
Speculative Region-based Memory
Management for Big Data Systems

Khanh Nguyen Lu Fang Guoqing Xu Brian Demsky
University of California, Irvine

{khanhtn1, lfang3, guoqingx, bdemsky}@uci.edu

Abstract
Most real-world Big Data systems are written in managed languages.
These systems suffer from severe memory problems due to the mas-
sive volumes of objects created to process input data. Allocating and
deallocating a sea of objects puts a severe strain on the garbage col-
lector, leading to excessive GC efforts and/or out-of-memory crashes.
Region-based memory management has been recently shown to be
effective to reduce GC costs for Big Data systems. However, all
existing region-based techniques require significant user annota-
tions, resulting in limited usefulness and practicality. This paper
reports an ongoing project, aiming to design and implement a novel
speculative region-based technique that requires only minimum
user involvement. In our system, objects are allocated speculatively
into their respective regions and promoted into the heap if needed.
We develop an object promotion algorithm that scans regions for
only a small number of times, which will hopefully lead to signifi-
cantly improved memory management efficiency. We also present
an OpenJDK-based implementation plan and an evaluation plan.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, compilers, memory man-
agement, optimization, run-time environments; D.4.2 [Operating
Systems]: Storage Management—Garbage collection, main memory

General Terms Language, Measurements, Performance

Keywords Big Data systems, managed languages, region-based
memory management, performance optimization

1. Introduction
Big Data analytics has been the center of modern computing in
recent years. Popular Big Data frameworks such as Hadoop [1],
Spark [18], Naiad [14], Hyracks [3] are developed in managed
languages such as Java and C# due to their quick development
cycles as well as the abundance of library suites and community
support. However, because object orientation encourages the use
of objects to represent and manipulate data, memory management
costs in Big Data systems become prohibitively high due to massive
volumes of objects created during execution (e.g., GC accounts for
up to 50% of execution time [4, 7, 15]), preventing scalability and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLOS ’15, October 4, 2015, Monterey, CA, USA.
Copyright c© 2015 ACM . ISBN 978-1-4503-3942-1/15/10. . . $15.00.
http://dx.doi.org/10.1145/2818302.2818308

satisfactory performance. The heap is quickly exhausted soon after
the execution starts and the program struggles to find memory for
object allocation throughout the execution, giving rise to frequent
GCs and/or out-of-memory crashes.

Recent work [11, 15] shows that region-based memory manage-
ment is an effective approach to reducing memory management
costs in Big Data systems. However, all existing region-based tech-
niques require heavyweight developer involvement. For example,
our previous work FACADE [15] needs developers to annotate “data
classes” and “control classes” for the compiler to determine whether
an object should be allocated in a region or the heap. Identifying
the boundary between these classes is extremely difficult because
they are often tightly coupled. In most cases, developers need to
refactor program code before being able to write annotations. As
another example, a Broom [11] user must know precisely an ob-
ject’ lifetime and then use specialized APIs to allocate the object
in a region. While static analysis techniques have been developed
in the literature [9, 10] to automatically perform region allocation,
these sophisticated analyses would not work well for modern Big
Data frameworks that are distributed and have very large codebases.
In this paper, we explore the possibility of developing a purely
dynamic technique that can safely perform region-based memory
management while requiring nearly zero user effort.

Weak Iteration Hypothesis In a typical Big Data system, the
data path, where objects are created to represent and manipulate
data, contributes more than 90% of run-time objects [4]. Evidence
shows that this path is heavily iteration-based [4, 7, 15]. There
is a strong correlation between the lifetime of an object and the
lifetime of the iteration in which it is created: such objects often
stay alive until the end of the iteration but rarely cross multiple
iterations. Garbage collections in the middle of an iteration would
unnecessarily traverse billions of objects in the heap that are
not immediately reclaimable. Iterations are very well-defined in
Big Data frameworks. For example, in GraphChi [12], a high-
performance graph processing framework on a single machine,
iterations are explicitly defined as callbacks. Even novices can easily
find these iterations.

