to c9
9 public static final float c1=-0.22475541;

10 ...
11 @LATTICE("WEA<IN")
12 @THISLOC("WEA")
13 public void calculateIndex(){
14 SSJAVA:
15 while(true) { // main event loop
16 @LOC("IN") float inTemp = Device.readTemp();
17 curHum = Device.readHumidity();
18 // calculate the average temperature
19 avgTemp = (prevTemp+inTemp)/2;
20 prevTemp = inTemp;
21 @LOC("WEA,L2") float f1=c1*avgTemp*curHum;
22 @LOC("WEA,L2") float f2=c2*avgTemp*avgTemp;
23 @LOC("WEA,L2") float f3=c3*curHum*curHum;
24 @LOC("WEA,L3") float f4=c4*f2*curHum;
25 @LOC("WEA,L3") float f5=c5*f3*avgTemp;
26 @LOC("WEA,L3") float f6=c6*f1*f2;;
27 index = c7+c8*avgTemp+c9*curHum+
28 f1+f2+f3+f4+f5+f6;
29 }}}

Fig. 2. Manually Annotated Weather Index Example

object. The field location lattice is declared using the same
syntax as a method lattice, but the field lattice declaration
appears immediately before a class declaration. Line 1 of
Figure 2 declares the field lattice for the Weather class.

2) Type Declarations: SJava requires variable, parameter,
and field declarations to have location types. The annotation
@LOC is used to declare the location type of a parameter,
field, or variable. The annotation @LOC("IN") in Line 16 of
Figure 2 declares that the variable inTemp has the location
type IN. The location type of a parameter is declared using
the same syntax immediately before the type declaration of the
parameter. The location type of the implicit this parameter
is declared using the @THISLOC annotation. For example, the
annotation @THISLOC("WEA") in Line 12 declares that the
this variable has the location type WEA. The location types
of fields are declared using the same syntax as variables. The
annotation @LOC("PTEMP") in Line 4 of Figure 2 declares that
the field prevTemp has the location type PTEMP.

3) Composite Locations: Method and field lattices are
combined into a composite lattice with the ordering of the
composite lattice determined by lexical ordering of the com-
ponent lattices. Each type in a composite lattice begins with an
element from the current method’s location lattice followed by
elements from field location lattices. For example, the location
of a field with the field location type IDX in an object with
the location type WEA is the composite location 〈WEA, IDX〉 .

4) Checking Flows: Once the lattices are defined and the
locations are declared, the flow-down check is implemented
in the type checker. The SJava type checker checks that the
right hand side of all assignments has a higher location than
the left hand side. For array access expressions on the right
hand side, the location is the greatest lower bound (GLB) of
the array’s location and the index expression. For arithmetic
operations, the location is the GLB of the two operands. For
array assignments, the location of the array must be lower than

both the index and the right hand side. SJava handles implicit
flows using a special program counter location. This location
tracks implicit flows which result from conditional branches.

Each method has its own location lattice. The type checker
must check at method calls that the parameters’ location types
are compatible with the arguments’ location types.

B. Shared Locations
The flow-down rule is too restrictive for expressing many

computations. Consider the following code excerpt:
1 for(int i=0;i<100;i++) ;

It is impossible to assign a location type to the variable
i that will pass the flow-down rule check. SJava therefore
includes shared locations to relax the flow-down constraint.
Programs are allowed to have arbitrary flows between fields
and variables with the same shared location. The only restric-
tion is that there must exist a point in the execution of the event
loop in which all locations with the same shared location have
been overwritten with values from higher locations. Shared
location types are denoted with a trailing * and only locations
that store primitive values may have a shared location type.

C. Value Eviction and Other Checks
The flow-down rule by itself does not ensure self-

stabilization. This rule may allow corrupt values to remain
in a location indefinitely. To address this issue, SJava uses
an eviction check, which ensures that locations are either (1)
loop invariant, (2) overwritten in every loop iteration, or (3)
overwritten before they are read. Satisfying any of these three
properties ensures that the program cannot read stale, corrupt
values. SJava uses static analysis to check these properties.
This analysis does not require annotations and therefore is
outside the scope of this paper.

Unrestricted aliasing could be used to circumvent the
type system. SJava uses linear types[25] to ensure that a
given object cannot be aliased by two different references
with different heap locations. The linear type system analysis
only requires a few delegate annotations and we expect that
developers can easily write these without needing an inference
tool. Currently, SJava prohibits recursive calls and recursive
data structures2.

III. Overview
SInfer automatically infer annotations for checking self-

stabilization. We discuss both correctness properties and sim-
plification goals for the inferred annotations.

