
Static Specification Analysis for Termination of
Specification-Based Data Structure Repair

Brian Demsky
Laboratory for Computer Science

Massachusetts Institute of Technology

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract— We have developed a system that accepts a spec-
ification of key data structure consistency constraints, then
dynamically detects and repairs violations of these constraints. It
is possible to write specifications that are not satisfiable or that
for other reasons may cause the repair process to not terminate.
We present a static specification analysis that determines whether
the repair process will terminate for a given specification.

I. I NTRODUCTION

To correctly represent the information that a program ma-
nipulates, its data structures must satisfy key consistency con-
straints. If a software error or some other anomaly causes an
inconsistency, the basic assumptions under which the software
was developed no longer hold. In this case, the software
typically behaves in an unpredictable manner and may even
fail catastrophically.

Several very successful systems use data structure incon-
sistency detection and repair techniques to improve reliability
in the face of software errors. For example, the Lucent 5ESS
switch and IBM MVS operating systems both use hand-coded
audit and repair procedures to recover from these errors [16],
[19]. The reported results indicate an order of magnitude
increase in the reliability of these systems [12]. Similar repair
procedures exist for persistent data structures such as file
systems and application files.

We have developed a new specification-based approach to
the data structure consistency problem [9]. Instead of devel-
oping ad-hoc, hand-coded procedures, the developer provides
a specification of key data structure consistency properties.
Our tool processes this specification to automatically generate
code that detects, then repairs, any inconsistent data structures.
Our overall goal is to place repair techniques on a more solid
formal foundation, to decrease the effort required to obtain
a repair system for a given program, and to increase the
reliability and predictability of the repair process.

A complication is that the developer may provide an unsat-
isfiable specification or a specification whose repair algorithm
may not terminate. This paper presents a static analysis that,
when provided with an arbitrary specification, determines if
the corresponding repair algorithm will always terminate. In
addition to ensuring that the repair process will not loop
forever, this termination also guarantees that the specification
is satisfiable.

A. Detection and Repair

Our approach involves two data structure views: a concrete
view at the level of the bits in memory and an abstract view
at the level of relations between abstract objects. The abstract
view facilitates both the specification of higher level data
structure constraints and the reasoning required to repair any
inconsistencies.

Each specification contains a set of model definition rules
and a set of consistency constraints. Given these rules and
constraints, our tool automatically generates code that builds
the model, inspects the model and the data structures to find
violations of the constraints, and repairs any such violations.
The algorithm operates as follows:

• Inconsistency Detection:It evaluates the constraints to
find consistency violations.

• Disjunctive Normal Form: It converts each violated
constraint into disjunctive normal form (a disjunction of
conjunctions of atomic formulas). Each atomic formula
has a repair action that will make the formula true. For
the constraint to hold, all of the atomic formulas in at
least one of the conjunctions must hold.

• Repair: The algorithm repeatedly selects a violated con-
straint, chooses one of the conjunctions in that con-
straint’s normal form, then applies repair actions to all of
the atomic formulas in that conjunction that are false. A
repair cost heuristic biases the system toward choosing
the repairs that perturb the existing data structures the
least.

B. Static Termination Analysis

Note that the repair actions for one constraint may cause
another constraint to become violated. If there is a cycle in
which one constraint may be repaired only to become violated
by another future repair, the repair process may not terminate.
We therefore statically analyze the set of constraints to verify
the absence of cyclic repair chains that might result in infinite
repair loops. If a specification contains cyclic repair chains, the
tool attempts to prune conjunctions to eliminate the cycles.

C. Experience and Contributions

We have used our tool to repair inconsistencies in four
applications: an air-traffic control system, a simplified Linux
file system, an interactive game, and Microsoft Word files.
All of our specifications were statically verified to generate

repair procedures that terminated. Furthermore, in all of our
benchmark executions, the repair procedure terminates and
successfully repairs the data structures.

This paper makes the following contributions:

• Termination Analysis: It presents a static specification
analysis that determines if the repair process will always
terminate for a given specification.

• Proof: It presents a proof that acyclicity of the graph
constructed by the static specification analysis implies
termination of the corresponding repair algorithm.

• Termination Assurance: It presents an algorithm that,
when possible, eliminates repair choices that may lead to
infinite repair loops. This algorithm may convert a repair
algorithm that may not terminate to a more restrictive
repair algorithm that always terminates.

• Experimental Results: The paper describes our expe-
riences writing specifications and the results of using
our inconsistency detection and repair tool for several
applications.

The remainder of the paper is structured as follows. Sec-
tion II presents an example that we use to illustrate our
approach. Section III presents the specification language used
to express the consistency constraints. Section IV presents
the inconsistency detection and repair algorithms. Section V
presents the termination analysis and gives a correctness
proof. Section VI presents our experience using automatic data
structure repair in several benchmark applications. Section VII
discusses related work. Section VIII presents future work; we
conclude in Section IX.

II. EXAMPLE

We next present an example that illustrates our approach.
The data structure in the example implements a list that
associates object identifiers with attributes. Figure 1 presents
the structure definitions for this data structure. Each node
has a fieldobjectId that stores the object identifier, a
field numAttributes that indicates the number of attributes
stored in the node, an arrayfirstAttributes that stores
the first N attributes for the object (note thatN has the value
5), a boolean fieldexpanded that signals the presence of an
expansion array that may contain an additional M attributes,
and a field restAttributes that optionally contains a
reference to the expansion array.

In our example,N andMare constants, but we support more
advanced declarations in which such quantities could be stored
in data structure fields. Figure 2 presents an (inconsistent)
instance of the data structure. ThenumAttributes field of
the second node in the list has the value 12, which indicates
the presence of more attributes than will fit in a node, but the
expanded flag is set to false indicating that no expansion
array is present. Furthermore, therestAttributes pointer
is set to null as no expansion array is present. Figure 3 presents
the data structure after repair (the repair algorithm has changed
the numAttributes field to 5).

#define N 5
#define M 10
struct node {

node *next;
int objectId;
int numAttributes;
int firstAttributes[N];
bool expanded;
rest *restAttributes;

}
struct rest {

int restAttributes[M];
}
node *attributeList;

Fig. 1. Structure Definitions

attributeList next

objectId 1

numAttributes 1

firstAttributes ...
expanded false

restAttributes

1 0

next

objectId 3

numAttributes 12

firstAttributes ...
expanded false

restAttributes

7 9

Fig. 2. Inconsistent Data Structure

attributeList next

objectId 1

numAttributes 1

firstAttributes ...
expanded false

restAttributes

1 0

next

objectId 3

numAttributes 5

firstAttributes ...
expanded false

restAttributes

7 9

Fig. 3. Repaired Data Structure

We focus on the following consistency constraints:

1) Flag Consistency:The expanded flag should only be
set if the expansion array is present.

2) Number of Attributes Consistency: If numAt-
tributes is greater thanN, the expanded flag
should be set and the expansion array should be present.
Furthermore, the number of attributes should not exceed
the total attribute capacity of the node (N+Mattributes).

3) List Structural Consistency: No list node should have
more than one incomingnext reference.

To support the expression of these kinds of constraints at
an appropriate level of abstraction, we allow the developer to
specify a translation from the concrete data structure repre-
sentation into an abstract model based on relations between
objects. The developer can then use this model to state some
of the desired consistency constraints.

