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Abstract
Writing low-level concurrent software has traditionally re-
quired intimate knowledge of the entire toolchain and often
has involved coding in assembly. New language standards
have extended C and C++ with support for low-level atomic
operations and a weak memory model, enabling developers
to write portable and efficient multithreaded code.

Developing correct low-level concurrent code is well-
known to be especially difficult under a weak memory
model, where code behavior can be surprising. Building reli-
able concurrent software using C/C++ low-level atomic op-
erations will likely require tools that help developers dis-
cover unexpected program behaviors.

In this paper we present CDSCHECKER, a tool for ex-
haustively exploring the behaviors of concurrent code under
the C/C++ memory model. We develop several novel tech-
niques for modeling the relaxed behaviors allowed by the
memory model and for minimizing the number of execution
behaviors that CDSCHECKER must explore. We have used
CDSCHECKER to exhaustively unit test several concurrent
data structure implementations on specific inputs and have
discovered errors in both a recently published C11 imple-
mentation of a work-stealing queue and a single producer,
single consumer queue implementation.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords relaxed memory model; model checking
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1. Introduction
With the wide-scale deployment of multi-core processors,
software developers must write parallel software to realize
the benefits of continued improvements in microprocessors.
Many developers in industry have adopted a parallel pro-
gramming model that uses threads to parallelize computa-
tion and concurrent data structures to coordinate and share
data between threads.

Careful data structure design can improve scalability by
supporting multiple simultaneous operations and by reduc-
ing the time taken by each individual data structure oper-
ation. Researchers and practitioners have developed a wide
range of concurrent data structures designed with these goals
in mind [14, 33]. Such data structures often use fine-grained
conflict detection and avoid contention.

Concurrent data structures often use a number of so-
phisticated techniques including the careful use of low-level
atomic instructions (e.g. compare and swap (CAS), atomic
increment, etc.), careful orderings of loads and stores, and
fine-grained locking. For example, while the standard Java
hash table implementation can limit program scalability to
a handful of processor cores, carefully designed concurrent
hash tables can scale to many hundreds of cores [14]. Tra-
ditionally, developers had to target their implementation of
such data structures to a specific platform and compiler, us-
ing intimate knowledge of the platform details and even cod-
ing some data structure components in assembly.

1.1 C/C++ Memory Model
Recently, standardization committees extended the C and
C++ language standards with support for low-level atomic
operations [2, 3, 12] which allow experts to craft efficient
concurrent data structures that avoid the overheads of locks.
The accompanying memory model provides for memory op-
erations with weaker semantics than sequential consistency;
however, using these weak atomic operations is extremely
challenging, as developers must carefully reason about often
subtle memory model semantics to ensure correctness. Even
experts often make subtle errors when reasoning about such
memory models.



The potential performance gains of low-level atomics
may lure both expert and novice developers to use them.
In fact some common parallel constructs (e.g., sequen-
tial locks) require ordinary developers to use atomics in
C/C++ [11]. In the absence of proper tool support, devel-
opers will likely write concurrent code that they hope is cor-
rect and then rely on testing to find bugs. Adequately testing
concurrent code that uses C/C++ atomics is nearly impossi-
ble. Even just exploring the behaviors of a given binary on
a given architecture can be tricky as some bugs require pre-
cise timing to trigger. Moreover, neither existing processors
nor compilers make full use of the freedoms provided by the
C/C++ memory model. As future compiler updates imple-
ment more aggressive optimizations, compilers will leverage
the freedom provided by the memory model and produce bi-
naries that exhibit new (but legal) behaviors that will likely
expose existing bugs.

1.2 Tool Support
While it is possible to use a formal specification of the
C/C++ memory model [8] to prove code correct, experience
suggests that most software developers are unlikely to do so
(e.g., because they lack expertise or time). There is a press-
ing need, then, for tools that allow developers to unit test
portions of their code to discover what behaviors the mem-
ory model allows. Such tools could guarantee soundness of
properly abstracted code via exhaustive exploration. Typi-
cally, concurrent data structures are amenable to such a sce-
nario; developers reason about (and rigorously test) their im-
plementation in isolation from the details of a larger client
program, then provide that abstraction to users, who only
must ensure correct use of the abstraction.

We present a new approach for exhaustively exploring the
behaviors of code under the C/C++ memory model, based
on stateless model-checking [22]. Stateless model-checkers
typically explore a program’s possible behaviors—or state
space—by repeatedly executing the program under different
thread interleavings. However, exhaustive search of potential
thread interleavings becomes computationally intractable as
programs grow to any reasonable length.

Thus, state-of-the-art model-checking rests on a class
of optimization techniques known as dynamic partial-order
reduction (DPOR) [20]. The DPOR algorithm can reduce
the explored state space by exploring only those execu-
tions whose visible behavior may differ from the behavior
of previously-explored executions. During its state-space ex-
ploration, DPOR identifies points at which it must explore
program operations in more than one interleaving (e.g., two
concurrent stores to the same object conflict, whereas two
loads do not). Conflict points are recorded in a backtrack-
ing set, so that the exploration can return (or backtrack) to
the recorded program point during a future execution and
attempt a different thread interleaving.

DPOR targets a sequentially consistent model, preventing
its direct application to the C/C++ memory model, as C
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Figure 1. CDSCHECKER system overview

and C++ provide no guarantee of a total execution order
in which loads see the value written by the most recent
store. The C/C++ memory model instead defines the relation
between loads and the values they see in terms of a reads-
from relation which is subject to a number of constraints.
We present a new approach that exhaustively explores the
set of legal reads-from relations, with some optimizations
influenced by DPOR.

In C/C++, shared variables must be either clearly anno-
tated using the new <atomic> library (or higher-level thread
support libraries, such as <mutex>), or else protected from
conflicting concurrent access through use of these atomics or
other synchronization primitives; any pair of conflicting ac-
cesses to non-atomic variables without proper synchroniza-
tion constitutes a data race, which yields undefined behav-
ior [2]. Thus, we simply designed CDSCHECKER as a dy-
namic library implementation of these threading and atomic
libraries, as shown in Figure 1, and generally left other op-
erations uninstrumented. Such a design can readily support
a broad range of real-world applications, as users simply
compile their code against our library with their compiler
of choice. At runtime, CDSCHECKER schedules program
fragments sequentially and determines the values returned
by atomic memory operations.

To model all program behaviors, CDSCHECKER im-
plements a backtracking-based system which performs re-
peated, controlled program execution until it has explored
all necessary program behaviors. CDSCHECKER reports di-
agnostic information for all data races, deadlocks, uninitial-
ized atomic loads, and user-provided assertion failures that
occur for the provided input. All failure reports include a
full trace of all thread and atomic operations performed in
the program, a short description of the detected bug(s), and
a representation of the reads-from relation for the execution.

Some tools already exist for testing program behavior ac-
cording to the C/C++ memory model. CPPMEM [8] enumer-
ates all potential modification orders and reads-from rela-
tions in programs (under a limited subset of C/C++ language
constructs), then eliminates the infeasible ones according
to the formal specification of the memory model. CPPMEM
lacks support for fences and only supports loops with a priori



loop iteration bounds. We contribute an exponentially more
efficient approach that makes it possible to check real code.
Our approach reduces the search space by avoiding explic-
itly enumerating orderings that produce equivalent execution
behavior. We also contribute support for fences and loops
without fixed iteration bounds. Relacy [37] explores possible
behaviors of real C++ programs using library-based instru-
mentation, but it cannot model all types of relaxed behavior
allowed by C/C++. Our approach fully models the relaxed
behavior of real C and C++ code.

1.3 Limitations
Generally, CDSCHECKER will explore every distinct exe-
cution behavior allowed by the C/C++ memory model, pro-
viding exhaustive test coverage under a particular program
input. However, there are a few considerations in the design
and implementation of CDSCHECKER that leave room for
incompleteness. We summarize the limitations here and pro-
vide more thorough explanation in the body of the paper.

• Supporting memory order consume requires a com-
piler’s deep knowledge of data dependences. We opted
instead to make CDSCHECKER compiler-agnostic.

• Unbounded loops present infinite state spaces, which
cannot be completely explored by a stateless model-
checker. We explore such loops under the restriction of
a fair schedule: either through bounded fairness enforced
by our scheduler (bounds adjustable) or through the use
of CHESS [34] yield-based fairness.

• Some programs rely on a live memory system in order
to terminate. For such programs, we impose bounded
liveness via an adjustable run-time option.

• CDSCHECKER may not explore all behaviors involv-
ing satisfaction cycles. Not only are satisfaction cycles
difficult to generate in a model-checker, but they are a
thorny, unsolved issue in the current C and C++ specifi-
cations, which do not make it clear exactly which behav-
iors should be allowed and disallowed. See Appendix B
for further discussion.

• CDSCHECKER uses a system of promises to allow loads
to read from stores that appear later in the execution
(Section 6). However, we do not allow these promises to
remain forever in an execution which will never satisfy
them. Thus, promise expiration theoretically may be a
source of incompleteness.

• In rare circumstances, CDSCHECKER can generate false
positives (behaviors not allowed by the memory model)
due to an absence of dependence information. Given ad-
ditional information from the compiler, however, it would
be straightforward to check each generated trace for these
false positives.

1.4 Contributions
This paper makes the following contributions:

• Basic Approach: It presents new techniques that enable
the stateless model-checking of C/C++ code under the
C/C++ memory model. Our approach is the first that can
model-check unit tests for real-world C/C++ data struc-
ture implementations under the C/C++ memory model.

• Constraints-Based Modification Order: It introduces
the first technique for model-checking the C/C++ mem-
ory model without explicitly enumerating the modifica-
tion order of atomic objects, exponentially decreasing the
search space.

