
Role-Based Exploration of Object-Oriented Programs

Brian Demsky
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

bdemsky@mit.edu

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

rinard@lcs.mit.edu

ABSTRACT
We present a new technique for helping developers under-
stand heap properties of object-oriented programs and how
the actions of the program affect these properties. Our dy-
namic analysis uses the aliasing properties of objects to syn-
thesize a set of roles; each role represents an abstract object
state intended to be of interest to the developer. We allow
the developer to customize the analysis to explore the object
states and behavior of the program at multiple different and
potentially complementary levels of abstraction.

The analysis uses roles as the basis for three abstractions:
role transition diagrams, which present the observed tran-
sitions between roles and the methods responsible for the
transitions; role relationship diagrams, which present the ob-
served referencing relationships between objects playing dif-
ferent roles; and enhanced method interfaces, which present
the observed roles of method parameters.

Together, these abstractions provide useful information
about important object and data structure properties and
how the actions of the program affect these properties. We
have used our implemented role analysis to explore the be-
havior of several Java programs. Our experience indicates
that, when combined with a powerful graphical user inter-
face, roles are a useful abstraction for helping developers
explore and understand the behavior of object-oriented pro-
grams.

1. INTRODUCTION
This paper presents a new technique to help developers

understand heap referencing properties of object-oriented
programs and how the actions of the program affect those
properties. Our thesis is that each object’s referencing rela-
tionships with other objects determine important aspects

∗This research was supported in part by a fellowship from
the Fannie and John Hertz Foundation, DARPA Contract
F33615-00-C-1692, NSF Grant CCR00-86154, and NSF
Grant CCR00-63513.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’02 Orlando, Florida
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

of its purpose in the computation, and that we can use
these referencing relationships to synthesize a set of con-
ceptual object states (we call each state a role) that cap-
tures these aspects. As the program manipulates objects
and changes their referencing relationships, each object tran-
sitions through a sequence of roles, with each role capturing
the functionality inherent in its current referencing relation-
ships.

We have built two tools that enable a developer to use
roles to explore the behavior of object-oriented programs: 1)
a dynamic role analysis tool that automatically extracts the
different roles that objects play in a given computation and
characterizes the effect of program actions on these roles,
and 2) a graphical, interactive exploration tool that presents
this information in an intuitive form to the developer. By
allowing the developer to customize the presentation of this
information to show the amount of detail appropriate for
the task at hand, these tools support the exploration of both
detailed properties within a single data structure and larger
properties that span multiple data structures. Our experi-
ence using these tools indicates that they can provide sub-
stantial insight into the structure, behavior, and key prop-
erties of the program and the objects that it manipulates.

1.1 Role Separation Criteria
The foundation of our role analysis system is a set of cri-

teria (the role separation criteria) that the system uses to
separate instances of the same class into different roles. Con-
ceptually, we frame the role separation criteria as a set of
predicates that classify objects into roles. Each predicate
captures some aspect of the object’s referencing relation-
ships. Two objects play the same role if they have the same
values for these predicates. Our system supports predicates
that capture the following kinds of relationships:

• Heap Alias Relationships: The functionality of an
object often depends on the objects that refer to it.
For example, instances of the PlainSocketImpl class
acquire input and output capabilities when referred to
by a SocketInputStream or SocketOutputStream ob-
ject. The role separation criteria capture these distinc-
tions by placing objects with different kinds of heap
aliases in different roles. Formally, there is a role sepa-
ration predicate for each field of each class. An object
satisfies the predicate if one such field refers to it.

• Reference-To Relationships: The functionality of
an object often depends on the objects to which it
refers. A Java Socket object, for example, does not
support communication until its file descriptor field

refers to an actual file descriptor object. To capture
these distinctions, our role separation criteria place ob-
jects in different roles if they differ in which fields con-
tain null values. Formally, there is a predicate for each
field of every class. An instance of that class satisfies
the predicate if its field is not null.

• Reachability: The functionality of an object often
depends on the specific data structures in which it par-
ticipates. For example, a program may maintain two
sets of objects: one set that it has completed process-
ing, and another that it has yet to process. To capture
such distinctions, our role separation criteria identify
the roots of different data structures and place objects
with different reachability properties from these roots
in different roles. Formally, there is a predicate for
each variable that may be a root of a data structure.
An object satisfies the predicate if it is reachable from
the variable. Additionally, we define a unique garbage
role for unreachable objects.

• Identity: To facilitate navigation, data structures of-
ten contain reverse pointers. For example, the ob-
jects in a circular doubly-linked list satisfy identity
predicates corresponding to the paths next.prev and
prev.next. Formally, there is a role separation predi-
cate for each pair of fields. The predicate is true if the
path specified by the two fields exists and leads back
to the original object.

• History: In some cases, objects may change their con-
ceptual state when a method is invoked on them, but
the state change may not be visible in the referencing
relationships. For example, the native method bind as-
signs a name to instances of the Java PlainSocketImpl

class, enabling them to accept connections. But the
data structure changes associated with this change are
hidden behind the operating system abstraction. To
support this kind of conceptual state change, the role
separation criteria include part of the method invoca-
tion history of each object. Formally, there is a pred-
icate for each parameter of each method. An object
satisfies one of these predicates if it was passed as that
parameter in some invocation of that method.

1.2 Role Subspaces
To allow the developer to customize the role separation

criteria, our system supports role subspaces. Each role sub-
space contains a subset of the possible role separation cri-
teria. When operating within a given subspace, the tools
coarsen the separation of objects into roles by eliminating
any distinctions made only by criteria not in that subspace.
Developers may use subspaces in a variety of ways:

• Focused Subspaces: As developers explore the be-
havior of the program, they typically focus on different
and changing aspects of the object properties and ref-
erencing relationships. By choosing a subspace that
excludes irrelevant criteria, the developer can explore
relevant properties at an appropriate level of detail
while ignoring distracting distinctions that are cur-
rently irrelevant.

• Orthogonal Subspaces: Developers can factor the
role separation criteria into orthogonal subspaces. Each

subspace identifies a current role for each object; when
combined, the subspaces provide a classification struc-
ture in which each object can simultaneously play mul-
tiple roles, with each role chosen from a different sub-
space.

