
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Alokika Dash
University of California, Irvine
adash@uci.edu

Brian Demsky
University of California, Irvine
bdemsky@uci.edu

Software Transactional Distributed
Shared Memory

February 2009

ISR Technical Report # UCI-ISR-09-2

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Software Transactional Distributed Shared

Memory

Alokika Dash, Brian Demsky
University of California, Irvine

Institute for Software Research
UCI-ISR-09-2

February 2009

We present a new transaction-based approach to distributed shared memory,
an object caching framework, language extensions to support our approach,
path-expression-based prefetches, and an analysis to generate path expression
prefetches. To our knowledge, this is the first prefetching approach that can
prefetch objects whose addresses have not been computed or predicted.

Our approach makes aggressive use of both prefetching and caching of remote
objects to hide network latency while relying on the transaction commit mecha-
nism to preserve the simple transactional consistency model that we present to
the developer. We have evaluated this approach on microbenchmarks and four
shared memory parallel benchmarks. We have found that our approach enables
our benchmark applications to effectively utilize multiple machines and benefit
from prefetching and caching of objects.

1

Software Transactional Distributed Shared Memory

Alokika Dash and Brian Demsky

University of California, Irvine
Institute for Software Research

UCI-ISR-09-2
February 2009

Abstract
We present a new transaction-based approach to distributed shared
memory, an object caching framework, language extensions to sup-
port our approach, path-expression-based prefetches, and an analy-
sis to generate path expression prefetches. To our knowledge, this
is the first prefetching approach that can prefetch objects whose
addresses have not been computed or predicted.

Our approach makes aggressive use of both prefetching and
caching of remote objects to hide network latency while relying on
the transaction commit mechanism to preserve the simple transac-
tional consistency model that we present to the developer. We have
evaluated this approach on microbenchmarks and four shared mem-
ory parallel benchmarks. We have found that our approach enables
our benchmark applications to effectively utilize multiple machines
and benefit from prefetching and caching of objects.

1. Introduction
Price decreases in commodity hardware have led to the widespread
adoption of cluster computing. Developing software for these
clusters can be challenging. While previous generations of high-
performance computers commonly provided developers with a
shared memory, modern clusters typically do not provide the de-
veloper with a shared memory. Instead, the underlying hardware
supports communication between processing nodes through mes-
sage passing primitives. As a consequence, the already challeng-
ing task of developing parallel software has become even more
difficult. Developers must now reason about communication pat-
terns, write code to traverse and marshall possibly complex data
structures into messages, write communication code to interface
with MPI or PVM to route these messages from producers to con-
sumers [17, 13], and write code to unmarshall these message back
into data structures.

In response to this trend, researchers have developed software
distributed shared memories to provide developers with the illusion
of a simple shared memory abstraction on message passing ma-
chines. A straightforward implementation of a distributed shared
memory can provide developers with a simple memory model to
program. However, accessing remote objects in such implemen-
tations requires waiting for network communication and therefore
is expensive. In response to this issue, researchers have developed
several distributed shared memory systems that achieve better per-
formance through relaxing memory consistency guarantees. How-
ever, developing software for these relaxed memory consistency
models can be challenging — the developer must often read and un-
derstand sometimes complicated memory consistency properties to
understand the possible behaviors of the program. Developers can
also use programming models like Map-Reduce or Dryad [25, 11]
to write applications that work in a distributed shared memory but
such models can be restrictive to program applications that have a
staged structure or have irregular access patterns.

In recent years, a general recognition of the importance of pro-
grammer productivity has shifted the focus in computing research
from solely performance to the more holistic focus of high pro-
ductivity computing which encompasses programmer productivity.

Both the Chapel [10] and Fortress [3] high performance computing
languages include language constructs that specify that code should
be executed with transactional semantics. These transactional con-
structs were included to potentially simplify software development
by enabling developers to control concurrency without having to
reason about potentially complex locking disciplines. In this paper
we have focused on small clusters of servers interconnected with
ethernet networks. We expect, but do not have evidence, that our
approach would work well to hide latencies over larger networks.

1.1 Basic Technical Approach
In this paper, we present a new transaction-based approach to dis-
tributed shared memory that presents a simple programming model
to the developer. We use object versioning to track committed
changes to objects. A transaction is safe to commit if it only ac-
cessed the latest versions of objects.

One of the primary challenges in designing distributed shared
memory systems is hiding the latency of accessing remote ob-
jects. Previous work on transactional distributed shared memory
primarily focused on providing transactional guarantees and largely
overlooked a promising opportunity for utilizing the transaction
commit mechanism to safely enable optimizations. Our approach
prefetches and caches remote objects and relies on the transaction
commit checks to safely recover from mis-speculations.

Many traditional approaches to prefetching have had limited
success hiding the latency of remote object accesses in the dis-
tributed environment because they require the computation to first
compute or accurately predict an object’s address before issuing a
prefetch for that object. Our approach describes prefetches in terms
of paths through the heap enabling it to prefetch objects whose ad-
dresses are not yet known.

1.2 Contributions
This paper makes the following contributions:
• Transaction-based Distributed Shared Memory: Our ap-

proach is based on the transactional memory model [35, 22,
20, 37]. In this model, the developer uses the atomic keyword
to declare that a region of code should be executed with trans-
actional semantics1.

• Object Prefetching and Caching: Caching and prefetching
objects can potentially hide the latency of reading from or writ-
ing to remote objects. To address the possibility of accessing an
old version of an object, our approach leverages the transaction
commit checks to ensure that a transaction commits only for the
latest versions of the objects.

• Approximate Cache Coherence: Typically, systems with mul-
tiple caches must ensure that data residing in multiple caches is
consistent. This typically requires implementing an often ex-
pensive cache coherency protocol. We instead use a set of tech-
niques that trade rigorous consistency guarantees for perfor-

1 In this context, transactional semantics means that the set of reads and
writes that the transactional region of code performs is consistent with some
sequential ordering of the transactions.

1

mance. In this context, approximate coherency is safe because
the commit process will catch and correct any reads from or
writes to old object versions.

• Path Expression Prefetches: Traditionally, prefetching a mem-
ory location requires that the program first computes or predicts
the address of that memory location. Traditional prefetch strate-
gies can perform poorly for traversals over remote, linked data
structures, such as a linked list, as they require the program
to incur the round trip network latency when accessing each
new element in the linked list. Our approach introduces path
expression prefetches: a path expression prefetch specifies the
object identifier of the first object to be prefetched followed by
a list of field offsets or array indices that define a path through
the heap. This path traverses the objects to be prefetched. The
remote machine processes the path expression and responds
with a copy of the initial object and the objects along the path
expression that are in the remote machine’s object store. The
end result leverages data locality at the machine granularity to
minimize communication rounds and thereby minimize delays
due to network communications.

• Prefetch Analysis: Our approach uses a static prefetch analysis
to generate path expression prefetches. The analysis uses a sta-
tistical approach to estimate at each program point how likely
the objects specified by a path expression are to be accessed in
the future. The prefetch placement algorithm uses the results of
the prefetch analysis to place prefetch instructions.
The remainder of this paper is structured as follows. Section 2

presents an example to illustrate our approach. Section 3 presents
the runtime system. Section 4 presents the programming model and
locality analysis. Section 5 presents the prefetching mechanism and
analysis. Section 6 presents the runtime and prefetch optimizations.
Section 7 presents an evaluation on several benchmarks. Section 8
discusses related work and we conclude in Section 9.