• Relaxed Memory Model Support: It develops new
techniques to support the full variability of the mem-
ory model, including allowing loads to observe the val-
ues written by stores that appear later in the execution
order while at the same time maintaining compatibility
with uninstrumented code in libraries.

• Partial Order Reduction: It combines our new re-
laxed model-checking techniques with existing schedule-
driven partial order reduction to efficiently support se-
quentially consistent memory actions.

• Bug Finding: It shows that our techniques can find bugs
in real world code including finding a new bug in a
published, peer-reviewed implementation of the Chase-
Lev deque.

• Evaluation: It presents an evaluation of the model-
checker implementation on several concurrent data struc-
tures. With runtimes averaging only a few seconds and no
test taking over 11 seconds, empirical results show that
our tool is efficient in practice.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an example. Section 3 reviews important as-
pects the C/C++ memory model. Section 4 gives an overview
of our approach. Section 5 presents our constraint-based ap-
proach to modification orders. Section 6 provides more in-
sight on how we support the relaxed memory model. Sec-
tion 7 discusses release sequence support. Section 8 dis-
cusses how we handle fairness and memory liveness. Sec-
tion 9 evaluates CDSCHECKER. Section 10 presents related
work. We conclude in Section 11.

2. Example
To explore some of the key concepts of the memory-
ordering operations provided by the C/C++ memory model,
consider the example in Figure 2, assuming that two in-
dependent threads execute the methods threadA() and
threadB(). This example uses the C++11 syntax for atom-
ics; shared, concurrently-accessed variables are given an
atomic type, whose loads and stores are marked with an ex-
plicit memory order governing their inter-thread ordering
and visibility properties (discussed more in Section 3).

In this example, a few simple interleavings of threadA()
and threadB() show that we may see executions in



1 atomic <int > x(0), y(0);
2

3 void threadA () {
4 int r1 = y.load(memory_order_relaxed);
5 x.store(1, memory_order_relaxed);
6 printf("r1 = %d\n", r1);
7 }
8 void threadB () {
9 int r2 = x.load(memory_order_relaxed);

10 y.store(1, memory_order_relaxed);
11 printf("r2 = %d\n", r2);
12 }

Figure 2. C++11 Code Example

which {r1 = r2 = 0}, {r1 = 0∧r2 = 1}, or {r1 = 1∧
r2 = 0}, but it is somewhat counter-intuitive that we
may also see {r1 = r2 = 1}, in which both load state-
ments read from the store statements that appear after the
other load. While this latter behavior cannot occur under a
sequentially-consistent execution of this program, it is, in
fact, allowed by the relaxed memory ordering used in the
example (and achieved, e.g., by compiler reordering).

Now, consider a modification of the same example, where
the load and store on variable y (Line 4 and Line 10) now use
memory order acquire and memory order release, re-
spectively, so that when the load-acquire reads from the
store-release, they form a release/acquire synchronization
pair. Then in any execution where r1 = 1 and thus the
load-acquire statement (Line 4) reads from the store-release
statement (Line 10), the synchronization between the store-
release and the load-acquire forms an ordering between
threadB() and threadA()—particularly, that the actions
in threadA() after the acquire must observe the effects of
the actions in threadB() before the release. In the termi-
nology of the C/C++ memory model, we say that all actions
in threadB() sequenced before the release happen before
all actions in threadA() sequenced after the acquire.

So when r1 = 1, threadB() must see r2 = 0. In
summary, this modified example allows only three of
the four previously-described behaviors: {r1 = r2 = 0},
{r1 = 0 ∧ r2 = 1}, or {r1 = 1 ∧ r2 = 0}.

3. C/C++ Memory Model
The C/C++ memory model describes a series of atomic oper-
ations and the corresponding allowed behaviors of programs
that utilize them. Note that throughout this paper, we primar-
ily discuss atomic memory operations that perform either a
write (referred to as a store or modification operation) or a
read (referred to as a load operation). The discussion gen-
eralizes to operations that perform both a read and a write
(read-modify-write, or RMW, operations). Appendix A de-
scribes how CDSCHECKER supports fences.

Any operation on an atomic object will have one of six
memory orders, each of which falls into one or more of the
following categories.

relaxed: memory order relaxed – weakest memory or-
dering

release: memory order release,
memory order acq rel, and memory order seq cst

– a store-release may form release/consume or re-
lease/acquire synchronization

consume:1 memory order consume – a load-consume
may form release/consume synchronization

acquire: memory order acquire,
memory order acq rel, and memory order seq cst

– a load-acquire may form release/acquire synchroniza-
tion

seq-cst: memory order seq cst – strongest memory or-
dering

To ease programming burden, atomic operations default
to using memory order seq cst when no ordering is spec-
ified.

3.1 Relations
The C/C++ memory model expresses program behavior in
the form of binary relations or orderings. The following
subsections will briefly summarize the relevant relations.
Some of this discussion resembles the preferred model from
the formalization in [8], adapted to suit its usage in CD-
SCHECKER.

Sequenced-Before The order of program operations
within a single thread of execution establishes an intra-
thread sequenced-before (sb) relation. Note that while some
operations in C/C++ provide no intra-thread ordering—the
equality operator (==), for example—we ignore this detail
and assume that sb totally orders all operations in a thread.

Reads-From The reads-from (rf ) relation consists of store-
load pairs (X,Y ) such that Y reads its value from the effect
of X—or X

rf−→ Y . In the C/C++ memory model, this
relation is non-trivial, as a given load operation may read
from one of many potential stores in the program execution.

Synchronizes-With The synchronizes-with (sw) relation
captures synchronization that occurs when certain atomic
operations interact across two threads. For instance, re-
lease/acquire synchronization occurs between a pair of
atomic operations on the same object: a store-release X and
a load-acquire Y . If Y reads from X , then X synchronizes
with Y —or X sw−→ Y . Synchronization also occurs between
consecutive unlock and lock operations on the same mutex,
between thread creation and the first event in the new thread,
and between the last action of a thread and the completion
of a thread-join operation targeting that thread.

1 We don’t support consume due to implementation obstacles in detecting
data dependencies. See Section 4.4.



Note that our discussion of sw is incomplete here. We
will complete it when we introduce release sequences in
Section 7.

Happens-Before In CDSCHECKER, we avoid consume
operations, and so the happens-before (hb) relation is simply
the transitive closure of sb and sw.

Sequential Consistency All seq-cst operations in a pro-
gram execution form a total ordering (sc) so that, for in-
stance, a seq-cst load may not read from a seq-cst store prior
to the most recent store (to the same location) in the sc order-
ing, nor from any store that happens before that store. The
sc order must be consistent with hb.

Modification Order Each atomic object in a program ex-
ecution has an associated modification order (mo)—a total
order of all stores to that object—which informally repre-
sents a memory-coherent ordering in which those stores may
be observed by the rest of the program. Note that in general
the modification orders for all objects cannot be combined to
form a consistent total ordering. For instance, the surprising
behavior in Section 2’s example shows an instance where
the union of sb and rf is cyclic, and we can easily extend the
example to demonstrate a cyclic union of sb and mo.

4. CDSCHECKER Overview
CDSCHECKER’s model-checking algorithm (presented in
Section 4.1) builds on partial order reduction concepts
from [20]. However, the C/C++ memory model is signifi-
cantly more complex than DPOR’s sequentially-consistent
model, and thus simply controlling thread interleavings does
not suffice to reproduce the allowed behaviors. Thus it was
necessary to develop a new approach to explore the richer
set of behaviors allowed by the C/C++ memory model and
new partial order reduction techniques to minimize the ex-
ploration of redundant executions.

One significant departure from DPOR is that the C/C++
memory model splits memory locations and operations into
two categories: (1) normal locations and operations and (2)
atomic locations and operations. The memory model forbids
data races on normal memory operations (and assigns unde-
fined semantics to programs with such races), but allows ar-
bitrary interleavings of atomic operations. This enables CD-
SCHECKER to make a significant optimization over existing
model-checkers—it detects and reports data races (a simple
feat) on all instrumented normal memory accesses while ex-
haustively exploring interleavings (an expensive, combina-
torial search) only for atomic memory operations. If a nor-
mal memory access can exhibit more than one behavior un-
der the synchronization pattern established by the atomic op-
erations in a given execution, then it has a data race and is
forbidden by the C/C++ specifications.

CDSCHECKER’s design leverages this optimization; it
exhaustively enumerates the behaviors of atomic memory
accesses and simply checks for data races between normal

1: Initially: EXPLORE(∅)

2: function EXPLORE(S)
3: s← last(S)
4: PROCESSACTION(S)
5: if ∃p0 ∈ enabled(s) then
6: threads(s)← {p0}
7: threadsdone← ∅
8: while ∃p ∈ threads(s) \ threadsdone do
9: t← next(s, p)

10: behaviors(t)← {Initial behaviors}
11: behavedone← ∅
12: while ∃b ∈ behaviors(t) \ behavedone do
13: EXPLORE(S.(t, b))
14: behavedone← behavedone ∪ {b}
15: end while
16: threadsdone← threadsdone ∪ {p}
17: end while
18: end if
19: end function

Figure 3. CDSCHECKER algorithm

memory operations, reporting any data races to the user. This
cheapens the instrumentation required for normal memory
operations and reduces the search space explored for racy
(i.e., buggy) programs.

4.1 CDSCHECKER Architecture
We next discuss the high-level architecture of CD-
SCHECKER, beginning with our algorithm (Figure 3) and its
relation to existing literature. In our discussions, we adapt
several terms and symbols from [20]. We associate every
state transition t taken by processes (i.e., threads) p with the
dynamic operation that effected the transition, then define
the execution order2 S of these operations as the total or-
dering given by the sequence of scheduling choices made in
Figure 3, Line 8. We say that next(s, p) is the next transi-
tion in thread p at a given state s; last(S) is the most recent
state visited in S; S.t denotes extending S with an additional
transition t; and enabled(s) is the set of all threads enabled
in state s (threads can be disabled, e.g., when waiting on a
held mutex or when completed).