• Hierarchical Subspaces: Developers can construct
a hierarchy of role subspaces, with child subspaces aug-
menting parent subspaces with additional role separa-
tion criteria. In effect, this approach allows develop-
ers to identify an increasingly precise and detailed dy-
namic classification hierarchy for the roles that objects
play during their lifetimes in the computation.

Role subspaces give the developer great flexibility in ex-
ploring different perspectives on the behavior of the pro-
gram. Developers can use subspaces to view changing object
states as combinations of roles from different orthogonal role
subspaces, as paths through an increasingly detailed classifi-
cation hierarchy, or as individual points in a constellation of
relevant states. Unlike traditional structuring mechanisms
such as classes, roles and role subspaces support the evo-
lution of multiple complementary views of the program’s
behavior, enabling the developer to seamlessly flow through
different perspectives as he or she explores different aspects
of the program at hand.

1.3 Contributions
This paper makes the following contributions:

• Role Concept: It introduces the concept that object
referencing relationships and method invocation histo-
ries capture important aspects of an object’s state, and
that these relationships and histories can be used to
synthesize a cognitively tractable abstraction for un-
derstanding the changing roles that objects play in the
computation.

• Role Separation Criteria: It presents a set of cri-
teria for classifying instances of the same class into
different roles. It also presents an implemented tool
that uses these criteria to automatically extract infor-
mation about the roles that objects play.

• Role Subspaces: It shows how developers can use
role subspaces to structure their understanding and
presentation of the different aspects of the program
state. Specifically, the developer can customize the
role subspaces to focus the role separation criteria to
hide (currently) irrelevant distinctions, to factor the
object state into orthogonal components, and to de-
velop object classification hierarchies.

• Graphical Role Exploration: It presents a tool
that graphically and interactively presents role infor-
mation. Specifically, this tool presents role transition
diagrams, which display the trajectories that objects
follow through the space of roles, and role relationship
diagrams, which display referencing relationships be-
tween objects that play different roles. These diagrams
are hyperlinked for easy navigation.

• Role Exploration Strategy: It presents a general
strategy that we developed to use the tools to explore
the behavior of object-oriented programs.

• Experience: It presents our experience using our tools
on several Java programs. We found that the tools en-
abled us to quickly discover and understand important
properties of these programs.

2. EXAMPLE
We next present a simple example that illustrates how

a developer can use our tools to explore the behavior of a
web server. We use a version of JhttpServer, a web server
written in Java. This program accepts incoming requests
for files from web browsers and serves the files back to the
web browsers.

The code in the JhttpServer class first opens a port and
waits for incoming connections. When it receives a connec-
tion, it creates a JhttpWorker object, passes the Socket con-
trolling the communication to the JhttpWorker initializer,
and turns control over to the JhttpWorker object.

The code in the JhttpWorker class first builds input and
output streams corresponding to the Socket. It then parses
the web browser’s request to obtain the requested filename
and the http version from the web browser. Next, it pro-
cesses the request. Finally, it closes the streams and the
socket and returns to code in the JhttpServer class.

2.1 Starting Out
To use our system, the developer first compiles the pro-

gram using our compiler, then runs the program. The com-
piler inserts instrumentation code that generates an execu-
tion trace. The analysis tool then reads the trace to extract
the information and convert it into a form suitable for inter-
active graphical display. The graphical user interface runs
in a web browser with related information linked for easy
navigation.

The analysis evaluates the roles of the objects at method
boundaries. Our system uses four abstractions to present
the observed role information to the developer: 1) role tran-
sition diagrams, which present the observed role transitions
for instances of a given class, 2) role relationship diagrams,
which present referencing relationships between objects from
different classes, 3) role definitions, which present the refer-
encing relationships that define each role, and 4) enhanced
method interfaces, which show the object referencing prop-
erties at invocation and the effect of the method on the roles
of the objects that it accesses.

2.2 Role Transition Diagrams
Developers typically start exploring the behavior of a pro-

gram by examining role transition diagrams to get a feel for
the different roles that instances of each class play in the
computation. In this example, we assume the developer first
examines the role transition diagram for the JhttpWorker

class, which handles client requests. Figure 1 presents this
diagram.1 The ellipses represent roles and the arrows rep-
resent transitions between roles. Each arrow is labeled with
the method that caused the object to take the transition.
Solid edges denote the execution of methods that take the

1In addition to graphically presenting these diagrams in a
web browser, our tool is capable of generating PostScript
images of each diagram using the dot tool [1]. Our tool
automatically generates initial names for roles and allows
the developer to rename the roles. All of the diagrams pre-
sented in this paper were generated automatically from our
tool with renaming in some cases for clarification.

JhttpWorker as a parameter; dotted edges denote portions
of a method or methods that change the roles of JhttpWorker
objects, but do not take the JhttpWorker object as a param-
eter. The diagram always presents the most deeply nested
(in the call graph) method responsible for the role change.

Initialized
 JhttpWorker

JhttpWorker
 with methodType

StringTokenizer.hasMoreTokens

JhttpWorker
 with filename

this arg of JhttpWorker.method

String.equals

InitialJhttpWorker

this arg of JhttpWorker.<init>

this arg of Object.<init>

Garbage

JhttpServer.startWorker

Figure 1: Role transition diagram for JhttpWorker

class

2.3 Role Definitions
Role transition diagrams show how objects transition be-

tween roles, but provide little information about the roles
themselves. Our graphical interface therefore links each role
node with its role definition, which specifies the proper-
ties that all objects playing that role must have. Figure 2
presents the role definition for the JhttpWorker with file-
name role, which is easily accessible by using the mouse to
select the role’s node in the role transition diagram. This
definition specifies that instances of the JhttpWorker with
filename role have the class JhttpWorker, no heap aliases,
no identity relations, and references to heap objects in the
fields httpVersion, fileName, methodType, and client.

Role: JhttpWorker with filename

Class: JhttpWorker

Heap aliases: none

non-null fields: httpVersion, fileName,

methodType, client

identity relations: none

Figure 2: Sample role definition for JhttpWorker class

2.4 Role Relationship Diagrams
After obtaining an understanding of the roles of impor-

tant classes, the developer typically moves on to consider
relationships between objects of different classes. These rela-
tionships are often crucial for understanding the larger data

JhttpWorker
 w/filename

Socket

client

String

methodType fileName httpVersion

PlainSocket
 w/o output

impl

PlainSocket
 w/o fd

impl

PlainSocket
 w/output

impl

PlainSocket
 w/input

impl

PlainSocket
 w/fd

impl

PlainSocket
 w/address

impl

HashStrings

Array of Pairs

p

Pair

[]

key value

Figure 3: Portion of role relationship diagram for JhttpServer

structures that the program manipulates. Role relationship
diagrams are the primary tool that developers use to help
them understand these relationships. Figure 3 presents a
portion of the role relationship diagram surrounding one of
the roles of the JhttpWorker class. The ellipses in this di-
agram represent roles, and the arrows represent referencing
relationships between objects playing those roles.