A. Correctness Properties
We begin by stating the three correctness properties for

SJava annotations:
i) Lattice Structure: The structure of the location types

forms a lattice.
ii) Completeness: Every variable, field, method parameter,

method return value, or method program counter must be
assigned some type, whether implicitly or explicitly.

iii) Flow Constraints: All information flows are captured by
the ordering relation constraints defined by lattices.

2Although the analysis design of the SJava supports recursive calls, the
restriction is necessary because the termination analysis in SJava cannot
currently check the termination of recursive calls.



B. Simplification Goals
Our initial implementation attempted to maintain maxi-

mally precise flow information that satisfied the correctness
properties, but we found that the resulting lattices were ex-
tremely complex. This made the annotations incomprehensible
to developers, and maintaining them during code revisions
would not be feasible.

To reduce the complexity, we generally favor a lattice
that defines the minimum number of location types necessary
to maintain the correctness properties. However, this can
unnecessarily constrain the external interfaces of classes and
methods (e.g., parameters, return values, program counters and
fields). The problem is that if the class or method were used
in a different environment, developers may need to assign
new location types. Therefore, for interface members, the
location types should most accurately model the value flows
in the original program. Thus, SInfer has the following two
simplification goals:

i) Precise Interfaces: The location types for interface mem-
bers must precisely model the value flows in the program.

ii) Simplicity: For all other locations, the lattice should be as
simple as possible.

A key advantage of a simpler location type structure is
that the developer can use the generated annotations to gain
a basic intuition about how information flows through the
program. With a simple structure, developers can easily figure
out what location type constraints the code must satisfy to self-
stabilize. Simplifying lattices is therefore useful for guiding the
developer in modify the code in a way that maintains the self-
stabilization property. In addition, if the developer chooses to
customize the generated annotations, the simpler lattices will
be easier to understand and modify.

IV. Annotation Inference Algorithm
In the previous section, we described three annotation

correctness properties. To satisfy these properties, our basic
approach attempts to maintain the most precise flow informa-
tion. We first generate a set of constraints in the form of a
directed graph where nodes are memory locations and edges
represent explicit and implicit information flows. Similar to
the constraint-based type inference [17], the graph captures
constraints whose solution are the type annotations. Then, we
perform inference and find mappings from locations to location
types in the lattices that satisfy the set of constraints.

A. Value Flow Graph
The annotation inference algorithm begins by generating

a value flow graph from the program source code. A node
n ∈ N in a value flow graph represents initial approximation
of a location type assignment and is represented by a tuple
t = 〈v, f1, ..., fn〉 ∈ T in which the first element of the tuple
is a member of the method’s variable lattice v ∈ V and the
subsequent elements are members of field lattices f ∈ F. An
edge e ∈ E f represents value flows.

Definition 1. (Value Flow Graph) A method’s value flow graph
is a directed graph G = (N, E f ), where a node corresponds to
a location and an edge (n1 → n2) ∈ E f corresponds to an
explicit or implicit information flow from n1 to n2.
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Fig. 3. Value Flow Graph for the Example

The value flow graph represents the following flow con-
straints that SInfer uses for type inference.

Flow Constraint: If there exists an explicit or implicit infor-
mation flow from location n1 to location n2, then there must
exist an edge (n1 → n2) that indicates the location type of n1
must be higher than the location type of n2.

We present the basic algorithm for generating the value
flow graph below:

i) The algorithm first computes a mapping R ⊆ V × T from
variables to sets of location tuples. For each variable, the
algorithm maps the variable to a location tuple that contains
just the variable. For each field access, the algorithm maps
the field access to a location tuple that consists of the
reference variable followed by a sequence of fields.

ii) The algorithm also models implicit flows by using a stack
S of sets of tuples. At each conditional branch, it pushes
a set of conditional tuples onto the stack S and at each
merge it pops the top set of tuples off the stack.

iii) The algorithm next adds edges for every flow to a variable
or an object field. For example, it generates an edge
R(y) → R(x) for the assignment x = y. The algorithm
also adds edges from the top set of tuples of the stack S
to location tuples being assigned.

To illustrate the inference algorithm, we will use the exam-
ple from Figure 2 with annotations removed. Figure 3 presents
the value flow graph for the example. The nodes in the graph
represent locations and the edges represent flows. For example,
the edge from the node labeled <inTemp> to the node labeled
<this,prevTemp> indicates that information may flow from
the variable inTemp to a field with the prevTemp location of
an object with the this location. We group nodes with the
same composite location prefix together in a rectangle.