While this hypothesis holds for the majority of objects created
in iterations, it is a weak hypothesis because a small number of
control objects may also be created in an iteration but escape
iteration boundaries to the control path of the program. These
escaping objects pose challenges to the state-of-the-art region-based
techniques: while most objects can be safely placed in regions
and deallocated as a whole, doing so naı̈vely for all objects could
potentially alter program semantics due to the escaping of control
objects. Existing techniques place the correctness guarantee onto the
developer’s shoulder. For example, the developer needs to precisely
understand of object lifespans and refactor classes in a way so
that only data objects are created in iterations. Unfortunately, this

process of understanding program semantics and refactoring code
is notoriously difficult, not to mention that manual refactoring is
error-prone, adding additional complexity to region management.

Our Contributions The need for manual code refactoring in us-
ing regions motivates us to develop an automated region-based
approach, thereby shifting the burden of specifying what should be
region-allocated from developers to the runtime system. The pro-
posed technique uses a speculative algorithm for object allocation
(cf. §2.3): all objects created during an iteration are speculatively
allocated in its corresponding region. The region is created at the
beginning of the iteration and collected as a whole at the end of the
iteration. To account for control objects that escape the iteration,
our algorithm scans the region before it ends and promote objects
based on a region semilattice. Since the majority of objects are
region-allocated and the GC only scans the small heap, our algo-
rithm reduces GC costs significantly while only requiring the user
to specify iterations, a trivial task that can be done in minutes.

The rest of the paper is organized as follows: Section 2.1 gives
an overview of our technique; Section 2.2 and Section 2.3 pro-
vide a detailed discussion of the speculative region-based memory
management technique; we end with Section 3 describing our im-
plementation and evaluation plans.

2. Approach
In this section, we first give an overview of the proposed technique
(§2.1) and present a region theory (§2.2) that serves as the basis for
our algorithms. We finally describe our speculative region-based
algorithms (§2.3) in detail.

2.1 Overview
As discussed in §1, the data-processing path of Big Data applications
is heavily iteration-based. An iteration is defined as a block of code
that is repetitively executed. Although the notion of iterations is well-
defined in Big Data systems, they are often implemented in distinct
ways in different systems, such as callbacks in GraphChi [12], a
pair of API calls open() and close() in Hyracks [3], or setup()
and cleanup() in Hadoop [1]. To enable a unified treatment, our
system relies on a pair of user annotations: iteration start and
iteration end . Placing these marks requires negligible manual
effort. Even a novice, without much knowledge about the system,
can easily find and annotate iterations in a few minutes [15].

Each iteration is assigned a region, a growable memory chunk,
in which all objects created during the iteration are allocated. In
real-world applications, iterations often exhibit nested relationships.
To support this property and quickly recycle memory, our system
supports nested regions. If an iteration start mark is encountered
in the middle of an already-running iteration, a sub-iteration starts;
subsequently a new region is created. The new region is considered
a child of the existing region. All subsequent object allocations take
place in the child region until an iteration end mark is seen. We
do not place any restrictions on regions; objects in arbitrary regions
are allowed to mutually reference.

In a multi-threaded environment, different threads may execute
the same iteration. Allowing multiple threads to access the same re-
gion may potentially lead to concurrency bugs and incur prohibitive
overheads (e.g., due to frequent locking and unlocking). To improve
efficiency, we advocate thread-local regions, eliminating unneces-
sary synchronizations.[[confused about this paragraph...]]

In our system, memory is divided into a heap, a set of stacks
for running threads, and a set of regions, each created for a thread-
iteration pair. The heap and stack are used in expected ways. Global
objects (referenced by static fields) and objects created before any
iteration starts are allocated in the heap. For each running thread, a
region is created at the beginning of a (sub)iteration and is reclaimed
as a whole at the end of the (sub)iteration. Iterations are ordered

based on their nesting relationships; so are their corresponding
regions. Putting them all together, regions and the heap form a
semilattice structure whose formal definition is given in §2.2.