We base the CDSCHECKER algorithm on standard back-
tracking algorithms; we perform a depth-first exploration
of the program’s state space (recursive calls to EXPLORE,
Line 13) by iterating over a set of threads whose next transi-
tion must be explored from the given state s (the outer loop,
excluding Lines 10 to 15). Most of our algorithmic exten-
sions correspond to the inner loop, which performs a similar
(but distinct) backtracking to explore the different possible

2 We use the term execution order instead of transition sequence to make
clear the fact that a transition in our model-checker cannot be easily char-
acterized as simply a function of the current state. For example, a load tran-
sition can depend on future stores.



behaviors of the transition t that was selected in the outer
loop. Section 4.2 further describes the purpose of the behav-
iors set.

Note that as presented in Figure 3, the outer loop will
only select a single initial execution order (i.e., each state’s
threads set only ever contains the initial thread selection p0).
The PROCESSACTION procedure examines the last transi-
tion and may add additional backtracking points for previ-
ous states as needed to exhaustively explore the state space.
For clarity of presentation, we describe PROCESSACTION’s
behavior in prose throughout the rest of the paper.

4.2 Transitions with Multiple Behaviors
We now discuss another major departure from DPOR, which
comes from the nature of relaxed memory models. On one
hand, DPOR assumes that all memory modifications form a
consistent total ordering and that all memory accesses read
only the last prior value written to memory. However, it is
clear that the relaxed C/C++ memory model does not fit this
model. More pecisely, while the union of the sb, hb and sc
relations must be acyclic and consistent with some interleav-
ing of threads, the addition of rf and mo introduces the pos-
sibility of cycles. Therefore, in order to explore a program’s
state space using a linear, totally-ordered execution trace, we
must account for behaviors which are inconsistent with the
execution order.

In order to explore a relaxed model, a backtracking-based
search not only must select the next thread to execute, but
also must decide how that thread’s next step should behave.
We represent this notion in Figure 3 as a backtracking itera-
tion not only over threads but over behaviors (the aforemen-
tioned inner loop). Together, a thread choice and behavior
selection define a unique state transition.

A key source of different transition behaviors arises from
the reads-from relation—in C/C++, loads can read from
modifications besides simply the “last” store to an object. We
introduce the concept of a may-read-from set to enumerate
the stores that appear earlier in the execution order that a
given load may read from.3 When we execute a load Y , we
build the may-read-from set as a subset of stores(Y ) (the set
of all stores to the same object from which Y reads):

may-read-from(Y ) = {X ∈ stores(Y ) | ¬(Y hb−→ X) ∧

(@Z ∈ stores(Y ). X
hb−→ Z

hb−→ Y )}.

The clause ¬(Y hb−→ X) prevents a load from seeing values
from stores that are ordered later by happens-before, and the
clause (@Z ∈ stores(Y ). X

hb−→ Z
hb−→ Y ) prevents a load

from observing stores that are masked by another store.
Successive executions then iterate over this set, explor-

ing executions in which a load may read from each one of

3 Loads can also read from stores that appear later in the execution order.
Section 6 presents our approach for handling this case.

the potential stores. Each execution forms a different rf re-
lation (and, by extension, mo and hb relations). If @X ∈
may-read-from(Y ) such that X hb−→ Y , then we report an
uninitialized load—a bug in the program under test.

The reads-from mechanism allows CDSCHECKER to ex-
plore most of the behaviors of the C/C++ memory model
without rearranging the thread schedule. In fact, in the ab-
sence of synchronization or sequentially consistent opera-
tions, CDSCHECKER does not use the DPOR backtracking
mechanism to change the thread schedule at all.

4.3 Handling Sequential Consistency
The memory model guarantees a total ordering sc over all
seq-cst operations. CDSCHECKER forces the sc relation to
be consistent with the execution order. Thus CDSCHECKER
relies on a modified DPOR-like algorithm to rearrange the
scheduled execution order to implement sequentially con-
sistent operations—CDSCHECKER identifies conflicting se-
quentially consistent operations and sets backtracking points
as described in the DPOR algorithm. We combine DPOR
with sleep sets [21]. Note that in addition to using DPOR-
style backtracking for maintaining a consistent sc ordering,
we use it to ensure that hb is consistent with the execution or-
der (see Section 6.3) and to explore the behaviors of higher-
level synchronization primitives (e.g., mutexes).

4.4 Happens-Before and Clock Vectors
In the absence of consume operations, happens-before
is simply the transitive closure of synchronizes-with
and sequenced-before. Thus, CDSCHECKER represents
happens-before succinctly using a Lamport-style clock vec-
tor [28]. Events consist of atomic loads and stores, thread
creation and join, mutex lock and unlock, and other synchro-
nizing actions. Every event increments its own thread’s clock
(representing a step in sb), and then CDSCHECKER tags the
event with the current thread’s clock vector. Synchronization
between two threads—Ti and Tj , where Ti

sw−→ Tj—should
merge Ti’s clock vector with Tj’s clock vector, according to
a pairwise maximum over all the thread clocks. We assign
the resulting vector to the synchronizing event in Tj .

Some processor architectures (e.g., Power and ARM) re-
spect low-level data dependencies such that while synchro-
nization is generally expensive it can be cheapened for op-
erations that are data-dependent on a synchronizing memory
access. Thus, C and C++ provide release/consume atomics
as a weaker, dependency-based synchronization alternative
to release/acquire. However on stronger architectures (e.g.,
x86), consume provides no benefit over acquire, so we find
it reasonable to omit support of consume in favor of mini-
mizing CDSCHECKER’s compiler-specific dependencies.

Still, given compiler and runtime support for computing
the intra-thread carries a dependency to relation, we can ex-
tend our approach to support release/consume synchroniza-
tion. One approach is to associate a secondary clock vector



with a program event if it is dependency ordered (§1.10p9-
10 [3]) after a store-release from a different thread—never
forwarding the clock vector to subsequent actions ordered
only by sequenced-before. When present, the model-checker
would use this secondary clock vector for detecting data
races and computing may-read-from sets. A store-release
that follows operations that are dependency ordered would
then merge the clock vectors for all operations sequenced be-
fore the store, transferring them to any operation with which
it synchronizes.

4.5 Deadlock Detection
CDSCHECKER can easily detect deadlocks during its state
space search. Given our knowledge of the next transition
next(s, p) for each thread p, it is straightforward to check
if a thread’s next transition is disabled (i.e., blocking due to
a mutex operation or a thread join) and waiting on another
thread. Then, CDSCHECKER can simply check for a circular
wait by traversing the chain of waiting threads whenever a
thread takes a step; if that thread can reach itself, then we
report a deadlock to the user.

5. Constraints-based Modification Order
The modification order relation presents unique challenges
and opportunities in model-checking C/C++, as program ex-
ecutions never directly observe it. One approach taken by
other tools (e.g., CPPMEM) is to exhaustively enumerate
both the mo and rf relations, discarding any executions that
violate memory model constraints. In the following subsec-
tions, we present a new approach, in which we record mo
not as an exhaustively explored ordering but as a constraints
graph, in order to reduce (by an exponential factor) the work
spent on both infeasible and redundant executions.

5.1 Motivation
We could constructively maintain the modification order
using an approach similar to CPPMEM—as soon as CD-
SCHECKER executes a store, we could assign it an absolute
ordering within mo. However, at the time of a store’s exe-
cution, a program has not formed many constraints for its
modification order, so we would have to choose its ordering
arbitrarily, then explore an additional exponential space of
reorderings to enumerate all possible choices. This would of-
ten incur a very large overhead, as constraints observed later
in the execution often invalidate many orderings and many
different modification orderings produce no visible differ-
ence in program behavior.

Therefore, rather than constructively (and expensively)
maintaining mo as a total ordering, we chose a lazy approach
to the modification order. CDSCHECKER represents mo as
a set of constraints, built as a constraints graph—the modifi-
cation order graph, or mo-graph. A node represents a single
store in the execution and an edge directed from a node A to
a node B represents the constraint A mo−→ B. CDSCHECKER

dynamically adds edges to the mo-graph as hb and rf rela-
tions are formed, as described in Section 5.5. Then, CD-
SCHECKER must only ensure that exploration of a partic-
ular execution yields a satisfiable set of mo constraints—or
equivalently, an acyclic mo-graph. A cyclic mo-graph im-
plies an ill-formed execution, and so CDSCHECKER can
discard the current execution and move on to explore the
next execution.

5.2 Representing the Memory Model as Constraints
The memory model specifies several properties governing
the interplay of rf, hb, sc, and mo. We contribute the insight
that these properties can be formulated as constraints on the
modification order. Thus, we present them as implications,
shown in the left-to-right progressions in Figure 4. For ex-
ample, consider READ-READ COHERENCE (§1.10p16 [3]);
we can say that any pair of loads A and B with a correspond-
ing pair of stores X and Y (all operating on the same object
v), where

X
rf−→ A, Y

rf−→ B, and A
hb−→ B

imply a particular modification ordering for X and Y —
namely, that X mo−→ Y . In other words, such a constraint pre-
vents other loads from observing X and Y in the reverse or-
der. The reader can examine similar WRITE-READ, READ-
WRITE, or WRITE-WRITE coherence requirements.

