Static Specification Analysis for Termination of
Specification-Based Data Structure Repair

Brian Demsky Martin Rinard
Laboratory for Computer Science Laboratory for Computer Science
Massachusetts Institute of Technology Massachusetts Institute of Technology

Abstract—We have developed a system that accepts a specA. Detection and Repair

dynamicaly detects and repairs violations of hese constraints. 1t QU @pproach involves two data structure views: a concrete
is possible to write specifications that are not satisfiable or that View at the level of the bits in memory and an abstract view
for other reasons may cause the repair process to not terminate. at the level of relations between abstract objects. The abstract
We present a static specification analysis that determines whether view facilitates both the specification of higher level data
the repair process will terminate for a given specification. structure constraints and the reasoning required to repair any
inconsistencies.

Each specification contains a set of model definition rules

and a set of consistency constraints. Given these rules and

To correctly represent the information that a program magnstraints, our tool automatically generates code that builds
nipulates, its data structures must satisfy key consistency c8ig Model, inspects the model and the data structures to find
straints. If a software error or some other anomaly causes ‘4flations of the constraints, and repairs any such violations.
inconsistency, the basic assumptions under which the softwarE algorlthm operates as follows: _
was deve'oped no |Onger h0|d In th|s case, the Softwareo InconS|Stency Detection:It eVaanteS the constraints to

typically behaves in an unpredictable manner and may even find consistency violations. .
fail catastrophically. « Disjunctive Normal Form: It converts each violated

constraint into disjunctive normal form (a disjunction of
conjunctions of atomic formulas). Each atomic formula
has a repair action that will make the formula true. For
the constraint to hold, all of the atomic formulas in at
least one of the conjunctions must hold.

Repair: The algorithm repeatedly selects a violated con-
straint, chooses one of the conjunctions in that con-
straint’s normal form, then applies repair actions to all of
the atomic formulas in that conjunction that are false. A
repair cost heuristic biases the system toward choosing
the repairs that perturb the existing data structures the
least.

I. INTRODUCTION

Several very successful systems use data structure incon-
sistency detection and repair techniques to improve reliability
in the face of software errors. For example, the Lucent 5ESS
switch and IBM MVS operating systems both use hand-coded
audit and repair procedures to recover from these errors [16],
[19]. The reported results indicate an order of magnitude ®
increase in the reliability of these systems [12]. Similar repair
procedures exist for persistent data structures such as file
systems and application files.

We have developed a new specification-based approach to
the data structure consistency problem [9]. Instead of devel-
oping ad-hoc, hand-coded procedures, the developer provides
a specification of key data structure consistency properti€s. Static Termination Analysis
Our tool processes this specification to automatically generate\yie that the repair actions for one constraint may cause
code that detects, then repairs, any inconsistent data structWiglsher constraint to become violated. If there is a cycle in
Our overall goal is to place repair techniques on a more solighich one constraint may be repaired only to become violated
formal foundation, to decrease the effort required to obtaffy; another future repair, the repair process may not terminate.
a repair system for a given program, and to increase % therefore statically analyze the set of constraints to verify
reliability and predictability of the repair process. the absence of cyclic repair chains that might result in infinite

A complication is that the developer may provide an unsapair loops. If a specification contains cyclic repair chains, the

isfiable Speciﬁcation ora SpeCification whose I’epair algorithfﬁd attempts to prune Conjunctions to eliminate the Cyc|es_
may not terminate. This paper presents a static analysis that,

when provided with an arbitrary specification, determines #- Experience and Contributions

the corresponding repair algorithm will always terminate. In We have used our tool to repair inconsistencies in four
addition to ensuring that the repair process will not looppplications: an air-traffic control system, a simplified Linux
forever, this termination also guarantees that the specificatiile system, an interactive game, and Microsoft Word files.
is satisfiable. All of our specifications were statically verified to generate

repair procedures that terminated. Furthermore, in all of otdefine N 5
benchmark executions, the repair procedure terminates #dgfine M 10
successfully repairs the data structures. struct node {

This paper makes the following contributions: {:]c:dgbjggré;.

o Termination Analysis: It presents a static specification int numAttributes;
analysis that determines if the repair process will always int firstAttrioutes[N];
terminate for a given specification. bool expanded;

.. rest *restAttributes;

o Proof: It presents a proof that acyclicity of the grap
constructed by the static specification analysis impligguct rest {
termination of the corresponding repair algorithm. int restAttributes[M];

. Termination Assurance: It presents an algorithm that,}
when possible, eliminates repair choices that may lead't
infinite repair loops. This algorithm may convert a repair
algorithm that may not terminate to a more restrictive Fig. 1. Structure Definitions
repair algorithm that always terminates.

8de *attributeList;

« Experimental Results: The paper describes our expe-""""" et = “;“ — > “;X‘ -
riences writing specifications and the results of using e . o s
. . . . numAttributes 1 numAttributes 12
our inconsistency detection and repair tool for several . - . .
Iica_tions firstAttributes | 1 II 0 firstAttributes | 7 II 9
app) ') expanded false expanded false
The remainder of the paper is structured as follows. Sec- estALTbutes estALTbUtes
tion 1l presents an example that we use to illustrate our
approach. Section IIl presents the specification language used Fig. 2. Inconsistent Data Structure
to express the consistency constraints. Section IV presents
the inconsistency detection and repair algorithms. Section MibuteList —> [next ——> | next
presents the termination analysis and gives a correctness objectld 1 objectld 3
proof. Section VI presents our experience using automatic data numAttributes| 1 numAtiributes| 5
structure repair in several benchmark applications. Section VI firstAttributes | 1]-+-] 0 firstAttributes | 7{--] 9
discusses related work. Section VIII presents future work; we expanded false expanded false
conclude in Section IX. restAttributes restAttributes
Il. EXAMPLE Fig. 3. Repaired Data Structure

We next present an example that illustrates our approach.
The data structure in the example implements a list that
associates object identifiers with attributes. Figure 1 presentsye focus on the following consistency constraints:
the structure definitions for this data structure. Each node
has a fieldobjectld that stores the object identifier, a
field numAttributes that indicates the number of attributes
stored in the node, an arrdiystAttributes that stores
the firstN attributes for the object (note thathas the value
5), a boolean fieleéxpanded that signals the presence of an
expansion array that may contain an additional M attributes,
and a field restAttributes that optionally contains a
reference to the expansion array.

In our exampleN andMare constants, but we support more] i]
advanced declarations in which such quantities could be stored® Support the expression of these kinds of constraints at
in data structure fields. Figure 2 presents an (inconsistefifj @PPropriate level of abstraction, we allow the developer to
instance of the data structure. ThemAttributes field of SPecify a translation from the concrete data structure repre-
the second node in the list has the value 12, which indicate&ntation into an abstract model based on relations between
the presence of more attributes than will fit in a node, but tffPiects. The developer can then use this model to state some
expanded flag is set to false indicating that no expansiof the desired consistency constraints.
array is present. Furthermore, thesstAttributes pointer Model Construction
is set to null as no expansion array is present. Figure 3 presents
the data structure after repair (the repair algorithm has changedfigure 4 presents the object and relation declarations for
the numAttributes field to 5). our example. There are two sets of objeatedes (with

a subsetfirst) and rests . The next relation models
chains of listnodes . The expanded relation models the

1) Flag Consistency:The expanded flag should only be
set if the expansion array is present.

2) Number of Attributes Consistency: If numAt-
tributes is greater thanN, the expanded flag
should be set and the expansion array should be present.
Furthermore, the number of attributes should not exceed
the total attribute capacity of the nodd+Mattributes).