Note that some of the groups of roles presented in Figure 3
correspond to combinations of objects that conceptually act
as a single entity. For example, the HashStrings object and
the underlying array of Pairs that it points to implement
a map from String to String. Developers often wish to
view a less detailed role relationship diagram that merges
the roles for these kinds of combinations.

In many cases, the analysis can automatically recognize
these combinations and represent them with a single role
node. Figure 4 presents the role relationship diagram that
the tool produces when the developer turns this option on.
Notice that the analysis recognizes the Socket object and
the httpVersion string as being part of the JhttpWorker

object. Also notice that it recognizes the Pair arrays, Pair
objects, and key strings as being part of the corresponding
HashStrings object, with the key strings disappearing in the
abstracted diagram because they are encapsulated within
the HashStrings data structure. The analysis allows the
developer to choose, for each class, a policy that determines
how (and if) the analysis merges roles of that class into
larger data structures.

An examination of Figures 3 and 4 shows that instances of
the PlainSocketImpl class play many different roles. To ex-
plore these roles, the developer examines the role transition
diagram for the PlainSocketImpl class. Figure 5 presents
this diagram. The diagram contains two disjoint sets of
roles, each branching off of the Initial PlainSocket role. This
structure indicates that instances of the class have two dis-
tinct purposes in the computation. Some instances manage
communication over a TCP/IP connection, while others ac-
cept incoming connections.

Method: SocketInputStream.<init>(this,plainsocket)

Call Context: {

this: Initial InputStream -> InputStream w/impl,

plainsocket: PlainSocket w/fd ->

PlainSocket w/input }

Write Effects:

this.impl=plainsocket

this.temp=NEW

this.fd=plainsocket.fd

Read Effects:

plainsocket

NEW

plainsocket.fd

Role Transition Effects:

plainsocket: PlainSocket w/fd -> PlainSocket

w/input

this: Initial InputStream -> InputStream w/fd

this: InputStream w/fd -> InputStream w/impl

Figure 6: Enhanced Method Interface for
SocketInputStream initializer

2.5 Enhanced Method Interfaces
Finally, our tool can present information about the roles of

parameters and the effect of each method on the roles that
different objects play. Given a method, our tool presents
this information in the form of an enhanced method inter-
face. This interface provides the roles of the parameters at
method entry and exit and any read, write, or role transi-
tion effects the method may have. Figure 6 presents an en-
hanced method interface for the SocketInputStream initial-
izer. This interface indicates that the SocketInputStream

initializer operates on objects that play the roles Initial
InputStream and PlainSocket w/fd. When it executes, it
changes the roles of these objects to InputStream w/impl
and PlainSocket w/input, respectively.

Enhanced method interfaces provide the developer with
additional information about the (otherwise implicit) as-

JhttpWorker
 with filename

String

methodTypefileName

PlainSocket
 w/o fd

impl

PlainSocket
 w/o output

impl

PlainSocket
 w/ input

impl

PlainSocket
 w/ output

impl

PlainSocket
 w/ address

impl

PlainSocket
 w/ fd

impl

HashStrings

value

Figure 4: Portion of role relationship diagram for JhttpServer after part object abstraction

PlainSocket

PlainSocket w/address

FileDescriptor.<init>

this arg of
 PlainSocketImpl.close

PlainSocket w/fd

ServerSocket.implAccept

Garbage

JhttpServer.run

PlainSocket w/o fd

PlainSocket w/o output

BufferedReader.close

Socket.close

this arg of
 PlainSocketImpl.close

PlainSocket w/input this arg of
 getFileDescriptor

PlainSocket w/output

this arg of
PlainSocketImpl.getOutputStream,

1st arg of
 SocketOutputStream.<init>

this arg of
 PlainSocketImpl.close

this arg of
 PlainSocketImpl.available

ServerPlainSocket w/fd

bound ServerPlainSocket

this arg of
 PlainSocketImpl.bind

listening ServerPlainSocket

this arg of
 PlainSocketImpl.listen

this arg of
 PlainSocketImpl.getInputStream,

1st arg of
 SocketInputStream.<init>

this arg of SocketImpl.getFileDescriptor,
 1st arg of PlainSocketImpl.accept

Initial PlainSocket

Socket.<init>

this arg of
 Object.<init>

ServerPlainSocket

ServerSocket.<init>

this arg of
 PlainSocketImpl.create

this arg of
 PlainSocketImpl.accept

Figure 5: Role transition diagram for the PlainSocketImpl class

sumptions that the method may make about its parameters
and the roles of the objects that it manipulates. This infor-
mation may help the developer better understand the pur-
pose of the method in the computation and provide guide-
lines for its successful use in other contexts.

2.6 Role Information
In general, roles capture important properties of the ob-

jects and provide useful information about how the actions
of the program affect those properties.

• Consistency Properties: Our analysis can discover
program-level data structure consistency properties.

• Enhanced Method Interfaces: In many cases, the
interface of a method makes assumptions about the
referencing relations of its parameters. Our analysis
can discover constraints on the roles of parameters of
a method and determine the effect of the method on
the heap.

• Multiple Uses: Code factoring minimizes code du-
plication by producing general-purpose classes (such
as the Java Vector and Hashtable classes) that can
be used in a variety of contexts. But this practice ob-
scures the different purposes that different instances of
these classes serve in the computation. Our analysis
can rediscover these distinctions.

• Correlated Relationships: In many cases, groups
of objects cooperate to implement a piece of function-
ality, with the roles of the objects in the group chang-
ing together over the course of the computation. Our
analysis can discover these correlated state changes.