In addition to COHERENCE, we summarize the following
memory model requirements:

• SEQ-CST / MO CONSISTENCY: A pair of seq-cst stores
must form mo consistently with sc (§29.3p3 [3])

• SEQ-CST WRITE-READ COHERENCE: A seq-cst load
must read from a store no earlier (in mo) than the most
recent (in sc) seq-cst store (§29.3p3 [3])

• RMW / MO CONSISTENCY: A read-modify-write
must be ordered after the store from which it reads
(§29.3p12 [3])

• RMW ATOMICITY: A read-modify-write must be or-
dered immediately after the store from which it reads
(§29.3p12 [3])

5.3 Example
We examine the application of these constraints in the mo-
graph using the following example.

1 atomic <int > x(0);
2

3 void threadA () {
4 x.store(1, memory_order_relaxed); // A
5 x.store(2, memory_order_relaxed); // B
6 }
7 void threadB () {
8 int r1 = x.load(memory_order_relaxed); // C
9 int r2 = x.load(memory_order_relaxed); // D

10 }

As CDSCHECKER executes the stores in threadA(), the
WRITE-WRITE COHERENCE constraint implies a mo edge



READ-READ COHERENCE

X: v.store(1)

Y: v.store(2)

A: v.load()
rf

B: v.load()
rf

hb =⇒

X: v.store(1)

Y: v.store(2)

mo

WRITE-READ COHERENCE

X: v.store(2) B: v.load()
rf

A: v.store(1)

hb =⇒
X: v.store(2) B: v.load()

A: v.store(1)

mo

READ-WRITE COHERENCE

X: v.store(1) A: v.load()
rf

B: v.store(2)

hb =⇒

X: v.store(1) A: v.load()

B: v.store(2)

mo

WRITE-WRITE COHERENCE

A: v.store(1)

B: v.store(2)

hb =⇒

A: v.store(1)

B: v.store(2)

mo

SEQ-CST / MO CONSISTENCY

A: v.store(1)

B: v.store(2)

sc =⇒

A: v.store(1)

B: v.store(2)

mo

SEQ-CST WRITE-READ COHERENCE

X: v.store(2) B: v.load(seq_cst)
rf

A: v.store(1, seq_cst)

sc =⇒
X: v.store(2) B: v.load(seq_cst)

A: v.store(1, seq_cst)

mo

RMW / MO CONSISTENCY

A: v.store(1)

B: v.rmw()

rf =⇒

A: v.store(1)

B: v.rmw()

mo

RMW ATOMICITY

A: v.store(1)

B: v.rmw()

rf

C: v.store(2)

mo =⇒ B: v.rmw()

C: v.store(2)

mo

Figure 4. Modification order implications. On the left side
of each implication, A, B, C, X , and Y must be distinct.

from store A to store B. Consider an example execution
where load C has read from store B. Now consider the possi-
bility of load D reading from store A. In such a case, READ-
READ COHERENCE would require a mo-graph edge from B

to A—forming a mo-graph cycle between A and B and pro-
hibiting such an execution.

5.4 Search Space Reduction
We will demonstrate in a short example how our approach
to constraints-based modification order reduces the inef-
ficient exploration of redundant and infeasible execution
behaviors in comparison to simpler approaches, such as
CPPMEM’s. Consider the following program, written in the
syntax style of CPPMEM, where {{{ statement1; |||

statement2; }}} means that statement1 and statement2
execute in parallel.

1 atomic <int > x = 0;
2

3 {{{ x.store(1, relaxed);
4 ||| x.store(2, relaxed);
5 ||| x.store(3, relaxed); }}}
6

7 r1 = x.load(relaxed);

CPPMEM’s search algorithm considers that a load may
read from any store in the program, and that those stores
may have any arbitrary (total) modification ordering; it per-
forms no analysis of the interplay of reads-from, modifica-
tion order, and happens-before when enumerating candidate
executions. Thus in this program, it enumerates 24 potential
modification orderings for the 3 stores and 1 initialization
(the permutations of a 4-element sequence) and considers
4 potential stores to read from at line 7, yielding 96 com-
binations. However, one can easily see that there are actu-
ally only 3 valid behaviors for this program: those repre-
sented by the results r1 = 1, r1 = 2, or r1 = 3. In fact,
many of the modification orderings are impossible; none of
the stores can be ordered before the initialization, due to
WRITE-WRITE COHERENCE. Additionally, many of the re-
maining modification orderings are irrelevant; this program
only cares which of the stores appears last in the order, as
this is the store from which the load must read.

CDSCHECKER’s constraint construction captures ex-
actly the observations of the previous paragraph because it
only establishes modification orders as they are observed. So
for example, when line 7 reads a value of 3, CDSCHECKER
rules that line 5 must be ordered after all of the other
stores (due to WRITE-READ COHERENCE), but it doesn’t
bother enumerating the modification ordering of the remain-
ing stores, since no operations observe their ordering. Ad-
ditionally, CDSCHECKER can avoid exploring executions
where line 7 reads a value of 0, since such a rf relation would
immediately generate a mo-cycle. In fact, CDSCHECKER
explores exactly the 3 consistent behaviors without enumer-
ating the other 93 redundant or inconsistent orderings.

5.5 Optimized Constraint Construction
CDSCHECKER derives its mo-graph using the implications
presented in Figure 4. However, these requirements are non-
trivial to implement, as a naı̈ve approach involves a search
of the entire execution history every time we update hb, sc,
rf, or mo—that is, at least once for every program operation.
But with a few observations and optimizations, we can effi-
ciently build this graph.



COHERENCE: Because the antecedents of the four coher-
ence implications involve only the rf and hb relations on a
single object, we must compute additional mo edges only on
exploration of new loads and stores or when rf or hb are
updated. Now, consider an implementation of READ-READ
COHERENCE. Rather than searching for all pairs of loads or-
dered by happens-before, we conclude that when exploring
a new load Y , we only need to consider the most recent load
Xi, from each thread i, which happens before Y and reads
from the same object. For any other load Z (reading the
same object) that happens before Y , either Z = Xi for some
i, or else Z

sb−→ Xj for some j. By induction, then, CD-
SCHECKER must already have considered any prior loads.

The other three coherence conditions have similar induc-
tive behavior, and so we can limit the number of computa-
tions necessary: two rules correspond to a new load (READ-
READ and WRITE-READ), and two rules correspond to a
new store (READ-WRITE and WRITE-WRITE); all four ap-
ply to a read-modify-write. Furthermore, by a similar induc-
tive argument, we can combine the coherence rules such that
it is only necessary to search for the most recent load or store
(and not both). Finally, note that lazy updates of hb (see Sec-
tion 7) must trigger similar constraint updates.

SEQ-CST / MO CONSISTENCY: Upon exploration of a
new seq-cst store, CDSCHECKER must add an edge from
the most recent seq-cst store to the same object in the execu-
tion order (and hence, in sc) to the current store. By a sim-
ple induction, this computation will soundly cover all seq-cst
stores, if applied at exploration of each new seq-cst store.

SEQ-CST WRITE-READ COHERENCE: In similar fash-
ion to SEQ-CST / MO CONSISTENCY, CDSCHECKER must
search for the most recent seq-cst store upon exploration of
a seq-cst load.

RMW / MO CONSISTENCY: Consistency is trivial; CD-
SCHECKER simply adds a mo-graph edge whenever a read-
modify-write executes.

RMW ATOMICITY: Not only must CDSCHECKER be
sure to order a RMW B after the store A from which it reads
(i.e., RMW / MO CONSISTENCY), it must also ensure that
any store C ordered after A is also ordered after B. Thus,
CDSCHECKER records metadata in each graph node A to
show which RMW (if any) reads from A; a new edge from A
to C then creates an additional edge from B to C. Note that
RMW CONSISTENCY and ATOMICITY combine to ensure
that two RMW’s cannot read from the same store. If two
RMW’s, B and C, each read from A, then the mo-graph
forms a cycle between B and C, invalidating the current
execution.

5.6 Modification Order Rollback
A naı̈ve implementation of our mo-graph approach would
have to rollback the entire execution whenever it assigns a
load to read from a store that results in immediate violations
of mo-graph constraints. To optimize for this common case,

our mo-graph supports rolling back the most recent updates.
Then in Section 5.3’s example, for instance, CDSCHECKER
can check whether it is feasible for load D to read from
store A before committing D to read from A. This reduces the
number of infeasible executions that must be backtracked.

6. Relaxing Reads-from
The framework as described thus far can only simulate loads
that read from stores that appear earlier in the execution or-
der. However, the C/C++ memory model allows executions
in which the union of the rf and sb relations is cyclic, im-
plying that regardless of the execution order, this strategy
will not suffice to model all legal executions. The counter-
intuitive result (i.e., {r1 = r2 = 1}) from our example in
Figure 2 is one such execution.

To fully model all behaviors allowed by the memory
model, CDSCHECKER must also model executions in which
values flow backwards in the execution order, allowing loads
to read from stores which have not yet occurred at the time of
the load—we say that such loads are observing future values.

The key idea for modeling future values is to leverage
backtracking of transition behaviors to allow loads to read
from stores that appear later in the execution order. As an
illustrative example, consider—without loss of generality—
an execution order of the example from Figure 2 in which
all statements in threadA appear before all statements in
threadB. In such an execution, it is relatively easy to see
how to simulate r2 = 1 from the counterintuitive result.
However, simulating r1 = 1 requires that the load in Line 4
of threadA read from the store in Line 10 of threadB.
The challenge here is that this load appears before CD-
SCHECKER has even seen the store.