3) List Structural Consistency: No list node should have
more than one incomingext reference.

set nodes of node: subset first; [for n in nodes], n.expanded=false or

set rests of rest; size(n.restAttributes)=1;
expanded: nodes -> boolean; [for n in nodes], n.numAttributes<=N or
restAttributes: nodes -> rest; n.expanded=true;
numAttributes: nodes -> int; [for n in nodes], n.numAttributes<=N+M;
next: nodes -> nodes; [for n in nodes], size(next.n)<=1,

[for n in nodes], size(n.numAttributes)=1 and
Fig. 4. Object and Relation Declarations . . size(n.expanded)=1;
[, size(first)=1,;
[l, true => attributeList in first;
[for n in nodes], 'n.next=NULL =>
<n, n.next> in next;
[for n in nodes], 'n.next=NULL =>

n.next in nodes;

Fig. 6. Internal Consistency Constraints

[for n in nodes], In.restAttributes=NULL => are functions. The final constraint ensures that there is at least
n.restAttributes in rests; onenode in the list.
[for n in nodes], InrestAttributes=NULL => The repair algorithm repeatedly traverses the model to find
for 1 in :Ondg.sr]es:futtenbies> in restAttributes; a constraint and a set of variable bindings that falsify the
<n,n.numAttributes> in numAttributes: constraint. It then executes repair actions that update the model
[for n in nodes], true => so that the constraint is satisfied for that variable binding. In
<n,n.expanded> in expanded; our example, the repair algorithm detects that the secode
in the list in Figure 2 violates the second constraint — the
Fig. 5. Model Definition Declarations and Rules numAttributes field is greater thaiN, and theexpanded

flag is false. Assume that the repair algorithm repairs this
violation by setting theexpanded flag in this node tdrue .
expanded flag status of the object. ThestAttributes But this repair causes the node to violate the first constraint. If
relation mapsnodes to the correspondingests objects. the repair action for this newly introduced inconsistency sets
The numAttributes relation mapshodes to the number the expanded flag back tofalse , the repair algorithm is
of attributes they contaih. trapped in an infinite repair loop.
Figure 5 presents the model definition rules. Each rule|n some cases, restricting the repair choices may ensure
consists of a quantifier that identifies the scope of the rule t@mination. In our example, repairing violations of the second
guard whose predicate must be true for the rule to apply, agénstraint by setting theumAttributes field to be less

an inclusion constraint that specifies either an object that msan or equal td\ will ensure that the repair always terminates.
be in a given set or a tuple that must be in a given relation.

Our tool processes these rules to produce an algorithm tHat, Reasoning About Termination

Starting from theattributeList Variable, traces out the QOur a_|gorithm uses amterference graph:o reason about
next relation and computes the setsruides andrests the termination of the repair process. The nodes in this graph
objects. correspond to the conjunctions in the disjunctive normal form

of the constraints; there is a directed edge between two
conjunctions if the repair action for an atomic formula of the
The developer uses the model to state the data structfirst conjunction may falsify the second conjunction, or if the
consistency requirements: we call such constraintsrnal repair action may increase the scope of one of the quantifiers
constraints. Figure 6 presents the internal constraints for mfrthe second conjunction. If there are no cycles in this graph,
example. The first constraint states that if the expanded flégn the repair process will eventually terminate.
is set for anode, then thenode must have an expansion Figure 7 presents the interference graph for our ex-
array. The second constraint states that the expanded #amgple? The possibility of an infinite repair loop shows
must be set for eachode with more thanN attributes. The up as a cycle between tha&.expanded=true and
third constraint states that eaolbde has at mostN+Mtotal n.expanded=false nodes.
attributes. The fourth constraint states that eactle has at ~ Our algorithm attempts to eliminate such cycles by remov-
most one reference from text field.? The fifth constraint ing nodes (and their incident edges) from the graph, subject to
ensures that theumAttributes andexpanded relations the constraint that it must leave at least one node per constraint
in the graph. In our example, the algorithm eliminates the

lin this example the mc_nde_l corresponds quite closely to the concreigcle by removing then.expandedztrue node. Figure 8
data structure, however this is not always the case. In general, we have . .
found the model translation useful for two purposes. First, it supports thR¥€Sents the resulting acyclic graph.
clean expression of important relationships hidden in many low-level, heavily
encoded data structures. Second, it supports the use of synthesized abstrégi this figure, the conjunctions from a constraint whose disjunc-
relations that are not directly present in the data structure but that facilitaige normal form has multiple conjunctions appear together within the
the expression of important consistency properties. same dotted box. The figure shows thHatnumAttributes<=N or

2We use the notationext.n to refer to the image of under the inverse n.expanded=true) is the disjunctive normal form of the second con-
of the next relation, i.e., the set of all objects such that{o,n) € next . straint.

B. Consistency Constraints and Repair Algorithm

size(headernode)=1

size(n.numAttributes)=1 and
size(n.expanded)=1

'
'
'
1
1
: n.numAttributes<=N+M
'
'
'
'
'

Fig. 7. Interference Graph With Cycle

|
|

|

1

! . ..

| o numAtiributes<=N-+M @ size(n.numAttributes)=1 and
! . _ size(n.expanded)=1

|

|

\

|

Fig. 8. Interference Graph After Cycle Elimination

We translate the node removals into repair algorithm restric- I1l. SPECIFICATION LANGUAGE
tions by simply preventing the repair algorithm from executing o, specification language consists of several sublanguages:

the repair actions designed to satisfy the conjunction COrg-gu\\ctyre definition language, a model definition language,

sponding to the node. If a constraint containing a conjunction, he |anguages for the internal and external constraints.
corresponding to a removed node is violated, the restricted

repair algorithm simply satisfies a different conjunction fronA. Model Definition Language

that constraint. The model definition language allows the developer to

declare the sets and relations in the model and to specify
D. External Constraints the rules that define the model. A set declaration of the form
set S of T partition S 1,...,S, declares a se$ that
External constraints may reference both the model arzbntains objects of typ€, whereT is either a primitive type or
the concrete data structures. Figure 9 presents the extemsfruct type declared in the structure definition part of the
constraints in our example. These constraints capture #mecification, and that the s8thasn subsetsS,, ..., S, which
requirements that the sets and relations in the model placetogether partitionS. Changing thepartition keyword to
the values in the concrete data structures. Repairs that enf@subsets removes the requirement that the sub&ts.., S,
these constraints translate the model repairs into concrete dadition S but otherwise leaves the meaning of the declaration
structure repairs by overwriting any inconsistent values in thmchanged. A relation declaration of the forefation R:
data structure. In our example, the external constraints caBe>S , specifies a relation betweeh and S,.

the numAttributes field to be set to 5. The model definition rules define a translation from the
o _ _ concrete data structures into an abstract model. Each rule has
[for n in first] true => attributeList=n; a quantifier that identifies the scope of the rule, a guard whose

[for <n,nl> in next], true => n.next=nl;
[for <n,e> in expanded], true =>
n.expanded=e;

predicate must be true for the rule to apply, and an inclusion
constraint that specifies either an object that must be in a

[for <n,r> in numAttributes], true => given set or a tuple that must be in a given relation. Figure 10
n.numAttributes=r; presents the grammar for the model definition rules.

[for <n,e> in restAttributes], true =>
n.restAttributes=e; B. Pointers

Depending on the declared type in the corresponding struc-
ture declaration, an expression of the fodhf in a model
definition rule may be a primitive value (in which cagef

Fig. 9. External Consistency Constraints

C = QC|G=1 c = Q,C|B
Q := for Vin S|for (V,V)in R| Q = for Vin S|for V=FE . E
for V=FE . FE B := Band B|Bor B|'B|(B)|
G = Gand G|Gor G|/G|E=E|E<E/|true | VE=E|VE<E|VE<=E|VE>E|
(G)|Ein S|(E,E)in R VE >=FE|Vin SE|size (SE)=C|
I = Ein S|(E,E)in R size (SE)>=C|size (SE)<=C
E = V|number | string| E.field | VE := VR
E.fieldlE||E-E|E+E|E/E|E%E E := V|number|string| E+E|E—-E|ExE|
E/E | E.R |size (SE) | (E)
SE := S|V.R|RV

Fig. 10. Model Definition Rule Language

Fig. 11. Internal Constraint Language

denotes the value), a neststtuct contained withinE' (in
which caseFE.f denotes a reference to the nessddict),

. . . R = QR|G=C
or a pointer (in which casé’.f denotes a reference to the Q
G
c

for Vin S|for (V,V)in R|for V=FE . E
Gand G|Gor G|'\G|E=E|E<E |true
HE.field = E | HE.field[E)|= E | V=E

V| HE.field | HE.field[E)

struct to which the pointer refers). It is of course possible
for the data structures to contain invalid pointers. We next
describe how we extend the model construction algorithm to g g

deal with invalid pointers. E := V|number|string| ER|E+FE|E—F |
First, we instrument the memory management system to ExE|E/E |size (SE) |element E of SE
produce a trace of operations that allocate and deallocate mem- s := S|V.R|R.V

ory (examples includenalloc , free , mmap andmunmay.
We augment this trace with information about the call stack
and segments containing statically allocated data, then use this Fig. 12. External Constraint Language
information to maintain a map that identifies valid and invalid
regions of the address space.)