3. DYNAMIC ANALYSIS
We implemented the dynamic analysis as several compo-

nents. The first component uses the MIT FLEX compiler 2

to instrument Java programs to generate execution traces.
Because this component operates on Java bytecodes, our
system does not require source code. The instrumented pro-
gram assigns unique identifiers to every object and reports
relevant heap and pointer operations in the execution trace.
The second component uses the trace to reconstruct the
heap. As part of this computation, it also calculates reach-
ability information and records the effect of each method’s
execution on the roles of the objects that it manipulates.

3.1 Predicate Evaluation
The dynamic analysis uses the information it extracts

from the trace to apply the role separation criteria as follows:

• Heap Aliases: In addition to reconstructing the heap,
the analysis also maintains a set of inverse references.
There is one inverse reference for each reference in the
original heap. For each reference to a target object,
the inverse reference enables the dynamic analysis to
quickly find the source of the reference and the field
containing the reference. To compute the heap alias
predicates for a given object, the analysis examines the
inverse references for that object.

2Available at www.flexc.lcs.mit.edu.

• Reference-To: The reconstructed heap contains all
of the references from the original program, enabling
the analysis to quickly compute all of the reference-to
predicates for a given object by examining its list of
references.

• Identity: To compute the identity predicates for a
given object, the analysis traces all paths of length
two from the object to find paths that lead back to
the object.

• Reachability: There are two key issues in computing
the reachability information: using an efficient incre-
mental reachability algorithm and choosing the cor-
rect set of variables to include in the role separation
criteria. Whenever the program changes a reference,
the incremental reachability algorithm finds the object
whose reachability properties may have changed, and
then incrementally propagates the reachability changes
through the reconstructed heap.

To avoid undesirable separation caused by an inappro-
priate inclusion of temporary variables into the role
separation criteria, our implemented system uses two
rules to identify variables that are the roots of data
structures. If an object o is reachable from variables
x and y that point to objects ox and oy respectively,
and ox is reachable from y but oy is not reachable from
x, then we exclude x from the role separation criteria.
Alternatively, if ox is reachable from y, oy is reach-
able from x, and the reference y was created before
the reference x, we exclude x from the criteria.

These rules keep temporary references used for travers-
ing heap structures from becoming part of the role
definitions, but allow long term references to the roots
of data structures to be incorporated into role defini-
tions. These rules also have the property that if an
object is included in two disjoint data structures with
different roots, then the object’s role will reflect this
double inclusion.

• Method Invocation History: Whenever an object
is passed as a parameter to a method, the analysis
records the invocation as part of the object’s method
invocation history. This record is then used to evaluate
method invocation history predicates when assigning
future roles to the object.

• Array Roles: We treat arrays as objects with a spe-
cial [] field, which points to the elements of the array.
Additionally, we generalize the treatment of reference-
to relations to allow roles to specify the classes and
the corresponding number (up to some bound) of the
array’s elements.

By default, the analyzer evaluates these predicates at ev-
ery method entry and exit point. We allow the developer
to coarsen this granularity by declaring methods atomic, in
which case the analysis attributes all role transitions that
occur inside the method to the method itself. This is imple-
mented by not checking for role transitions until the atomic
method returns. This mechanism hides temporary or irrele-
vant role transitions that occur inside the method. This fea-
ture is most useful for simplifying role transition diagrams.
In particular, many programs have a complicated process

for initializing objects. Once we use the role transition dia-
gram to understand this process, we often find it useful to
abstract the entire initialization process as atomically gen-
erating a fully initialized object.

3.2 Multiple Object Data Structures
A single data structure often contains many component

objects. Java HashMap objects, for example, use an array of
linked lists to implement a single map. To enable the de-
veloper to view such composite data structures as a single
entity, our dynamic analysis supports operations that merge
multiple objects into a single entity. Specifically, the dy-
namic analysis can optionally recognize any object playing
a given role (such roles are called part roles) as conceptually
part of the object that refers to it. The user interface will
then merge all of the role information from the part role into
the role of the object that refers to it.

Depending on the task at hand, different levels of abstrac-
tion may be useful to the developer. On a per class basis,
the developer can specify whether to merge one object’s role
into another object’s role. The analysis provides four differ-
ent policies: never merge, always merge, merge only if one
heap reference to the object ever exists, and merge only if
one heap reference at a time exists to the object. The analy-
sis implements these policies using a two pass strategy: one
pass identifies concrete objects that meet the merging cri-
terion, and another assigns the selected objects part roles.
The analysis requires that any cycles in the heap include at
least one object that does not have a part role.

3.3 Method Effect Inference
For each method execution, the dynamic analysis records

the reads, writes, and role transitions that the execution
performs. Each method effect summary uses regular expres-
sions to identify paths to the accessed or affected objects.
These paths are identified relative to the method parame-
ters or global variables and specify edges in the heap that
existed when the method was invoked. Method effect infer-
ence therefore has two steps: detecting concrete paths with
respect to the heap at procedure invocation and summariz-
ing these paths into regular expressions.

To detect concrete paths, we keep a path table for each
method invocation. This table contains the concrete path,
in terms of the heap that existed when the method was
invoked, to all objects that the execution of the method
may affect. At method invocation, our analysis records the
objects to which the parameters and the global variables
point. Whenever the execution retrieves a reference to an
object or changes an object’s reachability information, the
analysis records a path to that object in the path table. If
the execution creates a new object, we add a special NEW
token to the path table; this token represents the path to
that object.

We obtain the regular expressions in the method effect
summary by applying a set of rewrite rules to the extracted
concrete paths. Figure 7 presents the current set of rewrite
rules. Given a concrete path f1.f2...fn, we apply the rewrite
rules to the tuple 〈ε, f1.f2...fn〉 to obtain a final tuple 〈Q, ε〉,
where Q is the regular expression that represents the path.
We present the rewrite rules in the order in which they are
applied. We use the notation that κ(f) denotes the class
in which the field f is declared as an instance variable, and
τ(f) is the declared type of the field f .

Rules 1 and 2 simplify intermediate expressions generated
during the rewrite process. Rules 3 and 4 generalize concrete
paths involving similar fields such as paths through a binary
tree. Rules 5 and 6 generalize repeated sequences in concrete
paths. The goal is to capture paths generated in loops or
recursive methods and ensure that path expressions are not
overly specialized to any particular execution.

