
OoOJava: An Out-of-Order Approach to Parallel Programming
James C. Jenista Yonghun Eom Brian Demsky

Abstract
Developing parallel software using current tools can be
challenging. Developers must reason carefully about the
use of locks to avoid both race conditions and deadlocks.
We present a compiler-assisted approach to parallel pro-
gramming inspired by out-of-order hardware. In our ap-
proach, the developer annotates code blocks as reorder-
able to decouple these blocks from the parent thread of
execution. OoOJava uses static analysis to extract all
data dependences from both variables and data struc-
tures to generate an executable that is guaranteed to pre-
serve the behavior of the original sequential code.

We have implemented OoOJava and achieved signif-
icant speedups for a ray tracer and a K-Means cluster
benchmark. The straightforward development model,
compiler feedback, and speedups are promising indi-
cators that a simple deterministic parallel programming
model with strong guarantees can become mainstream.

1 Introduction
With the wide-scale deployment of multi-core proces-
sors and the impending arrival of many-core processors,
software developers must write parallel software to re-
alize the benefits of continued improvements in micro-
processors. Developing parallel software using today’s
development tools can be challenging. These tools re-
quire developers to expose parallelism as threads and
then control concurrent access to data with locks. Ex-
perience shows that applications written in this model
are prone to both race-conditions and deadlocks.

Deterministic parallel programming models greatly
simplify developing parallel code[2]. These models
eliminate the race conditions that make parallel pro-
gramming difficult. Several systems for deterministic
parallel programming exist today. These systems have
the same goal: take sequential code with paralleliza-
tion annotations and generate a parallel implementation
with the same behavior but better performance. How-
ever, much of this work either limits the structure of
the code that can be parallelized (loops only) [4], con-
strains the usage of data structures [8, 10], requires ex-
tensive annotations [13, 14], or only guarantees deter-
minism under unchecked conditions (disjoint data struc-
tures) [18, 5, 11].

Hardware has long used out-of-order execution to ex-
tract unstructured parallelism from sequential instruc-
tion streams [19]. Processors dynamically extract in-
struction dependences and then execute the instructions
out-of-order while preserving the sequential stream’s de-

pendences. This paper introduces OoOJava, a parallel
programming approach based on out-of-order execution.

OoOJava is a compiler-based approach that leverages
both annotations and static analysis to provide a de-
terministic parallel programming model. OoOJava ex-
tends sequential Java with a single annotation, which
developers use to indicate that a code block should be
consider for out-of-order execution. OoOJava executes
such blocks as soon as their data dependences are re-
solved. OoOJava guarantees that the execution of an an-
notated program respects all data dependences in the se-
rial elision, the sequential program obtained by remov-
ing all annotations. Therefore annotations do not affect
the program’s correctness, but merely its performance.
OoOJava presents minimal overheads to developers and
makes guarantees that simplify parallel programming.

This basic approach has been known for some time.
We add a new kind of dependence analysis, disjoint
reachability analysis [6], to augment our modified ap-
proach to effects [7]. OoOJava uses the results of
disjoint reachability analysis to generate a handful of
lightweight comparisons that allow it to safely extract
parallelism even when the heap accesses cannot be stat-
ically determined to be disjoint. OoOJava differs from
inspector-executor approaches [12, 16] in that it supports
complex object-oriented data structures, uses the results
of static analysis to avoid inspecting nearly all memory
accesses, and does not require a runtime preprocessing
phase. We combine this with a new value forwarding ap-
proach that is analogous to register renaming and elimi-
nates write-after-write and write-after-read hazards. To-
gether, these techniques allow OoOJava to parallelize a
wider-range of programs and require fewer changes to
sequential code than previous systems.

This paper makes the following contributions:
• OoOJava: It presents a deterministic parallel pro-

gramming model that extends Java with a single an-
notation while preserving the program’s sequential se-
mantics. Because OoOJava makes no major changes
to Java, developers will likely find it easy to use.

• Dependence Analysis: OoOJava uses static analysis
to discover data dependences.

• Software-Based Out-of-Order Execution: Micro-
processors leverage out-of-order execution to extract
fine-grained, unstructured parallelism in the instruc-
tion stream. OoOJava adapts out-of-order execution
techniques in software to parallelize blocks of Java
code and guarantees that the execution respects all de-
pendences.

• An Implementation and Evaluation: We have im-
plemented OoOJava and have evaluated its perfor-
mance on two benchmarks.