We next extend the model construction software to checq<' External Constraint Language
that eachstruct accessed via a pointer is valid before it Figure 12 presents the grammar for the external constraint
inserts thestruct into a set or a relation. All valigtruct s language which is used to translate model repairs to the
reside completely in allocated memory. In addition, if tw&oncrete data structures. Each constraint has a quantifier that
valid struct s overlap, one must be completely containeldlentifies the scope of the rule, a guaithat must be true
within the other and the declarations of batinucts must for the constraint to apply, and a conditi@h that specifies
agree on the format of the overlapping memory. This approa@ither a program variable, a field in a structure, or an array
ensures that only validtruct s appear in the model. element must have a given value.

A final complication is that expressions of the forfhf.g IV. ERRORDETECTION AND REPAIR

may appear in guards. K.£ is not valid, £.£.g is considered o ronair algorithm updates the model and the concrete
to be undefined. Expressions involving undefined values algg, giryctures so that all of the internal and external con-
have undefined values. Comparisdi (< E», 1 = E2) and - gyaints are satisfied. The repair is organized around a set of

set inclusion £in S, (Ey, Ep) in R) predicates involving on4ir actions that update the model and/or the data structures

undefined values have the special vatugybe. We use three- ' carce atomic formulas to be true. The algorithm has two

valued logic to evaluate guards involvimgaybe. phases: during the internal phase, it updates the model so that
Our model construction algorithm is coded with expliciit satisfies all of the internal constraints. During the external

pointer checks so that it can traverse arbitrarily corrupted dgdfase, it updates the data structures to satisfy all of the external
structures without generating any illegal accesses. It also ugggstraints.

a standard fixed point approach to avoid becoming involved

in an infinite data structure traversal loop. A. Error Detection in the Internal Phase
The algorithm detects violations of the internal constraints

by evaluating the constraints in the context of the model.
C. Internal Constraints This evaluation iterates over all values of the quantified vari-
ables, evaluating the body of the constraint for each possible
Figure 11 presents the grammar for the internal constraggmbination of the values. If the body evaluates to false, the
language. Each constraint consists of a sequence of quantifigg®rithm has detected a violation and has computed a set of
Q1,...,Qy followed by bodyB. The bodyB uses logical bindings for the quantified variables that make the constraint
connectives (and, or, not) to combine propositidhs false.

B. Error Repair in the Internal Phase 2) Inequality Propositions:Inequality propositions are of
eformV.R=FE,/WR=FE, VR<E VR<=EFEV.R>
, or V.R >= E. The repair actions calculate the value of
, then updaté/.R to be the closest value that satisfies the
rix(roposition.

The repair algorithm is given a constraint and the set
variable bindings that falsify the constraint. The goal is t
repair the model to satisfy the constraint. The algorithm fir

converts the constraint to disjunctive normal form, so that . . . -
3) Inclusion Propositionsinclusion propositions are of the

consists of a disjunction of conjunctions of atomic formulai Vin SE whereSE i tin th del lati
Each atomic formula has a repair action that the algorithm ¢ gim vn where IS a Set In the model or a refation

use to modify the model so that the atomic formula becomgépression. The repair actions simply add or remove (in the
qase of negation)’ to the set or the appropriate pair to the

true. The repair algorithm chooses one of the conjunctio % i Thev th ; di dates to oth
and applies repair actions to its atomic formulas until thrgtalton. tey then ptta_:_orm cdorret')spotn mgtup ta ('Estho 0 §r|
conjunction becomes true and the constraint is satisfied Zfisnitoiorr?s ore the partition and subset constraints in the mode

that set of variable bindings. . . . :
: 9 : : . 4) Choosing The Conjunction to Repaiwhen faced with
There are three kinds of atomic formulas in the internal con- . . ; .
. . o : . " a choice of false conjunctions, the algorithm uses a cost
straint language: size propositions, inequality propositions, apd ; :
. . o . -function to choose which to repair. This cost function assigns
inclusion propositions. Each atomic formula can occur wit

) L : . : a cost to each repair action; the cost of repairing a conjunction
or without negation; the actions repair the atomic formulas as_. . - -
follows: IS simply the sum of the repair costs for all of its unsatisfied

. . . . atomic formulas. This approach is designed to minimize the
1) Size Propositions:Size propositions are of the fc’rmnumber of changes made to the model. We have also tuned
size (SE) = 1, lsize (SE) = 1, size (SE) >= 1, or

the repair costs to discourage the removal of objects from sets

size (SE) <= 1 where SE can be one of the sets in the;ny yples from relations. The idea is to preserve as much
model or a relation expression of the forR.V or V.R. It

) .) : - _ information from the original data structures as possible.
is straightforward to generalize size propositions to involve

arbitrary constant sizes. C. Developer Control of Repairs

If SE'is a set in the model, the repair action simply adds or The repair algorithm often has multiple options for how
removes elements to satisfy the constraint. The action ensu@satisfy a given constraint; these options may translate into
that these changes respect any partition and subset constrgjiifgrent repaired data structures. We recognize that some
between sets in the model. Note that this basic approach glggaijr actions may produce more desirable data structures
works for negated size propositions. than other repair actions, and that the developer may wish

In general, the repair action may need a source of new influence the repair process. We have therefore provided
elements to add to sets to bring them up to the specified sigge developer with several mechanisms that he or she can
Supersets of the set (as specified using the model definitigse to control how the repair algorithm chooses to repair an
language from Section llI-A) are one potential source. F@fconsistent data structure.
struct s, memory allocation primitives are another potential 1) Repair Costs:The first mechanism is based on a repair
source. For primitive types, the action can simply synthesiggst associated with each atomic formula. At each step, the re-
new values. We allow the developer to specify which sourggiir algorithm must choose one of several violated constraints
to use and, in the absence of such guidance, use heuristicgtgepair. Each constraint can be represented as a disjunction of
choose a default source. conjunctions; repairing any of these conjunctions will ensure

Note that the repair may fail if the system is unable tthat the constraint is satisfied. The repair of each conjunction,
allocate a nevstruct (typically because it is out of memory)in turn, requires the execution of a repair action for each of its
or find a new value within the specified range. Note also thaiblated atomic formulas. The repair algorithm sums the costs
the model definition language allows the developer to speciiyr each of the repair actions, then chooses the conjunction
partition and subset inclusion constraints between the differenith the least repair cost.
sets in the model. When our implementation changes element$Ve allow the developer to specify the repair cost for each
in one set, it appropriately updates other sets to ensure thatdiemic formula. Developers may use this mechanism to, for
model continues to satisfy these partition and subset inclusiexample, bias the repair process toward preserving as much
constraints. of the information present in the original inconsistent data

If SE is an expression of the forrR.V or V.R, the repair structure as possible. One way to accomplish this goal is
action simply adds or removes tuples to satisfy the constraitd. assign higher costs to actions that remove objects from
Note that because the elements in the tuples must be parsefs and pairs from relations and lower costs to actions that
the corresponding domain and range of the relation, a repiaisert objects and pairs. The developer may also choose to
action that adds tuples to the relation may also need to aalkign lower costs to repair actions that change object fields
elements to the domain or range sets of the relation. Therefave set flags and higher costs to repair actions that change the
repair actions that add tuples to relations face the same isstefsrencing relationships.
associated with finding new elements as the repair actions thatVe have isolated the choice of which violated constraint
add elements to sets. to repair inside a separate procedure in our implementation.