2. Example
Figure 1 presents a parallel matrix multiplication example. The
example takes as inputs the matrix a and the matrix btrans and
produces as output the product matrix c. The Matrix class stores
the input and output matrices. Lines 6 through 10 initialize the
Matrix class. The array allocations in lines 7 through 9 each con-
tain the shared modifier to indicate that the object is a shared ob-
ject. Shared objects can be accessed by any thread. Our distributed
system supports local objects that can only be accessed by a single
thread. Our system assumes by default that allocation sites without
the shared modifier allocate local objects.

The example partitions the matrix multiplication into several
subcomputations that each compute a sub-block of the final product
matrix. Figure 2 presents the code for the MatrixMultiply class.
Each instance of the MatrixMultiply class computes one block
of the product matrix. Each instance of the MatrixMultiply class
contains the field m that references the shared Matrix object and the
fields x0, x1, y0, and y1 that define the block of the product matrix
that the MatrixMultiply instance computes. Lines 7 through 17
present the code for the run method. The run method computes the
sub-block of the product matrix. Line 8 uses the atomic keyword
to declare that the enclosed block should be executed with transac-
tional semantics. Note that our system imposes the constraint that
shared objects may only be accessed inside transactions.

2.1 Program Execution
We next describe the execution of a MatrixMultiply thread. A
MatrixMultiply thread starts when another thread invokes the
start method on the MatrixMultiply object’s object identi-
fier. An object identifier uniquely identifies an object. The start
method takes as a parameter the machine identifier for the ma-

1 public class Matrix {
2 double[][] a;
3 double[][] btrans;
4 double[][] c;
5
6 public Matrix(int L, int M, int N) {
7 a=shared new double[L][M];
8 btrans=shared new double[N][M];
9 c=shared new double[L][N];
10 }
11 ...
12 }

Figure 1. Matrix Class
1 public class MatrixMultiply
2 extends Thread {
3 Matrix m;
4 int x0, x1, y0, y1;
5 ...
6
7 public void run(){
8 atomic {
9 for(int i=x0; i<x1; i++)
10 for(int j=y0; j<y1; j++) {
11 double prod=0;
12 for(int k=0; k<m.a[i].length; k++)
13 prod+=m.a[i][k]*m.btrans[j][k];
14 m.c[i][j]=prod;
15 }
16 }
17 }
18 }

Figure 2. MatrixMultiply Class
chine that the thread should be executed on. A machine identifier
uniquely identifies a machine participating in the computation. The
start method causes the runtime system to start a new thread on
the specified machine, and then the newly created thread invokes
the run method on the MatrixMultiply object.

The atomic keyword in line 8 of the run method causes the
runtime system to execute the code block in lines 9 through 15 with
transaction semantics. Upon entering this atomic block, the thread
executes compiler inserted code that converts the object identifier
stored in the this variable into a reference to the transaction’s
working copy of the object. This code first checks to see if the
transaction already contains a copy of the object, then checks to see
if the authoritative copy resides on the local machine, next checks to
see if the local machine has a cached copy of the object, and finally
contacts the remote machine that holds the authoritative copy of
the object to obtain a copy of the object. If the transaction has not
already accessed the object, the runtime system makes a working
copy of the object for the transaction. The system then points the
this variable at the working copy of the object.

In line 12, the run method accesses the Matrix object through
the m field of the this object. When the example dereferences the
m field, the generated code reads the object identifier out of the m
field, searches for the corresponding object, makes a working copy,
and points a temporary variable at the working copy. Our system
maintains the invariant that if a variable is both used inside the
current transaction and references a shared object, it points to the
transaction’s working copy during the duration of the transaction.
Our system also supports local objects. If a local object is modified
inside a transaction, the compiled code makes a backup to enable
restoration of the object in the event that the transaction aborts.

When the transaction completes, the run method calls the run-
time system to commit the transaction. The runtime system sorts
the objects into groups by the machine that holds the authoritative
copy of the object. It then sends each group of objects to the ma-
chine that holds the authoritative copies of the objects in that group.

2

The current execution thread next serves as a coordinator in a two-
phase commit protocol to commit the changes.

Each shared object contains a version number. The version
number is incremented every time the committed (or authoritative)
copy of the object is changed. In the first phase, each authoritative
machine verifies that the transaction has only accessed the latest
versions of the objects and votes to abort if the transaction accessed
an old version of any object. If all authoritative machines vote to
commit, the coordinator sends a commit command. If any machine
votes to abort, the system re-executes the transaction.

2.2 Object Prefetching
The matrix multiplication example accesses array objects that are
not likely to be cached on the local machine. Our approach uses
prefetching to hide the latency of these object accesses. Consider
the expression m.a[i][k] in line 13 of Figure 2. The traditional
approach to prefetching this expression would first prefetch m, next
m.a, and finally m.a[i]. This strategy requires three consecutive
round trip communications. Our approach sends a path expression
prefetch request for (1) the object identifier stored in m and (2) the
path defined by the offset of field a and the ith array element. If the
remote machine contains all of the objects, all three objects can be
prefetched in a single round trip communication.

2.2.1 Prefetch Analysis
We next describe the operation of our compiler’s path expression
prefetch analysis on the example. For each program point, the
analysis computes a set of path expressions that describe which
objects to prefetch along with estimated probabilities that describe
how likely the program is to access the objects described by the
prefetch expression.

The analysis begins with a backwards fixed-point computation
over the method’s control flow graph. At each field access node, the
analysis creates a path expression for the object(s) to be accessed
and it associates a probability of 100% with it. The probability de-
scribes how likely the program is to access the object described
by the prefetch expression at the current program point. For ex-
ample, in line 14 the analysis would generate the path expression
m.c[i] with a probability of 100%. Note that j does not appear in
the path expression because the value m.c[i][j] is not read (nor does
it refer to an object). When this path expression propagates back-
wards it hits the for loop on line 12. To propagate beyond this
loop we use loop exit probability of 20% (when the loop condi-
tion is false) and a backedge probability of 80% (when the loop
condition is true). As the expression propagates we calculate a new
probability by multiplying the old probability with the loop condi-
tion probability. As a result, after line 13 we see the path expression
m.c[i] with a 20% probability (the probability of the false loop con-
dition). Line 13 then generates two new path expressions m.a[i] and
m.btrans[j] with a 100% probability. Path expressions change as
they propagate beyond program variables and field names. For ex-
ample, when the analysis propagates the m.btrans[j] expression to
line 10, the loop variable increment causes the analysis to rewrite
the expression m.btrans[j] into the expression m.btrans[j + 1]
with an 64% probability at line 15. We compute a 64% probability
for the expression m.btrans[j + 1] because it propagates through
the two loop conditions at lines 12 and 10 (each with a probability
of 80%). The algorithm continues the fixed-point computation until
a convergence threshold criteria is satisfied.

2.2.2 Prefetch Placement
After the analysis generates path expressions for all program
points, the compiler places the prefetches. In general, we want
to place prefetches as early as possible while ensuring that there
is a high probability that the prefetches will fetch useful objects.
The analysis places prefetches on the edges where the path ex-
pression probabilities cross a specified probability threshold. In the

Local Distributed
Heap

Object
Cache

Transaction
Heap

Thread
Local Heap

Machine State

Network

Processing Node

Processing Node Processing Node

Thread
Local Heap

Figure 3. Overview of Transactional Distributed Shared Memory
Architecture
example, the compiler places a prefetch for m.btrans[j + 4] af-
ter line 10; and prefetches for m.btrans[y0], m.btrans[y0 + 1],
m.btrans[y0 + 2], and m.btrans[y0 + 3] before line 10.