The remainder of the paper is organized as follows.
Section 2 presents the programming model using an ex-
ample. Section 3 presents the execution model and Sec-
tion 4 presents the static analysis components. Section 5
presents our evaluation; we conclude in Section 6.

2 Programming Model
Figure 1 presents a graph computation that will serve
as an example for the OoOJava programming model. It
takes a source as input and modifies a unique data struc-
ture at every node reachable from the source. The return
value is an aggregation of node-local contributions.

1 p u b l i c double f i n d G r a p h T o t a l (Node s o u r c e) {
2 double t =0 ;
3 Set<Node> d i s c o v e r e d =new HashSet<Node > () ;
4 Queue<Node> t o V i s i t =new Queue<Node > () ;
5 t o V i s i t . push (s o u r c e) ;
6 d i s c o v e r e d . add (s o u r c e) ;
7 whi le (! t o V i s i t . i sEmpty ()) {
8 Node u= t o V i s i t . pop () ;
9 f o r (I t e r a t o r <Node> i =n . n e i g h b o r s () ;

10 i . hasNext () ;) {
11 Node v= i . n e x t () ;
12 i f (! d i s c o v e r e d . c o n t a i n s (v)) {
13 t o V i s i t . push (v) ;
14 d i s c o v e r e d . add (v) ;
15 }
16 }
17 Data d=u . d a t a ;
18 rb lock p {
19 double c=ModifyAndCompute (d) ;
20 }
21 rb lock s {
22 t = t +c ;
23 }
24 }
25 re turn t ;
26 }

Figure 1: An example method that operates on a graph
Consider this method without the rblock keyword or

associated curly braces. Line 19 of Figure 1 is dependent
on the value of d, a unique object for every loop iteration.
The summing operation in line 22 depends on the cur-
rent values of t and c. Many auto-parallelizing systems
would have difficulty running iterations of this loop con-
currently because they cannot determine whether mem-
ory accesses in line 19 are independent.

The OoOJava parallel programming model extends
the sequential programming model with reorderable
blocks or rblocks, that decouple the enclosed code from
the parent thread of execution. We declare a reorder-
able block with the keyword rblock and an identifier
followed by an open curly brace, statements, and a close
brace. Note that the identifier has no meaning for exe-
cution; it is used by the compiler to communicate back
to the developer. The notation is similar to other code
blocks except that reorderable blocks do not introduce a
new variable scope and must have a single exit.

In Figure 1 reorderable block p is declared around
line 19, which is parallelizable if d is unique for each
iteration and the objects reachable from different in-
stances of d are disjoint. A separate reorderable block
s is declared around line 22, which must be serialized.

OoOJava addresses parallelism opportunities that can
be difficult for similar systems to take advantage of. For
example, CellSs [10] and Cilk [11] require explicit syn-
chronization before accessing the results of out-of-order
computations. CellSs prohibits heap references in out-
of-order computations. Cilk allows heap references but
without careful attention can generate incorrect results.
Cilk could perform the aggregation in reorderable block
s of this example with inlets, however inlets do not nec-
essarily execute in the same order as prescribed by the
serial elision which would break a non-commuting oper-
ation. Moreover, Cilk cannot schedule an arbitrary chain
of out-of-order computations, while OoOJava can.

The guarantees for CellSs, Cilk, and similar parallel
programming models can be broken by developer anno-
tation mistakes, unlike OoOJava. In the worst case, a
OoOJava program will simply result in a sequential exe-
cution of reorderable blocks.

3 Execution Model
OoOJava’s execution model is inspired by out-of-order
processors [19]. An out-of-order processor receives as
input an instruction stream. When the processor issues
the next instruction in the stream it notes any depen-
dences of the instruction on previously issued instruc-
tions. When an instruction’s dependences are resolved
and the necessary functional unit is available that in-
struction is dispatched to the functional unit. A com-
pleted instruction retires by updating the processor state.

A parent reorderable block issues a child reorderable
block by allocating a record for it and making a runtime
count of any outstanding dependences the child has on
siblings. A parent executes its own code until reaching
a child reorderable block, where it then issues the child
and skips to the end of that child’s definition to continue
executing. When all dependences for an issued reorder-
able block are resolved it is dispatched. Once a reorder-
able block reaches its single-exit it must wait for all of
its children to retire before it retires. Similar to register
renaming in out-of-order processors, OoOJava is able to
avoid write-after-write and write-after-read hazards by
having a reorderable block forward values directly to a
dependent reorderable block.