To address this challenge, we introduce an extension to
our may-read-from set: the futurevalues set which associates
pairs (v, t) with loads X , where v is a predicted future value
(written by thread t) that X may read. Suppose an execution
encounters a store Y and a number of loads X1, X2, . . . , Xn

from earlier in the execution order. As long as Xi does
not happen before Y , it may read from Y , and so CD-
SCHECKER will add the pair (value(Y ), thread(Y )) to the
set futurevalues(Xi) for each i = 1, . . . , n (if Y ’s thread
did not yet exist at the time of Xi, it will use an appropriate
ancestor thread). On subsequent executions, CDSCHECKER
will diverge from previous behavior and explore executions
in which load Xi chooses a pair (v, t) from futurevalues(Xi)
and reads the value v. In our example, this allows CD-
SCHECKER to simulate the load reading the value 1 that is
written by the later store. We next need to verify that a later
store (from thread t or one of its descendants) will still write
the value 1 and that the memory model constraints allow the
load to read from the store.



6.1 Promising a Future Value
When CDSCHECKER backtracks in order to evaluate a load
using a future value—a speculative load behavior—we can-
not precisely associate the future value with a particular store
that will generate it; any dependencies on the value observed
might cause divergent program behavior, so that in the new
execution, several later stores may generate the observed
value (validating the observation), or else such a store may
no longer occur (making the observation infeasible).

For every speculative load (v, t) made in an execu-
tion, CDSCHECKER establishes a promised future value (or
promise)—an assertion that, at some later point in the execu-
tion, thread t (or one of its descendants) will perform a store
that can legally pass value v back to the speculative load.
In our example, CDSCHECKER would generate a promise
when it simulates the load in Line 4 reading a future value
of 1 from the pair (1, threadB). This promise asserts that a
later store from threadB will write the value 1 and that the
load can read from that store.

Once CDSCHECKER detects such a store, we consider
the promise to be satisfied, and we can remove the promise
from future consideration. In our example, the promise
would be satisfied when the store in Line 10 writes the value
1. If, however, CDSCHECKER finds that such a store is no
longer possible, then the promise fails and we must discard
the execution as invalid.

Because programs create threads dynamically, loads may
read future values from stores whose threads do not yet exist
at the time of the load. So when establishing a promise from
an observed future value pair (v, t), we assert that thread
t or one of its descendants will write the value v. Thus, a
promise must track the set of threads which are available to
satisfy the promise. This set grows when one of its member
threads forks another thread, and it shrinks when one of its
member threads can no longer satisfy the promise (e.g., the
thread has completed). If at any point this set is empty, then
the promise fails.

We must allow a speculative load to read not only from
the first satisfactory store to follow it in the execution order
but also from subsequent stores. Thus, we model two execu-
tion behaviors for each store: one in which the store chooses
to satisfy a matching promise and one in which it chooses
not to do so, instead allowing a later store to satisfy it.

Sending back a future value may cause an execution to
diverge such that its promise is never satisfied nor can the
model-checker ever rule out the possibility that it will even-
tually be satisfied. To address this, promises expire if they
are not resolved by the expected number of program opera-
tions plus a tunable threshold.

6.2 Treating Promises as Stores
After a load observes a promised future value, we assume
that some store will eventually satisfy it, and so we must
allow subsequent loads to observe the same store. Rather

than generating independent promises for each instance of
the observed value, we track these speculative rf relations
by treating the promise as a placeholder for a future store;
we can then add this placeholder to the appropriate loads’
may-read-from set. In practice, then, the may-read-from set
for a given load is composed of three separate components:
stores from earlier in the execution order; its futurevalues
set; and the set of yet-unsatisfied promises for the same
memory location.

Over the lifetime of a promised future value (that is, the
period between its generation and satisfaction/invalidation),
we can build a form of modification order constraints for
it in much the same way as with non-speculative stores.
For example, whenever a promise can be satisfied only by
a single thread, we can order it after all operations in that
thread (in the sb relation, and therefore in hb and mo); and
we know which loads read from the promised value, so we
can apply the COHERENCE implications.

These mo constraints are useful for reasoning about the
feasibility of a promise. For instance, if an execution ob-
serves promised values in an inconsistent order, we can de-
tect a graph cycle and terminate the execution. Addition-
ally, the modification order can tell us when a thread can
no longer satisfy a promise, aiding us in eliminating unsat-
isfiable promises. For example, COHERENCE implies that a
load A cannot read from a store C whenever there exists a
store B such that A hb−→ B

mo−→ C. Thus, when such a B
exists, we eliminate C’s thread from satisfying a promise
to load A. If instead we encounter a store that satisfies a
promise, we can merge the promise and store nodes in the
constraints graph, retaining the constraint information that
we already gathered.

6.3 Synchronization Ordering
Allowing loads to see values written by stores that appear
later in the execution order may yield a synchronization re-
lation directed backward in the execution order. Such a syn-
chronization would break any code (e.g., libraries or oper-
ating system calls) that used uninstrumented memory ac-
cesses to implement normal loads and stores. Moreover, it
would require complicated mechanisms to ensure that nor-
mal shared memory accesses observe the correct values.

We observe that since the specification guarantees that
happens-before is acyclic (§1.10p12 [3]), we can address
this problem by ensuring that we always direct hb forward
in the execution trace (note that hb must be acyclic). If hb is
always consistent with the execution order of program frag-
ments, normal loads and stores (including those in libraries
and in many operating system invocations) will behave as
expected; reading the last-written value from memory will
always be consistent with the happens-before behavior in-
tended in the original program. This also explains another
design decision made in CDSCHECKER: rather than instru-
menting all shared memory loads to read from the correct



stores, CDSCHECKER generally leaves non-atomic memory
accesses uninstrumented (with the exception of a happens-
before race detector).

We now present a few observations we use in guaran-
teeing that hb remains consistent with the execution order.
Because sequenced-before is trivially consistent, our guar-
antee reduces (in the absence of memory order consume)
simply to the guarantee that synchronizes-with forms con-
sistently with the execution order. We achieve this guaran-
tee in two parts. First, whenever we detect an inconsistent
synchronization relation, we terminate the execution as in-
feasible. Second, we must ensure that whenever such termi-
nation occurs, we will also explore an equivalent execution
with well-formed synchronization; thus, we backtrack when-
ever an execution trace encounters a load-acquire ordered
before a store-release to the same location. Finally, note that
if we extend our approach to include consume operations
as described in Section 4.4, this discussion of synchronizes-
with, load-acquire, and store-release can be trivially ex-
tended to dependency-ordered-before, load-consume, and
store-release.

7. Release Sequences
Thus far, our discussion has assumed that release/acquire
synchronization only occurs when a load-acquire reads from
a store-release. Unfortunately, such a simplistic synchro-
nization criteria would force implementations of common
synchronization constructs to declare more atomic opera-
tions with release or acquire memory orders instead of re-
laxed and thus generate suboptimal compiler output (e.g.,
with extraneous fence instructions). To address this prob-
lem, the C/C++ memory model defines a release sequence
(§1.10p7 [3]), which both extends the conditions under
which a load-acquire and store-release synchronize and cor-
respondingly increases the complexity of determining syn-
chronization relationships as they form.

We summarize the definition (note that all operations in
consideration must act on the same atomic object): a release
sequence consists of a release operation A—the release
head—followed by a contiguous subsequence of the modifi-
cation order consisting only of (1) stores in the same thread
as A or (2) read-modify-write operations; a non-RMW store
from another thread breaks the sequence. Figure 5 shows a
release sequence headed by A and followed by modifications
B, C, and D; note how a chain of RMW’s (encircled with
a dotted boundary) may extend the release sequence beyond
the thread which contained the release head A.

Then, we redefine release/acquire synchronization4: a
store-release A synchronizes with a load-acquire B if B
reads from a modification M in the release sequence headed
by A [3]. In Figure 5, the load-acquire E reads from D,

which is part of the release sequence headed by A—so
A

sw−→ E.
This definition of release/acquire synchronization poses

several challenges as we attempt to eagerly form the sw re-
lation, since CDSCHECKER does not establish the modifi-
cation order eagerly. For one, future values allow the possi-
bility of lazily-satisfied reads-from relationships, so we may
not establish the modification order of a read-modify-write
operation until its read portion is satisfied. More generally,
recall that CDSCHECKER uses a constraints-based approach
to establishing modification order, so at a given point in
a program execution, two modifications may be unordered
with respect to each other, leaving us uncertain as to whether
or not a given sequence of modifications is contiguous (e.g.,
in Figure 5 we must guarantee that no non-RMW store M
exists in another thread such that A mo−→ M

mo−→ B). Either
of these two factors may prevent CDSCHECKER from ea-
gerly deciding synchronization when exploring load-acquire
operations, so we resort to lazy evaluation.

Lazy evaluation of release sequences means that for any
release/acquire pair whose corresponding release sequence
we cannot establish or invalidate with certainty at first dis-
covery, CDSCHECKER leaves the pair unsynchronized5 and
places it into a set of pending release sequences, along with
any unconstrained (or loose) stores which might break up
the release sequence. By the end of the execution, a pro-
gram will usually build up enough constraints to mo such
that CDSCHECKER can resolve these pending release se-
quences deterministically and drop the release/acquire pair
from the pending set. However, if at the end of a program
execution the constraints are still undecided for one or more
pending release sequences, then CDSCHECKER must search
for a particular constraints solution by selecting one of two
possibilities for each pending sequence: either that one of
the loose stores breaks the sequence, or that the sequence is
contiguous, causing the release/acquire pair to synchronize.
Selections may not be independent (one contiguous release
sequence may imply another, for instance) and so many so-
lutions are infeasible.

Now, sound model-checking does not require exploration
of all possible solutions, as some solutions only allow a sub-
set of behaviors exhibited by an equivalent, less-constrained
execution. Particularly, in a constraints problem where one
solution might result in no additional synchronization and a
second solution results in one or more additional release/ac-
quire synchronizations, the first solution must exhibit a su-
perset of the erroneous behaviors (e.g., data races) exhib-
ited by the second one. Thus, an optimized search would
prioritize constraint solutions where all pending release se-

4 This definition subsumes the previous definition; a store-release is in the
release sequence headed by itself.
5 Lazy synchronization is acceptable because an execution in which syn-
chronization does not occur can only exhibit a superset of behaviors seen in
the equivalent synchronizing execution.