A. Model Construction

Figure 4 presents the object and relation declarations for
our example. There are two sets of objects:nodes (with
a subsetfirst) and rests . The next relation models
chains of list nodes . The expanded relation models the

set nodes of node: subset first;
set rests of rest;
expanded: nodes -> boolean;
restAttributes: nodes -> rest;
numAttributes: nodes -> int;
next: nodes -> nodes;

Fig. 4. Object and Relation Declarations

[], true => attributeList in first;
[for n in nodes], !n.next=NULL =>

<n, n.next> in next;
[for n in nodes], !n.next=NULL =>

n.next in nodes;
[for n in nodes], !n.restAttributes=NULL =>

n.restAttributes in rests;
[for n in nodes], !n.restAttributes=NULL =>

<n,n.restAttributes> in restAttributes;
[for n in nodes], true =>

<n,n.numAttributes> in numAttributes;
[for n in nodes], true =>

<n,n.expanded> in expanded;

Fig. 5. Model Definition Declarations and Rules

expanded flag status of the object. TherestAttributes
relation mapsnodes to the correspondingrests objects.
The numAttributes relation mapsnodes to the number
of attributes they contain.1

Figure 5 presents the model definition rules. Each rule
consists of a quantifier that identifies the scope of the rule, a
guard whose predicate must be true for the rule to apply, and
an inclusion constraint that specifies either an object that must
be in a given set or a tuple that must be in a given relation.
Our tool processes these rules to produce an algorithm that,
starting from theattributeList variable, traces out the
next relation and computes the sets ofnodes and rests
objects.

B. Consistency Constraints and Repair Algorithm

The developer uses the model to state the data structure
consistency requirements: we call such constraintsinternal
constraints. Figure 6 presents the internal constraints for our
example. The first constraint states that if the expanded flag
is set for anode , then thenode must have an expansion
array. The second constraint states that the expanded flag
must be set for eachnode with more thanN attributes. The
third constraint states that eachnode has at mostN+Mtotal
attributes. The fourth constraint states that eachnode has at
most one reference from thenext field.2 The fifth constraint
ensures that thenumAttributes andexpanded relations

1In this example the model corresponds quite closely to the concrete
data structure, however this is not always the case. In general, we have
found the model translation useful for two purposes. First, it supports the
clean expression of important relationships hidden in many low-level, heavily
encoded data structures. Second, it supports the use of synthesized abstract
relations that are not directly present in the data structure but that facilitate
the expression of important consistency properties.

2We use the notationnext.n to refer to the image ofn under the inverse
of the next relation, i.e., the set of all objectso such that〈o, n〉 ∈ next .

[for n in nodes], n.expanded=false or
size(n.restAttributes)=1;

[for n in nodes], n.numAttributes<=N or
n.expanded=true;

[for n in nodes], n.numAttributes<=N+M;
[for n in nodes], size(next.n)<=1;
[for n in nodes], size(n.numAttributes)=1 and

size(n.expanded)=1;
[], size(first)=1;

Fig. 6. Internal Consistency Constraints

are functions. The final constraint ensures that there is at least
onenode in the list.

The repair algorithm repeatedly traverses the model to find
a constraint and a set of variable bindings that falsify the
constraint. It then executes repair actions that update the model
so that the constraint is satisfied for that variable binding. In
our example, the repair algorithm detects that the secondnode
in the list in Figure 2 violates the second constraint — the
numAttributes field is greater thanN, and theexpanded
flag is false. Assume that the repair algorithm repairs this
violation by setting theexpanded flag in this node totrue .
But this repair causes the node to violate the first constraint. If
the repair action for this newly introduced inconsistency sets
the expanded flag back tofalse , the repair algorithm is
trapped in an infinite repair loop.

In some cases, restricting the repair choices may ensure
termination. In our example, repairing violations of the second
constraint by setting thenumAttributes field to be less
than or equal toNwill ensure that the repair always terminates.

C. Reasoning About Termination

Our algorithm uses aninterference graphto reason about
the termination of the repair process. The nodes in this graph
correspond to the conjunctions in the disjunctive normal form
of the constraints; there is a directed edge between two
conjunctions if the repair action for an atomic formula of the
first conjunction may falsify the second conjunction, or if the
repair action may increase the scope of one of the quantifiers
of the second conjunction. If there are no cycles in this graph,
then the repair process will eventually terminate.

Figure 7 presents the interference graph for our ex-
ample.3 The possibility of an infinite repair loop shows
up as a cycle between then.expanded=true and
n.expanded=false nodes.

Our algorithm attempts to eliminate such cycles by remov-
ing nodes (and their incident edges) from the graph, subject to
the constraint that it must leave at least one node per constraint
in the graph. In our example, the algorithm eliminates the
cycle by removing then.expanded=true node. Figure 8
presents the resulting acyclic graph.

3In this figure, the conjunctions from a constraint whose disjunc-
tive normal form has multiple conjunctions appear together within the
same dotted box. The figure shows that(n.numAttributes<=N or
n.expanded=true) is the disjunctive normal form of the second con-
straint.

n.numAttributes<=N+M size(next.n)<=1

size(headernode)=1

n.expanded=false

size(n.restAttributes)=1

size(n.numAttributes)=1 and
 size(n.expanded)=1

n.expanded=true

n.numAttributes<=N

Fig. 7. Interference Graph With Cycle

n.numAttributes<=N+M size(next.n)<=1

size(headernode)=1

n.expanded=false

size(n.restAttributes)=1

size(n.numAttributes)=1 and
 size(n.expanded)=1

n.numAttributes<=N

Fig. 8. Interference Graph After Cycle Elimination

We translate the node removals into repair algorithm restric-
tions by simply preventing the repair algorithm from executing
the repair actions designed to satisfy the conjunction corre-
sponding to the node. If a constraint containing a conjunction
corresponding to a removed node is violated, the restricted
repair algorithm simply satisfies a different conjunction from
that constraint.

D. External Constraints

External constraints may reference both the model and
the concrete data structures. Figure 9 presents the external
constraints in our example. These constraints capture the
requirements that the sets and relations in the model place on
the values in the concrete data structures. Repairs that enforce
these constraints translate the model repairs into concrete data
structure repairs by overwriting any inconsistent values in the
data structure. In our example, the external constraints cause
the numAttributes field to be set to 5.

[for n in first] true => attributeList=n;
[for <n,nl> in next], true => n.next=nl;
[for <n,e> in expanded], true =>

n.expanded=e;
[for <n,r> in numAttributes], true =>

n.numAttributes=r;
[for <n,e> in restAttributes], true =>

n.restAttributes=e;

Fig. 9. External Consistency Constraints

III. SPECIFICATION LANGUAGE

Our specification language consists of several sublanguages:
a structure definition language, a model definition language,
and the languages for the internal and external constraints.

A. Model Definition Language

The model definition language allows the developer to
declare the sets and relations in the model and to specify
the rules that define the model. A set declaration of the form
set S of T partition S 1, ...,Sn declares a setS that
contains objects of typeT, whereT is either a primitive type or
a struct type declared in the structure definition part of the
specification, and that the setS hasn subsetsS1, ..., Sn which
together partitionS. Changing thepartition keyword to
subsets removes the requirement that the subsetsS1, ..., Sn

partitionS but otherwise leaves the meaning of the declaration
unchanged. A relation declaration of the formrelation R:
S1->S 2 specifies a relation betweenS1 andS2.

The model definition rules define a translation from the
concrete data structures into an abstract model. Each rule has
a quantifier that identifies the scope of the rule, a guard whose
predicate must be true for the rule to apply, and an inclusion
constraint that specifies either an object that must be in a
given set or a tuple that must be in a given relation. Figure 10
presents the grammar for the model definition rules.

B. Pointers

Depending on the declared type in the corresponding struc-
ture declaration, an expression of the formE.f in a model
definition rule may be a primitive value (in which caseE.f

C := Q, C | G ⇒ I

Q := for V in S | for 〈V, V〉 in R |
for V = E .. E

G := G and G | G or G |!G | E = E | E < E | true |
(G) | E in S | 〈E, E〉 in R

I := E in S | 〈E, E〉 in R

E := V | number | string | E.field |
E.field[E] | E − E | E + E | E/E | E ∗ E

Fig. 10. Model Definition Rule Language

denotes the value), a nestedstruct contained withinE (in
which caseE.f denotes a reference to the nestedstruct),
or a pointer (in which caseE.f denotes a reference to the
struct to which the pointer refers). It is of course possible
for the data structures to contain invalid pointers. We next
describe how we extend the model construction algorithm to
deal with invalid pointers.