When an expression has more than one operand, our
inference tool generates an extra node in the value flow graph,
called an intermediate node as expressed by ILOC in Figure 3,
which has incoming edges from the operand nodes and an
outgoing edge to the original destination of the expression. It
allows the SJava type checker to derive the GLB of the location
types of the expression’s operands.
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Fig. 4. Superfluous Cycle

B. Avoiding Unnecessary Cycles
As our algorithm proceeds, it decomposes the value flow

graph into field and method hierarchies. In some cases, this
decomposition can merge two different nodes in the value flow
graph into the same node in a field or method hierarchy. If
one of these nodes is reachable from the other, this merging
has the potential to create a superfluous cycle in the lattice.
These cycles can occur when either local variables, parameters,
or objects are given imprecise method lattice types. We next
discuss how our approach assigns more precise composite
location types to each.

1) Local Variables: Within a single method, it is possible
to introduce a superfluous cycle by assigning a method location
type to each local variable (the default assignment strategy).
Consider the following code excerpt:

1 public void calculateIndex(){
2 float f3 = c3 * this.curHum * this.curHum;
3 ...
4 this.index = f3 + ...;
5 }

The method calculateIndex takes a value from the field
curHum, computes it, then stores the result back to the field
index. If we assign the composite location 〈F3〉 to the local
variable f3, it will introduce a cycle in the method lattice as
illustrated on the left side of Figure 4. The problem is that the
assignment in Line 2 implies that the method location 〈F3〉 is
lower than the method location 〈THIS〉. By the same logic, the
assignment in Line 4 would then create a cycle in the method
location lattice. However, if we assign the variable f3 to a
composite location that begins with the method location THIS,
e.g. 〈THIS, FRESH LOCATION〉, we can avoid introducing any
cycles as illustrated on the right side of Figure 4.

2) Parameters: Interprocedural value flows can also intro-
duce a superfluous cycle in the location types corresponding
to value flows across method calls. For example, consider the
following code excerpt:

1 class foo {
2 int f,g;
3 void caller() {
4 int h = this.f;
5 callee(h);
6 }
7 void callee(int i) {
8 this.g = i;
9 }}

The method caller takes a value from the field f in
Line 4 and passes it as the argument to the method callee in
Line 5, and then the method callee stores the value of the
corresponding parameter i back to another field g of the same
object in Line 8. Suppose that the location types of the current
object this are 〈THIS〉 for both methods. The assignment in
Line 4 implies that the location of the variable h is lower
than the location 〈THIS, F〉. However, if we assign the method
location 〈LOCH〉, which is lower than the location 〈THIS〉 in

the method lattice, to the variable h without considering a field
location type, there is a cycle—the value of the location 〈LOCH〉
eventually flows into the location of another field of the same
object 〈THIS, G〉 in Line 8 through the method invocation.

To address this problem, our analysis summarizes the
callee’s value flows that involve objects reachable from the
caller’s arguments and transfer them to the caller so that
we can remove the cycle in a later stage. When a callee
has a value flow with an object that is reachable from a
parameter, the analysis adds the corresponding value flows to
the value flow graph of the caller in terms of the arguments.
Our interprocedural analysis is structured as a fixed point
computation. Whenever a method flow graph changes, all
methods that call that method are scheduled for reanalysis.

3) Objects: It is possible to inadvertently create a cycle
in the graph where a single flow traverses a set of composite
locations that do not all have the same prefix (e.g., 〈X, Y〉 in
〈X, Y, Z〉). Consider a location x in the value flow graph that
(1) is reachable from a composite location y and (2) can reach
a composite location z, where y and z share a common prefix
that is not shared by x. The analysis constructs a new location
that has the same prefix as y and z, followed by a fresh field
location, and then assigns the new location to x.

To avoid a superfluous cycle, the process described here
identifies one prefix that becomes the common prefix for all
composite locations involved in the cycle. For example, in
Figure 4, the algorithm identifies the common prefix THIS
in the cycle, and then removes the cycle by assigning a new
composite location with the prefix THIS to the location F3.
However, it is possible for two objects to have two different
cycles that each require assigning the other object to have the
same prefix as a member of the first object. This kind of cycle
is not representable by the SJava type system. A graph may
have a cycle with more than one common prefix. For such
cycles, there is a choice of which object to select to become
the common prefix. Since we have not seen this case appear in
practice, the SInfer implementation simply selects at random
a class to become the common prefix and prints a message
for the developer. If such cases do appear, the implementation
could be modified to try different common prefixes.