A: v.store(1, release) B: v.store(2, relaxed)sb

mo

E: v.load(acquire)

sw

C: v.fetch_add(1, relaxed)

mo
rf

D: v.fetch_add(1, relaxed)

mo
rf

rf

Figure 5. An example release sequence. Program execution
is generally ordered from left to right.

quences are broken (i.e., non-contiguous); such a minimally-
synchronizing solution precludes the need to explore other
release sequence combinations in which the release se-
quences resolve to some non-empty set of synchronizations.

The discussion so far has failed to account for the ef-
fect of delayed synchronization on the rest of the model-
checking process, where we previously assumed that CD-
SCHECKER establishes synchronization eagerly. When de-
layed resolution of a release sequence causes synchroniza-
tion, CDSCHECKER must perform a number of updates for
all clock vectors and mo-graph edges that are dependent on
this update. A newly-established relation X

sw−→ Y , where
Y is in the interior of the execution trace, must generate
a cascading update in the clock vectors for all operations
which have previously synchronized with Y (previously-
unordered operations are unaffected). Additionally, each up-
dated clock vector may yield new information about mo con-
straints. Thus, after such a lazy synchronization X

sw−→ Y ,
CDSCHECKER performs an iterative pass over all opera-
tions ordered after Y in the execution order, recalculating
the happens-before clock vectors and mo constraints.

Lazy synchronization presents a few other problems for
CDSCHECKER. For one, it may reveal that rf is inconsis-
tent with hb long after the relevant load, causing unneces-
sary state-space exploration. Furthermore, because lazy syn-
chronization may protect the memory accesses which previ-
ously constituted a data race, our happens-before race detec-
tor must delay realizing data races until there are no pending
synchronizations.

Despite this discussion of the complexity involved in re-
lease sequences, we suspect that most valid programs will
never incur significant overhead when resolving release se-
quences. In our tests of real data structures, all release se-
quences have been trivially-resolvable: either a load-acquire
reads directly from a store-release or it reads from a chain of
one or more RMW’s.6 With the former, synchronization is
immediately evident, and with the latter, the chain of RMW’s
guarantees a contiguous subsequence of the modification or-
der (see Figure 4, RMW ATOMICITY). Such programs will

6 We also observed simple release sequences in the presence of fence oper-
ations (see Appendix A).

never incur the costs of the more complicated constraints
checks for determining a contiguous subsequence of mo.

8. Liveness and Fairness
Some programs present infinite spaces of execution when al-
lowed to continually read a particular value from an atomic
object, even after new values have been written; C and C++
require that these new values “become visible to all other
threads in a finite period of time” (§1.10p25 [3]), posing a
practicality problem for our exhaustive search. We conclude
that, for some programs which rely on memory system live-
ness, we must trade off state-space coverage for liveness.
CDSCHECKER provides users with a runtime-configurable
bound on the number of times a thread can read from the
same store while the modification order contains another
later store to the same location.

A related issue arises for sequentially consistent atom-
ics; thread starvation can prevent some algorithms from ter-
minating. CDSCHECKER supports the CHESS [34] fairness
algorithm through the use of thread-yields placed in the
program under test. Or, if a user cannot insert appropriate
yields, we also support a tunable fairness parameter such that
threads which are enabled sufficiently many times within an
execution window without taking a step should receive pri-
ority for execution, allowing users to automatically balance
fairness and completeness.

9. Evaluation
Because C++11 is so new, there are few tools that test pro-
grams under its memory model and few benchmarks against
which to run. For those tools that do exist, there are limita-
tions either on scalability (they can only test very small pro-
grams) or on soundness (they miss a significant number of
potential program behaviors). We evaluated CDSCHECKER
against these tools where possible, while separately measur-
ing CDSCHECKER’s performance on real data structures.
We ran our evaluations on an Ubuntu Linux 12.04 machine
with an Intel Core i7 3770 CPU. We have made both our
model-checker and benchmarks publicly available at http:
//demsky.eecs.uci.edu/c11modelchecker.html.

We compiled and ran our evaluations with compiler op-
timizations enabled (GCC’s -O3 flag). However, because
we implement instrumented versions of atomic operations
within CDSCHECKER’s (opaque) shared library, the com-
piler has limited ability to reorder the atomic operations
in the unit tests, and so compiler optimizations performed
on the program under test do not affect the correctness of
model-checking. To verify this, we studied the implemen-
tation of atomic operations in GCC and clang/LLVM. Both
compilers utilize library headers which we can easily sub-
stitute with CDSCHECKER’s header; thus, we transform
atomic operations into function calls which cannot be re-
ordered. Additionally, a simple experiment showed no be-

http://demsky.eecs.uci.edu/c11modelchecker.html
http://demsky.eecs.uci.edu/c11modelchecker.html


Benchmark # Executions # Feasible Total Time (s)
Chase-Lev deque 748 81 0.14
SPSC queue 18 11 0.01
SPSC queue (bug free) 19 16 0.02
Barrier 10 10 0.01
Dekker critical section 19,319 2,313 3.22
MCS lock 18,035 14,017 3.61
MPMC queue 40,148 13,028 7.66
M&S queue 272 114 0.07
Linux RW lock 54,761 1,366 10.56

Figure 6. Benchmark Results

havioral differences in our benchmarks results when using
GCC to compile them with and without optimization.

9.1 Data Structure Benchmarks
For testing CDSCHECKER on real code, we have gath-
ered five data structure implementations—a synchroniza-
tion barrier, a mutual exclusion algorithm, a contention-
free lock, and two different types of concurrent queues—
downloaded from various publicly-accessible Internet web-
sites, and a work stealing deque taken from [29]. Addition-
ally, we ported our own implementations of the Linux ker-
nel’s reader-writer spinlock from its architecture-specific as-
sembly implementations and the Michael and Scott queue
from its original C and MIPS source code [33].

Most benchmarks were originally written simply as data
structure implementations, so we wrote test drivers for many
of them in order to run them under CDSCHECKER. We
briefly describe each data structure, our test methodology,
and our performance results and analysis. For our perfor-
mance results (Figure 6), we record the total number of times
CDSCHECKER executed the test program (# Executions)
and the number of executions whose behavior was consistent
with the memory model (# Feasible). The ratio of the feasi-
ble executions to the total number of executions provides a
measure of the overhead of exploring infeasible executions.

Many benchmarks have an infinite space of executions
under memory systems that do not guarantee liveness, so for
all our tests, we ran CDSCHECKER with a memory liveness
parameter of 2 (see Section 8). For all benchmarks with
non-atomic shared memory, we manually instrumented the
normal memory accesses to check for data races.

Chase-Lev Deque: We took this implementation from a
peer-reviewed, published C11 adaptation of the Chase-Lev
deque [29]. It predominantly utilizes relaxed operations (for
efficiency) while utilizing fences and release/acquire syn-
chronization to establish ordering. While the paper proves
an ARM implementation correct, it does not contain a cor-
rectness proof for its C11 implementation. Our test driver for
this benchmark utilizes two threads in which the thread that
owns the deque pushes 3 work items and takes 2 work items
while the other thread steals a work item.

Our model-checker discovered a bug in the published im-
plementation. The bug occurs when both a steal and push

operation occur concurrently and the push operation resizes
the deque. The bug reveals itself as a load from a potentially
uninitialized memory location. We contacted the paper’s au-
thors and they confirmed the bug in the C11 implementation.

SPSC queue: This single-producer, single-consumer
queue allows concurrent access by one reader and one
writer [7]. We utilize the test driver provided along with
the queue, which uses two threads—one to enqueue a sin-
gle value and the other to dequeue it and verify the value.

This queue utilizes seq-cst atomics, a C++ mutex/condi-
tion variable and only a few non-seq-cst atomics, allowing
CDSCHECKER to easily reduce the search space. It con-
tained a known bug—a deadlock—which CDSCHECKER
detected on its first execution, pruning the search space early
and resulting in fewer executions for the buggy benchmark
than for our modified bug-free version.

Barrier: This implements a synchronizing barrier [1],
where a given set of threads may wait on the barrier, only
continuing when all threads have reached the barrier. The
barrier should synchronize such that no memory operation
occurring after the barrier may race with a memory operation
placed before the barrier. The implementation is simple and
contentious, as the first n − 1 threads will spin on a global
flag, waiting for the nth thread to reach the barrier.

Our test driver utilizes two threads with a non-atomic
shared memory operation executed on either side of the
barrier, one in each thread.

Because the barrier is implemented with seq-cst atomic
operations, it exhibits relatively few behaviors—those deter-
mined by simple thread interleavings. Under a fair schedule,
this test required only 7 executions.

Dekker critical section: This implements a simple crit-
ical section using Dekker’s algorithm [4], where a pair of
non-atomic data accesses are protected from concurrent data
access. This benchmark successfully utilizes sequentially
consistent, release, and acquire fences to establish ordering
and synchronization.

Contention-free lock: This contention-free lock imple-
ments the algorithm proposed by Mellor-Crummey and
Scott (known as an MCS lock) [5, 32]. The lock acts like a
concurrent queue, where waiting threads are queued—first-
in, first-out. Our test driver uses two threads, each of which
alternates between reading and writing the same shared vari-
able, releasing the lock in between operations.

As with several other benchmarks, heavy usage of non-
seq-cst operations in multiple threads required exploration
of a larger state space; weak loads and stores provide many
more potential combinations of store/load pairs in the rf
relation.