3. Transactional Distributed Shared Memory
Figure 3 presents an overview of the runtime system components.
The runtime system provides the primitives that the compiler uses
to create the illusion of a single address space, while the underly-
ing hardware actually consists of a number of network-connected
processing nodes. The runtime system is object-based — data is ac-
cessed and committed at the granularity of objects. When a shared
object is allocated, it is assigned a globally unique object identi-
fier. The object identifier is then used to reference and access the
object. The object identifiers are statically partitioned between the
processing nodes. The runtime system can determine the location
of an object directly from its object identifier.

We use a version-based strategy to implement transactions.
Each shared object contains a version number — the version num-
ber is incremented when a transaction commits a write to the ob-
ject. The implementation uses the version numbers to determine
whether it is safe to commit a transaction. If a transaction accesses
an old version of any object, the transaction must be aborted. Our
runtime uses the standard two-phase commit protocol to determine
whether a transaction is safe to commit [16].

The implementation maintains the following types of object
copies:
• Authoritative Copy: The authoritative copy contains all of the

updates that have been committed to the object. Each object
has exactly one authoritative copy. The machine in which the
authoritative copy resides is fixed when the object is allocated.
The location of an object’s authoritative copy is encoded in its
object identifier.

• Cached Copy: Cached copies are used to hide the latency of
remote object accesses. When a transaction accesses a cached
copy of any object, the runtime makes a working copy of the
object for that transaction. The cached copy can be stale — if a
transaction accesses a stale object copy, the transaction commit
process will abort.

• Working Copy: When a transaction accesses a shared object,
a working copy is made for that transaction. The transaction
performs writes on the working copy. When the transaction
commits, any updates to the object are copied from the working
copy to the authoritative copy. It is possible for the working
copy to be stale. If the working copy is stale, the transaction
commit process will abort.

3.1 Basic Architecture
We next discuss the basic architecture of our approach. The ex-
panded processing node in Figure 3 presents the major components
in our software distributed shared memory system. Each processing
node contains the following state:
• Local Distributed Heap: The shared memory is partitioned

across all processing nodes. Each node will store a disjoint sub-

3

set of the authoritative copies of distributed objects in its local
distributed heap. The local distributed heap stores the most re-
cent committed state for each shared object whose authoritative
copy resides on the local machine. Each local distributed heap
contains a local distributed hashtable that maps object identi-
fiers to the object’s location in the local distributed heap.

• Thread Local Heap: In addition to shared objects, objects can
be allocated in thread local heaps. There is one thread local
heap for each application thread. Thread local objects can be
accessed at any time during the computation by the thread that
owns the thread local object heap.

• Transaction Heap: There is a transaction heap for each ongo-
ing transaction. The transaction heap stores the working copy
of any shared object that the current transaction has accessed.
Each transaction heap contains a transaction hashtable that
maps the object identifiers that the transaction has accessed to
the object’s location in the transaction heap.

• Object Cache: Each processing node has an object cache that
is used to cache objects and to store prefetched objects. Each
object cache contains an object cache hashtable that maps the
object identifiers of the objects in the cache to the object’s
location in the cache.

3.2 Accessing Objects
Our system uses a partitioned global address space (PGAS) pro-
gramming model [39, 10, 3]. Our system contains two classes of
objects: local objects and shared objects. Local objects are local to
a single thread and can only be accessed by that thread. They can
be accessed both inside and outside of a transaction. Accessing a
local object outside of a transaction requires a simple pointer deref-
erence. Reading a local object inside a transaction also requires a
simple pointer dereference. Writing to a local object inside a trans-
action requires a write barrier that ensures that a backup copy of
the object exists. If the transaction is aborted, the object is restored
from the backup copy.

Shared objects can only be accessed inside of a transaction.
When code inside a transaction attempts to lookup an object identi-
fier to obtain a pointer to a working copy of the object, the runtime
system attempts to locate the object in the following places:
1. The system first checks to see if the object is already in the

transaction heap.
2. If the object is located on the local machine, the system looks

up the object in the local distributed heap.
3. If the object is located on a remote machine, the system next

checks the object cache on the local machine.
4. Otherwise, the system sends a request for the object to the

remote machine.
Note that primitive field or primitive array element accesses do

not incur these extra overheads as the code already has a reference
to the working copy of the object. We expect that for most applica-
tions, the majority of accesses to reference fields or reference array
elements will access objects that the transaction has already read.
In this case, locating the working copy of an object involves only a
few instructions: a bit mask and a shift operation to compute a hash
value, an address computation operation, a memory dereference to
lookup the object identifier, a comparison to verify object identifier,
and a memory dereference to obtain the working copy’s location.

The compiler generates write barriers that mark shared objects
as dirty when they are written to2. The runtime uses a shared
object’s dirty status to determine whether the transaction commit
must update the authoritative copy of the object.

2 Each object contains a status word, and the write barrier marks the object
as dirty by setting the dirty flag in the object’s status word.

3.3 Commit Process
We next describe the operation of the transaction commit process.
When a transaction has completed execution, it calls the transaction
commit method. The commit method begins by sorting shared
objects in the transaction heap into groups based on the machine
that holds the authoritative copy of the object. For each machine,
the commit method divides the shared objects based upon whether
they have been written to or simply read from. The commit process
uses the standard two-phase commit. We next describe how the
algorithm processes each category of shared object:
• Clean Objects: For clean objects, the transaction commit pro-

cess verifies that the transaction read the latest version. The
transaction coordinator sends the object’s version number to
the machine with the authoritative copy. That machine locks
the object and compares version numbers. If the version num-
bers do not match the machine releases the lock on the objects
and votes to abort the transaction.

• Dirty Objects: The transaction commit process must copy the
updates that the transaction made to the dirty objects to the au-
thoritative copies of those objects. The system transfers a copy
of the dirty object along with its version number to the ma-
chine holding the authoritative copy. The remote machine then
locks the authoritative copy and compares version numbers. If
the version numbers do not match, it votes to abort the trans-
action. If the transaction coordinator responds with a commit
command, the changes are copied from the dirty copy to the
authoritative copy and the object lock is released. If the coor-
dinator responds with an abort command, the lock is simply
released without changing the authoritative copies.
If all of the authoritative machines respond that all version num-

bers match, the transaction coordinator will decide to commit the
transaction and transmit commit commands to all other machines.
If any authoritative machine responds with an abort request, the
transaction coordinator will decide to abort and transmit abort com-
mands to all other machines. If any authoritative machine cannot
acquire a lock on an object, the coordinator will abort the commit
process and retry.