Reorderable blocks can be nested and there is an im-
plicit top-level reorderable block for the main method;
an important property of OoOJava is that reorderable
blocks form a tree at runtime. A parent is responsible for
issuing children and managing the dependences among
its children and itself, therefore reorderable blocks in

different subtrees can proceed concurrently on different
processing cores and parallelize the scheduling load.

In the same fashion that out-of-order processors can
be viewed as a restricted form of dataflow computation,
OoOJava can be viewed as dynamically translating im-
perative programs into dataflow computations.

4 Dependence Analysis
OoOJava guarantees that parallelized programs preserve
the behavior of their serial elisions. To make this guaran-
tee, OoOJava must ensure that parallelized program ex-
ecutions preserve all data dependences between reorder-
able blocks. Reorderable blocks form a hierarchy in the
program. Preserving parent-child dependences and sib-
ling dependences suffices to preserve all dependences.

OoOJava uses static analysis to conservatively extract
data dependences and then uses the analysis results to
generate runtime checks that preserve the dependences.
These data dependences fall into two categories: vari-
able dependences and heap dependences.

4.1 Variable Dependence Analysis
The variable dependence analysis ensures that each re-
orderable block reads the correct values from its vari-
ables. OoOJava performs the variable dependence anal-
ysis on each reorderable block that can serve as a parent
to extract variable dependences between that reorderable
block and its children. The variable dependence anal-
ysis begins by computing each reorderable block’s in-
set, the set of variables a reorderable block requires val-
ues from before being dispatched, and each reorderable
block’s out-set, the set of variables a reorderable block
may write new values to that either a parent or sibling
reorderable block may read. In the example, reorderable
block p has in-set {d} and out-set {c} while reorderable
block s has in-set {t, c} and out-set {t}.

For each program point and every live variable at that
program point, the analysis uses a fixed-point algorithm
to compute the source of that variable’s value. The vari-
able source for a variable v has the form 〈r, a, vo〉. The
combination of r and a statically specify a dynamic in-
stance of a reorderable block: r is a reorderable block
and a is the age of that reorderable block (i.e. how
many instances of that reorderable block have been is-
sued between the source instance and the current pro-
gram point). To bound the analysis, a is taken from
{0, 1,>}, where a variable source with a = > means
an instance with an unknown age. The variable vo speci-
fies which variable in the out-set of the reorderable block
given by r and a contains the relevant value.

The variable dependence analysis results at line 19 of
Figure 1 would show that variable d has only one pos-
sible variable source: 〈parent, 0, d〉. Therefore d, in p’s
in-set, is classified as ready, indicating that its value is
always available when p is issued.

Reorderable block s has in-set {c, t}, where c has
the variable source 〈p, 0, c〉, the most recent instance of
p. Therefore c, in s’s in-set, is classified as static, in-
dicating that the variable’s source comes from exactly
one statically-named reorderable block and therefore the
code does not need to dynamically track the source of c.

When a parent issues a child, it has enough informa-
tion to inform the sibling that serves as a source reorder-
able block that it should forward the value of the variable
when it retires to the child currently being issued. If the
sibling has already retired, the parent forwards the value
immediately and marks the dependence resolved. When
a reorderable block retires it has a list of issued reorder-
able blocks that are waiting for the values it computed.

The third classification for variable sources is dy-
namic, such as in-set variable t for reorderable block s.
Dynamic means that the exact reorderable block in-
stance that produces the value is not known statically.
In the example, the value for t will either come from
the parent in line 2 or from the previous instance of s.
The analysis would compute that t’s possible sources
are 〈parent, 0, t〉 and 〈s, 0, t〉. If an in-set variable is
classified as dynamic then code is generated at control-
flow joins backwards from the reorderable block to dy-
namically track the source reorderable block instance.

Whenever a parent statement has a dependence on a
child reorderable block, the parent stalls until that child
retires. The exception to this rule is the copy statement
as discussed in Section 4.1.1.

4.1.1 Source Copying
When a statement of a parent reorderable block depends
on a value that is produced by its child, the parent must
stall until the child retires. Line 25 of the example is
an instance of this case where the parent must stall for
the final instance of s to compute the value of t. When
a parent stalls on a child for a statically resolved depen-
dence, the parent copies all variables from that child with
statically resolved dependences.