4) Propagating Type Adjustments: The resolution of cycles
globally updates locations. So the prefix adjustments must be
propagated throughout the value flow graphs. This process
begins in the main event loop and proceeds downwards to
each leaf method in the call graph. The composite location of
a method call argument is propagated from the caller to the
callee by translating the first element of the argument’s com-
posite location into the callee context. For example, suppose
there is a function call in which: (1) the argument has the
composite location 〈OBJ, A, B〉, (2) the object whose method is
invoked has the location 〈OBJ〉 in the caller, and (3) the callee
defines the location of the current object this as 〈THIS〉. In
this case, the prefix 〈OBJ〉 in the caller is translated into the new
prefix 〈THIS〉 in the callee, resulting in a composite location
〈THIS, A, B〉 for the method parameter within the callee.

C. Inferring Program Counter Locations
The program counter may be annotated with a location

type, and if no annotation is provided, then it defaults to the
top location. But this default assignment may be higher than



the program counter location at a method call. In this case the
type checker will produce a type error at the call site.

Computing the lowest valid PC location provides the most
flexibility as the method can be used whenever the caller’s
program counter location is higher than the callee’s declared
program counter location. Our tool first computes the set of
parameter nodes Pin that have incoming flows in the flow
graph. It then generates a program counter node PC satisfying
the following constraint in the value flow graph.

Program Counter Constraint: For each parameter node p ∈
Pin, there must exist an edge (PC→ p) that indicates that the
location type of the node PC must be higher than the location
type of the parameter p.

When one of the parameter locations p ∈ Pin is higher
than all the others and it has a field location type, the node
PC is assigned a new composite location with a field location
type that is higher than the highest parameter node. If all the
parameters have incoming flows, the tool elides the program
counter annotation and simply relies on the default annotation.

D. Return Values
Annotating the return type of a method is necessary for

completeness. When a program is type-checked, SJava com-
putes the caller location for the return value that is consistent
with the location types of the parameters and the return value.
Therefore, computing the highest location for return values
provides more flexibility to the caller context.

Our tool first computes the set of return value nodes r ∈ R
such that there is a path (p{ r) in the value flow graph from
a parameter node p to a return value node r. Then, it generates
a return location node RLOC satisfying the following constraint
for return values.

Return Location Constraint: For each return value node r ∈ R,
there must exist an edge (r → RLOC) that indicates that the
location type of node RLOC must be lower than the location
type of the return value node r.

When one of return value nodes in the set R is lower than
all of the others and it contains a field location type, the node
RLOC is assigned a new composite location with a field location
type relative to the lowest return value node, which provides
more flexibility at call sites.

E. Hierarchy Graph
The goal of this phase in the algorithm is to transform the

value flow graph into the method and field hierarchy graphs,
each of which later is converted to a lattice suitable for pro-
ducing annotations. In the value flow graph, information flows
are not modeled in a modular manner — edges correspond
to flows in both field and method lattices. Therefore, SInfer
decomposes the value flow graph into hierarchy graphs to
capture information flows at the level of individual classes and
methods, which makes the entire system composable.

We first classify edges in the value flow graph into two
types of flows:
• Method flows: An edge represents a method flow if the first

elements of two nodes are not identical. For example, the
edge from n1 = 〈v1, fm, ..., fn〉 to n2 = 〈v2, fp, ..., fq〉 in the

value flow graph represents a method flow from v1 to v2 in
the corresponding method.

• Field flows: An edge represents a field flow if the prefixes
of two nodes are identical and the subsequent fields are not
identical. For example, the edge from n1 = 〈v1, ..., fm, fn〉

to n2 = 〈v1, ..., fm, fo〉 in the value flow graph represents a
field flow from fn to fo in the corresponding class.

The inference algorithm next decomposes value flow
graphs into two types of hierarchy graphs: a method hierarchy
graph and a field hierarchy graph. For each method flow in
the value flow graph, a corresponding edge is generated in the
method hierarchy graph. For each field flow in the value flow
graph, a corresponding edge is generated in the field hierarchy
graph of the class containing the fields.

Definition 2. (Hierarchy Graph) A hierarchy graph is a
directed graph G = (H, Eh), where a node corresponds to
either a field in the field hierarchy or a local variable in the
method hierarchy, and an edge (h1 → h2) ∈ Eh denotes that
there is either a field flow in the field hierarchy or a method
flow in the method hierarchy from h1 to h2.

We present the basic algorithm for translating the value
flow graph into method and field hierarchy graphs below:
i) The algorithm first compares the source composite location
srcloc and destination composite location dstloc and
computes the index idx of the first difference in the two
composite locations. We will refer to the corresponding
hierarchy as diffhierarchy.

ii) The algorithm next checks whether adding an edge
from srcloc[idx] to dstloc[idx] in the hierarchy
diffhierarchy will create a cycle.

iii) If the addition would introduce a cycle, the algorithm
merges all nodes in the cycle into a single shared location.

iv) Otherwise, the algorithm adds an edge from srcloc[idx]
to dstlock[idx] in the hierarchy diffhierarchy.