Code inside a transaction can also modify thread local objects
and local variables. When a transaction begins, the compiler gener-
ates code that makes a copy of all live local variables. Whenever a
transaction writes to a local object, the compiled code first checks
if there is a copy of the object’s state and then makes a copy if nec-
essary. If the transaction is aborted, the generated code restores the
local variables and uses the local object copies to revert the thread
local objects back to their states at the beginning of the transaction.
3.4 Error Handling
During a transaction, the execution can potentially read inconsis-
tent versions of objects. While such executions will abort during the
commit process, reading inconsistent values can cause even correct
code to potentially throw an error before the transaction commits.
Therefore, if the execution of a transaction throws an exception, the
runtime system must verify that the transaction read consistent ver-
sions of the objects before propagating the error. The system simply
performs the transaction commit checks to verify that the error is
real before propagating the error. Similarly, there is the potential for
infinite looping due to reading inconsistent versions of objects. We
plan to include a timeout after which the runtime will verify that
the transaction has read consistent versions of the objects. If the
object versions are consistent, the execution of code will continue,
otherwise the transaction will be restarted.
3.5 Compilation
Inside a transaction, our compiler maintains the invariant that if a
variable both references a shared object and can potentially be ac-
cessed inside the current transaction, the variable points to a work-

4

ing copy of the shared object. This invariant makes subsequent
reads of primitive fields of shared objects as inexpensive as reading
a field of a local object. The compiler maintains the invariant that
variables that reference shared objects outside of a transaction store
the shared object’s object identifier. Our approach uses a simple
dataflow analysis to determine whether a variable that references
a shared object is accessed inside a transaction. The compiler then
inserts, as necessary, code to convert object identifiers into refer-
ences to working copies and code to convert references to working
copies back into object identifiers.

4. Programming Model
Our approach uses a set of language extensions to a subset of Java
to support transactions. We describe these extensions below.

4.1 Language Extensions
Our extensions add the atomic keyword to declare that a block
of code should have transactional semantics. This keyword can be
applied to either (1) a method declaration to declare that the method
should be executed inside a transaction or (2) a block of code
enclosed by a pair of braces. We allow these constructs to be nested
— the implementation simply ignores any transaction declaration
that appears inside of another transaction declaration. The shared
memory extensions are similar to those present in Titanium [39]
though our use of transactions introduces additional constraints on
when the application may access shared objects.

Our extensions also add the shared keyword to the language.
The shared keyword can be used as a modifier to the new allo-
cation statement to declare that an object should be allocated in
a shared memory region. Shared objects can only reference other
shared objects. Our approach allows local objects to reference both
shared and local objects. However, the developer must declare that
a field in a local object references a shared object by using the
shared keyword as a modifier to that field’s declaration.

In general, methods are polymorphic in whether their parameter
objects are shared. In some cases, the developer may desire that a
method has different behavior depending on whether the parameter
objects are shared objects. Our extensions support different creat-
ing method versions for local and shared objects — the developer
designates the shared version with the shared keyword.

The extensions modify the start method to take a machine
identifier that specifies which machine to start the thread on. The
implementation contains a join method that waits for the comple-
tion of other threads.

4.2 Inference Algorithm
We use a flow-sensitive, data-flow–based inference algorithm to
infer for each program point whether a variable references a shared
object or a local object. We define A = { either, shared, local,
⊥} to be the set of abstract object states. We define V as the set of
program variables. The data flow analysis computes the mapping
S ⊆ V × A from program variables to abstract object states. We
use the notation fs to denote a field f that has been declared as
shared with the shared modifier. Figure 4 presents the lattice for
the abstract object state domain.

Figure 5 presents the transfer functions for the data flow analy-
sis. The analysis starts by analyzing the main function in the non-
atomic context with a local string array object as its parameter. The
analysis initializes the parameter variables’ abstract state from the
method’s calling context. The analysis proceeds using a standard
forward-flow, fixed-point–based data-flow analysis.

When the analysis encounters a call site for a method context
that it has not yet analyzed, it enqueues that method context to be
analyzed. The analysis then uses the either value for the abstract
state of the return value until the analysis can determine the actual
abstract state of the return value. Whenever the analysis updates

shared local

either

Figure 4. Lattice for Analysis

st kill gen
x = shared new C 〈x, ∗〉 〈x, shared〉
x = new C 〈x, ∗〉 〈x, local〉
x = y 〈x, ∗〉 〈x,S(y)〉
x = null 〈x, ∗〉 〈x, either〉
x = y.f 〈x, ∗〉 〈x,S(y)〉
x = y.fs 〈x, ∗〉 〈x, shared〉
x = call m(y, ..., z) 〈x, ∗〉 return value of m in the

context S(y), ...S(z)
other statements — —

Figure 5. Transfer Function for Inference Analysis

the return value for a method context, it enqueues all callers of that
context for re-analysis.

The inference algorithm uses the abstract object states to stati-
cally check several safety properties: (1) it ensures that the program
does not attempt to store a reference to a local object in a shared
object, (2) that the compiler can statically determine for each ob-
ject access whether the object is shared, local, or null, (3) that the
program does not attempt to store references to shared objects in a
local field that has not been declared shared, (4) that native meth-
ods are not called inside of transactions3, (5) that shared objects are
not accessed outside of transactions, and (6) that shared objects are
not passed into native methods.

The compiler uses the analysis results to generate specialized
versions of methods for each calling context. These specialized
versions optimize field and array accesses depending on whether
the object is local or shared and whether the method is invoked
inside a transaction. Note that it is possible for a variable’s abstract
state to be either if the variable is always null in that context. In
this case, the compiler simply generates code for local accesses to
give the appropriate runtime error behavior. If the compiler cannot
determine whether an operation is performed on a local or shared
object, it generates a compilation error. We also note that there is
the potential for the analysis to generate a large number of versions
for a single method. If this occurs, the compiler could simply
generate a generic version of the method.
5. Path Expression Prefetching
Our transactional approach to distributed shared memory creates a
new opportunity to safely and speculatively prefetch and cache re-
mote objects without concern for memory coherency — the trans-
action commit process ensures that transactions only access the
latest object versions. Many traditional address-based prefetching
approaches were largely designed for hiding the latency to access
local memory — such prefetching incurs large latencies when ac-
cessing remote linked data structures because the computation must
wait to compute an object’s address before prefetching the object.
In effect this requires waiting for a round trip communication for
each object to be accessed in a remote linked data structure.

We introduce a new approach to prefetching objects in the dis-
tributed environment that leverages the computational capabilities
of the remote processors. Our approach communicates path expres-
sions that describe a path through the heap that traverses the ob-
jects to be prefetched. We next describe the path expression runtime

3 This constraint prohibits I/O calls inside of transactions. We make an
exception for a debugging print statement and known side-effect free native
methods including the standard floating point calls.

5

mechanism and a corresponding compiler analysis that enables our
implementation to efficiently prefetch complex linked data struc-
tures from remote machines.

5.1 Runtime Mechanism
We have developed path-expression-based prefetching, a new
prefetching mechanism that enables prefetching multiple objects
even multiple references away with a single round-trip network
communication. Path expressions have the form: path expression :=
base object identifier(.field | [integer])∗. The base object identi-
fier component of the path expression gives the object identifier of
the first object in the path expression. The list of field offsets and
array indices describe a path through heap from the first object.

We next consider the following example code segment:
1 LinkedList search(int key) {
2 for(LinkedList ptr=head;ptr!=null&&ptr.key!=key)
3 ptr=ptr.next;
4 return ptr;
5 }

Without prefetching, completely searching a remote linked list
of length n requires making n consecutive round-trip message ex-
changes. If we add a prefetch for the expression ptr.next.next.next.next.next
between lines 2 and 3, the runtime will have prefetch requests in
flight for the next linked list node and the subsequent four nodes
that follow that node4. The example path expression prefetch en-
ables the search method to potentially execute five times faster.
Longer path expressions can further increase the potential speedup.
Note that while prefetching objects for five loop iterations ahead
may not be sufficient to hide all of the latency of accessing remote
objects, the latency of the single round trip communication is now
divided over the five objects that have prefetch requests in flight.