Consider the following code fragment:
1 rb lock c h i l d 1 {
2 y =1;
3 }
4 x=y ;
5 rb lock c h i l d 2 {
6 p r i n t (x) ;
7 }

In an effort to minimize stalls, we allow variable
sources to be copied by the analysis at a copy statement
and then omit the statement during code generation. If
the variable y has the source 〈child1, 0, y〉 before the
copy statement in line 4, the analysis would compute x’s
source after the statement as 〈child1, 0, y〉 also. In the
runtime implementation parent would issue child1,
skip the copy statement, and then issue child2 with
the unresolved dependence that variable x for child2
should be obtained from y in child1’s out-set.

4.1.2 Virtual Reads
Dependences can be affected by the internal control flow
of a reorderable block. If a variable is conditionally
modified by a reorderable block, we say that it is vir-
tually read. By conservatively including these variables
in the in-sets we simplify dynamic dependence tracking.
This ensures that the sources for variables are known
when a reorderable block is issued.

4.2 Heap Dependence Analysis
Aliasing is known to make automatically parallelizing
code that modifies data structures difficult. Previous ap-
proaches have simplified the problem. Jade [13] and
DPJ [14] allow operations on data structures but require
additional annotations to characterize memory accesses.

OoOJava leverages a new static analysis, disjoint
reachability analysis [6], that extracts static heap reacha-
bility properties. OoOJava uses these properties to gen-
erate lightweight dynamic checks that ensure the exe-
cution of reorderable blocks respect the memory depen-
dences of the program’s serial elision.

OoOJava reasons about memory accesses in terms
of heap roots, a root object referenced by a live vari-
able through which deeper heap references are obtained.
Heap roots occur in two contexts: a heap root is either
referenced by a variable in the in-set of a reorderable
block or the first object along a heap path accessed by a
parent reorderable block after issuing a child.

Two reorderable blocks only have a heap dependence
if both of the following two conditions are true. The first
necessary condition is that one reorderable block writes
to a field f of an object allocated at site s and the sec-
ond reorderable block either reads or writes to the same
field of an object allocated at the same site. We call
such an access a potentially conflicting access and an ob-
ject allocated at this site a potentially conflicting object.
The second necessary condition is that there must exist
a potentially conflicting object that is reachable from the
heap roots of both reorderable blocks that were used to
perform the potentially conflicting access.

4.2.1 Effects Analysis
OoOJava uses heap effects to abstract the read and write
heap operations a reorderable block performs. The ef-
fects analysis computes a conservative set of heap effects
for child reorderable blocks and the sections of code in
the parent reorderable block between subsequent child
reorderable blocks. Effect are associated with the heap
roots used to obtain a reference to the affected object.

Heap effects have the form 〈r, o, s, f 〉, where r is the
allocation site of a heap root that was used to obtain a
reference to the affected object, o is a read, write, or
reachability change effect, s is an allocation site, and f is
a field (or a special symbol for array elements). Note that
it is possible for a heap root to have multiple allocation

sites. OoOJava uses an interprocedural, backwards data-
flow analysis to compute heap effects.

When the effects analysis considers line 19 of the ex-
ample it will use the interprocedural results to discover
that write operations are performed on Data objects
through the heap root referenced by u. The effects analy-
sis has therefore discovered a potential data dependence
between instances of p.

4.2.2 Disjoint Reachability Analysis
If the effects analysis cannot rule out a potential con-
flict, disjoint reachability analysis may determine that
the concrete objects represented by the heap roots can-
not both reach the same potentially conflicting object.

Disjoint reachability analysis extends a standard
points-to graph with reachability annotations. The stan-
dard points-to graph uses heap region nodes to abstract
objects and edges to abstract references. There are two
heap region nodes for each allocation site — one ab-
stracts the most recently allocated object from the site
and the other summarizes all older objects. Disjoint
reachability analysis annotates these heap region nodes
and edges with sets of reachability states, namely sets
of heap region nodes and arities. If a heap region h0 at
some program point has the reachability state [h1, h

∗
2], it

means that objects represented by h0 may be reachable
from at most one object represented by h1, any number
of objects represented by h2, and exactly zero objects
from every other heap region in the points-to graph.

Note that these specific disjoint reachability proper-
ties are not computed by either current pointer analy-
ses [1] or shape analyses [15, 9].

Reachability states capture disjoint reachability infor-
mation even for objects that are represented by the same
node. Consider two effects, 〈r0, w, s, f 〉 and 〈r1, w, s, f 〉
that both write to the f field of an object from allocation
site s through different heap roots. OoOJava uses dis-
joint reachability analysis to determine whether the pos-
sible target objects of the effects can ever be the same
object when accessed through the given heap roots.