It is straightforward to allow the developer to provide us of a quantifier of the second conjunction. This can
with a partial implementation of this procedure — each time happen in two ways: the repair may add an object to
there is a choice to be made, our system would invoke the the quantifier's set or the repair may change the value of
developer’s implementation, which would return a subset of one of the bounds that defines the integer range of the
the choices that it found acceptable. Our system would then quantifier.
use the repair costs to choose the least costly alternative Interference: There is an edge from one conjunction to
from within that subset. In principle, this mechanism gives another conjunction if applying an action to repair one of
the developer complete control over the choice should he or the atomic formulas in the first conjunction may falsify
she choose to exert this control. To obtain even more control, one of the atomic formulas in the second conjunction.
the developer could specify a hand-coded repair procedure to The foundation of this construction is a procedure that
invoke when the constraint is violated. When the hand-coded determines if one atomic formula mamnterfere with
repair terminates, the system would verify that the constraintis another, i.e., if repairing the first atomic formula may
satisfied, then (once again under developer control) optionally falsify the second. The interference checking algorithm
invoke its own standard repair algorithm if the hand-coded first checks if the two atomic formulas involve disjoint
repair failed to satisfy the constraint. parts of the model; if so, they do not interfere. If the
2) Set Membership ChangeS&ome repair actions involve two atomic formulas may involve the same state, the
adding an object to a set. To execute such an action, the system algorithm reasons about the specific repair action and
must obtain a source for the object. The two standard sources the atomic formula. If the repair action is guaranteed to
are a memory allocator and another set of objects. The default leave the model in a state that satisfies the second atomic
choice is to use a memory allocator for structures and another formula, there is no interference.
set of objects for basic types such as integers and booleans.
For each set in the model, we allow the developer to specify Rules For Computing Interference

the source of objects for that set. We also allow the developer, . . .
In this section, we formally present the interference graph.

to similarly control the source of pairs added to relations. The internal constraint specification consists of a set of con-

Note that our specifications also allow partition constraints, _. :
. straints,C; ...C,,. Each of these constraints may be represented
which specify that a collection of subsets must partition
. ; In disjunctive normal form as a disjunction of conjunctions,
another set. Membership changes in one of the sets often entail 01,0 Q. /. d; with conjunctionsd; — A, 3
membership changes in some other sets. For example, whep' by w2y W V7) k PRg

&ntifiers Q;, and each atomic formulaly; is either a
.) . e . iy y
repair action adds a new object to the partitioned set, it mu lrfopositionP or its negation.

also add that object to one of the subsets that partition tReThe algorithm constructs an interference grapfiom these

original set. In such cases, we allow the developer to control . - . T
X . . onstraints. We show that acyclicity of this graph implies
which sets objects are added to or removed from to satisfy the ~." . :
i . ermination of the repair procedure. We represent the graph
partition constraints.

3) Critical Constraints: In some cases, the developer mag: & set of pairs of nodes C N x N, where N is the set
| ! P %f nodes. Each node corresponds to one unigue conjunction:

wish to identify critical constraints or constraints that are so _. . . ; :
crucial to the continued successful execution of the program. .. & conjunctiont;, M(d;) is the corresponding node.
Programm e define the functior@S(V) = S to map the variablé”

that if they are violated, the best strategy is to simply terminate X e :
or suspend the execution and await external intervention. J\?ethe, §etS that the yanablquuanuﬁes over. If the variable .
antifies over an integer range, the map returns a special

allow the developer to flag such constraints in the specificatigh’ . . ; . .
P 9 P } ken that is contained in no other set. We define the functions

If the consistency checker finds that a critical constraint g . . X .
violated, it suspends the program andR to map relations to their corresponding domain and
' ' range sets, respectively.

V. TERMINATION ANALYSIS 1) Set Expansion Interferenc&Vhen the repair algorithm

The acyclicity checking algorithm first converts the body diepairs a constraint V|0Iat|0n,. the algorithm may add new
each constraint into disjunctive normal form. It then construcieMents to some of the sets in the model. As a result of this
aninterference graphThere is one node in the graph for eacfddition, some of the quantifiers may bind to new elements,
conjunction in the disjunctive normal form of each constrain{1créasing the number of constraints involving the element that
These nodes are arranged into clusters, with exactly one cludfsSt be satisfied. N o _ _
for each constraint. A cluster contains all of the nodes for the @ Subset and Partition ImplicationsBefore discussing

conjunctions making up the constraThe graph contains the procedure for determining whether a given atomic formula
the following edges: extends the scope of a quantifier, we need to define a variety

Quantifier Scope: There is an edge from a conjunctionOf functions that abstract various portions of our system.

to a second conjunction if repairing one of the atomic,_ _ , _ .
This is true if the first atomic formula implies the second. It may also be

formulas in the first conjunction may increase the SCORGe even in some cases when the second atomic formula implies the first.

For example, the two constraingize (S) >= 1 andsize (S) =1 do not
4The clusters for the example (Figure 7) are surrounded by dashed boxeterfere — the repair action faize (S) >= 1 makessize (S) = 1.

We define the functio@ ' to capture the transitive closure IF(Viin Sp,for Vain So)
of the subsetting relationg N (S, S2) is true if and only _ _
if the subsetting relations require thét.e € S; = e € So. ?;E!‘Yli'n” ‘fl}{o;orvﬂ/'“insg)
The repair algorithm must keep set additions consistent” = ' 2 °
with the partition and subsetting relations between sets. This
requirement can lead to unexpected interference between %(Vl in RVafor Vain)
atomic formula and a quantifier. For example, if the algorithm ’
inserts an element into the s&t where S is partitioned into
S and Sy, it must insert the element into eithéh or S,. TF(size (S1) =1
The exact set the element is inserted in may depend on the “for vin 52)’
guidance given by the developer. We model any set additions
due to this algorithm by using the functichS. ZS(S) is 7 (size (S1) <=1,

- - e for Vin S
the set that an element is inserted into when the specificationr(size (s;) >2:) 1,

requires that the element be added to Set for Vin)
A similar situation exists if the algorithm attempts to removeIf(Sf:)Zre x(/‘g/lihR)sT L

an element fromS;. To satisfy the partition requirement, in
addition to removing the element frof, the algorithm must
either remove the element fro® or insert the element into
S,. The choice the algorithm makes between these options
depends on the guidance given by the developer. We model
any set additions due to this algorithm using the functios. If(sf:)zre ‘(/R'i‘n/l)sj)l’
RS(S) is the set that an element is inserted into when the :
specification requires that the element be removed fron$ set
If the element is not inserted into any s&S(S) returns a
special token which is not contained in any other set.
Satisfying a size proposition for a set may require the
addition of a new element to the set. The repair algorithm has
to have a source for these new elements. The repair algoritﬁ
may find an element in another set or the algorithm may use

IF(size (Vi.R)>=1,
for Va2 in S)

IF(size (R.V1)>=1,
for Vain S)

is true iff ZN(ZS(S1), S2) A
-IN(QS(V1), S2)

is true iff ZN(RS(S1), S2)

is true iff (ZN(ZS(R(R)), S) A
-IN(QS(V1), S)) vV
(ZN(ZS(D(R)), S) A
—IN(QS(V2), S))

is true iff (ZN(ZS(R(R)), S) A
~IN(QS(Va), S))V
(IN(ZS(D(R), S) A
—IN(QS(W1), S))

is true iff (ZN(ZS(S1), S2) A
—IN(S8S(S1), S2))V
IN(RS(S1), S2)

is true iff ZA(RS(S1), S2)

is true iff ZNV(ZS(S1), S2) A
—\IN(SS(S1), S2)

is true iff (ZNV(ZS(D(R)), S) A
~IN(QS(V1), S)) V
IN(IZS(R(R)), S) A
~IN(SS(R(R)), S))

is true iff (ZN(ZS(D(R)), S) A
-IN(QS(V1), S)) vV
(IN(ZS(R(R)), S) A
~IN(SS(R(R)), S))

is true iff (ZN(ZS(R(R)), S) A
—-IN(QS(V1), S)) vV
(ZN(ZS(D(R)), S) A
-IN(SS(D(R)), S))

is true iff (ZN(ZS(R(R)), S) A
—IN(QS(11), S)) v
(IN'(ZS(D(R)), S) A
—~IN(SS(D(R)), S))