The algorithm translates the edges in the value flow graph
into the equivalent flow edges in either a method or field
hierarchy. Step one of the algorithm identifies the first element
of the two composite locations that differ. Since the SJava
type checker will evaluate the composite locations in lexical
order, the algorithm must generate location flows that adhere to
lexical ordering. Adding a flow in the corresponding hierarchy
guarantees that the resulting location flows will type check. It
is possible that adding the edge could introduce a cycle into a
method or field hierarchy graph. If this occurs, the algorithm
eliminates the cycle by merging all of the locations into a
shared location. Figure 5 shows the method hierarchy graph
for the calculateIndex() method and Figure 6 shows the
field hierarchy graph for the Weather class.

F. Converting the Hierarchy Graphs into Lattices
At this point, the hierarchy graphs capture flows between

all locations in the program. While the hierarchy graphs are
partial orders, they may not be lattices as the GLB and LUB are
not necessarily well defined. We may need to insert extra nodes
into the partial order to make the GLB and LUB well defined.
The problem of finding the smallest complete lattice that
contains a partial order is known as the Dedekind-MacNeille
completion. We use the algorithm developed by Nourine and
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Raynaud [16] to compute the Dedekind-MacNeille completion
of the hierarchy graphs to generate lattices. Figure 7 shows the
inferred field lattice of the Weather class.

G. Non-self-stabilizing Programs
A program can fail to self-stabilize if either (1) bad

values remain at a location indefinitely or (2) bad values
cycle indefinitely in a cyclic value flow. When values are
not evicted from a location, SInfer may infer location types
that type check, but SJava’s static eviction analysis will reject
the program. In the case of a cyclic value flow, SInfer will
attempt to use a shared location to eliminate the cycle. If the
cycle contains either object references or fields of different
objects, SInfer will abort because it cannot be represented in
the SJava type system. In this case, SInfer provides value flow
graphs to help developers fix the problems. For cycles that
can be represented using shared types, SInfer may potentially
infer type annotations that type check. However, the stronger
static eviction criteria required for shared locations will cause
SJava’s static eviction analysis to reject the program.

H. Discussion
Our initial approach captured flow constraints using value

flow graphs and hierarchy graphs, then produced lattices which
are precisely compatible with the flow of values in the pro-
gram. To maintain maximum precision, our algorithm created
a unique mapping of each location type onto each node in
the lattice. However, in practice, a program often defines a
large number of variables and information paths. Therefore,
maintaining maximally precise flow information may lead
to a very complicated lattice that is incomprehensible and
infeasible for developers to maintain. For example, although
the lattice in Figure 7 does not look very complicated, it is
a representation of value flows produced by the relatively
small program. After applying our initial implementation to

the benchmarks, we found that the resulting lattices were too
complicated for practical use. For example, the lattice for
the SynthesisFilter class of the MP3 Decoder benchmark
defines 997 locations types and has 10,491,169 possible infor-
mation paths from the top to the bottom in the lattice. This
generated lattice is clearly incomprehensible to developers.

V. Simplification
The inference algorithm described in the previous section

infers unique location types for every variable and field dec-
laration, but often produces overly complicated lattices. How-
ever, generating simple lattices by reusing existing location
types whenever possible can sometimes limit reusability. The
reason is imprecise ordering relations between parameters and
fields may require significant modifications when using the
methods or fields in new contexts.

Our goal is to find a reasonable tradeoff between precisely
modeling flow constraints and the simplicity of the resulting
lattices. The idea is to maintain precise ordering relations
between interface members (e.g., parameters, return values,
program counters and fields) while reusing location types for
non-interface members (e.g., local variables).

A. Constructing Interface Hierarchy Graphs
SInfer optimizes for precise modeling of interface members

by generating interface hierarchy graphs which only contain
interface members. The process of simplification begins with
removing non-interface nodes from the hierarchy graphs and
then patching edges across the removals (potentially generating
multiple edges for a removed edge). Returning to the example,
the Weather class has four fields as interface members, shown
as shaded nodes in Figure 6. Figure 10 shows the interface
hierarchy graph for the Weather class.

B. Simplifying the Interface Hierarchy Graph
SInfer next simplifies the interface hierarchy graphs by

identifying nodes to merge. If two nodes have incoming edges
that originate from the same set of nodes and outgoing edges
that target the same set of nodes, then those two nodes can be
merged while still maintaining the same precision (merging
the nodes does not allow any new information flows). SInfer
identifies and merges such nodes.