First, we instrument the memory management system to
produce a trace of operations that allocate and deallocate mem-
ory (examples includemalloc , free , mmap, andmunmap).
We augment this trace with information about the call stack
and segments containing statically allocated data, then use this
information to maintain a map that identifies valid and invalid
regions of the address space.

We next extend the model construction software to check
that eachstruct accessed via a pointer is valid before it
inserts thestruct into a set or a relation. All validstruct s
reside completely in allocated memory. In addition, if two
valid struct s overlap, one must be completely contained
within the other and the declarations of bothstructs must
agree on the format of the overlapping memory. This approach
ensures that only validstruct s appear in the model.

A final complication is that expressions of the formE.f.g
may appear in guards. IfE.f is not valid,E.f.g is considered
to be undefined. Expressions involving undefined values also
have undefined values. Comparison (E1 < E2, E1 = E2) and
set inclusion (E in S, 〈E1, E2〉 in R) predicates involving
undefined values have the special valuemaybe. We use three-
valued logic to evaluate guards involvingmaybe.

Our model construction algorithm is coded with explicit
pointer checks so that it can traverse arbitrarily corrupted data
structures without generating any illegal accesses. It also uses
a standard fixed point approach to avoid becoming involved
in an infinite data structure traversal loop.

C. Internal Constraints

Figure 11 presents the grammar for the internal constraint
language. Each constraint consists of a sequence of quantifiers
Q1, ..., Qn followed by bodyB. The bodyB uses logical
connectives (and, or, not) to combine propositionsP.

C := Q, C | B

Q := for V in S | for V = E .. E

B := B and B | B or B |!B | (B) |
V E = E | V E < E | V E <= E | V E > E |
V E >= E | V in SE | size (SE) = C |
size (SE) >= C | size (SE) <= C

V E := V.R

E := V | number | string | E + E | E − E | E ∗ E |
E/E | E.R | size (SE) | (E)

SE := S | V.R | R.V

Fig. 11. Internal Constraint Language

R := Q, R | G ⇒ C

Q := for V in S | for 〈V, V〉 in R | for V = E .. E

G := G and G | G or G |!G | E = E | E < E | true

C := HE.field = E | HE.field[E] = E | V = E

HE := V | HE.field | HE.field[E]

E := V | number | string | E.R | E + E | E − E |
E ∗ E | E/E | size (SE) | element E of SE

SE := S | V.R | R.V

Fig. 12. External Constraint Language

D. External Constraint Language

Figure 12 presents the grammar for the external constraint
language which is used to translate model repairs to the
concrete data structures. Each constraint has a quantifier that
identifies the scope of the rule, a guardG that must be true
for the constraint to apply, and a conditionC that specifies
either a program variable, a field in a structure, or an array
element must have a given value.

IV. ERRORDETECTION AND REPAIR

The repair algorithm updates the model and the concrete
data structures so that all of the internal and external con-
straints are satisfied. The repair is organized around a set of
repair actions that update the model and/or the data structures
to coerce atomic formulas to be true. The algorithm has two
phases: during the internal phase, it updates the model so that
it satisfies all of the internal constraints. During the external
phase, it updates the data structures to satisfy all of the external
constraints.

A. Error Detection in the Internal Phase

The algorithm detects violations of the internal constraints
by evaluating the constraints in the context of the model.
This evaluation iterates over all values of the quantified vari-
ables, evaluating the body of the constraint for each possible
combination of the values. If the body evaluates to false, the
algorithm has detected a violation and has computed a set of
bindings for the quantified variables that make the constraint
false.

B. Error Repair in the Internal Phase

The repair algorithm is given a constraint and the set of
variable bindings that falsify the constraint. The goal is to
repair the model to satisfy the constraint. The algorithm first
converts the constraint to disjunctive normal form, so that it
consists of a disjunction of conjunctions of atomic formulas.
Each atomic formula has a repair action that the algorithm can
use to modify the model so that the atomic formula becomes
true. The repair algorithm chooses one of the conjunctions
and applies repair actions to its atomic formulas until the
conjunction becomes true and the constraint is satisfied for
that set of variable bindings.

There are three kinds of atomic formulas in the internal con-
straint language: size propositions, inequality propositions, and
inclusion propositions. Each atomic formula can occur with
or without negation; the actions repair the atomic formulas as
follows:

1) Size Propositions:Size propositions are of the form
size (SE) = 1, !size (SE) = 1, size (SE) >= 1, or
size (SE) <= 1 where SE can be one of the sets in the
model or a relation expression of the formR.V or V.R. It
is straightforward to generalize size propositions to involve
arbitrary constant sizes.

If SE is a set in the model, the repair action simply adds or
removes elements to satisfy the constraint. The action ensures
that these changes respect any partition and subset constraints
between sets in the model. Note that this basic approach also
works for negated size propositions.

In general, the repair action may need a source of new
elements to add to sets to bring them up to the specified size.
Supersets of the set (as specified using the model definition
language from Section III-A) are one potential source. For
struct s, memory allocation primitives are another potential
source. For primitive types, the action can simply synthesize
new values. We allow the developer to specify which source
to use and, in the absence of such guidance, use heuristics to
choose a default source.

Note that the repair may fail if the system is unable to
allocate a newstruct (typically because it is out of memory)
or find a new value within the specified range. Note also that
the model definition language allows the developer to specify
partition and subset inclusion constraints between the different
sets in the model. When our implementation changes elements
in one set, it appropriately updates other sets to ensure that the
model continues to satisfy these partition and subset inclusion
constraints.

If SE is an expression of the formR.V or V.R, the repair
action simply adds or removes tuples to satisfy the constraint.
Note that because the elements in the tuples must be part of
the corresponding domain and range of the relation, a repair
action that adds tuples to the relation may also need to add
elements to the domain or range sets of the relation. Therefore,
repair actions that add tuples to relations face the same issues
associated with finding new elements as the repair actions that
add elements to sets.

2) Inequality Propositions:Inequality propositions are of
the formV.R = E, !V.R = E, V.R < E, V.R <= E, V.R >
E, or V.R >= E. The repair actions calculate the value of
E, then updateV.R to be the closest value that satisfies the
proposition.

3) Inclusion Propositions:Inclusion propositions are of the
form V in SE whereSE is a set in the model or a relation
expression. The repair actions simply add or remove (in the
case of negation)V to the set or the appropriate pair to the
relation. They then perform corresponding updates to other
sets to restore the partition and subset constraints in the model
definition.

4) Choosing The Conjunction to Repair:When faced with
a choice of false conjunctions, the algorithm uses a cost
function to choose which to repair. This cost function assigns
a cost to each repair action; the cost of repairing a conjunction
is simply the sum of the repair costs for all of its unsatisfied
atomic formulas. This approach is designed to minimize the
number of changes made to the model. We have also tuned
the repair costs to discourage the removal of objects from sets
and tuples from relations. The idea is to preserve as much
information from the original data structures as possible.

C. Developer Control of Repairs

The repair algorithm often has multiple options for how
to satisfy a given constraint; these options may translate into
different repaired data structures. We recognize that some
repair actions may produce more desirable data structures
than other repair actions, and that the developer may wish
to influence the repair process. We have therefore provided
the developer with several mechanisms that he or she can
use to control how the repair algorithm chooses to repair an
inconsistent data structure.

1) Repair Costs:The first mechanism is based on a repair
cost associated with each atomic formula. At each step, the re-
pair algorithm must choose one of several violated constraints
to repair. Each constraint can be represented as a disjunction of
conjunctions; repairing any of these conjunctions will ensure
that the constraint is satisfied. The repair of each conjunction,
in turn, requires the execution of a repair action for each of its
violated atomic formulas. The repair algorithm sums the costs
for each of the repair actions, then chooses the conjunction
with the least repair cost.

We allow the developer to specify the repair cost for each
atomic formula. Developers may use this mechanism to, for
example, bias the repair process toward preserving as much
of the information present in the original inconsistent data
structure as possible. One way to accomplish this goal is
to assign higher costs to actions that remove objects from
sets and pairs from relations and lower costs to actions that
insert objects and pairs. The developer may also choose to
assign lower costs to repair actions that change object fields
or set flags and higher costs to repair actions that change the
referencing relationships.