1. 〈Q.(q1...(e1 | f | e2 | f | e3)...qn)∗, Q′〉 ⇒
〈Q.(q1...(e1 | f | e2 | e3)...qn)∗, Q′〉

2. 〈Q.(q1...(e1 | f | e2 | f | e3)∗...qn)∗, Q′〉 ⇒
〈Q.(q1...(e1 | f | e2 | e3)∗...qn)∗, Q′〉

3. 〈Q.(f1), f2.Q
′〉 ⇒ 〈Q.(f1 | f2)∗, Q′〉

if κ(f1) = κ(f2) and τ(f1) = τ(f2)

4. 〈Q.(f0 | ... | fn)∗, f ′.Q′〉 ⇒ 〈Q.(f0 | ... | fn | f ′)∗, Q′〉
if κ(fn) = κ(f ′) and τ(fn) = τ(f ′)

5. 〈Q.q1...qn.q′1...q′n, Q′〉 ⇒ 〈Q.(q1 ⊕ q′1...qn ⊕ q′n)∗, Q′〉
if ∀i, 1 ≤ i ≤ n, qi ≡ q′i, where q ≡ q′ if

(a) q = (f1 | ... | fj), q′ = (f ′1 | ... | f ′k),
κ(f1) = κ(f ′1) and τ(f1) = τ(f ′1), or

(b) q = (f1 | ... | fj)∗, q′ = (f ′1 | ... | f ′k)∗,
κ(f1) = κ(f ′1) and τ(f1) = τ(f ′1).

(f1 | ... | fj)⊕ (f ′1 | ... | f ′k) = (f1 | ... | fj | f ′1 | ... | f ′k)
(f1 | ... | fj)∗ ⊕ (f ′1 | ... | f ′k)∗ =

(f1 | ... | fj | f ′1 | ... | f ′k)∗

6. 〈Q.(q1...qn)∗.q′1...q
′
n, Q

′〉 ⇒ 〈Q.(q1 ⊕ q′1...qn ⊕ q′n)∗, Q′〉
if ∀i, 1 ≤ i ≤ n, (qi ≡ q′i).

7. 〈Q, f.Q′〉 ⇒ 〈Q.(f), Q′〉

Figure 7: Rewrite rules for paths

For read or role transition effects, we record the starting
point and regular expression for the path to the object. For
write effects, we give the starting points for both objects and
the regular expressions for the paths. Valid starting points
are method parameters and global variables. We denote
effects for objects created in a procedure using the NEW
token. We denote writing a null pointer to an object’s field
using the NULL token.

3.4 Role Subspaces
Our tool allows the developer to define multiple role sub-

spaces and modify the role separation criteria for each sub-
space as follows:

• Fields: The developer can specify fields to ignore for
the purpose of assigning roles. The analysis will show
these fields in the role relationship diagram, but the
references in these fields will not affect the roles as-
signed to the objects.

• Methods: The developer can specify which methods
and which parameters to include in the role separation
criteria.

• Reachability: The developer can specify variables to
include or to exclude from the reachability-based role
separation criteria.

• Classes: The developer can collapse all objects of a
given class into a single role.

In practice, we have found role subspaces both useful and
usable — useful because they enabled us to isolate the im-
portant aspects of relevant parts of the system while elim-
inating irrelevant and distracting detail in other parts, and
usable because we were usually able to obtain a satisfactory
role subspace with just a small number of changes to the
default criteria.

4. USER INTERFACE
The user interface presents four kinds of web pages: class

pages, role pages, method pages, and the role relationship
page. Each class page presents the role transition diagram
for the class. From the class page, the developer can click on
the nodes and edges in the role transition diagram to see the
corresponding role and method pages for the selected node
or edge. Each role page presents a role definition, displaying
related roles and classes and enabling the developer to select
these related roles and classes to bring up the appropriate
role or class page. Each method page shows the developer
which methods called the given method and allows the devel-
oper to configure method-specific abstraction policies. The
role relationship page presents the role relationship diagram.
From this diagram, the developer can select a role node to
see the appropriate role definition page.

The user interface allows the developer to create and ma-
nipulate multiple role subspaces. The developer can create
a new role subspace by selecting a set of predicates to de-
termine the role separation criteria, then combine subspaces
to define views. Views with a single subspace use the role
separation criteria from that subspace. Views with multi-
ple subspaces use a cross product operator to combine the
roles from the different subspaces, with the final set of roles
isomorphic to those obtained by taking the union of the
role separation criteria from all of the subspaces. Within
a view, the developer can identify additional role subspaces
to be used for labeling purposes. These role subspaces do
not affect the separation of objects into roles, but rather la-
bel each role in the view with the roles that objects playing
those roles have in these additional labeling subspaces.

5. EXPLORATION STRATEGY
As we used the tool, we developed the following strategy

for exploring the behavior of a new program. We believe
this strategy is useful for structuring the process of using
the tool, and that most developers will use some variant of
this strategy.

When we started using the tool on a new program, we first
recompiled the program with our instrumentation package,
and then ran the program to obtain an execution trace. We
then used our graphical tool to browse the role transition
diagrams for each of the classes, looking for interesting ini-
tialization sequences, splits in the role transition diagram
indicating different uses for objects of the class, and transi-
tion sequences indicating potential changes in the purpose
of instances of the class in the computation.

During this activity, we were interested in obtaining a
broad overview of the actions of the program. We therefore
often found opportunities to appropriately simplify the role
transition diagrams, typically by creating a role subspace
to hide irrelevant detail, by declaring initializing methods

atomic, or by utilizing the multiple object abstraction fea-
ture. Occasionally, we found opportunities to include as-
pects of the method invocation history into the role separa-
tion criteria. We found that our default policy for merging
multiple object data structures into a single data structure
for role presentation purposes worked well during this phase
of the exploration process.

Once we had created role subspaces revealing roles at
an appropriate granularity, we then browsed the enhanced
method interfaces to discover important constraints on the
roles of the objects passed as parameters to the method.
This information enabled us to better understand the corre-
lation between the actions of the method and the role tran-
sitions, helping us to isolate the regions of the program that
performed important modifications, such as insertions or re-
movals from collections. It also helped us understand the
(otherwise implicit) assumptions that each method made
about the states of its parameters. We found this informa-
tion useful in understanding the program; we expect main-
tainers to find it invaluable.

We next observed the role relationship diagram. This di-
agram helped us to better understand the relationships be-
tween classes that work together to implement a given piece
of functionality. In general, we found that the complete role
relationship diagram presented too much information for us
to use it effectively. We therefore adopted a strategy in
which we identified a starting class of interest, then viewed
the region surrounding the roles of that class. We found
that this strategy enabled us to quickly and effectively find
the information we needed in the role relationship diagram.