It is possible for method and field hierarchies to contain
redundant edges. If a hierarchy contains the edge e = (n→ n′)
where n′ is reachable from n through a path that does not
contain the edge e, then e is redundant. SInfer identifies and
removes redundant edges in the hierarchies.

C. Inserting Merge Points
At this point, all nodes in the simplified hierarchy graph are

either fields (for field hierarchies) or parameters, return values,
and program counter locations (for method hierarchies). How-
ever, when the program combines value flows from more than
one interface node, it needs a node in the hierarchy to store the
combined flows. Consider the interface hierarchy graph shown
in Figure 9. This hierarchy shows how information from the a,
b, c, and d fields are used to compute the values stored in the
f and g fields. Such a computation could potentially begin by
combining information from the b and c fields and storing it
into a local variable. There is no location type in the hierarchy
as shown that can be used for such a local variable. If we used
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the location type of either field f or g, it would introduce a
new flow into the hierarchy. Therefore, our tool must insert a
merge point location type in the hierarchy that combines the
information from fields b and c but is above both fields f and
g. SInfer inserts a merge point whenever a non-interface node
in the hierarchy graph combines incoming flows that originate
from more than one interface node.

D. Converting the Interface Hierarchy Graphs into Lattices
The field and method hierarchy graphs currently capture

the information flows between field and method interfaces,
respectively. We compute the Dedekind-MacNeille completion
of the field and method hierarchy graphs to generate field and
method interface lattices, respectively.

E. Inserting Local Variable Locations
At this point, the interface lattices precisely capture in-

formation flows at the method or field interfaces. Now we
insert locations for local variables into the lattices3. The idea
is to splice in local variable nodes along existing edges in
the interface lattice without changing the lattice’s meet or
join structure. In the hierarchy graph, there could be more
than one path consisting of local variable nodes between two
interface nodes that are directly connected with each other in
the interface hierarchy graph. These paths are comprised of
two types of local variable nodes: normal nodes and shared
nodes. The problem is to find the shortest sequence of nodes
that contains every ordering sequence in a given set of paths.

This problem is a generalization of the Shortest Com-
mon Supersequence problem4, which is known to be NP-
complete [18]. We implemented the following approach that
maps local nodes in the hierarchy graph to the location types
in the lattices, heuristically minimizing the number of location
types in the lattice.
i) For a local variable node l in the hierarchy graph, find the

lowest node m in the interface lattice that is above l.
3Field lattices may contain locations for local variables with composite

locations.
4A shortest common supersequence problem can be represented as our

minimization problem by creating a unique path for each input sequence,
encoding 0 with a normal node and 1 with a shared node. Thus finding an
optimal solution to our problem is at least as difficult as the shortest common
supersequence problem.

ii) Count the number of hops d between the local variable
node l and the node m. Each hop corresponds to a pair of
a normal node and a shared node. SInfer will insert either
type of node to a pair if needed.

iii) We next convert the node m into a chain of nodes with the
last node in the chain having m’s outgoing edges. SInfer
first checks if there already exists the dth hop pair along
this chain. If such a pair does not exist or the same type
of node does not exist in the pair, we insert a new node.
Otherwise, we reuse the existing node.

SInfer generates a final lattice that admits more flows
between local variables than the actual program performs, but
suffices to show that the program self-stabilizes.

Figure 11 illustrates how our approach optimizes the hi-
erarchy graphs. In the figure, the shaded circles represent
the interface nodes and the dotted circles represent the local
variables. First, the analysis simplifies the graph by merging
two interface nodes f and g since both nodes share the same
incoming and outgoing edges in the interface hierarchy graph.
Then, it generates the lattice in which local variables share
locations. Figure 8 presents the inferred lattices for the exam-
ple, which is much simpler than the non-optimized lattice in
Figure 7. In the lattice, local variables with the same height are
assigned to the same node, and non-interface members (white
nodes) are arranged in a simple structure between interface
members (shaded nodes) while the optimization maintains
precise orderings between interface members.

VI. Evaluation
We have implemented our inference tool in the SJava

compiler and evaluated it on an Ubuntu Linux 12.04 machine
with an Intel Core i7 3770 CPU. We have evaluated the tool by
inferring annotations for three SJava applications: JLayer, an
MP3 decoder; LEA, an eye-tracker; and Sumo Robot, a robot
controller. Our implementation and benchmarks are available
for download at http://demsky.eecs.uci.edu/compiler.php.