MPMC queue: This multiple-producer, multiple-
consumer queue allows concurrent access by multiple
readers and writers [6]. Our test driver runs two identical
threads. Each thread first enqueues an item and then
dequeues an item.



M&S queue: This benchmark is an adaptation of the
Michael and Scott lock free queue [33] to the C/C++ mem-
ory model. Our adaptation uses relaxed atomics when pos-
sible. Our test driver runs two identical threads. Each thread
first enqueues an item and then dequeues an item.

Linux reader-writer lock: A reader-writer lock allows
either multiple readers or a single writer to hold the lock at
any one time—but no reader can share the lock with a writer.
We ported this benchmark from a Linux kernel implementa-
tion, likely making this the most deployed example out of all
our benchmarks.

To test the Linux reader-writer lock, our test driver runs
two identical threads, with a single rwlock t protecting
a shared variable. Each thread reads the variable under a
reader lock, then writes to the variable under the protection
of a writer lock.

This benchmark utilizes a large number of relaxed mem-
ory operations, thoroughly testing the efficiency of our re-
laxed model optimizations. In fact, our naı̈ve early imple-
mentations of future values typically took thirty or more
minutes to complete, whereas the current results show an
exploration time of under 11 seconds.

9.2 Litmus Tests
To help verify that CDSCHECKER performs sound explo-
ration of the memory model, we tested it against a set of
litmus tests, including the tests described in Nitpicking [10]
as well as a few of our own custom tests. With the Nitpick-
ing litmus tests, we wrote assertion-based tests when possi-
ble, and manually checked other properties (e.g., when test-
ing for the existence, rather than avoidance, of a particular
behavior). We ran all the listed relaxed, release/acquire and
seq-cst tests, all of which exhibited the expected behaviors.

Whereas the Nitpicking litmus tests only tested the
memory ordering behaviors of loads and stores, we per-
formed additional tests to verify the treatment of, e.g.,
read-modify-writes in CDSCHECKER. In one such test we
ran two threads, with each thread performing n identical
fetch add(1) operations on a single variable. We verified
that we see the correct number of distinct execution behav-
iors (enumerating rf ) and that each execution yields a sum of
2n. We performed other similar tests and checked the com-
binatorial behavior.

9.3 Comparison to CPPMEM and Nitpick
Researchers have developed two tools—CPPMEM [8] and
Nitpick [10]—for exploring the behaviors of short code
fragments under the C/C++ memory model. Both of these
tools are targeted toward understanding the memory model
and not toward testing real code. Additionally, Nitpick is
not publicly available, and due to various constraints of
CPPMEM, it is impossible to port our benchmarks to CPP-
MEM. Hence, we cannot directly compare these tools to CD-
SCHECKER using our benchmarks.

Instead, to roughly compare CDSCHECKER to Nitpick,
we reconstructed the largest relaxed WRC example for
which they published results. Their example contained ad-
ditional constraints to limit the exploration to a subset of
the legal executions by constraining loads to specific values,
while CDSCHECKER is intended to explore all legal execu-
tions of the program and hence CDSCHECKER must explore
a much larger space of executions. CDSCHECKER took 0.03
seconds to explore all possible executions for this example,
while the published results show that Nitpick took 982 sec-
onds to explore a subset of the results. We then ran our un-
restricted version of the benchmark on CPPMEM, and it took
472.87 seconds to complete. CDSCHECKER is significantly
faster than both CPPMEM and Nitpick as both of those tools
make modification orders explicit. CDSCHECKER avoids
enumerating modification orders, thereby exponentially de-
creasing its search space. The other two tools also use
generic search or SAT solving frameworks whereas CD-
SCHECKER has been designed specifically for the C/C++
memory model and can leverage memory model constraints
to prune its search.

10. Related Work
Researchers have created tools to find bugs in concur-
rent data structures. State-based model-checkers such as
SPIN [23] can be used to debug designs for concurrent data
structures. The CHESS [34] tool is designed to find and re-
produce concurrency bugs in C, C++, and C#. It systemat-
ically explores thread interleavings. However, it can miss
concurrency bugs as it does not explore all thread interleav-
ings nor does it reorder memory operations. Line-Up [13]
extends CHESS to check for linearization. Like CHESS, it
can miss bugs that are exposed by reordering of memory
operations. The Inspect tool combines stateless and stateful
model-checking to model-check C and C++ code [38–40].
The Inspect tool checks code using the sequential consis-
tency model rather than the more relaxed memory model of
the C/C++ standards and therefore may miss concurrency
bugs arising from reordered memory operations. Adversarial
memory increases the likelihood of observing relaxed mem-
ory system behavior during testing [19]. While it helps to
uncover rare erroneous behaviors, it makes no guarantee of
exhaustive testing. Moreover, adversarial memory is unable
to simulate executions in which a load observes the value of
a store that has not yet happened and therefore cannot catch
bugs that are exposed by such behavior. CDSCHECKER can
exhaustively explore a data structure’s behavior for a given
input and simulates loads that observe values of stores that
appear later in the execution order.

State-based model-checkers have been developed for
C# [24] and Java [15] that use reordering tables. As the
C/C++11 memory model is not based on reordering tables,
these approaches are not applicable to C/C++.



Other tools have been developed that systematically ex-
plore interleavings and memory operation reorderings. The
Relacy race detector [37] systematically explores thread in-
terleavings and memory operation reorderings for C++11
code. The Relacy race detector has a number of limitations
that cause it to miss executions allowed by the C/C++ mem-
ory model. Like CDSCHECKER, Relacy imposes an execu-
tion order on the program under test. However, Relacy can-
not produce executions (allowed by the memory model) in
which loads read from stores that appear later in the execu-
tion order. Moreover, Relacy derives the modification order
from the execution order; it cannot simulate (legal) execu-
tions in which the modification order is inconsistent with the
execution order. Relacy also does not support partial order
reduction.

Researchers have formalized the C++ memory model [8].
The CPPMEM tool is built directly from the formalized spec-
ification with a primary goal of allowing researchers to ex-
plore implications of the memory model. It explores all le-
gal modification orders and reads-from relations—a source
of redundancy—and therefore must search a significantly
larger search space than CDSCHECKER, whose search al-
gorithm limits redundancy by only exploring the space of
legal reads-from relations. Furthermore, at this point CPP-
MEM lacks support for much of the C/C++ language. Nitpick
translates the memory model constraints into SAT problems
and then uses a SAT solver to find legal executions [10]. Sim-
ple experiments reveal that CDSCHECKER is significantly
faster than either of these tools.

Several tools have been designed to detect data races in
code that uses standard lock-based concurrency control [16–
18, 30, 36]. These tools typically verify that all accesses to
shared data are protected by a locking discipline. They are
not designed to check concurrent code that makes use of
low-level atomic operations.

In the context of relaxed hardware memory models, re-
searchers have developed tools for inferring the necessary
fences [27] and stateful model-checkers [25, 26, 35].

Researchers have also argued that reasoning about re-
laxed memory models is challenging and have made a case
that compilers should preserve sequential consistency [31].
Whether such approaches can replace the need for a re-
laxed memory model depends to some degree on the mem-
ory models of future processors. We agree with the authors
regarding the difficulty of reasoning about relaxed memory
models, and we believe that tool support is necessary.

11. Conclusion
The C/C++ memory model promises to make it possible to
write efficient, portable low-level concurrent data structures.
The weak memory model that C/C++ provides for these low-
level operations can result in unexpected program behav-
iors and can make writing correct code challenging. CD-
SCHECKER is the first tool that can both test real concurrent

data structures while still simulating all of the weak memory
model behaviors that C/C++ implementations are likely to
produce. Our results indicate that CDSCHECKER can suc-
cessfully test real low-level concurrent code.
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A. Fences
In addition to the atomic loads, stores, and read-modify-
writes discussed in the body of the paper, C and C++ sup-
port atomic fence operations. C/C++ fences loosely imitate
the low-level fence instructions used in multiprocessors for
ordering memory accesses and are included to allow devel-
opers to more efficiently represent their algorithms. Fences
may use the release, acquire, rel acq, or seq cst

memory orders (relaxed is a no-op and consume is an alias
for acquire, §29.8p5 [3]) and have additional modification
order constraints and synchronization properties, whose sup-
port we will discuss in this appendix.
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A.1 Fence Modification Order Constraints
C and C++ introduce several rules governing rf and mo
when dealing with sequentially consistent fences. As in Sec-
tion 5.2, we transform these rules directly into modification
order implications for use by CDSCHECKER.

• SC FENCES RESTRICT RF: Seq-cst fences impose re-
strictions on the “oldest” store from which a load may
read (§29.3p4-6 [3]).

• SC FENCES IMPOSE MO: A pair of stores separated
by seq-cst fences must form mo consistently with sc
(§29.3p7 [3]). Notably, the C++ specification leaves out
the COLLAPSED constraints that are presented here, but
they are included in the formal model developed for [8].
The report for C++ Library Issue 2130 indicates that the
specification committee plans to include these rules in
future revisions.

These implications can be applied using similar induction
arguments to those developed in Section 5.5; because sc is
a total order, we can always find the last store A in each
thread that satisfies the left-hand side (if any exists). Any
prior store must already be ordered before A in mo, and so
we must look no further than A when building constraints
for a newly-explored program operation.

A.2 Fence Synchronization
Besides the modification order constraints imposed by se-
quentially consistent fences, fences can induce synchroniza-
tion (sw) via an extension to release sequences. The specifi-
cation defines a hypothetical release sequence headed by a
store X as the release sequence that would exist if X were
a release operation. We will say that if store Y is part of the
hypothetical release sequence headed by X , then X

hrs−→ Y
(or similarly, X rs−→ Y for true release sequences).