Our path expression implementation contains the following key
components:
1. Prefetch Calls: Our prefetching approach begins with a prefetch

call from the application. Our implementation supports issu-
ing several path expression prefetches with a single prefetch
call. The prefetch takes as input the number of path expression
prefetches, the length of each prefetch, and an array of 16-bit
unsigned integers that stores a sequence of the combination of
field offsets and array indices. The runtime system differenti-
ates between field offsets and array indices based on the type of
the previous object in the path. The prefetch method places the
prefetch request in the prefetch queue and returns immediately
to the caller. A thread in the local runtime processes prefetch
requests from the queue.

2. Local Processing: In many cases, the local distributed heap and
object cache may already contain many of the objects in the
prefetch request. The runtime system next processes as much
of the prefetch request as possible locally before sending the
request to the remote machines. The local processing starts
by looking up the object identifier component of the prefetch
request in both the local distributed heap and the object cache.
If the object is found locally, the local runtime system uses the
field offset (or array index) to look up the object identifier of
the next object in the path and remove the first offset value
from the path expression. The runtime repeats this procedure
to process the components of the prefetch request that are
available locally. The runtime then prunes the local component
from the prefetch request to generate a new prefetch request
with the first non-locally available object as its base.

3. Sorting and Combining: The runtime finally groups the
prefetch requests by the machine that is authoritative for the

4 The prefetch look-ahead distance is not fixed. Instead it depends on the
analysis’s estimation of how likely the prefetched values are to be used.

base object identifier. We note that it may become apparent at
runtime that a prefetch request is redundant. Consider the two
prefetch requests a.f.g and b.f.g.h. If at runtime both the ex-
pressions a and b reference the same object, the set of objects
described by the prefetch request a.f.g is a subset of the set
of objects described by the prefetch request b.f.g.h. When the
runtime adds a new request to a group, if a request is subsumed
by a second request the runtime drops the subsumed request.

4. Transmitting Request: The local machine next sends the
prefetch requests to the remote machines. Each request con-
tains the machine identifier that should receive the response.

5. Remote Processing: When the remote machine receives a
prefetch request it begins with the object identifier. It processes
an object identifier by looking up the object identifier first in
its local distributed heap and then (optionally) if necessary in
its object cache. Once it locates the object, it looks up the next
object identifier by using the field offset or array index from the
path expression. It repeats this process until either it has served
the complete request or it cannot locate a local copy of the ob-
ject. It sends the prefetch response to the original machine with
copies of the objects. It then forwards any remaining part of the
prefetch request to the next machine with the machine identifier
for the machine that made the original request.5

6. Receiving Response: When the local machine receives a re-
sponse message, it adds the copies of the objects from the re-
sponse message to its local object cache.

5.2 Prefetch Analysis
We have developed an unsound, intraprocedural static analysis that
uses a simple probabilistic model to generate both a set of path
expressions that the program may access and the corresponding
estimated probabilities that the objects represented by that path
expressions will be accessed. The probabilistic model is naive —
it makes assumptions of independence that are likely not true.
However, the results need not be precise, but simply provide a
rough approximation of the real program’s data access patterns. It
is acceptable for the analysis to be unsound because prefetches do
not affect the program’s correctness.

The analysis is a backward flow analysis that computes set
of tuples P ⊆ Φ × R containing a path expression φ and a
corresponding probability R for each program point. Each path
expression φ = VI0I1...In−1 ∈ Φ is comprised of a variable V
and a sequence of field offsets or array indices I = .offset | [index].
Each array index index = tmp0 + ...+ tmpm−1 + c is a summation
of temporary variables tmp and a constant offset c.

The analysis initializes the set of tuples for each program point
to the empty set. The ordering relation is P1 v P2 iff ∀〈φ, d1〉 ∈
P1 there ∃d2 > d1 such that 〈φ, d2〉 ∈ P2.

Figure 6 presents the transfer functions for the analysis. The
transfer functions for statements that read an object reference from
a field or an array element generate new path expressions with an
associated probability of 100% and rewrite any path expressions
that contained the destination variable. The transfer functions for
statements that make assignments, write to fields, or write to array
elements rewrite path expressions that begin with the same variable
and field or array index. Figure 7 present the REPLACE function
that rewrites the path expressions. One possible issue is that a
rewritten path expression may match an existing path expression.
The COMBINE function computes the new probability making the
assumption that the probabilities for the path expressions were
independent. We have omitted the REPLACE functions for index
variables for space reasons.

5 We need to forward because after the original machine processes the
prefetch request, it could contain references to still more remote objects.

6

st [[st]](P)
x = y.f (REPLACE(x, y.f,P) − 〈y.f, ∗〉)∪

〈y.f, 1〉
x = y[t] (REPLACE(x, y[t],P) − 〈y[t], ∗〉)∪

〈y[t], 1〉
x = y REPLACE(x, y,P)
x.f = y REPLACE(x.f, y,P)
x[t] = y REPLACE(x[t], y,P)

t = t1+t2 REPLACE(t, t1+t2,P)
t = c REPLACE(t, c,P)
other

assignments to x P − 〈x, ∗〉
Figure 6. Transfer Functions

REPLACE(φ1, φ2,P) = COMBINE(REWRITE(φ1, φ2,P))
REWRITE(φ1, φ2,P) = {〈π(φ, φ1, φ2), d〉 | 〈φ, d〉 ∈ P}
COMBINE(P) = {〈φ, d〉 | {d0, d1, ..., dn−1} = P(φ), d = 1 − (1 −
d0)(1 − d1)...(1 − dn−1)}
π(φ, φ1, φ2) = φ2I0...In if φ = φ1I0...In, φ otherwise

Figure 7. Equation for the REPLACE Function
Our analysis associates a probability with each conditional

branch. By default, we assume that loop branches take the true
branch with an 80% probability and other branches take the true
branch with a 50% probability. Our meet operation merges the path
expressions from two branches by weighting the probabilities in
prefetch set for the true branch with the weight p and the prob-
abilities in the prefetch set for the false branch with the weight
1 − p. The analysis can handle loops terminated by exception by
explicitly implementing exceptions in the control flow graph.

Note that the partial order on P is not a lattice. The analysis
as stated does not terminate. We next present extensions that en-
sure termination. One issue is that the analysis can generate path
expressions of unbounded length. We address this issue by intro-
ducing a minimum path expression probability µ. If a path expres-
sion has a probability less that µ at a program point, the analysis
drops that path expression. A second issue is that the analysis can
converge slowly as the analysis makes increasingly smaller incre-
ments to the path expression probabilities. We introduce a mini-
mum change threshold δ. If the probability changes by less than δ,
the fixed-point algorithm considers the probability to be the same.

5.3 Prefetch Placement
There is a trade off between placing prefetches early to minimize
the time that the application waits for data and waiting long enough
to make sure the program is likely to use the prefetched data. This
trade off can depend on the specific architecture of the machine
and the application — bandwidth constraints can be satisfied by
delaying prefetches while latency constraints can be satisfied by
moving prefetches earlier in the execution. Our implementation,
therefore, allows the developer to specify a probability threshold σ.
We selected σ to be 30% for all of our benchmarks.