Fh 13. Computing Interference Between Atomic Formulas and Quantifiers

an allocator to create a new element. We define the functign,,ishm would have to make an additional repair to satisfy
S8 to map a set involved in a size proposition to the possibjey, cecond constraint

set that serves as a source for new elements. If the source I§V

a memory allocator, the map returns a special token that i ti] use the_ mterferest fur_mtlfoWI lto tell t?el _anaIyS|tsh
contained in no other set. whether coercing one atomic formula may falsify another

b) Determining InterferenceWe use an interferes func- atomic formula. We construct the interferes function to have

tion ZF to tell the analysis whether coercing the atomiq:e property thaPZ(f,, 6;) = false implies that coercing
formula 3 may increase the size of the st appearing the atomic formulas, _to be true will not falsify _the atomic
in the quantifierfor V in S. We construct the func- formula B2. The algorlthm uses a case analysis to calculate
tion ZF(p,for V in S) to have the property that if the mterfle-res functloﬂ?I. _ _
IF(B,for Vin S) = false then coercing the atomic If repairing one conjunction may falsify another, the graph
formula 8 to be true does not add any elements to the d@Ust contain a directed edge between the two conjunctions.
S. The algorithm adds an edge from the conjunction containing
In Figure 13, we define the interferes functi@dr for all / to the conjunction containing’ if PZ(3,3') = true .
combinations of the atomic formulaand quantifiers over setsFormally, ford = A, 8, andd’ = A\, 3, if there existz,y
(we omit similar rules for quantifiers of the forfor V = such thatPZ(5;,3,) =true then(M(d), M(d')) € G.
E,..E5 for brevity).
If repairing the conjunctiond adds an element to a set
quantified over in a constraird, the interference graph mustB. Acyclicity Implies Termination
contain an edge from the node corresponding to the conjunc-
tion d to each of the nodes corresponding to the conjunctionsWe next show that the acyclicity of the interference graph
in the constraintC. Formally, for a conjunctioni = A, 5, implies that the repair process always terminates. Some possi-
and a constrain€ = Q1,Q2, ..., Qm \/j d;, if there existr,y ble complications in the repair process are the possibility that a
such thatZ 7 (3., Q,) = true thenVj, (M(d), M(d})) € G. given conjunction may need to be repaired multiple times (for
2) Proposition Interference Rulestn the process of re- different quantifier bindings) and the possibility that a given
pairing a violation of a constraint, the repair algorithm magyepair may increase the number of quantifier bindings of other
violate another constraint. As a result of this action, the repaonstraints.

Theorem 1. Repairs for a system of constraings,,...,C,, E. Repair Limitations
terminate if the corresponding interference gra@hs acyclic. The goal of the repair algorithm is to deliver a model
Proof Sketch(Structural induction). _ _ that satisfies the internal constraints and a combination of
(Base Case:) The base case, an acyclic graph of sizénfydel and data structures that together satisfy the external
terminates because there are no violated conjunctions. constraints. We next summarize the situations in which the
(Induction Step:) We assume that repairs terminate on glhorithm may fail to realize this goal for specifications with
acyclic graphs of sizé& or less. We must show that all repairsacyclic interference graphs.
terminate for an acyclic graph of size+ 1. The internal constraint repair algorithm will fail only be-
Since the graph is acyclic, it must contain a node cause of resource limitations — i.e., if it is unable to find an
with no incoming edges. Furthermore, all nodes in the saragment or tuple to add to a set or relation, either because it
cluster (nodes corresponding to conjunctions from the sameunable to allocate a nestruct or because there are no
constraint) have no incoming edges arising from a possitigore distinct elements in the set that it is using as a source
quantifier scope expansion. Otherwise the nadeould have of new elements. The external constraint repair algorithm will
a similar incoming edge as it shares the same quantifiers Wigi only if the external constraints specify different values for
the other nodes in the cluster. Because there are no incomiRg same data structure value — in this case, the algorithm
edges to node, the algorithm repairs each quantifier bindingyill produce a data structure with only one of the valfies.
for n at most once — once the node is satisfied for a givenThe static cyclicity check described in Section V rules out

quantifier binding, no other repair will falsify it. Therefore,many potential failure modes, in particular, it eliminates the
the conjunction represented by nodemay only be repaired possibility of unsatisfiable specifications.

a number of times equal to the number of quantifier bindings
for the constraint that the conjunction appears in. V1. EXPERIENCE

By the induction hypothesis, repairs on acyclic graphs of We next discuss our experience using our implemented re-
size k terminate. So after each repair of nodéhe algorithm pair tool to detect and repair inconsistencies in data structures
either eventually repairs all violations of conjunctions corrdrom several applications: an air-traffic control system, a Linux
sponding to the othet nodes (leaving only violations of thefile system, an interactive game, and Microsoft Office files. We
conjunction corresponding to nodeto possibly repair) or it have a complete implementation of the data structure repair
repairs a violation of the node before finishing the repairs ontool. The implementation consists of 13,000 lines of C++ code
the other nodes. Since the conjunction represented by nodand is available (with specifications for the benchmarks) at
may only be repaired a number of times equal to the numbertsfp://www.cag.lcs.mit.ede/bdemsky/repaif.
qguantifier bindings for the constraint the conjunction appeays

) . . Methodology
in, the repair must eventually terminate. o) o .

For each application, we identified important consistency
C. Checking Algorithm constraints and developed a specification that captured these

o) .) constraints. We ran the static analysis on these specifications to
~ The termination checking algorithm first checks 10 Seguify that the repairs for these specifications would terminate.
if the interference graph is acyclic. If it is not acyclic, itye 150 developed a fault insertion strategy designed to sim-
searches for a set of nodes to remove from this graph in giie the effect of potential inconsistencledVe applied the
attempt to make the graph acyclic. Note that it must leayg, ; insertion strategy to the data structures in the applications,
at Iea;t one node in the graph for each constraint. O_ncqh%n both verified termination of the repair algorithm and
node is removed from the graph, it is marked as forbiddeRnnared the results of running a chosen workload with
to ensure that the repair algorithm never chooses to reépaiy yithout inconsistency detection and repair. We ran the
an inconsistency by satisfying the conjunction CorreSpond"&%plications on an IBM ThinkPad X23 with a 866 Mhz

to that n_od_e. In general, it may not_ be possible to pTOd%Pentium Il processor and 384 MB of RAM. For the Linux file
an acyclic interference graph, in which case the termination

checking algorithm rejects the specification. 6This discussion does not address failures caused by incorrect behavior on
the part of the underlying computing infrastructure, for example corruption
of the repair algorithm’s data structures (this can be partially addressed by
placing these data structures in a separate address space) or failure to notify the
In some cases, the termination analysis may reject a Spggjcrghm of changes in the accessibility of regions in the program’s address
ification for which repairs would terminate. For example, the 7as cTas is deployed air traffic control software, we are not permitted to

repair algorithm might not realize that the repair it uses fistribute it. As such, it is excluded from the archive.
satisfy one algebraic constraint automatically satisfies anotheSrFa“'t insertion was originally developed in the context of software testing

. . . . to_help evaluate the coverage of testing processes [26]. It has also been
algebraic ConStra'nt |nyol_/|_ng the S.ar.ne value. In PfaC“C% WEed by other researchers for the purposes of evaluating standard failure
don't expect this to significantly limit the range of desiredecovery techniques such as duplication, checkpointing, and fast reboot [2].
specifications. It is also possible, however, to increase tlige rationale behind fault insertion is that faults, while serious when they

f th tomic f la interf | ti d do occur, occur infrequently enough to seriously complicate the experimental
power o € atomic formula Intertérence rules mentone |Hl/estigation of failure recovery techniques. Fault insertion makes it practical

Section V-A.2 to recognize more algebraic properties. to evaluate proposed recovery techniques on a range of faults.