There are three possible answers to this kind of query.
The first is that a single object allocated at allocation site
s cannot be reached from both heap roots r0 and r1. In
this case the second condition for a memory conflict fails
and there is no heap dependence.

If the heap roots r0 and r1 are abstracted by the same
heap region h in disjoint reachability analysis and the
reachability states for s contain h with arity 1, then the
effects only conflict if the object abstracted by r0 and the
object abstracted by r1 are the same. In this case there is
a fine-grained conflict and generated code does a simple
dynamic comparison: if r0 and r1 are different objects
at runtime then the effects do not conflict.

In the remaining case, the analysis cannot eliminate a

possible conflict. In this case, we say that the two heap
roots have a coarse-grained conflict and the correspond-
ing code blocks must be executed sequentially.

In general, object reachability at different program
points cannot be compared. However, as long as heap
operations only increase reachability of an object, the
reachability states are comparable. If an operation elim-
inates an edge (performs a strong update in the analysis)
and therefore may decrease reachability, we associate a
reachability decrease effect with that operation. Reach-
ability decrease effects conflict with all other effects on
objects that are reachable from the same heap roots.

4.2.3 Conflict Graphs
OoOJava generates a conflict graph from the results of
the effects analysis and the disjoint reachability anal-
ysis. There is a conflict graph for each parent re-
orderable block that captures the heap dependences be-
tween the parent reorderable block and its child reorder-
able blocks. There is a node in the graph for each
heap root. There are two types of edges in the graph:
coarse-grained edges indicate that the corresponding
code blocks cannot be reordered and fine-grained edges
indicate that the corresponding code blocks can only be
reordered if the heap roots are different objects. The ab-
sence of an edge indicates that the code blocks have no
heap conflicts. The edges are generated using the condi-
tions described in the previous sections.

The value of a pointer may be unknown when a re-
orderable block is issued. Because the value is unknown,
fine-grained conflicts checks must conservatively as-
sume that it matches other potentially conflicting effects.

4.2.4 Compiling Conflict Graphs
OoOJava compiles conflict graphs into a set of runtime
queues that enforce the dependence constraints. The
runtime includes a queue implementation that enforces
both coarse-grained and fine-grained constraints. The
queue supports a number of different access modes each
of which enforces a number of fine-grained or coarse-
grained conflict constraints with other access modes.
The queue has a corresponding conflict graph that cap-
tures the ordering constraint the queue enforces.

OoOJava maps a conflict graph to a set of runtime
queues. The mapping problem can be viewed as a graph
covering problem — to enforce the data dependence
constraints all edges in a conflict graph must be cov-
ered. The algorithm uses a greedy algorithm to try to
minimize the number of queue implementations used to
cover the edges in the conflict graph.

5 Evaluation
We have implemented OoOJava and evaluated it on
a 2.27GHz 8-core Intel Xeon with 12GB of mem-
ory. We report results for two benchmarks: Ray-
Tracer and KMeans. The system and benchmarks

are available at http://demsky.eecs.uci.edu/
compiler.php.

RayTracer was taken from the Java Grande bench-
mark suite [17]. It renders a scene at a resolution of
150 × 150 pixels. Averaged over 10 runs, we obtained
a speedup of 6.14× on 8 cores relative to the sequen-
tial Java version of RayTracer. Iterations of RayTracer’s
outer loop compute one row of the scene image. We
used OoOJava to target the parallelism in this loop by
declaring a reorderable block around the independent
row computations and a reorderable block around the
subsequent code that collects the row results and com-
putes a running checksum. We compiled the benchmark
and obtained results similar to a sequential execution.

Upon inspection of the conflict graph, OoOJava cor-
rectly reported that what we thought were independent
reorderable blocks had fine-grained conflicts on objects
referenced by the singleton RayTracer object. The
source code revealed that RayTracer has real heap access
conflicts: it allocates scratch objects once and reuses
them in each row iteration. Using that information we
moved the scratch object allocations into the loop, elim-
inating the data dependences between iterations. OoO-
Java was then able to obtain the reported speedup.