We instrument the analysis in the previous section to record the
mapping γ(φ, E) → φ′ which maps the path expression φ at the
source of the edge E to the corresponding path expression φ′ at
the target of the edge E. Prefetches are placed on edges where
the probability of using the objects specified by a path expression
crosses the developer specified threshold. We define the function τ
below to check if an edge crosses the probability threshold:
τ(φ, E) = (Pdst(E)(φ) > σ) ∧ (Psrc(E)(γ(φ, E)) < σ)

Simply using a threshold crossing criteria to place prefetches
can result in redundant prefetches. We therefore extend our ap-
proach to check whether the path expression has already been
prefetched. We define the set SN at each program point to be the
set of path expressions that have been prefetched when the program
executes the statement at node N . This set is the intersection of the
set of prefetched path expressions along each incoming edge E to
node N . We split the prefetched path expressions into two compo-

nents: SE is the set of path expressions that have been prefetched
before the source node of E has been executed and δE is the set of
prefetches inserted at E. The equations for each set follow:
SN =

T
E=incoming edges to N (SE ∪ δE)

SE = {γ(φ, E) | φ ∈ Ssrc(E)}
δE = {φ | ∃d, 〈φ, d〉 ∈ Psrc(E), τ(φ, E)}

We use a fixed point algorithm to compute these sets for all
program points. At each edge E, our prefetch placement algorithm
places prefetches for the path expressions in δE − SE (the set of
path expressions that cross the threshold but have not already been
prefetched).

6. Runtime and Prefetch Optimizations
In this section, we describe a number of runtime optimizations that
our system implements.

6.1 Approximate Cache Coherency
While object caching and prefetching have the potential to improve
performance by hiding the latency of remote reads for shared ob-
jects, they can increase the likelihood that transactions may abort
due to reading stale data from the prefetch cache. The obvious ap-
proach, a cache coherence protocol, for addressing this issue in-
troduces a number of overheads. We have introduced several new
mechanisms that are collectively designed to provide approximate
cache coherence. These mechanisms do not guarantee cache co-
herence, they merely attempt to minimize the likelihood that cache
reads return old object versions.

We use a combination of two techniques to evict old versions of
cached objects. The first technique is designed for small scale de-
ployments on a LAN. This technique uses unreliable UDP broad-
cast to send a small invalidation message when a transaction com-
mits. This invalidation message list the objects that the transaction
modified. The implementation does not guarantee that the invali-
dation messages will arrive and does not wait for the messages to
be processed. The second technique evicts the oldest objects in the
cache whenever the cache needs more space. We expect that larger
scale deployments of our approach would require different tech-
niques for approximate cache coherence. Techniques for very large
deployments could include profiling to determine at what points
objects of a given type should be invalidated from caches.

Our implementation uses information from local transactions to
update the prefetch cache. Whenever a local transaction commits,
it updates the local cache with the latest versions of any remote
objects the transaction modified.

If a transaction aborts, the implementation learns information
about the objects it is likely to access. The implementation can use
this information to minimize the number of remote object requests
that must be made when retrying the transaction. When transactions
abort, the remote machines in our implementation send the latest
versions of any stale objects that the aborted transaction accessed
along with their abort response. These objects are then placed in
the prefetch cache and the transaction is retried.

It is important to note that although our approach only maintains
approximate cache coherence, we preserve the correct execution
semantics by detecting and correcting any stale object accesses in
the transaction commit process.

6.2 Dynamic prefetching optimizations
Transactions often access an object multiple times. For example,
the loops in matrix multiply will walk over the same array objects
repeatedly. In this case, our prefetch analysis can generate prefetch
instructions that prefetch the same object repeatedly. Processing
these repeated prefetch instructions introduces overhead and yields
no performance benefits as the objects are already cached.

We observe that in many benchmarks, the execution transitions
between phases in which it mostly accesses new objects and phases

7

in which it accesses the same objects. In the matrix example,
during the first iteration of the outer loop the code accesses new
arrays in the btrans matrix. For the remaining iterations, the
code accesses the same arrays repeatedly. We therefore introduce
a mechanism that dynamically shuts down prefetch sites when they
stop providing benefits. This mechanism allows the application to
receive the benefit of prefetches while minimizing the overhead.

Our approach assigns a unique identifier to each prefetch site.
The prefetch requests are labeled with this unique identifier. Each
time a prefetch is generated for objects that are already in the local
cache, the runtime increments a count associated with the prefetch
site. When the prefetch site generates a prefetch request that is not
locally available, the runtime resets this count. Once this count hits
a threshold, the runtime sets a flag that shuts down this prefetch
site. Our implementation continues to monitor the prefetch site by
occasionally retrying prefetches after a shutdown. If the prefetch
retry request prefetches a non-cached object, the runtime turns the
prefetch site back on.
7. Evaluation
We ran our benchmarks on a cluster of 8 identical 3.06 GHz Intel
Xeon servers running Linux version 2.6.25 and connected through
a gigabit switch. We have implemented the DSM system, path ex-
pression prefetching, the language extensions, and the analysis.
We present results for microbenchmarks and four shared mem-
ory parallel benchmarks. We report results for 1Threaded Java for
a single-threaded non-transactional Java version compiled into C
code; the base column presents results without caching or prefetch-
ing; and the prefetch column presents results with both caching and
prefetching enabled. The prefetching versions are generated auto-
matically using our prefetch analysis. We have reported numbers
in seconds that are averaged over ten executions for 1, 2, 4, and 8
nodes with one thread running per node.
7.1 2DConv
The 2D convolution benchmark computes the application of a mask
to a 2D image. The output image, C, is computed from the input
image, A, and the convolution mask, H . Each machine computes a
region of the output image in parallel. Table 1 presents results for
the 2DConv benchmark. We observe speedups as we increase the
number of nodes but prefetching ceases to provide benefits as we
hit 8 nodes. A measurement of the 4096x4096 version reveals the
problem: the 8 node benchmark transmits 1.9 gigabits of data (the
output and input matrices) from the master to the nodes and then the
commits transmit 0.9 gigabits of data from the nodes to the master
over a network with a peak capacity of 1 gigabit per second. The
problem is that the benchmark becomes bandwidth limited and data
prefetched for future operations competes with immediate remote
requests for bandwidth. The 2048x2048 version suffers from the
same bandwidth limit.

2DConv M = N = 2048 M = N = 4096
Base Prefetch Base Prefetch

1Threaded Java 2.54s — 11.57s —
1 2.80s — 11.54s —
2 2.49s 2.21s 9.21s 8.19s
4 1.65s 1.47s 6.14s 5.66s
8 1.28s 1.28s 4.84s 4.98s

Table 1. 2DConv Results
7.2 Matrix Multiply
The matrix multiplication benchmark implements the standard ma-
trix multiplication algorithm. The computation of the product ma-
trix is partitioned over multiple threads. Matrix Multiply places all
of the arrays on the machine that started the computation.

Table 2 presents the results for a 600x600 matrix multiplication
benchmark. We observe significant speedup for small matrix size
as we increase the number of nodes and we gain 35.5% speedup
with prefetching for 8 nodes.