We have isolated the choice of which violated constraint
to repair inside a separate procedure in our implementation.

It is straightforward to allow the developer to provide us
with a partial implementation of this procedure — each time
there is a choice to be made, our system would invoke the
developer’s implementation, which would return a subset of
the choices that it found acceptable. Our system would then
use the repair costs to choose the least costly alternative
from within that subset. In principle, this mechanism gives
the developer complete control over the choice should he or
she choose to exert this control. To obtain even more control,
the developer could specify a hand-coded repair procedure to
invoke when the constraint is violated. When the hand-coded
repair terminates, the system would verify that the constraint is
satisfied, then (once again under developer control) optionally
invoke its own standard repair algorithm if the hand-coded
repair failed to satisfy the constraint.

2) Set Membership Changes:Some repair actions involve
adding an object to a set. To execute such an action, the system
must obtain a source for the object. The two standard sources
are a memory allocator and another set of objects. The default
choice is to use a memory allocator for structures and another
set of objects for basic types such as integers and booleans.
For each set in the model, we allow the developer to specify
the source of objects for that set. We also allow the developer
to similarly control the source of pairs added to relations.

Note that our specifications also allow partition constraints,
which specify that a collection of subsets must partition
another set. Membership changes in one of the sets often entail
membership changes in some other sets. For example, when a
repair action adds a new object to the partitioned set, it must
also add that object to one of the subsets that partition the
original set. In such cases, we allow the developer to control
which sets objects are added to or removed from to satisfy the
partition constraints.

3) Critical Constraints: In some cases, the developer may
wish to identifycritical constraints, or constraints that are so
crucial to the continued successful execution of the program
that if they are violated, the best strategy is to simply terminate
or suspend the execution and await external intervention. We
allow the developer to flag such constraints in the specification.
If the consistency checker finds that a critical constraint is
violated, it suspends the program.

V. TERMINATION ANALYSIS

The acyclicity checking algorithm first converts the body of
each constraint into disjunctive normal form. It then constructs
an interference graph. There is one node in the graph for each
conjunction in the disjunctive normal form of each constraint.
These nodes are arranged into clusters, with exactly one cluster
for each constraint. A cluster contains all of the nodes for the
conjunctions making up the constraint.4 The graph contains
the following edges:

• Quantifier Scope: There is an edge from a conjunction
to a second conjunction if repairing one of the atomic
formulas in the first conjunction may increase the scope

4The clusters for the example (Figure 7) are surrounded by dashed boxes.

of a quantifier of the second conjunction. This can
happen in two ways: the repair may add an object to
the quantifier’s set or the repair may change the value of
one of the bounds that defines the integer range of the
quantifier.

• Interference: There is an edge from one conjunction to
another conjunction if applying an action to repair one of
the atomic formulas in the first conjunction may falsify
one of the atomic formulas in the second conjunction.
The foundation of this construction is a procedure that
determines if one atomic formula mayinterfere with
another, i.e., if repairing the first atomic formula may
falsify the second. The interference checking algorithm
first checks if the two atomic formulas involve disjoint
parts of the model; if so, they do not interfere. If the
two atomic formulas may involve the same state, the
algorithm reasons about the specific repair action and
the atomic formula. If the repair action is guaranteed to
leave the model in a state that satisfies the second atomic
formula, there is no interference.5

A. Rules For Computing Interference

In this section, we formally present the interference graph.
The internal constraint specification consists of a set of con-
straints,C1...Cn. Each of these constraints may be represented
in disjunctive normal form as a disjunction of conjunctions,
Ci = Q1, Q2, ..., Qm

∨
j dj with conjunctionsdj =

∧
k βkj ,

quantifiers Qi, and each atomic formulaβkj is either a
propositionP or its negation.

The algorithm constructs an interference graphG from these
constraints. We show that acyclicity of this graph implies
termination of the repair procedure. We represent the graph
as a set of pairs of nodesG ⊆ N × N , whereN is the set
of nodes. Each node corresponds to one unique conjunction:
given a conjunctiondj , M(dj) is the corresponding node.

We define the functionQS(V) = S to map the variableV
to the setS that the variableV quantifies over. If the variable
quantifies over an integer range, the map returns a special
token that is contained in no other set. We define the functions
D andR to map relations to their corresponding domain and
range sets, respectively.

1) Set Expansion Interference:When the repair algorithm
repairs a constraint violation, the algorithm may add new
elements to some of the sets in the model. As a result of this
addition, some of the quantifiers may bind to new elements,
increasing the number of constraints involving the element that
must be satisfied.

a) Subset and Partition Implications:Before discussing
the procedure for determining whether a given atomic formula
extends the scope of a quantifier, we need to define a variety
of functions that abstract various portions of our system.

5This is true if the first atomic formula implies the second. It may also be
true even in some cases when the second atomic formula implies the first.
For example, the two constraintssize (S) >= 1 andsize (S) = 1 do not
interfere — the repair action forsize (S) >= 1 makessize (S) = 1.

We define the functionIN to capture the transitive closure
of the subsetting relations.IN (S1, S2) is true if and only
if the subsetting relations require that∀e.e ∈ S1 ⇒ e ∈ S2.

The repair algorithm must keep set additions consistent
with the partition and subsetting relations between sets. This
requirement can lead to unexpected interference between an
atomic formula and a quantifier. For example, if the algorithm
inserts an element into the setS, whereS is partitioned into
S1 and S2, it must insert the element into eitherS1 or S2.
The exact set the element is inserted in may depend on the
guidance given by the developer. We model any set additions
due to this algorithm by using the functionIS. IS(S) is
the set that an element is inserted into when the specification
requires that the element be added to setS.

A similar situation exists if the algorithm attempts to remove
an element fromS1. To satisfy the partition requirement, in
addition to removing the element fromS1, the algorithm must
either remove the element fromS or insert the element into
S2. The choice the algorithm makes between these options
depends on the guidance given by the developer. We model
any set additions due to this algorithm using the functionRS.
RS(S) is the set that an element is inserted into when the
specification requires that the element be removed from setS.
If the element is not inserted into any set,RS(S) returns a
special token which is not contained in any other set.

Satisfying a size proposition for a set may require the
addition of a new element to the set. The repair algorithm has
to have a source for these new elements. The repair algorithm
may find an element in another set or the algorithm may use
an allocator to create a new element. We define the function
SS to map a set involved in a size proposition to the possible
set that serves as a source for new elements. If the source is
a memory allocator, the map returns a special token that is
contained in no other set.

b) Determining Interference:We use an interferes func-
tion IF to tell the analysis whether coercing the atomic
formula β may increase the size of the setS appearing
in the quantifier for V in S. We construct the func-
tion IF(β, for V in S) to have the property that if
IF(β, for V in S) = false then coercing the atomic
formula β to be true does not add any elements to the set
S.

In Figure 13, we define the interferes functionIF for all
combinations of the atomic formulaβ and quantifiers over sets
(we omit similar rules for quantifiers of the formfor V =
E1..E2 for brevity).