Our approach reduces GC efforts by making a clear separation
between the heap and regions. The GC scans and collects the heap
in the normal way, but not regions. While heap objects are allowed
to reference region objects and vice versa, the GC is prohibited from
following such references into a region. The heap is much smaller
in size compared to regions since it contains only a small number
of control objects created for driving control flow. On the contrary,
there are several orders of magnitude more objects allocated in
regions; they represent input data and the (intermediate and final)
results of processing. We expect significant reductions in GC efforts
by moving the majority of objects from the GCed heap to regions
that are not subject to the GC.

Speculative Region Allocation To free the developer from the
burden of identifying region-allocable objects, we speculatively
allocate all objects created within an iteration into its corresponding
region. As discussed earlier in §1, while most objects become
unreachable at the end of the iteration, there may be objects that
outlive the iteration. It is critical to detect and reallocate escaping
objects before reclaiming the region as a whole; the program’s
semantics would be modified otherwise.

We develop a GC-like graph traversal algorithm to detect escap-
ing objects. As the mutator (i.e., application) executes, each region
has all its incoming references recorded. The pointees of these refer-
ences are considered as the boundary set of the region from which
the traversal algorithm starts. When an iteration ends, since objects
in this set (and its transitive closure) may still be reachable from
other live regions, they are subject to relocation. There can be two
kinds of inter-region references when a (sub)iteration i is about
to end. First, an object in a parent region can reference an object
created in i. This is obvious to see because when i finishes, its parent
iteration is still live. Second, an object in a region belonging to a
different thread can reference an object created in i. Note that there
can never be a reference going from a child region to an object in
i at this time, because when i is about to finish, its child iterations
must have already finished. Objects that escaped a child region must
have been promoted to either i or an ancestor region of i. Hence, an
“upward” reference must no longer exist. If a region has no incoming
reference, the whole region is immediately reclaimable.

To provide correctness guarantees, we develop an object pro-
motion algorithm. For each escaping object found at the end of an
iteration by the traversal algorithm, we inspect all valid incoming
references that point to the object and based on them compute the
lowest common parent region r in the region semilattice. The object
is then relocated to r. After all escaping objects are relocated, the
region can be safely reclaimed.

2.2 Region Theory

We begin by formalizing notions of iterations and regions. A
program consists of a number of static iterations, each with an
identifier i ∈ Iter . We rely on user annotations to specify code
regions that form iterations. A program also has a number of
executing threads, each with an identifier t ∈ Tid to execute
iterations. Each execution instance of an iteration is a dynamic
iteration that has a 4-tuple 〈i , t , s, e〉 identifier, where i is a static
iteration, t is a thread running i, s is the execution starting time,
and e is the execution ending time. We use notion ≺ to describe the
nesting relationship between two dynamic iterations: 〈i1 , t1 , s1 , e1 〉
≺ 〈i2 , t2 , s2 , e2 〉 ⇐⇒ s1 ≥ s2 ∧ e1 ≤ e2 ∧ t1 = t2 . Each
dynamic iteration has a corresponding region r ∈ R. Because there
is a one-to-one correspondence between dynamic iterations and
regions, a region also has the same 4-tuple identifier. Relation ≺
is defined in the same way on the set of regions. Each region r

1 2 n

1

1

2

2

n

n

Figure 1. An illustration of a simple semilattice: at the top is the
heap; a→ b means a is the parent region of b.

remembers all its incoming references into a list λ(r) of pairs (a, b)
where a and b (∈ Obj) are run-time objects, a 6∈ r ∧ b ∈ r . These
references will be used to determine where bwill be relocated before
r is reclaimed. The set of all such objects b is referred to as the
boundary set of r , denoted as ω(r).

The heap can be viewed as a special region (r?) with the 4-tuple
identifier 〈>, ?, 0,∞〉, where > represents the fact that no iteration
has started when the heap is created, ? is a generic thread identifier,
and we assume the execution starts at time 0 and ends at time∞.
R? represents all regions and the heap collectively. Let us define
relation δ(r1 , r2) such that δ(r1 , r2) holds iff two regions r1 and
r2 are owned by different threads. Such r1 and r2 are referred to as
concurrent regions.