Finally, we sometimes decided to explore several roles in
more detail. We often returned to the role transition di-
agram and created a customized role subspace to expose
more detail for the current class but less detail for less rel-
evant classes. In effect, this activity enabled us to easily
adapt the system to view the program from a more special-
ized perspective. Given our experience using this feature of
our role analysis tool, we believe that this ability will prove
valuable for any program understanding tool.

6. EXPERIENCE
We next discuss our experience using our role analysis

tool to explore the behavior of several Java programs. We
report our experience for several programs: Jess, an expert
system shell in the SpecJVM benchmark suite; Direct-To, a
Java version of an air-traffic control tool; Tagger, a text for-
matting program; Treeadd, a tree manipulation benchmark
in the J. Olden benchmark suite 3; and Em3d, a scientific
computation in the J. Olden benchmark suite.

6.1 Jess
Jess first builds a network of nodes, then performs a com-

putation over this network. While the network contains
many different kinds of nodes, all of the nodes exhibit a
similar construction and use pattern. Consider, for example,
instances of the Node1TELN class. Figure 8 presents the role
transition diagram for objects of this class. An examination
of this diagram and the linked role definitions shows that
during the construction of the network, the program rep-
resents the edges between nodes using a resizable vector of
references to Successor objects, each of which is a wrapper

3Available at www-ali.cs.umass.edu/˜cahoon.

Node w/ _succ this arg of Node1TELN.CallNode

Garbage

Jess.run_jess

InitialNode this arg of Object.<init>

Node w/succ & engine

this arg of Node1TELN.<init>,
 this arg of Node.<init>,
 this arg of Node.<init>

Node pointed to by Succesor.node

1st arg of Successor.<init>

this arg of Node.freeze

Figure 8: Role transition diagram for the Node1TELN

class

around a node object. The succ field refers to this vector.
When the network is complete, the program constructs a
less flexible but more efficient representation in which each
node contains a fixed-size array of references to other nodes;
the succ field refers to this array. This change occurs when
the program invokes the freeze method on the node. All of
the nodes in the program exhibit this construction pattern.

The generated method annotations provide information
about the assumptions that several key methods make about
the roles of their parameters. Specifically, these annotations
show that the program invokes the CallNode method (this
method implements the primary computation on the net-
work) on a node only after the freeze method has converted
the representation of the edges associated with the node to
the more efficient form.

The role definitions also provide information about net-
work’s structure, specifically that all of the nodes in the net-
work have either one or two incoming edges. Each fully con-
structed instance of the Node1TELN, Node1TECT, Node1TEQ,
NodeTerm, or Node1TMF class has exactly one Successor ob-
ject that refers to it, indicating that these kinds of nodes all
have exactly one incoming edge. Each fully constructed in-
stance of the Node2 class, on the other hand, has exactly two
references from Successor objects, indicating that Node2

nodes have exactly two incoming edges.

6.2 Direct-To
Direct-To is a prototype Java implementation of a compo-

nent of the Center-Tracon Automation System (CTAS) [7].
The tool helps air-traffic controllers streamline flight paths
by eliminating intermediate points; the key constraint is that
these changes should not cause new conflicts, which occur
when aircraft pass too close to each other.

We first discuss our experience with the Flight class,
which represents flights in progress. Each Flight object
contains references to other objects, such as FlightPlan ob-
jects and Route objects, that are part of its state. Our
analysis recognized these other objects as part of the cor-

responding Flight object’s state, and merged all of these
objects into a single multiple object data structure.

Roles helped us understand the initialization sequence and
subsequent usage pattern of Flight objects. An initialized
Flight object has been inserted into the flight list; various
fields of the object refer to the objects that implement the
flight’s identifier, type, aircraft type, and flight plan. Once
initialized, the flight is ready to participate in the main com-
putation of the program, which repeatedly acquires a radar
track for the flight and uses the track and the flight plan to
compute a projected trajectory. The initialization sequence
is clearly visible in the role transition diagram, which shows
a linear sequence of role transitions as the flight object ac-
quires references to its part objects and is inserted into the
list of flights. The acquisition and computation of the tracks
and trajectories also show up as transitions in this diagram.

Roles also enabled us to untangle the different ways in
which the program uses instances of the Point4d class. Specif-
ically, the program uses instances of this class to represent
aircraft tracks, trajectories, and velocities. The role transi-
tion diagram makes these different uses obvious: each use
corresponds to a different region of roles in the diagram. No
transitions exist between these different regions, indicating
that the program uses the corresponding objects for disjoint
purposes.

6.3 Tagger
Tagger is a document layout tool written by Daniel Jack-

son. It processes a stream of text interspersed with tokens
that identify when conceptual components such as para-
graphs begin and end. Tagger works by first attaching action
objects to each token, and then processing the text and to-
kens in order. Whenever it encounters a token, it executes
the attached action.

It turns out that there are dependences between the op-
erations of the program and the roles of the actions and
tokens. For example, one of the tokens causes the out-
put of the following paragraph to be suppressed. Tagger
implements this suppression action with pairs of matched
suppress/unsuppress actions. When the suppress action ex-
ecutes, it places an unsuppress action at the end of the
paragraph, ensuring that only one paragraph will be sup-
pressed. These actions are reflected in role transitions as
follows. When the program binds the suppress action to
a token, the action takes a transition because of the refer-
ence from the token. When the suppress action executes,
it binds the corresponding unsuppress action to the token
at the end of the paragraph, causing the unsuppress action
to take a transition to a new state. Roles therefore enabled
us to discover an interesting correlation between the execu-
tion of the suppress action and data structure modifications
required to undo the action later. We were also able to ob-
serve a role-dependent interface — the method that executes
actions always executes actions that are bound to tokens.

6.4 Treeadd
Treeadd builds a tree of TreeNode objects; each such ob-

ject has an integer value field. It then calculates the sum
of the values of the nodes. The role analysis tool extracted
some interesting properties of the data structure and gave
us insight into the behavior of the parts of the program that
construct and use the tree.