Matrix Multiply Base Prefetch
1Threaded Java 2.30s —

1 4.30s —
2 2.45s 2.37s
4 1.70s 1.35s
8 1.26s 0.93s

Table 2. Matrix Multiplication Results

7.3 Moldyn
Moldyn, a molecular dynamics benchmark, was taken from the
Java Grande benchmark suite [36]. It is a N-body simulation of
particles interacting under a Lennard-Jones potential in a cubic
spatial volume with periodic boundary conditions.

Table 3 presents results for the Moldyn benchmark for N =
2048 particles and i = 100 iterations. We observe speedups as
we increase the number of nodes. We gain 14.7% speedup with
prefetching for 8 nodes.

Moldyn Base Prefetching
1Threaded Java 3.47s —

1 7.79s —
2 4.88s 4.16s
4 3.23s 2.95s
8 3.35s 2.92s

Table 3. Moldyn Results
7.4 2DFFT
The 2DFFT benchmark is an example of two-dimensional fast
Fourier transformation. The algorithm was taken from Digital Sig-
nal Processing by Lyon and Rao and parallelized. The main ma-
trix is placed on the machine that started the computation. This
1152 × 1152 matrix is accessed remotely by other nodes that per-
form one dimensional Fourier transforms on the rows in parallel
followed by one dimensional Fourier transforms on the columns in
parallel. Table 4 presents results for the 2DFFT benchmark. We ob-
serve significant speedup as we increase the number of nodes and
gains from prefetches.

2DFFT Base Prefetch
1Threaded Java 3.64s —

1 5.35s —
2 3.67s 3.65s
4 2.63s 2.58s
8 2.09s 1.97s

Table 4. 2DFFT Results
7.5 Array Microbenchmark
We present results from a two-dimensional array traversal mi-
crobenchmark to measure the performance gains from prefetch-
ing objects for regular access patterns over short runs. The array
microbenchmark sums all of the elements in a 10000x10 two di-
mensional array of integers that is located on a remote machine.
Without prefetching the benchmark takes 1.03 seconds and with
prefetching it takes 0.15 seconds. Prefetching improves the per-
formance of the array microbenchmark by a factor of 6.9. The
microbenchmark is only intended to quantify the contributions of
prefetching. Therefore, results for even short runs demonstrate that
some access patterns can benefit significantly from prefetching.
7.6 Overhead From Transactions
Table 5 presents the result of four micro-benchmarks that evalu-
ate the overhead of committing 10,000 transactions in absence of
data contention for 1, 2, 4, and 8 nodes. Note that the roundtrip
network latency is on the order of 100 microseconds — 10,000
network roundtrips take 1 second. In OneMCRead benchmark, one
node commits 10,000 transactions when reading a shared array. In
MultiMCRead, multiple nodes commit transactions when reading
shared arrays that are located remotely. In OneMCWrite bench-
mark, one node commits 10,000 transactions on a shared array lo-
cated remotely while in MultiMCWrite, multiple nodes write to dif-
ferent parts of shared arrays located remotely. From the results we

8

see that the overhead of transactions scale linearly with the number
of nodes and are in fact dependent on the round trip communica-
tion involved in accessing remote data. Note that the overhead to
commit transactions that involve a small number of machines is on
the order of a single network round trip or the time to read a single
remote object.

OneMCRead MultiMCRead OneMCWrite MultiMCWrite
1 0.25s 0.25s 0.52s 0.51s
2 1.47s 1.70s 1.96s 2.36s
4 1.79s 3.44s 2.72s 4.03s
8 2.53s 5.50s 4.43s 7.49s

Table 5. Commit Benchmark Results

8. Related Work
We survey related work in distributed shared memory systems, soft-
ware transaction memory systems, transactional distributed shared
memory systems, and prefetching optimizations.

8.1 Distributed Shared Memory Systems
The IVY shared memory system allows multiple data structures
copies to exist to decrease the overhead of reading remote data [30].
The complication with this approach is ensuring that all the copies
are consistent after memory writes. IVY uses a write-invalidate
protocol to invalidate all copies before writing to a page, and
therefore the required round trip communications makes writes to
shared memory potentially expensive. We note that there is the
potential to ping pages back and forth between machines.

To address this issue, researchers have developed more so-
phisticated approaches including TreadMarks [27], Midway [6],
and Munin [5] that achieve higher performance by weakening the
memory consistency guarantees [28, 14]. Developing software for
weaker memory models requires the developer to understand com-
plicated consistency properties to understand which values reads
from memory locations can return.

8.2 Transactional Memory
Knight proposed a limited form of hardware transactional memory
that supported a single store operation [29]. Herlihy and Moss ex-
tended this work to support short transactions that write to multiple
memory locations in hardware [23]. More recent approaches have
relaxed the constraints on the transaction size [19, 4]. Shavit and
Touitou first proposed a software approach to transactional memory
for transactions whose data set can be statically determined [35].
Herlihy et al. extend the software approaches to handle dynamic
transactions whose accesses are determined at runtime [22].

8.3 Transactional Distributed Shared Memory
Researchers have explored transactional distributed shared mem-
ory systems as a mechanism to provide stronger consistency prop-
erties. Bodorik et al. developed a hardware-assisted lock-based ap-
proach, in which transactions must hold a lock on a memory lo-
cation before accessing that location [8]. Hastings extended the
Camelot distributed shared memory system to support transactions
though a lock-based approach [21]. Ahn et al. developed a lock-
based distributed shared memory system with support for transac-
tions [2]. LOTEC is another lock-based transactional distributed
shared memory [15]. All of these implementations incur round trip
network latencies whenever the application code accesses a remote
object because the machine must first communicate to a remote
node to acquire a lock.

Manassiev et al. introduced a version-based transactional dis-
tributed shared memory that replicates all program state on all ma-
chines [32]. Their approach is likely to have problems scaling to
a large number of machines even if the underlying computation is
highly parallel because all writes must be sent to all nodes and all
nodes must agree to all transaction commits. Marcos et al. have

developed a system that allows machines to share data in a fault-
tolerant, scalable, and consistent manner. This service uses mini-
transactions to manage distributed state [1].

Two of the DARPA high productivity computer systems lan-
guages, Chapel [10] and Fortress [3], provide transaction constructs
that guarantee that code is executed with transactional semantics.
As part of this effort Boechino et al. have developed a word-based
software transaction memory system [7]. Herlihy and Sun proposed
a distributed transaction memory for metric-space networks [24].
Their design requires moving objects to the local node before writ-
ing to the object. Because neither of these approaches contain
mechanisms to cache or prefetch remote objects, the latency of ac-
cessing remote objects may be an issue.

8.4 Prefetching
Researchers have developed several techniques for prefetching re-
cursive data structures in a single machine environment. Luk and
Mowry propose to greedily prefetch object fields, to automatically
add prefetch pointers to objects that point to objects to prefetch, and
to linearize recursive data structures when possible [31]. Greedy
prefetches require first knowing the address of the object. Prefetch
pointers do not help with the initial traversal of a data structure
and may be difficult to maintain in a distributed environment. Lin-
earizing is only applicable if the creation order is the same as the
traversal order. Cahoon and McKinley proposed a dataflow analysis
for software prefetching in Java [9]. Roth et al. propose a hardware-
based approach to prefetching linked data structures that hides the
latency of accessing linked data structures in useful work [34].
However, in distributed shared memories the latency of accessing
remote memory is likely to be much longer than the time that can
be filled with useful work.