A program also consists of many reference-typed variables
x ∈ V ar. An environment ρ : Var → Obj ∪ {null} maps each
variable to the object it points to or a null value.

Semilattice Definition All regions created during the execution
and the heap together form a semi-join lattice with finite height. The
top element of the semilattice is the heap (r?). Formally, the region
semilattice is defined as a partial order set (R?,≺). Figure 1 shows
the graphical illustration of a simple semilattice.

The join operator is defined as

JOIN(r1 , r2) =

{
r? if δ(r1 , r2)
min(r3 |r1 ≺ r3 , r2 ≺ r3) otherwise

The join of two regions returns their lowest common ancestor.
It is used to compute the proper region to relocate an object during
promotion. If an object in region r escapes the iteration in which
it is created but has not been accessed by a different thread, it is
promoted to an ancestor of r. If the object has been accessed by
another thread, it can only be moved to the heap (i.e., the top element
of the semilattice) because the join of two concurrent regions is
always the heap.

2.3 Detailed Algorithms

Algorithm 1: The modified semantics of new(i , t).
Input: Iteration i, Thread t
Output: Object ret

1 Region r ← null

2 if i = > then
3 r ← r?

4 else
5 r ← RETRIEVEREGION(i, t)

6 ret ← ALLOC(r)

7 return ret

This subsection presents our detailed algorithms for speculative
region-based memory management. Algorithms 1, 2, and 3 show the
modified semantics of three major operations that perform object

Algorithm 2: The write barrier.
Input: Thread t, Field dereference expression a.f , Variable b

1 Object o1 ← ρ(a)

2 Object o2 ← ρ(b)

3 if GETREGION(o1) 6= GETREGION(o2) then
4 Region r ← GETREGION(o2)

5 if r 6= r? then
6 ω(r)← ω(r) ∪ {o2}
7 λ(r)← λ(r) ∪ {(o1 , o2)}

Algorithm 3: The read barrier.
Input: Thread t, Variable a, Field dereference expression b.f

1 Object o2 ← ρ(b)

2 Object o ← o2 .f

3 Region r ← GETREGION(o)
4 if r 6= r? ∧ r .t 6= t then
5 ω(r)← ω(r) ∪ {o}
6 Object o′ ← PLACEHOLDEROBJECT(CURRENTREGION(t))

7 λ(r)← λ(r) ∪ {(o′, o)}

Algorithm 4: The modified garbage collection semantics.
Input: Heap r?

1 // initially, all objects in the heap are marked white
2 Set〈Object〉gray ← roots(r?)

3 Set〈Object〉black ← ∅
4 while gray 6= ∅ do
5 Object o← REMOVETOP(gray)

6 if o /∈ black then
7 black ← black ∪ {o}
8 foreach outgoing reference e of Object o do
9 Object p← TARGET(e)

10 if p /∈ black ∧ GETREGION(p) = r? then
11 gray ← gray ∪ {p}

12 // collect all objects that are white

allocation, write a reference value into an object, and read a reference
value from an object, respectively. The semantics of static field
accesses as well as array loads and stores are similar to that of
instance field accesses, and the details of their handling are omitted
from this paper.

Algorithm 1 shows the modified semantics of object allocation.
It first identifies the appropriate region to allocate an object in. If
no iteration has started yet, the normal heap is returned (Line 3),
otherwise, we obtain the region for the current iteration (Line 5). Our
compiler translates all user-provided iteration start annotations
into method calls that create regions at run time. Because our regions
are thread-local, we create, for each thread, a unique object allocator
to perform fast allocations. The allocated object is then returned to
the caller.