The KMeans benchmark groups objects in an N-
dimensional space into K clusters. The algorithm is used
to partition data items into related subsets. We ported it
from the STAMP benchmark suite [3]. Our implemen-
tation differs from the original version in that it does not
use transactions to update the shared data structures, in-
stead a single thread identifies the clusters for several
data points and then updates the cluster data structures.
We split the main loop into two reorderable blocks: the
first finds the nearest clusters and the second updates the
cluster data structures. Averaged over 10 runs, we ob-
tained a speedup of 5.34× on 8 cores relative to the se-
quential Java version of KMeans.

Note that the current runtime implementation has not
been fully optimized. We expect that further optimiza-
tions will improve the speedups for both benchmarks.

6 Conclusion
For parallel programming to become mainstream, paral-
lel programming tools must become easy to use. This
paper presents an approach to parallel programming that
uses annotations to specify how to parallelize a sequen-
tial program. OoOJava automatically handles the details
of implementing the parallelization and guarantees that
the parallel version has the same behavior as the origi-
nal sequential version. Our initial results are promising
— we have achieved significant speedups on our bench-
marks. Moreover, parallelizing the benchmarks with
OoOJava was straightforward.

References
[1] L. O. Andersen. Program Analysis and Specializa-

tion for the C Programming Language. PhD thesis,
University of Copenhagen, 1994.

[2] R. L. Bocchino, V. S. Adve, S. V. Adve, and
M. Snir. Parallel programming must be determin-
istic by default. In First USENIX Workshop on Hot
Topics in Parallelism, 2009.

[3] C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford transactional ap-
plications for multi-processing. In Proceedings of
The IEEE International Symposium on Workload
Characterization, September 2008.

[4] L. Dagum and R. Menon. OpenMP: An industry-
standard API for shared-memory programming.
IEEE Comput. Sci. Eng., 5(1):46–55, 1998.

[5] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson.
The JCilk language for multithreaded computing.
In Synchronization and Concurrency in Object-
Oriented Languages, 2005.

[6] J. C. Jenista and B. Demsky. Disjointness analy-
sis for Java-like languages. Technical Report UCI-
ISR-09-1, University of California, Irvine, 2009.

[7] P. Jouvelout and D. Gifford. The FX-87 interpreter.
In Proceedings of the 1988 International Confer-
ence on Computer Languages, 1988.

[8] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond,
S. Horiguchi, U. Klusik, R. Loogen, G. J. Michael-
son, R. Peña, S. Priebe, A. J. Rebón, and P. W.
Trinder. Comparing parallel functional languages:
Programming and performance. Higher Order
Symbol. Comput., 16(3):203–251, 2003.

[9] M. Marron, M. Méndez-Lojo, M. Hermenegildo,
D. Stefanovic, and D. Kapur. Sharing analy-
sis of arrays, collections, and recursive structures.
In Proceedings of Program Analysis for Software
Tools and Engineering, pages 43–49, New York,
NY, USA, 2008. ACM.

[10] J. P. Perez, P. Bellens, R. M. Badia, and J. Labarta.
CellSs: Making it easier to program the Cell broad-
band engine processor. IBM J. Res. Dev., pages
593–604, 2007.

[11] K. H. Randall. Cilk: Efficient Multithreaded Com-
puting. PhD thesis, Massachusetts Institute of
Technology, 1998.

[12] L. Rauchwerger, N. M. Amato, and D. A. Padua.
Run-time methods for parallelizing partially paral-
lel loops. In Proceedings of the 9th International
Conference on Supercomputing, pages 137–146,
1995.

[13] M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: A
high-level, machine-independent language for par-
allel programming. Computer, 26:28–38, 1993.

[14] R.L. Bocchino et al. A type and effect system
for deterministic parallel Java. In Proceeding of
the 24th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, 2009.

[15] M. Sagiv, T. Reps, and R. Wilhelm. Parametric
shape analysis via 3-valued logic. In ACM Trans-
actions on Programming Languages and Systems,
2002.

[16] J. H. Saltz and R. Mirchandaney. Run-time paral-
lelization and scheduling of loops. IEEE Transac-
tions on Computers, 40(5), May 1991.

[17] L. A. Smith, J. M. Bull, and J. Obdrzalek. A paral-
lel Java Grande benchmark suite. In Supercomput-
ing, 2001.

[18] J. Subhlok and B. Yang. A new model for inte-
grated nested task and data parallel programming.
In Proceedings of the Sixth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Pro-
gramming, pages 1–12, 1997.

[19] R. M. Tomasulo. An efficient algorithm for exploit-
ing multiple arithmetic units. IBM J. Res. Dev.,
11(1), 1967.