If repairing the conjunctiond adds an element to a set
quantified over in a constraintC, the interference graph must
contain an edge from the node corresponding to the conjunc-
tion d to each of the nodes corresponding to the conjunctions
in the constraintC. Formally, for a conjunctiond =

∧
k βk

and a constraintC = Q1, Q2, ..., Qm

∨
j d′

j , if there existx, y
such thatIF(βx, Qy) = true then∀j, 〈M(d),M(d′

j)〉 ∈ G.
2) Proposition Interference Rules:In the process of re-

pairing a violation of a constraint, the repair algorithm may
violate another constraint. As a result of this action, the repair

IF(V1 in S1, for V2 in S2) is true iff IN (IS(S1), S2) ∧
¬IN (QS(V1), S2)

IF(!V1 in S1, for V2 in S2) is true iff IN (RS(S1), S2)
IF(V1 in V2.R, for V3 in S) is true iff (IN (IS(R(R)), S) ∧

¬IN (QS(V1), S)) ∨
(IN (IS(D(R)), S) ∧
¬IN (QS(V2), S))

IF(V1 in R.V2, for V3 in S) is true iff (IN (IS(R(R)), S) ∧
¬IN (QS(V2), S))∨
(IN (IS(D(R), S) ∧
¬IN (QS(V1), S))

IF(size (S1) = 1, is true iff (IN (IS(S1), S2) ∧
for V in S2) ¬IN (SS(S1), S2))∨

IN (RS(S1), S2)
IF(size (S1) <= 1, is true iff IN (RS(S1), S2)

for V in S2)
IF(size (S1) >= 1, is true iff IN (IS(S1), S2) ∧

for V in S2) ¬IN (SS(S1), S2)
IF(size (V1.R) = 1, is true iff (IN (IS(D(R)), S) ∧

for V2 in S) ¬IN (QS(V1), S)) ∨
(IN (IS(R(R)), S) ∧
¬IN (SS(R(R)), S))

IF(size (V1.R) >= 1, is true iff (IN (IS(D(R)), S) ∧
for V2 in S) ¬IN (QS(V1), S)) ∨

(IN (IS(R(R)), S) ∧
¬IN (SS(R(R)), S))

IF(size (R.V1) = 1, is true iff (IN (IS(R(R)), S) ∧
for V2 in S)) ¬IN (QS(V1), S)) ∨

(IN (IS(D(R)), S) ∧
¬IN (SS(D(R)), S))

IF(size (R.V1) >= 1, is true iff (IN (IS(R(R)), S) ∧
for V2 in S) ¬IN (QS(V1), S)) ∨

(IN (IS(D(R)), S) ∧
¬IN (SS(D(R)), S))

Fig. 13. Computing Interference Between Atomic Formulas and Quantifiers

algorithm would have to make an additional repair to satisfy
the second constraint.

We use the interferes functionPI to tell the analysis
whether coercing one atomic formula may falsify another
atomic formula. We construct the interferes function to have
the property thatPI(β1, β2) = false implies that coercing
the atomic formulaβ1 to be true will not falsify the atomic
formula β2. The algorithm uses a case analysis to calculate
the interferes functionPI.

If repairing one conjunction may falsify another, the graph
must contain a directed edge between the two conjunctions.
The algorithm adds an edge from the conjunction containing
β to the conjunction containingβ′ if PI(β, β′) = true .
Formally, for d =

∧
k βk andd′ =

∧
k′ β′

k′ if there existx, y
such thatPI(βx, β′

y) = true then 〈M(d),M(d′)〉 ∈ G.

B. Acyclicity Implies Termination

We next show that the acyclicity of the interference graph
implies that the repair process always terminates. Some possi-
ble complications in the repair process are the possibility that a
given conjunction may need to be repaired multiple times (for
different quantifier bindings) and the possibility that a given
repair may increase the number of quantifier bindings of other
constraints.

Theorem 1. Repairs for a system of constraintsC1, ..., Cn

terminate if the corresponding interference graphG is acyclic.
Proof Sketch.(Structural induction).
(Base Case:) The base case, an acyclic graph of size 0,
terminates because there are no violated conjunctions.
(Induction Step:) We assume that repairs terminate on all
acyclic graphs of sizek or less. We must show that all repairs
terminate for an acyclic graph of sizek + 1.

Since the graph is acyclic, it must contain a noden
with no incoming edges. Furthermore, all nodes in the same
cluster (nodes corresponding to conjunctions from the same
constraint) have no incoming edges arising from a possible
quantifier scope expansion. Otherwise the noden would have
a similar incoming edge as it shares the same quantifiers with
the other nodes in the cluster. Because there are no incoming
edges to noden, the algorithm repairs each quantifier binding
for n at most once — once the node is satisfied for a given
quantifier binding, no other repair will falsify it. Therefore,
the conjunction represented by noden may only be repaired
a number of times equal to the number of quantifier bindings
for the constraint that the conjunction appears in.

By the induction hypothesis, repairs on acyclic graphs of
sizek terminate. So after each repair of noden the algorithm
either eventually repairs all violations of conjunctions corre-
sponding to the otherk nodes (leaving only violations of the
conjunction corresponding to noden to possibly repair) or it
repairs a violation of the noden before finishing the repairs on
the other nodes. Since the conjunction represented by noden
may only be repaired a number of times equal to the number of
quantifier bindings for the constraint the conjunction appears
in, the repair must eventually terminate.

C. Checking Algorithm

The termination checking algorithm first checks to see
if the interference graph is acyclic. If it is not acyclic, it
searches for a set of nodes to remove from this graph in an
attempt to make the graph acyclic. Note that it must leave
at least one node in the graph for each constraint. Once a
node is removed from the graph, it is marked as forbidden
to ensure that the repair algorithm never chooses to repair
an inconsistency by satisfying the conjunction corresponding
to that node. In general, it may not be possible to produce
an acyclic interference graph, in which case the termination
checking algorithm rejects the specification.

D. Specification Limitations

In some cases, the termination analysis may reject a spec-
ification for which repairs would terminate. For example, the
repair algorithm might not realize that the repair it uses to
satisfy one algebraic constraint automatically satisfies another
algebraic constraint involving the same value. In practice, we
don’t expect this to significantly limit the range of desired
specifications. It is also possible, however, to increase the
power of the atomic formula interference rules mentioned in
Section V-A.2 to recognize more algebraic properties.

E. Repair Limitations

The goal of the repair algorithm is to deliver a model
that satisfies the internal constraints and a combination of
model and data structures that together satisfy the external
constraints. We next summarize the situations in which the
algorithm may fail to realize this goal for specifications with
acyclic interference graphs.

The internal constraint repair algorithm will fail only be-
cause of resource limitations — i.e., if it is unable to find an
element or tuple to add to a set or relation, either because it
is unable to allocate a newstruct or because there are no
more distinct elements in the set that it is using as a source
of new elements. The external constraint repair algorithm will
fail only if the external constraints specify different values for
the same data structure value — in this case, the algorithm
will produce a data structure with only one of the values.6

The static cyclicity check described in Section V rules out
many potential failure modes, in particular, it eliminates the
possibility of unsatisfiable specifications.

VI. EXPERIENCE

We next discuss our experience using our implemented re-
pair tool to detect and repair inconsistencies in data structures
from several applications: an air-traffic control system, a Linux
file system, an interactive game, and Microsoft Office files. We
have a complete implementation of the data structure repair
tool. The implementation consists of 13,000 lines of C++ code
and is available (with specifications for the benchmarks) at
http://www.cag.lcs.mit.edu/∼bdemsky/repair.7

A. Methodology

For each application, we identified important consistency
constraints and developed a specification that captured these
constraints. We ran the static analysis on these specifications to
verify that the repairs for these specifications would terminate.
We also developed a fault insertion strategy designed to sim-
ulate the effect of potential inconsistencies.8 We applied the
fault insertion strategy to the data structures in the applications,
then both verified termination of the repair algorithm and
compared the results of running a chosen workload with
and without inconsistency detection and repair. We ran the
applications on an IBM ThinkPad X23 with a 866 Mhz
Pentium III processor and 384 MB of RAM. For the Linux file

6This discussion does not address failures caused by incorrect behavior on
the part of the underlying computing infrastructure, for example corruption
of the repair algorithm’s data structures (this can be partially addressed by
placing these data structures in a separate address space) or failure to notify the
algorithm of changes in the accessibility of regions in the program’s address
space.

7As CTAS is deployed air traffic control software, we are not permitted to
distribute it. As such, it is excluded from the archive.