D. Specification Limitations

system and the interactive game application, we used RedHalhe static analysis verified that the repair algorithm gener-
Linux 7.2. For the Microsoft Office file application, we usedated by this specification terminates. This is because the action
Microsoft Office XP running on the Microsoft Windows XPof repairing one constraint in this application does not violate

operating system. any other constraints. Our experience running the application
confirms the results of the static analysis.
B. CTAS We used a recorded midday radar feed from the Dallas-Ft.

The Center-TRACON Automation System (CTAS) is a séiorth center as a workload. We identified consistency points
of air-traffic control tools developed at the NASA Amesvithin the application, then configured the system to catch
research center [1], [24]. The system is designed to help aftdressing exceptions, perform the consistency checks and
traffic controllers visualize and manage the complex air trafffepair in the fault handler, then restart from the last consistency
flows at centers surrounding large metropolitan aPdasaddi- point. Each consistency check and repair takes approximately
tion to graphically displaying the location of the aircraft withir3 milliseconds, which is an acceptable repair time in that
the center, CTAS also uses sophisticated algorithms to predicimposes no performance degradation that is visible in the
aircraft trajectories and schedule aircraft landings. The goalggaphical user interface that displays the aircraft information.
to automate much of the aircraft traffic management, reducingWithout repair, CTAS fails because of an addressing excep-
traffic delays and increasing safety. The current source cdé#n. With repair, it continues to execute in a largely acceptable
consists of over 1 million lines of C and C++ code. Versionstate. Specifically, the effect of the repair is to potentially
of this source code are deployed at various centers (Dallasf#tange the origin or destination airport of the aircraft with the
Worth, Los Angeles, Denver, Miami, Minneapolis/St. Paufaulty flight plan processing. Even with this change, continued
Atlanta, and Oakland) and are in daily use at these centergperation is clearly a better alternative than failing. First, one

Strictly speaking, CTAS is an advisory system in that thef the primary purposes of the system (visualizing aircraft
air-traffic controllers are expected to be able to bring tHéow) is unaffected by the repair, and continued execution
aircraft down safely even if the system fails. Neverthelesgnables the system to provide this functionality to the con-
CTAS has several properties that are characteristic of our setréfler even in the presence of flight plan processing errors.
target applications. Specifically, it is a central part of a broad&econd, only the origin or destination airport of the plane
system that manages and controls safety-critical real-womdose flight plan triggered the error is affected. All other
phenomena and, as is typical of these kinds of systemsaitcraft (during the recorded feed, the system is processing
deals with a bounded window of time surrounding the currefiight plans for several hundred aircraft) are processed with no
time. errors at all, enabling the system to deliver useful trajectory

The CTAS software maintains data structures that stopeediction and scheduling functionality for those aircraft. And
aircraft data. Our experiments focus on the flight plan objecf§ally, once the aircraft in question leaves the center, its data
which store the flight plans for the aircraft currently withirstructures are deallocated from the system, which is then back
the center. These flight plan objects contain both an origi@ @ completely correct state. One improvement that would
and destination airport identifier. The software uses theB#ther improve the utility of the repaired system is a way to
identifiers as indices into an array of airport data structuregsually identify aircraft with repaired flight plan information.
Flight plans are transmitted to CTAS as a long character striffe are currently exploring ways to leverage existing GUI
The structure of this string is somewhat complicated, afdnctionality to make this happen.
parsing the flight pla_m string to b.l,llld thg gorrespondlng fllgtE_ A Linux File System
plan data structure is a challenging activity.

Our fault insertion methodology attempts to mimic errors Our Linux file system application implements a simplified
in the flight plan processing routine that produce i||ega4ersion of the Linux ext2 file system [22]. The file system, like
values for the airport identifier fields in the flight plan dat®ther Unix file systems, contains bitmaps that identify free and
structures. Our specification captures the constraint that #ged disk blocks [11]. The file system uses these disk blocks
flight plan indices must be within the bounds of the airport dat@ Support fast disk block and inode allocation operations.
array. The specification itself consists of 100 lines, of which Our consistency constraints are that the inode and block
83 lines contain structure definitions. The primary obstachitmap blocks, the directory block, and the inode table blocks
to developing this specification was reverse engineering tB¥ist; and that these blocks are consistent with each other and
source (which consists of over 1 million lines of C and C+# variety of other constraints. The specification contains 122
code) to develop an understanding of the flight plan dai#es, of which 53 lines contain structure definitions. Because

structures. Once we understood the data structures, develogfi®y Structure of such file systems is widely documented in
the specification was straightforward. the literature, it was relatively easy for us to develop the
specification.

9A center is a geographical region surrounding a metropolitan area. ThereThe static termination analysis verified that repairs for the
are. 20 (?enters in the 48 COn“gUOUS states; ea.Ch Cent.er may contain mUItLqﬁux flle system SpeCIflcatlon Would always termlnate The
major airports along with several smaller regional airports. Because these traints in thi | tind dent th fi f
airports share overlapping airspaces, the air traffic flows must be coordina%%ns_ r_am S Inthis examp eare no 'n epen _en _as € action 0
for all of the aircraft within the center, regardless of their origin or destinatioiepairing one constraint may result in the violation of another

constraint. However, the dependency graph for this exampleBased on information available at http://snake.cs.tu-
is a tree. For any given action to repair a constraint, onlykerlin.de:808Lktschwartz/pmh/, we developed a specification
finite number of additional repair actions are required to repdhat captures the following consistency constraints: that blocks
any additional constraints that the original repair may hawe not shared between chains, that the file has the correct
violated. We found that the restrictions that the terminatiamumber of FAT blocks for its size, that FAT blocks are
analysis places on the constraints did not interfere with writingarked as such in the FAT, that the FAT contains valid block
the specification. numbers, and that chains are appropriately terminated. The
In all of our tested cases, the algorithm is able to repaipecification consists of 94 lines, of which 71 lines contain
the file system and the workload correctly runs to completiostructure definitions. The availability of documentation made
Without repair, files end up sharing inodes and disk blockisstraightforward to develop the specification.
and the file contents are incorrect. For a file system with 1024The static termination analysis verified that repairs for
8KB blocks, our repair tool takes 1.5 seconds to construct tttee Word document’s specification would terminate. This is
file system model, check the consistency of the model, ahdcause the action of repairing one constraint in this appli-

repair the file system. cation does not violate any other constraints. We found that
the restrictions that the termination analysis places on the
D. Freeciv constraints did not interfere with writing a specification. In

Freeciv is an interactive, multi-player game available

www.freeciv.org. The Freeciv server maintains a map of th

game world. Each tile in this map has a terrain value chosreer\ﬁg'(r)iBV\ﬁ;d (r)efusgd;o trggdtgr(?t gzthzcdoirga%?)d fc|)lest. Fotr
from a set of legal terrain values. Additionally, cities may b lle, our repair S©64S s fo construc

placed on the tiles. Our consistency constraints are that ti s model, check the consistency of the model, and repair the

have valid terrain values, a given city has exactly one locatio ?'
cities are not in jthe ocean, and that. the Ioca.tion of a city on VIl. RELATED WORK
the map is consistent with the location the city has recorded

internally. ears. Most research has focused on preventing or eliminatin
The specification consists of 218 lines, of which 173 line§) . P nting 9
eﬁg)ftware errors, with the approaches ranging from enhanced

contain structure definitions. The primary obstacle to dev . Lo s
.) e : . Software testing and validation to full program verification.
oping this specification was reverse engineering the FreeQv

source (which consists of 73,000 lines of C code) to devel oftware error detection has become an especially active area

0
an understanding of the data structures. u?recent years [7], [8], [15], [6]'. .
. . In contrast, our research goal is to enable software to survive
Although the constraints for the Freeciv example are ngt

. . .) . rror r rin r r nsistency. The remainder
independent (the repair action for one constraint may wolaE(? ors by restoring data structure consistency. The remainde

. . thi tion f n other error recovery techni .
another), the constraint dependency graph is a tree. As a S section focuses on ofher efror recovery techniques

result, no infinite repair chains are possible, and the stafic Manual Detection and Repair Systems
termination analysis verifies that repairs for the Freeciv specifi-
cation always terminate. We found that the restrictions that t &
termination analysis places on the constraints did not interf%