A. Methodology
We evaluated SInfer by taking the source code for the three

benchmarks and inferring annotations. As the original appli-
cations required minor changes to make them self-stabilizing,
we took the modified versions of the SJava benchmark and
removed all of the location type annotations.

Correctness We used the SJava type checker to verify the
correctness of the generated annotations. All three benchmarks
type check and pass SJava’s eviction analysis, and thus they
are self-stabilizing.

Simplification Goals Our evaluation was designed to evaluate
the usefulness and understandability of the inferred lattices.
Even though such evaluations depend on subjective criteria and
how developers use the results, the complexity of the lattices
is an important factor in evaluating the usefulness and under-
standability. Therefore, we developed two metrics to measure
the complexity of the lattices. First, we approximated the
complexity by comparing the total number of locations in the
lattices between SInfer and the naı̈ve approach that attempts to
maintain maximal precision described in Section IV. However,
measuring the complexity is more complicated than comparing
the total number of locations. For example, if a large number

http://demsky.eecs.uci.edu/compiler.php


Benchmark Simple(<=5) Complex(>5) Time LOCLocations Paths Locations Paths

MP3
manual 141 35 268 48 n/a

15,634naı̈ve 176 61 1,998 294,624,12810.92s
SInfer 205 62 421 542 12.15s

Eye
manual 215 59 69 12 n/a

4,571naı̈ve 183 58 503 905 0.47s
SInfer 161 67 343 42 0.51s

Robot
manual 132 36 80 14 n/a

3,201naı̈ve 149 44 161 152 0.18s
SInfer 161 45 79 18 0.20s

TABLE 1. Evaluation Results

of locations are arranged into a single line, this structure could
be more easily understandable than a complex structure with
a smaller number of locations. Therefore, we defined another
quantitative measurement, the number of paths from the top to
the bottom in a lattice, which captures the number of different
ways values flow through a lattice. McCabe [14] developed a
similar metric to measure program complexity.

Table 1 provides information about the lattices generated
by the naı̈ve approach and SInfer. It also shows information
about the manual annotations. Even though SInfer generates a
smaller number of locations and paths than the naı̈ve approach,
we found that the total numbers tend to be biased by many
simple lattices. Therefore, we split lattices into two categories:
simple lattices and complex lattices with complex lattices
defined as having more than 5 nodes. The threshold columns
labeled <= 5 and > 5 show the total numbers of the simple
lattices and the complex lattices respectively. Note that, in
some cases, the total number of SInfer lattices in the simple
category is larger than the total number of the naı̈ve approach
because SInfer is able to simplify complicated lattices and
place them in the simple category. The last two columns
show the time for type inference and lines of code for each
benchmark. SInfer is slower than the naı̈ve approach because
the former requires an additional process for the simplification.

B. MP3 Decoder
JLayer is an MP3 decoder and is available at http://

www.javazoom.net/javalayer/javalayer.html. The decoder self-
stabilizes because it flushes out all non-loop invariant state
within a bounded number of frames. After an error occurs, if
the event loop continually retrieves new audio frames, it will
eventually resume the normal behavior from an arbitrary state.

Of the three benchmark applications, the MP3 decoder
had the highest potential for complicated annotations. Many
methods in the program employ a processing pattern which
first loads data into a set of source fields, then transforms the
data in a sequential computation using several local variables,
and finally store the results into a set of destination fields.
The problem is that the multiple stages of computation that
extensively use temporal variables to store intermediate results
create a large number of value flows.

To quantify how well we have met the simplification
goal, we present results comparing SInfer to the manual
annotations and to the naı̈ve approach in Table 1. It is clear
that the new strategy helps effectively reduce the number of
locations and paths. For the MP3 decoder, SInfer generated
421 location types and 542 paths for complex lattices, whereas

the naı̈ve approach generated a total of 1,998 location types
and 294,624,128 paths. SInfer infers slightly more complicated
annotations than the manual annotations. The manual approach
used some tricks to reduce location types — the manual anno-
tations used shared location types simply to avoid generating
a chain of location types in a lattice. While this approach does
reduce the number of annotations that must be written, it can
also be misleading as it may lead new developers to believe
that a cyclic value flow exists where it does not. Thus although
the automatic annotations contain more location types, they
may in fact be preferable for program understanding.

Ideally, SInfer will generate annotations that the developer
can intuitively understand. The MP3 decoder is our best
benchmark for evaluating the readability of the generated
annotations, because it is the most complex. We manually
examined the generated lattices and found that their structures
clearly show the flow of values through the program. In the
lattices, the location types assigned to the fields outlined a
distinct hierarchy, and it was easy to correlate each level of
that hierarchy with a phase of the sequential decoding process.
This provides some evidence that the tool may be useful for
program understanding and debugging.