As discussed in §2.1, it is critical to identify and promote
escaping objects before collecting the whole region to guarantee
memory safety. There are two ways an object can escape an iteration.
(1) Via the heap. An object o2 can outlive its region r if its reference
is written into an object o1 allocated in another (live) region r′.
Algorithm 2 shows the modified semantics of store operations (i.e.,
write barrier) to identify such escaping objects o2 . The algorithm
first checks whether the reference is an inter-region reference
(Line 3). If it is, the pointee’s region (i.e., r, which contains o2) will

Algorithm 5: Our region recycling algorithm.
Input: Region r=〈i, t, s, e〉

1 Set〈Variable〉 liveVars ← LIVEVARIABLES(i)

2 foreach Variable var ∈ liveVars do
3 Object o ← ρ(var)

4 if GETREGION(o) = r then
5 ω(r)← ω(r) ∪ {o}
6 Object o′ ← PLACEHOLDEROBJECT(PARENT(r))

7 λ(r)← λ(r) ∪ {(o′, o)}

8 if ω(r) 6= ∅ then
9 foreach Object o ∈ ω(r) do

10 Region dest ← r

11 foreach Pair (x , o) ∈ λ(r) do
12 Region xRegion ← GETREGION(x)
13 dest ← JOIN(dest, xRegion)

14 Set〈Object〉 gray ← {o}
15 Set〈Object〉 black ← ∅
16 while gray 6= ∅ do
17 Object obj ← REMOVETOP(gray)

18 if obj /∈ black then
19 black ← black ∪ {obj}
20 foreach outgoing reference e of Object obj do
21 Object p← TARGET(e)

22 if p /∈ black ∧ GETREGION(p) = r then
23 gray ← gray ∪ {p}

24 foreach Object o ∈ black do
25 COPY (o, dest)

26 RECLAIM(r)

1 Thread t :
2 / / iteration start
3 a = A. f ;
4 a . g = new O () ;
5 / / iteration end
6

7 Thread t′ :
8 / / iteration start
9 p = A. f ;

10 b = p . g ;
11 / / iteration end

Figure 2. An example showing an object o referenced by field g
of object a escapes the thread t via the load statement b = p.g
executed by thread t′.

1 a = . . . ;
2 / / iteration start
3 b = new B () ;
4 i f (/∗condition ∗ /) { a = b ; }
5 / / iteration end
6 c = a ;

Figure 3. A simple example showing an object referenced by b
escapes its iteration via the stack variable a.

appropriately update its boundary set ω(r) and incoming reference
set λ(r) (cf. 2.2).

(2) Via the stack. There are two sub-cases here. (2.a) Because
objects in concurrent regions are allowed to mutually reference, a
thread t ′ can load a reference from a field of an object o created
by another thread t . An example of this case is shown in Figure 2.
The object o created in Line 4 escapes thread t through the store
at Line 4 and is loaded to the stack of another thread through the
load at Line 10. Hence, it is unsafe to deallocate o at the time its
containing region r is reclaimed. Algorithm 3 shows the modified
semantics of load (i.e., read barrier) to handle this case. To guarantee

safety, we include each such o into the boundary set of r (Line 5)
when it is loaded by a thread t′ different from its creating thread t.
o will be relocated when r is about to be reclaimed.

Escaping via the stack creates challenges for determining where
the escaping object should be relocated during promotion. To have a
unified treatment, we create an incoming reference for the boundary
object o where the source of the reference is a placeholder (virtual)
object in the region r′ currently used by thread t (Lines 6 – 7). If
o escapes to the stack of a different thread, it will be relocated into
the heap by the object promotion algorithm, because the join of the
two concurrent regions r and r′ returns the normal heap.

(2.b) The reference of an object is loaded into a stack variable
which is declared beyond the scope of the running iteration. Figure 3
shows a simple example. The reference of the object region-allocated
in Line 3 is assigned to variable a. Because a is still live after the
iteration end mark, it is unsafe to deallocate the object, which
would otherwise give rise to dangling pointers. We will discuss our
handling of this case shortly in Algorithm 5.