W'tlh d(?lv ell?p;]ng the specification.) |) q ”ZECh programs (they are persistent, store important data, and
n all of the test games, our repair tool terminated a quire disabling inconsistencies in practice). Developers have

was able to successfully repair the introduced inconsistencipec,spondeOI with_utilities such as Unix fsck and the Norton
enabling the game to execute to completion (although the 99 ities that attempt to fix inconsistent file systems.

played out differently because of changed terrain values). For 8he Lucent 5ESS telephone switch and IBM MVS oper-

map of 4,000 tiles,_our repz_iirtool took 6.7 se_conds o ConStrLéang systems are two examples of critical systems that use
the model, check its consistency, and repair the game maqnconsistency detection and repair to recover from software

.)) failures [16], [19]. The software in both of these systems
E. Microsoft Office File Format contains[a iet[of]manually coded procedures that periodically
Microsoft Office files consist of several virtual streams, eadhspect their data structures to find and repair inconsistencies.
of which contains data for some part of the document. Eadtme reported results indicate an order of magnitude increase
file also contains a file allocation table (FAT), which identifiegn the reliability of the system [12]. Researchers have also
the location of each stream within the file. Each virtual streadeveloped a domain-specific language for specifying these
consists of a chain of blocks in the file. The file allocatioprocedures for the 5ESS system [14]. The goal is to enhance
tables consist of an array of integers, with one integer ptre reliability and reduce the development time of the incon-
block in the file. For each block in the file, these integersistency detection and repair software. The 5ESS system has
indicate which block is next in the chain or whether the blocélso served as the platform for PRL5, a declarative constraint
is unused, terminates the chain, or stores part of the FAT. specification language [18], and its compiler, which generates

ur test cases, the repair tool terminated for each damaged
%ord file and was able to successfully repair the file. Without

Software reliability has been an important area for many

Researchers have manually developed several systems that
d and repair data structure inconsistencies. File systems
Sve many characteristics that motivate the development of

code to automatically check the consistency of a relationadpair algorithms, our system is able to enforce these kinds of
database used to store some it its information [13]. Th®nstraints.
compiler can also generate, for each operation, the weakedResearchers have also developed a database repair system
precondition required to ensure that the operation preserthat enforces Horn clause constraints and schema constraints
the consistency constraints. Although the generated code dfgkich can constrain a relation to be a function) [25]. The
not perform any repairs, the consistency checking alone sgstem includes an interactive tool, which can help developers
valuable enough to justify its presence. understand the consequences of repairing constraint violations.
These successful, widely used systems illustrate the utili®ur system supports a broader class of constraints — logical
of performing inconsistency detection and repair. We see doarmulas instead of Horn clauses. It also supports constraints
use of declarative specifications coupled with automaticalyhich relate the value of a field to an expression involving
generated detection and repair code as representing a sigti size of a set or the size of an image of an object under a
cant advance over current practice, which relies on the manualation. Finally, it uses partition information to improve the
development of the detection and repair code. Our approgmiecision of the termination analysis, enabling the verification
enables the developer to focus on the important data structaféermination for a wider class of constraint systems.
constraints rather than on the operational details of devel-It is also possible to apply constraint enforcement to struc-
oping algorithms that detect and correct violations of thesered documents [20]. This system accepts a set of consistency
constraints. We believe our specification-oriented approaploperties expressed in first-order logic, generates a set of re-
will make it much easier to develop reliable inconsistengyair actions for each constraint, and then interactively queries
detection and repair software. It also places the field ontlee user to select a specific repair action for violated con-
firmer foundation, since it is based on a set of properties thsttaints. Because the system performs no termination analysis,
the repair algorithm is designed to deliver rather than onitais possible for infinite repair cycles to occur.
set of hand-coded repair routines whose effect may be more o]
difficult to determine. C. Self-Stabilizing Algorithms
Researchers in the area of self-stabilizing algorithms have
developed distributed algorithms that eventually converge to
Database researchers have developed integrity managensestable state in spite of perturbations [10]. Our research
systems that enforce database consistency constraints. Qoal differs in that 1) we aim to provide a general-purpose,
goal is to enable the system to incorporate the effects ofspecification-based inconsistency detection and repair tech-
transaction that leaves the database in an inconsistent stat@etegy for arbitrary data structures (as opposed to designing
instead of aborting the transaction, the integrity managemeéndlividual algorithms with desirable constraints), and 2) we
system repairs the state from the end of the transactionai@ willing to accept potentially degraded behavior as the
eliminate any inconsistencies. These systems typically operpt&e of obtaining this generality. In some cases, however, our
at the level of the tuples and relations in the database, not theta structure repair algorithm may make the global program
lower-level data structures that the database uses to implemsgitave in a self-stabilizing way. In particular, if the effect
this abstraction. of the repair is eventually flushed out of the system (as in
One approach is to provide a system that assists the tiee CTAS benchmark), the data structures eventually converge
veloper in creating a set of production rules that maintalmack to a state that has no trace of the error or the repair.
the integrity of a database [5]. Each production rule consists »
of a triggering component and a repair action to execute Traditional Error Recovery
when the rule is triggered. The system automatically generate€rror recovery has been an important topic ever since the in-
the triggering components of the production rules, using caption of computer science as a field. One standard approach
triggering graph to check if repairs will terminate. The systemvoids transient errors by simply rebooting the system; this
relies on the developer to provide the actual repair actions;isf perhaps the most widely practiced form of error recovery.
the developer incorrectly specifies a repair action, the syst&heckpointing enables a system to roll back to a previous
may fail to maintain the integrity of the database. state when it fails. Transactions support consistent atomic
This approach has been extended to enable the systenoperations by discarding partial updates if the transaction fails
automatically generate both the triggering components and thefore committing [12]. Database systems use a combination
repair actions [4]; the resulting system can automatically geof logging and replay to avoid the state loss normally asso-
erate repairs that insert or remove tuples to or from a relatiariated with rolling back to a previous checkpoint. In effect,
The specification language can express similar propertiesths log serves as a redundant, very simple data structure
our internal constraint language, but the termination analysigt can be used to rebuild the more sophisticated internal
is less precise. For some constraints the system may genedatiabase data structures whenever they become inconsistent.
production rules that fail to terminate. For example, the systehere has recently been renewed interest in applying many of
cannot automatically generate terminating repairs for a systéimese classical techniques in new computational environments
of constraints that require a relation to be a function, thesuch as Internet services [21]. One of the techniques that
further constrain this function. Because of differences in tregises in this context, recursive restartability, composes large

B. Integrity Maintenance in Databases

systems out of many smaller modules that are individualtiherefore serve as an important component of future design
rebootable [3]. The goal is to build systems in which faultsonformance systems, which check that a program conforms
can be isolated at the module level by rebooting. to its high-level design.

Our approach differs from these classical approaches in thaiNote also that factoring the consistency check and repair
it is designed to repair inconsistent data structures in plapmcess into model construction followed by model check and
and continue executing rather than roll back to a previouspair isolates the treatment of the low-level details of the data
state. This approach avoids several problems associated wsittucture within the model construction and external constraint
checkpointing. One potential problem is that the checkpointedforcement phases. This isolation enables the application of
state may contain latent inconsistencies that become visibler general-purpose consistency checking and repair algo-
only long after they are introduced. As long as these incorithms to the full range of efficient, low-level, heavily-encoded
sistencies are present in the checkpointed state, the executiata structures.
will remain vulnerable to errors triggered by the inconsistency.