C. Eye Tracking
LEA is an eye tracking library and is available at http:

//sourceforge.net/projects/lea-eyetracking/. Every event loop
iteration takes an input image from a web cam, tracks eye
movement, and returns a direction. LEA maintains up to the
last three eye positions to derive the movement direction. LEA
self-stabilizes because it flushes all non-loop invariant values
after the three loop iterations.

The original manual annotations identified an opportunity
to avoid introducing a large number of composite locations:
the part of the computation that detects eye positions could
use the same location for all eye position fields. Our inference
tool identifies the same opportunity to simplify the lattice, and
generates lattices that are straightforward to understand.

D. Robot Controller
Sumo Robot is a Java library for developing robot con-

trollers, available at http://java.net/projects/sumorobots/. The
main controller is self-stabilizing because it does not maintain
persistent state and overwrites all control variables at every
iteration. Each iteration of the event loop reads data from the
sensors, selects a movement type and speed, and generates a
motor controller command.

The program follows a common pattern that is likely shared
by a broad range of embedded controllers: at every iteration,
such a controller takes a new input, processes it, overwrites
all execution-specific memory locations, and emits a result.
This pattern results in a straightforward location type hierarchy,
because (1) each computation stage directly matches one level
of the type hierarchy and (2) Sumo Robot does not rely heavily
on the use of objects, which would complicate the hierarchy.

VII. RelatedWork
Self-stabilization was initially developed as an approach to

build distributed algorithms that were robust to failures [3].
Dolev et al. [5], [6], [4] recently developed an approach
that ensures that the underlying layers (processor, operating
system, and compiler) preserve the self-stabilizing nature of

http://www.javazoom.net/javalayer/javalayer.html
http://www.javazoom.net/javalayer/javalayer.html
http://sourceforge.net/projects/lea-eyetracking/
http://sourceforge.net/projects/lea-eyetracking/
http://java.net/projects/sumorobots/


an application. This earlier work does not check that the
actual application is self-stabilizing. SJava is a type system
and static analyses that together check that a Java program is
self-stabilizing[8]. A barrier to the adoption of this work is that
the technique requires additional type annotations. This paper
develops a tool that can infer an initial set of type annotations
for the developer — reducing the need for manual annotation.

Researchers have developed type systems for language-
based information flow to check that an application’s in-
formation flows do not violate the desired requirements for
security and energy savings[15], [20], [21]. We believe that
our work in inferring flow annotations can be adapted for
other information flow type systems. A number of approaches
have been proposed for secure information flow inference.
Smith et al. [23] and King et al. [10] attempt to reduce the
annotation burden, but they still require developers to define
security policies. SInfer automatically infers all specifications
and type annotations. Vaughan et al. [24] present a security
policy inference tool which does not infer method annotations.
Livshits et al. [12] develop a probabilistic inference tool for
explicit information flow. Their tool only infers information
flows in terms of the methods involved, which is too coarse
for the SJava type system. The constraint-based type inference
system[17] has a different goal from SInfer. Whereas they try
to infer types as precisely as possible, we infer location types
that meet our simplicity goal while losing some precision.

A number of tools have been developed to infer specifica-
tions. One prominent example is Daikon [9], which infers spec-
ifications for program variables and fields. Other tools have
been used to automatically infer Java generics annotations [7]
and concurrency specifications [1]. While our work shares the
high-level goal of alleviating the manual annotation labor, the
techniques and goals of these tools differ.

Failure-oblivious computing [19] enables programs to con-
tinue execution past memory errors by manufacturing values
for reads or discarding writes. Other work detects bugs and
tries re-execution in a slightly different environment [22].
Data structure repair [2] takes an interventional approach;
upon detecting data structure corruption, it repairs them with
respect to a specification. Data structure repair only guarantees
that a program will reach some consistent state, while self-
stabilization guarantees that all effects of the bug will even-
tually disappear. Moreover, self-stabilization does not require
a specification and therefore eliminates the need to precisely
define correct behavior.

VIII. Conclusion
Bugs have long plagued software systems. While self-

stabilization has been used as an approach for building robust
distributed systems, automatically checking that code self-
stabilizes is relatively new. In certain important domains, self-
stabilization can improve the robustness of software applica-
tions. Moreover, self-stabilization is complimentary to existing
approaches for improving reliability.

A barrier to the widespread adoption of checking self-
stabilization is that the existing approach requires manual
annotations. This paper presents an approach for automatically
inferring these annotations. Our experience indicates that SIn-
fer can successfully infer annotations for our benchmarks.
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