8Fault insertion was originally developed in the context of software testing
to help evaluate the coverage of testing processes [26]. It has also been
used by other researchers for the purposes of evaluating standard failure
recovery techniques such as duplication, checkpointing, and fast reboot [2].
The rationale behind fault insertion is that faults, while serious when they
do occur, occur infrequently enough to seriously complicate the experimental
investigation of failure recovery techniques. Fault insertion makes it practical
to evaluate proposed recovery techniques on a range of faults.

system and the interactive game application, we used RedHat
Linux 7.2. For the Microsoft Office file application, we used
Microsoft Office XP running on the Microsoft Windows XP
operating system.

B. CTAS

The Center-TRACON Automation System (CTAS) is a set
of air-traffic control tools developed at the NASA Ames
research center [1], [24]. The system is designed to help air
traffic controllers visualize and manage the complex air traffic
flows at centers surrounding large metropolitan areas.9 In addi-
tion to graphically displaying the location of the aircraft within
the center, CTAS also uses sophisticated algorithms to predict
aircraft trajectories and schedule aircraft landings. The goal is
to automate much of the aircraft traffic management, reducing
traffic delays and increasing safety. The current source code
consists of over 1 million lines of C and C++ code. Versions
of this source code are deployed at various centers (Dallas/Ft.
Worth, Los Angeles, Denver, Miami, Minneapolis/St. Paul,
Atlanta, and Oakland) and are in daily use at these centers.

Strictly speaking, CTAS is an advisory system in that the
air-traffic controllers are expected to be able to bring the
aircraft down safely even if the system fails. Nevertheless,
CTAS has several properties that are characteristic of our set of
target applications. Specifically, it is a central part of a broader
system that manages and controls safety-critical real-world
phenomena and, as is typical of these kinds of systems, it
deals with a bounded window of time surrounding the current
time.

The CTAS software maintains data structures that store
aircraft data. Our experiments focus on the flight plan objects,
which store the flight plans for the aircraft currently within
the center. These flight plan objects contain both an origin
and destination airport identifier. The software uses these
identifiers as indices into an array of airport data structures.
Flight plans are transmitted to CTAS as a long character string.
The structure of this string is somewhat complicated, and
parsing the flight plan string to build the corresponding flight
plan data structure is a challenging activity.

Our fault insertion methodology attempts to mimic errors
in the flight plan processing routine that produce illegal
values for the airport identifier fields in the flight plan data
structures. Our specification captures the constraint that the
flight plan indices must be within the bounds of the airport data
array. The specification itself consists of 100 lines, of which
83 lines contain structure definitions. The primary obstacle
to developing this specification was reverse engineering the
source (which consists of over 1 million lines of C and C++
code) to develop an understanding of the flight plan data
structures. Once we understood the data structures, developing
the specification was straightforward.

9A center is a geographical region surrounding a metropolitan area. There
are 20 centers in the 48 contiguous states; each center may contain multiple
major airports along with several smaller regional airports. Because these
airports share overlapping airspaces, the air traffic flows must be coordinated
for all of the aircraft within the center, regardless of their origin or destination.

The static analysis verified that the repair algorithm gener-
ated by this specification terminates. This is because the action
of repairing one constraint in this application does not violate
any other constraints. Our experience running the application
confirms the results of the static analysis.

We used a recorded midday radar feed from the Dallas-Ft.
Worth center as a workload. We identified consistency points
within the application, then configured the system to catch
addressing exceptions, perform the consistency checks and
repair in the fault handler, then restart from the last consistency
point. Each consistency check and repair takes approximately
3 milliseconds, which is an acceptable repair time in that
it imposes no performance degradation that is visible in the
graphical user interface that displays the aircraft information.

Without repair, CTAS fails because of an addressing excep-
tion. With repair, it continues to execute in a largely acceptable
state. Specifically, the effect of the repair is to potentially
change the origin or destination airport of the aircraft with the
faulty flight plan processing. Even with this change, continued
operation is clearly a better alternative than failing. First, one
of the primary purposes of the system (visualizing aircraft
flow) is unaffected by the repair, and continued execution
enables the system to provide this functionality to the con-
troller even in the presence of flight plan processing errors.
Second, only the origin or destination airport of the plane
whose flight plan triggered the error is affected. All other
aircraft (during the recorded feed, the system is processing
flight plans for several hundred aircraft) are processed with no
errors at all, enabling the system to deliver useful trajectory
prediction and scheduling functionality for those aircraft. And
finally, once the aircraft in question leaves the center, its data
structures are deallocated from the system, which is then back
to a completely correct state. One improvement that would
further improve the utility of the repaired system is a way to
visually identify aircraft with repaired flight plan information.
We are currently exploring ways to leverage existing GUI
functionality to make this happen.

C. A Linux File System

Our Linux file system application implements a simplified
version of the Linux ext2 file system [22]. The file system, like
other Unix file systems, contains bitmaps that identify free and
used disk blocks [11]. The file system uses these disk blocks
to support fast disk block and inode allocation operations.

Our consistency constraints are that the inode and block
bitmap blocks, the directory block, and the inode table blocks
exist; and that these blocks are consistent with each other and
a variety of other constraints. The specification contains 122
lines, of which 53 lines contain structure definitions. Because
the structure of such file systems is widely documented in
the literature, it was relatively easy for us to develop the
specification.

The static termination analysis verified that repairs for the
Linux file system specification would always terminate. The
constraints in this example are not independent as the action of
repairing one constraint may result in the violation of another

constraint. However, the dependency graph for this example
is a tree. For any given action to repair a constraint, only a
finite number of additional repair actions are required to repair
any additional constraints that the original repair may have
violated. We found that the restrictions that the termination
analysis places on the constraints did not interfere with writing
the specification.

In all of our tested cases, the algorithm is able to repair
the file system and the workload correctly runs to completion.
Without repair, files end up sharing inodes and disk blocks
and the file contents are incorrect. For a file system with 1024
8KB blocks, our repair tool takes 1.5 seconds to construct the
file system model, check the consistency of the model, and
repair the file system.

D. Freeciv

Freeciv is an interactive, multi-player game available at
www.freeciv.org. The Freeciv server maintains a map of the
game world. Each tile in this map has a terrain value chosen
from a set of legal terrain values. Additionally, cities may be
placed on the tiles. Our consistency constraints are that tiles
have valid terrain values, a given city has exactly one location,
cities are not in the ocean, and that the location of a city on
the map is consistent with the location the city has recorded
internally.

The specification consists of 218 lines, of which 173 lines
contain structure definitions. The primary obstacle to devel-
oping this specification was reverse engineering the Freeciv
source (which consists of 73,000 lines of C code) to develop
an understanding of the data structures.

Although the constraints for the Freeciv example are not
independent (the repair action for one constraint may violate
another), the constraint dependency graph is a tree. As a
result, no infinite repair chains are possible, and the static
termination analysis verifies that repairs for the Freeciv specifi-
cation always terminate. We found that the restrictions that the
termination analysis places on the constraints did not interfere
with developing the specification.

In all of the test games, our repair tool terminated and
was able to successfully repair the introduced inconsistencies,
enabling the game to execute to completion (although the game
played out differently because of changed terrain values). For a
map of 4,000 tiles, our repair tool took 6.7 seconds to construct
the model, check its consistency, and repair the game map.

E. Microsoft Office File Format

Microsoft Office files consist of several virtual streams, each
of which contains data for some part of the document. Each
file also contains a file allocation table (FAT), which identifies
the location of each stream within the file. Each virtual stream
consists of a chain of blocks in the file. The file allocation
tables consist of an array of integers, with one integer per
block in the file. For each block in the file, these integers
indicate which block is next in the chain or whether the block
is unused, terminates the chain, or stores part of the FAT.

Based on information available at http://snake.cs.tu-
berlin.de:8081/∼schwartz/pmh/, we developed a specification
that captures the following consistency constraints: that blocks
are not shared between chains, that the file has the correct
number of FAT blocks for its size, that FAT blocks are
marked as such in the FAT, that the FAT contains valid block
numbers, and that chains are appropriately terminated. The
specification consists of 94 lines, of which 71 lines contain
structure definitions. The availability of documentation made
it straightforward to develop the specification.