TreeNode
 w/ right & left

left TreeNode
 w/ right & left

left

right TreeNode
 w/ right & left

right

left TreeNode

left

right TreeNode

right

left

right

leftright

left

right

leftright

TreeNode
 w/left

left

left

Figure 9: Role relationship diagram for the TreeNode

class

Figure 9 presents the region of the role relationship dia-
gram that contains the roles of TreeNode objects. By ex-
amining this diagram and the linked role definitions, we
were able to determine that the TreeNode objects did in
fact comprise a tree — the roles corresponding to the root
of the tree have no references from left or right fields of
other TreeNode objects, and all other TreeNode roles have
exactly one reference from the left or right field of another
TreeNode.

Figure 10 presents the role transition diagram for TreeNode
objects. This diagram, in combination with the linked role
definitions, clearly shows a bottom-up initialization sequence
in which each TreeNode acquires a left child and a right child,
then a reference from the right or left field of its parent.
Alternative initialization sequences produce TreeNode ob-
jects with no children. Note that the automatically gener-
ated role names in this figure are intended to help the de-
veloper understand the referencing relationships that define
each role. The role name Right TreeNode w/right & left,
for example, indicates that objects playing the role have 1)
a reference from the right field of an object, and 2) non-null
right and left fields. The role name TreeNode w/left in-
dicates that an object playing this role has a non-null left
field.

6.5 Em3d
Em3d simulates the propagation of electromagnetic waves

through objects in three dimensions. It uses enumerators
extensively in two phases of the computation. The first
phase builds a graph that models the electric and magnetic
fields; the second phase traverses the graph to simulate the
propagation of these fields. The role transition diagram for
the enumerator objects contains roles corresponding to an
initialized enumerator, an enumerator with remaining ele-
ments, and an enumerator with no remaining elements. As
expected, the program never invokes the next method on an
enumerator object that has no remaining elements, enabling
the developer to verify that the program uses enumerator
objects in a standard way.

6.6 Utility of Roles
In general, roles helped us to discover key data struc-

ture properties and understand how the program initialized
and manipulated objects and data structures. The com-
bination of the role relationship diagram and linked role
definitions typically provided the most useful information
about data structure properties. Examples of these proper-
ties include the referencing properties of TreeNode objects
in the Treeadd benchmark and the correspondence between
Successor nodes and network nodes in Jess.

The role transition diagram typically provided the most
useful information about object initialization sequences and
usage patterns. Examples of object initialization sequences
include the initialization of Flight objects in the Direct-to
benchmark and of TreeNode objects in the Treeadd bench-
mark. Jess provides an interesting example of a conceptual
phase transition in a data structure — the program uses a
more flexible but less efficient data structure during a con-
struction phase, then replaces this data structure with a
more efficient frozen version for a subsequent computation
phase. The Point4d class in Direct-to provides a good exam-
ple of how a program can use instances of a single class for
several different purposes in the computation. In all of these
cases, the role analysis enabled us to quickly understand the
underlying initialization sequences or usage patterns.

Finally, we found that the information about the roles of
method parameters helped us to understand the otherwise
implicit expectations that methods have about the states of
their parameters and the effects of methods on these states.
Examples of methods with important expectations or effects
include the freeze and CallNode methods in Jess and the
next method in Em3d. In general, we expect the role anal-
ysis tool to be useful in the software development process in
the following ways:

• Program Understanding: Developers have to un-
derstand programs to modify or reuse them. In object-
oriented languages, understanding heap allocated data
structures is key to understanding the program. Roles
help developers discover key data structure invariants
and understand how programs initialize and manipu-
late these data structures, thus aiding program com-
prehension.

• Maintenance: To safely modify programs, develop-
ers need to understand the data structures these pro-
grams build, the referencing relations methods assume,
and the effects of methods on these data structures.
We expect that the diagrams and enhanced method
interfaces that our tool generates will prove useful for
this purpose.

• Verifying Expected Behavior: Developers can use
our tool as a debugging aid. Developers write pro-
grams with certain invariants about heap structures
in mind. If the role relationships our tool discovers
are inconsistent with these invariants, the developer
knows that a bug exists. Finally, the enhanced method
interfaces and role transition diagrams can help the de-
veloper quickly isolate the bug.

• Documentation: Developers often need to document
high-level properties of the program. Roles may pro-
vide an effective documentation mechanism, because

Initial
 TreeNode

this arg of Object.<init>,
 this arg of TreeNode.<init>

TreeNode
 w/ right & left

this arg of
 TreeNode.<init>

left
 TreeNode

TreeNode.<init>

right
 TreeNode

TreeNode.<init>
TreeNode

 w/ left

TreeNode.<init>

this arg of
 TreeNode.addTree

right
 TreeNode

w/ right & left

TreeNode.<init>

left
 TreeNode

w/ right & left

TreeNode.<init>

Garbage

TreeAdd.main
this arg of

 TreeNode.addTree

TreeAdd.main

this arg of
 TreeNode.addTree

TreeAdd.main
this arg of

 TreeNode.addTree

TreeAdd.main

TreeNode.<init>

this arg of
 TreeNode.addTree

TreeAdd.main

Figure 10: Role transition diagram for the TreeNode class

they come with a set of appealing interactive graph-
ical representations, because they can often capture
key properties of the program in a concise, cognitively
tractable representation, and because (at least for the
roles that our analysis tool discovers) they are guaran-
teed to faithfully reflect some of the behaviors of the
program. Role subspaces may prove to be especially
useful in presenting focused, orthogonal, or hierarchi-
cal perspectives on the purposes of the objects in the
program.

• Design: High-level design formalisms often focus on
the conceptual states of objects and the relationships
between objects in these states. Our role analysis can
extract information that is often similar to this de-
sign information, helping the developer to establish the
connection between the design and the behavior of the
program. Furthermore, the role abstraction suggests
several concrete ways of realizing high-level design pat-
terns in the code. As developers become used to work-
ing with roles, they may very well adopt role-inspired
coding styles that facilitate the verification of a guar-
anteed connection between the high-level design and
its realization in the program.

7. RELATED WORK
We survey related work in three fields: design formalisms

that involve the concept of abstract object states, program
understanding tools that focus on properties of the objects
that programs manipulate, and static analyses for automati-
cally discovering or verifying properties of linked data struc-
tures.

7.1 Design Formalisms
Early design formalisms identified changes in abstract ob-

ject or component states as an important aspect of the de-
sign of the program [13]. Our tool also focuses on abstract
state changes as a key aspect, but uses the role separation
criteria to automatically synthesize a set of abstract object
states rather than relying on the developer to specify the
abstract state space explicitly.