We take the synchronization implications in Figure 8 di-
rectly from §29.8p2-4. Informally, these rules cause a load-
relaxed followed by a fence-acquire to act like a load-acquire
and cause a store-relaxed preceded by a fence-release to act
like a store-release.

These synchronization implications can be easily com-
puted with simple extensions to the methods described in
Section 7. In fact, a hypothetical release sequence makes
synchronization detection even simpler than with traditional
release sequences because the “loose” store problem is no
longer an issue; as soon as we find any store X such that
X

hrs−→ Y , there is no longer a need to establish a contiguous
modification order: we only need to search for the last fence-
release A that is sequenced before X in the same thread.
In other words, hypothetical release sequence computations
only require knowledge of rf (to follow the RMW chain, if
any) and the intra-thread ordering sb (to find prior fence-
releases) but do not require querying the partially-ordered
mo-graph.

SC FENCES RESTRICT RF
A: v.store(1)

X: fence(seq-cst)

sb

Y: fence(seq-cst)

sc

B: v.store(2) C: v.load()

sb

rf

=⇒

A: v.store(1)

B: v.store(2)

mo

SC FENCES RESTRICT RF (COLLAPSED STORE)
A: v.store(1, seq-cst)

X: fence(seq-cst)

sc

B: v.store(2) Y: v.load()

sb

rf

=⇒
A: v.store(1, seq-cst)

B: v.store(2)

mo

SC FENCES RESTRICT RF (COLLAPSED LOAD)
A: v.store(1)

X: fence(seq-cst)

sb

B: v.store(2) Y: v.load(seq-cst)

sc

rf

=⇒

A: v.store(1)

B: v.store(2)

mo

SC FENCES IMPOSE MO
A: v.store(1)

X: fence(seq-cst)

sb

Y: fence(seq-cst)

sc

B: v.store(2)

sb

=⇒

A: v.store(1)

B: v.store(2)

mo

SC FENCES IMPOSE MO (COLLAPSED 1ST STORE)
A: v.store(1, seq-cst)

Y: fence(seq-cst)

sc

B: v.store(2)

sb

=⇒

A: v.store(1, seq-cst)

B: v.store(2)

mo

SC FENCES IMPOSE MO (COLLAPSED 2ND STORE)
A: v.store(1)

X: fence(seq-cst)

sb

B: v.store(2, seq-cst)

sc

=⇒

A: v.store(1)

B: v.store(2, seq-cst)

mo

Figure 7. Fence modification order implications. On the
left side of each implication, A, B, C, X , and Y must be
distinct.



FENCE SYNCHRONIZATION

A: fence(release)

X: v.store(1)

sb

Y: v.store(2)

hrs

Z: v.load()
rf

B: fence(acquire)

sb

=⇒

A: fence(release)

B: fence(acquire)

sw

FENCE SYNCHRONIZATION (COLLAPSED STORE)
A: store(release)

Y: v.store(2)

rs

Z: v.load()
rf

B: fence(acquire)

sb

=⇒

A: store(release)

B: fence(acquire)

sw

FENCE SYNCHRONIZATION (COLLAPSED LOAD)
A: fence(release)

X: v.store(1)

sb

Y: v.store(2)

hrs

B: load(acquire)
rf

=⇒

A: fence(release)

B: load(acquire)

sw

Figure 8. Fence synchronization implications

A.3 Fence Backtracking
Because fences can synchronize with other loads, stores,
or fences, we must order them properly in the execution
order such that their synchronization is consistent (recall
Section 6.3). We extend our previous backtracking approach
to accommodate any potential synchronization involving the
fence rules in Section A.2. So, whenever CDSCHECKER
observes an acquire B ordered earlier in the execution than a
release A, and we determine that A may synchronize with B
(A sw−→ B), we must backtrack to allow the thread which
performed A to execute before B. Note that identifying
such A and B may also involve identifying, for instance, an
appropriate load/store pair X and Y (when applying FENCE
SYNCHRONIZATION); similar observations can be made for
the COLLAPSED synchronization rules.

As described in Section 4.3, we force sc to be consistent
with the execution order and use DPOR backtracking to ex-
plore the necessary interleavings of conflicting seq-cst oper-
ations. To extend this to seq-cst fences, we simply say that a
seq-cst fence conflicts with any other seq-cst operation.

B. Satisfaction Cycles
An issue with the C/C++ specification is that it allows pro-
grams to observe various types of out-of-thin-air values
through the use of satisfaction cycles, in which the effects of
an action justify performing the action in the first place, pro-
ducing unintuitive results. The problem of satisfaction cy-
cles has already been recognized by other researchers and

can make it difficult to prove properties of code in many
cases [9]. It is clear that the specification authors would like
to rule out satisfaction cycles, and they make an attempt to
rule these out with requirement §29.3p9 that states:

An atomic store shall only store a value that has been
computed from constants and program input values
by a finite sequence of program evaluations, such
that each evaluation observes the values of variables
as computed by the last prior assignment in the se-
quence. The ordering of evaluations in this sequence
shall be such that:

• if an evaluation B observes a value computed by A
in a different thread, then B does not happen before
A, and

• if an evaluation A is included in the sequence, then
every evaluation that assigns to the same variable
and happens before A is included.

Despite efforts to disallow all out-of-thin-air values, in
the end the C/C++ authors concede that some sub-optimal
behaviors are not ruled out by the specification. They then
simply state that implementations “should not allow such
behavior” without providing the details of exactly what this
means.

For instance, the specification mentions that the formal
requirements allow r1 = r2 = 42 in the following pro-
gram fragment:

1 atomic <int > x(0), y(0);
2

3 void threadA () {
4 int r1 = x.load(memory_order_relaxed);
5 if (r1 == 42)
6 y.store(r1, memory_order_relaxed);
7 }
8 void threadB () {
9 int r2 = y.load(memory_order_relaxed);

10 if (r2 == 42)
11 x.store(42, memory_order_relaxed);
12 }

But because CDSCHECKER operates as a runtime frame-
work, it only sees the program statements that are actually
executed. So while it will explore all behaviors that do not
involve a satisfaction cycle, CDSCHECKER cannot guaran-
tee that it explores behaviors where the behavior circularly
justifies itself. One such example is where the only justifi-
cation for taking a conditional branch is hidden behind the
branch. Thus, CDSCHECKER will never see r1 = r2 = 42

in the above example. This variation from the formal reading
of the C/C++ specification is desirable since it prevents CD-
SCHECKER from warning developers about program behav-
ior which is forbidden by the C and C++ specifications (“im-
plementations should not allow such behavior”) and which
should never be produced by a compiler or processor.

Satisfaction cycles in general make verifying software in-
tractable. It remains an open question of how to best con-
strain the C/C++ memory model to disallow satisfaction cy-



cles while still allowing common compiler optimizations
and achieving good performance on all architectures.

With constraints to rule out satisfaction cycles, the cor-
rectness of CDSCHECKER follows from an induction on the
evaluation sequence.

C. Pruning Future Values
To reduce the search space generated by the exploration of
future values, we developed a few optimizations. With these
optimizations, we attempt to avoid introducing future values
when their introduction is guaranteed to generate infeasible
(or otherwise unnecessary) executions. Reductions in infea-
sible future values provide a compounding reduction in over-
head, since such ill-advised values may generate a signifi-
cant amount of unproductive exploration space in between
the speculative load and its promise resolution—at which
point we finally realize an execution-ending mo-graph cy-
cle. Thus, we present a few derived constraints for pruning
those future values which, when observed, would guarantee
a cyclic mo-graph. Additionally, we introduce a few other
optimizations for reducing redundant or otherwise unneces-
sary exploration.

For any load A and store X , we can show that X 6 rf−→ A
whenever there exists a store B such that

A
hb−→ B ∧B

mo−→ X .

Allowing X
rf−→ A would yield a mo cycle in B and X ,

due to READ-WRITE COHERENCE. Therefore, X should
never send a future value to A. Without this constraint,
CDSCHECKER would send a future value, not realizing the
cycle until it established the rf edge concretely. Similarly, we
do not send a future value from store B to load A if A hb−→ B.

Knowledge of promise behavior presents further opportu-
nity for optimization of future values. If a store Y is sched-

uled to satisfy an outstanding promise P , then we limit the
cases in which Y sends its future value to prior loads Xi—
we avoid sending Y ’s future value to any load Xi whose
may-read-from set contains P (as a placeholder for Y ).
Specifically, Y does not send its future value to the load X
which first generated promise P , nor to any load which fol-
lows X in the execution since such loads may also read from
P (Y can, however, send its future value to loads prior to X).

A speculative load X can cause a later store Y to send a
new future value back to X , even when Y actually depends
on X . Such a cyclic dependence can potentially cause CD-
SCHECKER to explore an infinite space of infeasible execu-
tions. We eliminate these cycles by an additional constraint
when sending a future value from such a store Y to a load X;
we check whether there exists a yet-unresolved promise cre-
ated by a speculative load Z, where Z is between X and Y
in the execution order. If not, then Y can send its future value
safely (subject to previously-discussed constraints). If such
Z does exist, however, we delay sending the future value
until Z’s promise is resolved—breaking the cycle while still
allowing non-cyclic dependences to be resolved.

The correctness of this optimization follows from the fol-
lowing argument. If the satisfying store S for Z does not
depend on X observing Y ’s future value, then Z’s promise
will eventually be resolved and the future value will be sent.
If the satisfying store S for Z does depend on X observ-
ing Y ’s future value, then either (1) X occurs after Z in the
execution order and hence does not trigger the delay condi-
tion or (2) when Z eventually reads from a different store,
Y can then add its future value to futurevalues(X) (Y can
only depend on Z in the presence of a satisfaction cycle);
the backtracking algorithm will later revisit the current situ-
ation without the need to send the future value as the value
already exists in futurevalues(X).
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