The static termination analysis verified that repairs for
the Word document’s specification would terminate. This is
because the action of repairing one constraint in this appli-
cation does not violate any other constraints. We found that
the restrictions that the termination analysis places on the
constraints did not interfere with writing a specification. In
our test cases, the repair tool terminated for each damaged
Word file and was able to successfully repair the file. Without
repairs, Word refused to read most of the damaged files. For
a 150KB file, our repair tool takes 8.4 seconds to construct
the model, check the consistency of the model, and repair the
file.

VII. R ELATED WORK

Software reliability has been an important area for many
years. Most research has focused on preventing or eliminating
software errors, with the approaches ranging from enhanced
software testing and validation to full program verification.
Software error detection has become an especially active area
in recent years [7], [8], [15], [6].

In contrast, our research goal is to enable software to survive
errors by restoring data structure consistency. The remainder
of this section focuses on other error recovery techniques.

A. Manual Detection and Repair Systems

Researchers have manually developed several systems that
find and repair data structure inconsistencies. File systems
have many characteristics that motivate the development of
such programs (they are persistent, store important data, and
acquire disabling inconsistencies in practice). Developers have
responded with utilities such as Unix fsck and the Norton
Utilities that attempt to fix inconsistent file systems.

The Lucent 5ESS telephone switch and IBM MVS oper-
ating systems are two examples of critical systems that use
inconsistency detection and repair to recover from software
failures [16], [19]. The software in both of these systems
contains a set of manually coded procedures that periodically
inspect their data structures to find and repair inconsistencies.
The reported results indicate an order of magnitude increase
in the reliability of the system [12]. Researchers have also
developed a domain-specific language for specifying these
procedures for the 5ESS system [14]. The goal is to enhance
the reliability and reduce the development time of the incon-
sistency detection and repair software. The 5ESS system has
also served as the platform for PRL5, a declarative constraint
specification language [18], and its compiler, which generates

code to automatically check the consistency of a relational
database used to store some it its information [13]. The
compiler can also generate, for each operation, the weakest
precondition required to ensure that the operation preserves
the consistency constraints. Although the generated code does
not perform any repairs, the consistency checking alone is
valuable enough to justify its presence.

These successful, widely used systems illustrate the utility
of performing inconsistency detection and repair. We see our
use of declarative specifications coupled with automatically
generated detection and repair code as representing a signifi-
cant advance over current practice, which relies on the manual
development of the detection and repair code. Our approach
enables the developer to focus on the important data structure
constraints rather than on the operational details of devel-
oping algorithms that detect and correct violations of these
constraints. We believe our specification-oriented approach
will make it much easier to develop reliable inconsistency
detection and repair software. It also places the field on a
firmer foundation, since it is based on a set of properties that
the repair algorithm is designed to deliver rather than on a
set of hand-coded repair routines whose effect may be more
difficult to determine.

B. Integrity Maintenance in Databases

Database researchers have developed integrity management
systems that enforce database consistency constraints. One
goal is to enable the system to incorporate the effects of a
transaction that leaves the database in an inconsistent state —
instead of aborting the transaction, the integrity management
system repairs the state from the end of the transaction to
eliminate any inconsistencies. These systems typically operate
at the level of the tuples and relations in the database, not the
lower-level data structures that the database uses to implement
this abstraction.

One approach is to provide a system that assists the de-
veloper in creating a set of production rules that maintain
the integrity of a database [5]. Each production rule consists
of a triggering component and a repair action to execute
when the rule is triggered. The system automatically generates
the triggering components of the production rules, using a
triggering graph to check if repairs will terminate. The system
relies on the developer to provide the actual repair actions; if
the developer incorrectly specifies a repair action, the system
may fail to maintain the integrity of the database.

This approach has been extended to enable the system to
automatically generate both the triggering components and the
repair actions [4]; the resulting system can automatically gen-
erate repairs that insert or remove tuples to or from a relation.
The specification language can express similar properties as
our internal constraint language, but the termination analysis
is less precise. For some constraints the system may generate
production rules that fail to terminate. For example, the system
cannot automatically generate terminating repairs for a system
of constraints that require a relation to be a function, then
further constrain this function. Because of differences in the

repair algorithms, our system is able to enforce these kinds of
constraints.

Researchers have also developed a database repair system
that enforces Horn clause constraints and schema constraints
(which can constrain a relation to be a function) [25]. The
system includes an interactive tool, which can help developers
understand the consequences of repairing constraint violations.
Our system supports a broader class of constraints — logical
formulas instead of Horn clauses. It also supports constraints
which relate the value of a field to an expression involving
the size of a set or the size of an image of an object under a
relation. Finally, it uses partition information to improve the
precision of the termination analysis, enabling the verification
of termination for a wider class of constraint systems.

It is also possible to apply constraint enforcement to struc-
tured documents [20]. This system accepts a set of consistency
properties expressed in first-order logic, generates a set of re-
pair actions for each constraint, and then interactively queries
the user to select a specific repair action for violated con-
straints. Because the system performs no termination analysis,
it is possible for infinite repair cycles to occur.

C. Self-Stabilizing Algorithms

Researchers in the area of self-stabilizing algorithms have
developed distributed algorithms that eventually converge to
a stable state in spite of perturbations [10]. Our research
goal differs in that 1) we aim to provide a general-purpose,
specification-based inconsistency detection and repair tech-
nology for arbitrary data structures (as opposed to designing
individual algorithms with desirable constraints), and 2) we
are willing to accept potentially degraded behavior as the
price of obtaining this generality. In some cases, however, our
data structure repair algorithm may make the global program
behave in a self-stabilizing way. In particular, if the effect
of the repair is eventually flushed out of the system (as in
the CTAS benchmark), the data structures eventually converge
back to a state that has no trace of the error or the repair.

D. Traditional Error Recovery

Error recovery has been an important topic ever since the in-
ception of computer science as a field. One standard approach
avoids transient errors by simply rebooting the system; this
is perhaps the most widely practiced form of error recovery.
Checkpointing enables a system to roll back to a previous
state when it fails. Transactions support consistent atomic
operations by discarding partial updates if the transaction fails
before committing [12]. Database systems use a combination
of logging and replay to avoid the state loss normally asso-
ciated with rolling back to a previous checkpoint. In effect,
the log serves as a redundant, very simple data structure
that can be used to rebuild the more sophisticated internal
database data structures whenever they become inconsistent.
There has recently been renewed interest in applying many of
these classical techniques in new computational environments
such as Internet services [21]. One of the techniques that
arises in this context, recursive restartability, composes large

systems out of many smaller modules that are individually
rebootable [3]. The goal is to build systems in which faults
can be isolated at the module level by rebooting.

Our approach differs from these classical approaches in that
it is designed to repair inconsistent data structures in place
and continue executing rather than roll back to a previous
state. This approach avoids several problems associated with
checkpointing. One potential problem is that the checkpointed
state may contain latent inconsistencies that become visible
only long after they are introduced. As long as these incon-
sistencies are present in the checkpointed state, the execution
will remain vulnerable to errors triggered by the inconsistency.
Another potential problem is that the current operation may
trigger the same error even after replacing the current state
with a previous checkpoint. Note that it is possible to apply
our techniques to improve checkpoint-based approaches, either
by checking for consistency before checkpointing the current
state, or by repairing inconsistent checkpoints.

Our approach can enable systems to recover even from per-
sistent errors such as file system corruption. Unlike approaches
based on checkpointing and replay, it may preserve much of
the volatile state and avoids the need for logging and replay. It
can also keep a system going without the need to take it out of
service while it is rebooting. Finally, our approach differs in
that we do not attempt to recover to a state that a (hypothetical)
correct program would produce. Instead, our goal is to recover
to a state consistent enough to permit the continued operation
of the program within its design envelope. In many cases, the
system will, over the course of time, flush the effects of errors
out of its data structures and return to a completely correct
state.