Another potential problem is that the current operation may

trigger the same error even after replacing the current stat€Our current approach separates the repair process into two
with a previous checkpoint. Note that it is possible to applgctivities: application of the internal constraints to repair the
our techniques to improve checkpoint-based approaches, eitmedel followed by application of the external constraints to
by checking for consistency before checkpointing the curretanslate the model repairs into actions that repair the concrete
state, or by repairing inconsistent checkpoints. data structures. It is currently the responsibility of the devel-

Our approach can enable systems to recover even from peper to ensure that the external constraints correctly translate
sistent errors such as file system corruption. Unlike approactibs model repairs — if the external constraints are incorrect,
based on checkpointing and replay, it may preserve muchtbé repaired data structures may be arbitrarily inconsistent even
the volatile state and avoids the need for logging and replayttibugh the model satisfies all of its internal constraints. In
can also keep a system going without the need to take it outgarticular, running the model construction algorithm on the
service while it is rebooting. Finally, our approach differs imepaired data structures may deliver a new and different model
that we do not attempt to recover to a state that a (hypotheticiiit violates the internal consistency constraints.
correct program would produce. Instead, our goal is to recoverNote also that the external constraints are largely redun-
to a state consistent enough to permit the continued operatiant — the model definition rules by themselves should, in
of the program within its design envelope. In many cases, thanciple, contain all the information necessary to establish
system will, over the course of time, flush the effects of errotke connection between the data structures and the model.
out of its data structures and return to a completely corréde are therefore developing a technique that uses goal-
state. directed reasoning on the model definition rules to eliminate
the external consistency constraints altogether. This technique
will guarantee the connection between the model and the data

The core of our specification language is the internal costructures, eliminating potential anomalies caused by the use
straint language. The basic concepts in this language (objezt®xternal consistency constraints.
and relations) are the same as in object modeling languageSeparating the internal and external consistency constraints
such as UML [23] and Alloy [17], and the constraint languag® our current formulation substantially simplifies the ter-
itself has many of the same concepts and constructs as the g¢oimation analysis — this separation enables the termination
straint languages for these object modeling languages, whaalysis algorithm to reason only about the effect of actions
are specifically designed, in part, to be easy for developersthat operate on the model. The application of the external
use. In addition to these ease of use considerations, the relativasistency constraints takes place after the model repair, and
simplicity of the basic object modeling approach facilitates thae algorithm that applies these constraints always terminates.
automatic repair process. Because all structural properties ar&sing goal-directed reasoning to replace the external con-
expressed in terms of cardinality constraints involving sets sistency constraints would force the termination analysis to
objects and relations, it is possible to repair violations of thesensider the connection between the data structures and the
constraints by simply removing or inserting objects or pairsodel. In addition to reasoning about the effect of actions
of objects into sets or relations. that update the model, it would also have to reason about the

Standard object modeling approaches have traditionaihteraction between the data structure updates and the model
been used to help developers express and explore high-layefiates. We see this additional complexity as (one of) the
design properties. Our approach, in contrast, also had itevitable technical difficulties associated with eliminating the
establish a precise connection between the low-level, highdyternal consistency constraints.
encoded data structures that appear in many programs and
the high-level properties captured in the internal constraint IX. CONCLUSION
language. Our model construction and external constraint lanData structure inconsistencies are an important source of
guages provide a formal and quite flexible connection betwesaftware errors. Our implemented system attacks this prob-
these data structures and the model. These languages teay by accepting a data structure consistency specification,

VIIl. FUTURE WORK

E. Specification Languages

then automatically detecting and repairing data structures thgst
violate this specification. Our experience indicates that our
system is able to deliver repaired data structures that enable [hQ
corresponding programs to continue to execute successfully
within their designed operating envelope. Without repair, the
programs usually fail. [10]

Furthermore, we believe that such systems should provide
some degree of confidence that they will successfully rep&it!

damaged data structures. Our algorithm provides actions that

can successfully repair any violated constraint; our analy$ig]

M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program
verification in polynomial time. InProceedings of the SIGPLAN '02
Conference on Program Language Design and Implementafi0o62.

F B. Demsky and M. C. Rinard. Automatic detection and repair of errors

in data structures. IfProceedings of the 18th Annual ACM SIGPLAN
Conference of Object-Oriented Programming, Systems, Languages, and
Applications October 2003.

E. W. Dijkstra. Self-stabilization in spite of distributed control. In
Communications of the ACM 17(11):643-64474.

B. Goodheart and J. CoxThe Magic Garden Explained:The Internals

of Unix System V Release 4: An Open Systems DeS§iggntice Hall,
1994.

J. Gray and A. Reuter.Transaction Processing: Concepts and Tech-

guarantees that a repair algorithm that uses these actions yyjl| Niques Morgan Kaufmann, 1993.

always terminate. These facts may increase the confidence {F'%t

developers have in the ability of our algorithm to use their
specifications to successfully repair their data structures. [14]

We believe that our research provides a principled mecha-
nism for introducing repair into software systems, enabling[zs]
more reliable and robust concept of system behavior.

X. ACKNOWLEDGMENTS [16]

This research was supported in part by a fellowship from
the Fannie and John Hertz Foundation, DARPA Contra;%
F33615-00-C-1692, NSF Grant CCR00-86154, and NSF Gr t]

n
CCRO00-63513.
[18]
REFERENCES

(1]
(2]

Center-tracon automation system.
http://www.ctas.arc.nasa.gov/ .
P. Broadwell, N. Sastry, and J. Traupman. FIG: A prototype tool
for online verification of recovery mechanisms. Workshop on Self- [20]
Healing, Adaptive and self-MANaged Systethme 2002.
G. Candea and A. Fox. Recursive restartability: Turning the reboot
sledgehammer into a scalpel. Rroceedings of the 8th Workshop on[21]
Hot Topics in Operating Systems (HotOS-VIpages 110-115, Schloss
Elmau, Germany, May 2001.
S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic generatjpg]
of production rules for integrity maintenanceACM Transactions on
Database System49(3), September 1994. [23]
S. Ceri and J. Widom. Deriving production rules for constraint
maintenance. IrProceedings of 1990 VLDB Conferengeages 566— [24]
577.
[6] J.-D. Choi and et al. Efficient and precise datarace detection for
multithreaded object-oriented programs Froceedings of the SIGPLAN
‘02 Conference on Program Language Design and Implementatiofps)
2002.
[7] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera : Extracting finite-state models from java sourggg]
code. InProceedings of the 22nd International Conference on Software
Engineering 2000.

(29]

(3]

(4]

(5]

T. Griffin, H. Trickey, and C. Tuckey. Generating update constraints from
prl5.0 specifications. IiPreliminary report presented at ATT Database
Day, September 1992.

N. Gupta, L. Jagadeesan, E. Koutsofios, and D. Weiss. Auditdraw:
Generating audits the FAST way. IRroceedings of the 3rd IEEE
International Symposium on Requirements Engineeri®97.

S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for
building system-specific, static analysesPhoceedings of the SIGPLAN
‘02 Conference on Program Language Design and Implementation
2002.

G. Haugk, F. Lax, R. Royer, and J. Williams. The 5SESS(TM) switching
system: Maintenance capabilitiedT&T Technical Journal 64(6 part
2):1385-1416, July-August 1985.

D. Jackson. Alloy: A lightweight object modelling notation. Technical
Report 797, Laboratory for Computer Science, Massachusetts Institute
of Technology, 2000.

D. A. Ladd and J. C. Ramming. Two application languages in software
production. InProceedings of the 1994 USENIX Symposium on Very
High Level Language(VHLL.YOctober 1994.

S. Mourad and D. Andrews. On the reliability of the IBM MVS/XA op-
erating systemlEEE Transactions on Software Engineerji8eptember
1987.

C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency man-
agement with repair actions. IRroceedings of the 25th International
Conference on Software Engineeririday 2003.

D. A. Patterson and et al. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case studies. Technical Report
UCB//CSD-02-1175, UC Berkeley Computer Science, March 15, 2002.

D. Poirier. Second extended file system.
http://www.nongnu.org/ext2-doc/ , Aug 2002.
Rational Inc. The unified modeling language.

http://www.rational.com/uml .

B. D. Sanford, K. Harwood, S. Nowlin, H. Bergeron, H. Heinrichs,
G. Wells, and M. Hart. Center/tracon automation system: Development
and evaluation in the field. 188th Annual Air Traffic Control Associa-
tion Conference Proceeding®ctober 1993.

S. D. Urban and L. M. Delcambre. Constraint analysis: A design process
for specifying operations on objectiEEE Transactions on Knowledge
and Data Engineering2(4), December 1990.

J. M. Voas and G. McGrawSoftware Fault Injection Wiley, 1998.