Researchers have explored communication optimizations for
distributed computations. Zhu and Hendren implemented an ap-
proach to combine multiple reads into a single block [40]. Because
their approach requires that the address of the memory locations to
be read is known, it at least incurs the round trip network latency
for accessing each object in a linked data structure traversal. Rogers
et al. propose thread migration to improve the performance of ac-
cessing remote data structures [33]. An issue with thread migration
is that it is not efficient for code that simultaneously operates on
data that spans multiple machines.

Gupta proposes a naming scheme for objects in data structures
to enable fast traversals of remote data structures [18]. The ap-
proach places constraints on data structure updates — only a single
node can be added to a data structure at a time. Moreover, many
changes to data structures require renaming all of the objects in the
data structure and propagating the names changes to all machines.

Speight uses a dynamic prediction-based prefetching algorithm
for software distributed shared memory [38]. Joseph and Grunwald
use Markov predictors to generate prefetches on a single machine
environment [26]. Ferdman and Falsafi store access sequences and
then stream the addresses from these access sequences onto a chip’s
cache [12]. The transaction component of the our work is com-
plementary to dynamic prefetching— our work relaxes constraints
on coherency to enable prefetch algorithms to function better and
could potentially benefit from dynamic prefetch predictors. The
two prefetching approaches may be complementary — we expect
that our static approach will work better for deterministic object ac-
cess patterns and that dynamic predictors may work better for less
deterministic access patterns that are repeated many times.

9. Conclusion
We have presented a new transaction-based distributed shared
memory system with support for object caching. We have presented
a new path expression-based prefetching algorithm that is the only

9

prefetching algorithm to our knowledge that can prefetch objects
before the object’s address is computed or predicted. We have im-
plemented the prefetching analysis, the language extensions, and
the distributed shared memory system in our compiler. We have
observed speedups for our benchmarks as the number of machines
increases and also observe benefits from prefetching objects.

References
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis.

Sinfonia: a new paradigm for building scalable distributed systems. In
Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, 2007.

[2] J.-H. Ahn, K.-W. Lee, and H.-J. Kim. Architectural issues in adopting
distributed shared memory for distributed object management
systems. In Proceedings of the Fifth IEEE Computer Society Workshop
on Future Trends of Distributed Computing Systems, August 1995.

[3] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Messen, S. Ryu,
G. L. Steele, and S. Tobin-Hochstadt. The Fortress Language
Specification. Sun Microsystems, Inc., September 2006.

[4] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded transactional memory. In 11th International
Symposium on High Performance Computer Architecture, 2005.

[5] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed
shared memory based on type-specific memory coherence. In
Proceedings of the Second ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 168–176, 1990.

[6] B. N. Bershad and M. J. Zekauskas. Midway: Shared memory
parallel programming with entry consistency for distributed memory
multiprocessors. In Compcon 93, 1993.

[7] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software
transactional memory for large scale clusters. In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2008.

[8] P. Bodorik, F. I. Smith, and D. J-Lewis. Transactions in distributed
shared memory systems. In Proceedings of the Eigthth International
Conference on Data Engineering, February 1992.

[9] B. Cahoon and K. S. McKinley. Data flow analysis for software
prefetching linked data structures in Java. In Proceedings of the 10th
International Conference on Parallel Architectures and Compilation
Techniques, 2001.

[10] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel Programma-
bility and the Chapel Language. International Journal of High Per-
formance Computing Applications, 2007.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[12] M. Ferdman and B. Falsafi. Last-touch correlated data streaming. In
IEEE International Symposium on Systems and Software, April 2007.

[13] G. A. Geist and V. S. Sunderam. The PVM system: Supercomputer
level concurrent computation on a heterogeneous network of
workstations. In Proceedings of the Sixth Distributed Memory
Computing Conference, pages 258–261, 1991.

[14] P. B. Gibbons. A more practical PRAM model. In Proceedings
of the First Annual ACM Symposium on Parallel Algorithms and
Architectures, 1989.

[15] P. Graham and Y. Sui. LOTEC: A simple DSM consistency protocol
for Nested Object Transactions. In Proceedings of the 18th Annual
ACM Symposium on Principles of Distributed Computing, 1999.

[16] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[17] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface
standard. Parallel Computing, 22(6):789–828, 1996.

[18] R. Gupta. SPMD execution of programs with dynamic data structures
on distributed memory machines. In Proceedings of the 1992
International Conference on Computer Languages, April 1992.

[19] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom,
M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency (TCC). In Proceedings of the
11th Intl. Symposium on Computer Architecture, June 2004.

[20] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory
Transactions. In Proceedings of the 2006 Conference on Programming
Language Design and Implementation, June.

[21] A. B. Hastings. Distributed lock management in a transaction
processing environment. In Proceedings of the Ninth Symposium
on Reliable Distributed Systems, October 1990.

[22] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software trans-
actional memory for dynamic-sized data structures. In Proceedings
of the Twenty-Second Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, July.

[23] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the Twentieth
Annual International Symposium on Computer Architecture, 1993.

[24] M. Herlihy and Y. Sun. Distributed transactional memory for metric-
space networks. In Proceedings of the 19th International Symposium
on Distributed Computing, September 2005.

[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks.
SIGOPS Oper. Syst. Rev., 41(3):59–72, 2007.

[26] D. Joseph and D. Grunwald. Prefetching using markov predictors.
In Proceedings of the 24th Annual International Symposium on
Computer Architecture, 1997.

[27] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed shared memory on standard workstations and
operating systems. In Proceedings of the USENIX Winter 1994 Tech-
nical Conference, 1994.

[28] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency
for software distributed shared memory. In Proceedings of the 19th
Annual International Symposium on Computer Architecture, 1992.

[29] T. Knight. An architecture for mostly functional languages. In
Proceedings of the 1986 ACM Conference on LISP and Functional
Programming, pages 105–112, 1986.

[30] K. Li. Ivy: A shared virtual memory system for parallel computing.
In Proceedings of the 1998 International Conference on Parallel
Processing, pages 94–101, 1988.

[31] C.-K. Luk and T. C. Mowry. Automatic compiler-inserted prefetching
for pointer-based applications. IEEE Transactions on Computers,
48(2):134–141, February 1999.

[32] K. Manassiev, M. Mihailescu, and C. Amza. Exploiting distributed
version concurrency in a transactional memory cluster. In Proceedings
of the Eleventh ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2006.

[33] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting
dynamic data structures on distributed-memory machines. ACM
Transactions on Programming Languages and Systems, 17(2):233–
263, 1995.

[34] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching
for linked data structures. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages
and Operating Systems, October 1998.

[35] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th ACM Symposium on Principles of Distributed
Computing, August.

[36] L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel Java Grande
benchmark suite. In Proceedings of SC2001, 2001.

[37] M. F. Spear, V. J. Marathe, W. N. Scherer, and M. L. Scott.
Conflict detection and validation strategies for software transactional

10

memory. In Proceedings of the Twentieth International Symposium
on Distributed Computing.

[38] E. Speight and M. Burtscher. Delphi: Prediction-based page
prefetching to improve the perfo rmance of shared virtual memory
systems. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, June 2002.

[39] K. Yelick, L. Semenzato, G. Pike, C. M. iyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. G. ham, D. Gay, P. Colella, and
A. Aiken. Titanium: A high-performance Java dialect. Concurrency:
Practice and Experience, 10(10-13), September-November 1998.

[40] Y. Zhu and L. J. Hendren. Communication optimizations for parallel
C programs. In Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation, 1998.

11