E. Specification Languages

The core of our specification language is the internal con-
straint language. The basic concepts in this language (objects
and relations) are the same as in object modeling languages
such as UML [23] and Alloy [17], and the constraint language
itself has many of the same concepts and constructs as the con-
straint languages for these object modeling languages, which
are specifically designed, in part, to be easy for developers to
use. In addition to these ease of use considerations, the relative
simplicity of the basic object modeling approach facilitates the
automatic repair process. Because all structural properties are
expressed in terms of cardinality constraints involving sets of
objects and relations, it is possible to repair violations of these
constraints by simply removing or inserting objects or pairs
of objects into sets or relations.

Standard object modeling approaches have traditionally
been used to help developers express and explore high-level
design properties. Our approach, in contrast, also had to
establish a precise connection between the low-level, highly
encoded data structures that appear in many programs and
the high-level properties captured in the internal constraint
language. Our model construction and external constraint lan-
guages provide a formal and quite flexible connection between
these data structures and the model. These languages may

therefore serve as an important component of future design
conformance systems, which check that a program conforms
to its high-level design.

Note also that factoring the consistency check and repair
process into model construction followed by model check and
repair isolates the treatment of the low-level details of the data
structure within the model construction and external constraint
enforcement phases. This isolation enables the application of
our general-purpose consistency checking and repair algo-
rithms to the full range of efficient, low-level, heavily-encoded
data structures.

VIII. F UTURE WORK

Our current approach separates the repair process into two
activities: application of the internal constraints to repair the
model followed by application of the external constraints to
translate the model repairs into actions that repair the concrete
data structures. It is currently the responsibility of the devel-
oper to ensure that the external constraints correctly translate
the model repairs — if the external constraints are incorrect,
the repaired data structures may be arbitrarily inconsistent even
though the model satisfies all of its internal constraints. In
particular, running the model construction algorithm on the
repaired data structures may deliver a new and different model
that violates the internal consistency constraints.

Note also that the external constraints are largely redun-
dant — the model definition rules by themselves should, in
principle, contain all the information necessary to establish
the connection between the data structures and the model.
We are therefore developing a technique that uses goal-
directed reasoning on the model definition rules to eliminate
the external consistency constraints altogether. This technique
will guarantee the connection between the model and the data
structures, eliminating potential anomalies caused by the use
of external consistency constraints.

Separating the internal and external consistency constraints
in our current formulation substantially simplifies the ter-
mination analysis — this separation enables the termination
analysis algorithm to reason only about the effect of actions
that operate on the model. The application of the external
consistency constraints takes place after the model repair, and
the algorithm that applies these constraints always terminates.

Using goal-directed reasoning to replace the external con-
sistency constraints would force the termination analysis to
consider the connection between the data structures and the
model. In addition to reasoning about the effect of actions
that update the model, it would also have to reason about the
interaction between the data structure updates and the model
updates. We see this additional complexity as (one of) the
inevitable technical difficulties associated with eliminating the
external consistency constraints.

IX. CONCLUSION

Data structure inconsistencies are an important source of
software errors. Our implemented system attacks this prob-
lem by accepting a data structure consistency specification,

then automatically detecting and repairing data structures that
violate this specification. Our experience indicates that our
system is able to deliver repaired data structures that enable the
corresponding programs to continue to execute successfully
within their designed operating envelope. Without repair, the
programs usually fail.

Furthermore, we believe that such systems should provide
some degree of confidence that they will successfully repair
damaged data structures. Our algorithm provides actions that
can successfully repair any violated constraint; our analysis
guarantees that a repair algorithm that uses these actions will
always terminate. These facts may increase the confidence that
developers have in the ability of our algorithm to use their
specifications to successfully repair their data structures.

We believe that our research provides a principled mecha-
nism for introducing repair into software systems, enabling a
more reliable and robust concept of system behavior.

X. ACKNOWLEDGMENTS

This research was supported in part by a fellowship from
the Fannie and John Hertz Foundation, DARPA Contract
F33615-00-C-1692, NSF Grant CCR00-86154, and NSF Grant
CCR00-63513.

REFERENCES

[1] Center-tracon automation system.
http://www.ctas.arc.nasa.gov/ .

[2] P. Broadwell, N. Sastry, and J. Traupman. FIG: A prototype tool
for online verification of recovery mechanisms. InWorkshop on Self-
Healing, Adaptive and self-MANaged Systems, June 2002.

[3] G. Candea and A. Fox. Recursive restartability: Turning the reboot
sledgehammer into a scalpel. InProceedings of the 8th Workshop on
Hot Topics in Operating Systems (HotOS-VIII), pages 110–115, Schloss
Elmau, Germany, May 2001.

[4] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic generation
of production rules for integrity maintenance.ACM Transactions on
Database Systems, 19(3), September 1994.

[5] S. Ceri and J. Widom. Deriving production rules for constraint
maintenance. InProceedings of 1990 VLDB Conference, pages 566–
577.

[6] J.-D. Choi and et al. Efficient and precise datarace detection for
multithreaded object-oriented programs. InProceedings of the SIGPLAN
’02 Conference on Program Language Design and Implementation,
2002.

[7] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera : Extracting finite-state models from java source
code. InProceedings of the 22nd International Conference on Software
Engineering, 2000.

[8] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program
verification in polynomial time. InProceedings of the SIGPLAN ’02
Conference on Program Language Design and Implementation, 2002.

[9] B. Demsky and M. C. Rinard. Automatic detection and repair of errors
in data structures. InProceedings of the 18th Annual ACM SIGPLAN
Conference of Object-Oriented Programming, Systems, Languages, and
Applications, October 2003.

[10] E. W. Dijkstra. Self-stabilization in spite of distributed control. In
Communications of the ACM 17(11):643–644, 1974.

[11] B. Goodheart and J. Cox.The Magic Garden Explained:The Internals
of Unix System V Release 4: An Open Systems Design. Prentice Hall,
1994.

[12] J. Gray and A. Reuter.Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

[13] T. Griffin, H. Trickey, and C. Tuckey. Generating update constraints from
prl5.0 specifications. InPreliminary report presented at ATT Database
Day, September 1992.

[14] N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss. Auditdraw:
Generating audits the FAST way. InProceedings of the 3rd IEEE
International Symposium on Requirements Engineering, 1997.

[15] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for
building system-specific, static analyses. InProceedings of the SIGPLAN
’02 Conference on Program Language Design and Implementation,
2002.

[16] G. Haugk, F. Lax, R. Royer, and J. Williams. The 5ESS(TM) switching
system: Maintenance capabilities.AT&T Technical Journal, 64(6 part
2):1385–1416, July-August 1985.

[17] D. Jackson. Alloy: A lightweight object modelling notation. Technical
Report 797, Laboratory for Computer Science, Massachusetts Institute
of Technology, 2000.

[18] D. A. Ladd and J. C. Ramming. Two application languages in software
production. InProceedings of the 1994 USENIX Symposium on Very
High Level Language(VHLL), October 1994.

[19] S. Mourad and D. Andrews. On the reliability of the IBM MVS/XA op-
erating system.IEEE Transactions on Software Engineering, September
1987.

[20] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency man-
agement with repair actions. InProceedings of the 25th International
Conference on Software Engineering, May 2003.

[21] D. A. Patterson and et al. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case studies. Technical Report
UCB//CSD-02-1175, UC Berkeley Computer Science, March 15, 2002.

[22] D. Poirier. Second extended file system.
http://www.nongnu.org/ext2-doc/ , Aug 2002.

[23] Rational Inc. The unified modeling language.
http://www.rational.com/uml .

[24] B. D. Sanford, K. Harwood, S. Nowlin, H. Bergeron, H. Heinrichs,
G. Wells, and M. Hart. Center/tracon automation system: Development
and evaluation in the field. In38th Annual Air Traffic Control Associa-
tion Conference Proceedings, October 1993.

[25] S. D. Urban and L. M. Delcambre. Constraint analysis: A design process
for specifying operations on objects.IEEE Transactions on Knowledge
and Data Engineering, 2(4), December 1990.

[26] J. M. Voas and G. McGraw.Software Fault Injection. Wiley, 1998.