Object models enable a developer to describe relation-
ships between objects, both at a conceptual level and as
realized in programs. Object modeling languages such as
UML [12] and Alloy [6] can describe the different states that
objects can be in, the constraints that these states satisfy,
and the transitions between these states. One can view our
role analysis tool as a way of automatically extracting an
object model that captures the important aspects of the ob-
jects that the program manipulates. In this sense our tool
establishes a connection between the abstract concepts in
the object model and the concrete realization of those con-
cepts in the objects that the program manipulates.

The concept of objects playing different roles in the com-
putation while maintaining their identity often arises in the
conceptual design of systems [5], and researchers have pro-
posed several methodologies for realizing these roles in the
program [5, 4, 9]. Our role analysis tool can recognize many
of the design patterns used to implement these roles, and
may therefore help developers establish a connection be-
tween an existing conceptual system design and its realiza-
tion in the program. Conversely, our role separation criteria
may also suggest alternate ways to implement conceptual
roles. In particular, previously proposed methodologies tend
to focus on ways to tag objects with (potentially redundant)

information indicating their roles, while the role separation
criteria identify data structure membership (which may not
be directly observable in the state of the object itself) as an
important property that helps to determine the roles that
the object plays.

7.2 Program Understanding Tools
Daikon [2] extracts likely algebraic invariants from infor-

mation gathered during the program’s execution. For exam-
ple, Daikon can infer invariants such as “y = 2x”. Daikon
handles heap structures in a limited fashion by linearizing
them into arrays under some specific conditions [3]. Our
work differs in that we handle heap structures in a much
more general fashion and focus on referencing relationships
as opposed to algebraic invariants.

Womble [8] and Chava [10] both use a static analysis to au-
tomatically extract object models for Java programs. Both
tools use information from the class and field declarations;
Womble also uses a set of heuristics to generate conjectures
regarding associations between classes, field multiplicities,
and mutability.

Unlike our role analysis tool, Womble and Chava do not
support the concept of an object that changes state dur-
ing the execution of the program. They instead statically
group all instances of the same class into the same cate-
gory of objects in the object model, ignoring any conceptual
state changes that may occur because of method invocations,
changes to the object referencing relationships, or reachabil-
ity changes.

7.3 Verifying Data Structure Properties
The analysis presented in this paper extracts role informa-

tion for a single execution of the program. While it would be
straightforward to combine information from multiple exe-
cutions, the tool is not designed to extract or verify role
information that is guaranteed to fully characterize all exe-
cutions.

Statically extracting or verifying the detailed object ref-
erencing properties that roles characterize is clearly beyond
the capabilities of standard pointer analysis algorithms. Re-
searchers in our group have, however, been able to leverage
techniques from precise shape analysis algorithms to develop
an augmented type system and analysis algorithm that is ca-
pable of verifying that all executions of a program respect a
given set of role declarations [11]. In this context, our dy-
namic tool could generate candidate role declarations for ex-
isting programs. Such a candidate generation system would
have to be designed carefully — we expect the dynamic role
analysis to be capable of extracting properties that are be-
yond the verification capabilities of the static role analysis.

8. CONCLUSION
We believe that roles are a valuable abstraction for help-

ing developers to understand the objects and data structures
that programs manipulate. We have implemented a dy-
namic role analysis tool and a flexible interactive graphical
user interface that helps developers navigate the information
that the analysis produces. Our experience with several Java
applications indicates that our tools can help developers dis-
cover important object initialization sequences, object usage
patterns, data structure invariants, and constraints on the
states and referencing relationships of method parameters.
Other potential applications include documenting high-level

properties of the program (and especially properties that
involve orthogonal or hierarchical object and data struc-
ture classification structures), discovering correlated state
changes between objects that participate in the same data
structure, providing specifications for a static role analy-
sis algorithm, verifying or refuting a debugger’s hypotheses
about important data structure invariants, and providing a
foundation for establishing a guaranteed connection between
the high-level design and its realization in the program.

Acknowledgments
We would like to thank Michael Ernst, Daniel Jackson, and
Viktor Kuncak for useful feedback and discussions concern-
ing this paper and dynamic role analysis in general. We
would also like to thank the anonymous reviewers for their
helpful comments and suggestions.

9. REFERENCES
[1] J. Ellson, E. Gansner, E. Koutsofios, and S. North.

Graphviz.
http://www.research.att.com/sw/tools/graphviz.

[2] M. D. Ernst, A. Czeisler, W. G. Griswold, and
D. Notkin. Quickly detecting relevant program
invariants. In International Conference on Software
Engineering, pages 449–458, 2000.

[3] M. D. Ernst, Y. Kataoka, W. G. Griswold, and
D. Notkin. Dynamically discovering pointer-based
program invariants. Technical Report
UW-CSE-99-11-02, University of Washington,
November 1999.

[4] R. Familiar. Adaptive role playing.
http://www.ccs.neu.edu/research/demeter/

adaptive-patterns/arp-bofam-checked.html.

[5] M. Fowler. Dealing with roles.
http://www.martinfowler.com/apsupp/roles.pdf,
July 1997.

[6] D. Jackson. Alloy: A lightweight object modelling
notation. Technical Report 797, Laboratory for
Computer Science, Massachusetts Institute of
Technology, 2000.

[7] D. Jackson and J. Chapin. Redesigning air-traffic
control: A case study in software design, 2000.

[8] D. Jackson and A. Waingold. Lightweight extraction
of object models from bytecode. In International
Conference on Software Engineering, pages 194–202,
1999.

[9] B. Jacobs. Patterns using procedural/relational
paradigm.
http://www.geocities.com/tablizer/prpats.htm.

[10] J. Korn, Y.-F. Chen, and E. Koutsofios. Chava:
Reverse engineering and tracking of Java applets. In
Proceedings of the Sixth Working Conference on
Reverse Engineering, pages 314–325, October 1999.

[11] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Proceedings of the 29th Annual ACM Symposium on
the Principles of Programming Languages, 2002.

[12] Rational Inc. The unified modeling language.
http://www.rational.com/uml.

[13] W. E. Riddle, J. Sayler, A. Segal, and J. Wileden. An
introduction to the dream software design system.
volume 2, pages 11–23, July 1977.