Algorithm 4 shows the modified semantics of the normal GC
collecting the heap. The key treatment here is that we prohibit the
GC to go into any region. If the GC reaches a reference whose
target is an object p allocated inside a region, we simply ignore the
reference (i.e., condition GETREGION(p) = r? in Line 10 enforces
that the traversal is local to the heap). Recall that the heap only
contains a small number of control objects and thus the traversal is
relatively inexpensive.

Algorithm 5 shows our region recycling algorithm triggered at
the end of each iteration (i.e., when an iteration end is encoun-
tered). The algorithm takes as input a region r that belongs to the
current iteration, attempting to recycle r as a whole. We first identify
a set of objects that escapes the iteration via the stack of the current
thread (case 2.b), as shown in Lines 1 – 7. This is done by querying
the compiler for the set of live variables at the iteration end point
and checking if an object in r can be referenced by a live variable.
Each escaping object o in region r is added into the boundary set
ω(r). We also add a virtual placeholder reference into list λ(r) for
o whose source is a virtual object o′ in r’s parent region, r′. This
creates an effect that o will be relocated to r′ later. If the variable
is still live when r′ is about to be deallocated, o will be detected by
this same algorithm and be further promoted to the parent of r′.

Lines 8 – 26 show the core of our algorithm. We first check the
size of the boundary set ω (Line 8): if this set is empty, meaning there
is no escaping object, it is safe to reclaim the whole region (Line 26).
Otherwise, there are four steps to guarantee memory safety. First, for
each object o in the boundary set ω, we find a subset of references
that point to o (i.e., (x, o)) from the incoming reference set λ. We
perform the semilattice join operation on all source objects x to
determine the appropriate region dest to move o to (Lines 11 –
13). Second, a BFS-based traversal is performed (Lines 16 – 23)
to find the set black reachable from each escaping object o. Note
that we only traverse the region locally (i.e., GETREGION(p) = r
in Line 22) without following inter-region edges. These edges will
be taken care of when the regions containing their target objects are
about to be deallocated. Third, after the traversal, set black contains
all objects reachable from o, which we need to move to region
dest. Function COPY copies an object and updates all its incoming
references with the new address. Finally, region r is reclaimed,
shown in Line 26. Note that if an object a is reachable from multiple
boundary objects (o ∈ ω), the region into which a will be moved is
determined by the first boundary object through which it is reached.
This would not create correctness issues — when it is reached again
through another boundary object, it will not be moved again because
it is already in a different region r′ (protected by Line 22). If it
outlives r′, it will be further relocated before r′ is reclaimed.

Discussion Our algorithms perform speculative region-based ob-
ject allocations with nearly zero user involvement while resorting to
object promotion to guarantee memory safety. The effectiveness of
the approach depends on the insight that in Big Data systems, the
majority of data objects follow the iteration hypothesis and only a
very small number of objects need to be promoted at the end of itera-
tion. We will empirically validate this assumption by experimenting
with large-scale Big Data systems.

However, if there are many objects to be promoted, the perfor-
mance of the approach will be negatively affected, because object
promotion needs to compute transitive closures, which is usually
expensive. One effective way to reduce the cost of object promotion
is to dynamically adjust the allocation policy so that objects can
be directly allocated to the appropriate regions as the execution
progresses. One interesting piece of future work we consider is to
use runtime information for objects created by the same allocation
site as feedback to guide future allocations of objects created at
the site. For example, each allocation site can remember where its
previous objects are allocated and use this information to direct its
future allocation. However, doing this naı̈vely may not be precise
enough, especially when the allocation site is inside a library. For
instance, where the array object inside Java HashMap is allocated
depends heavily upon the calling context under which its owning
HashMap objects are allocated. We plan to add context-sensitivity
to the dynamically collected feedback to provide precise allocation
guidance at allocation sites.

3. Implementation and Evaluation Plan
We are right now in the process of implementing the algorithms
described in §2.3. This section briefly discusses our plan for imple-
mentation and evaluation.

Implementation Plan Our approach requires a re-design of the
runtime system in a JVM. We expect to deliver a new JVM that per-
forms speculative region-based memory management at the end of
the project. Our implementation is based on OpenJDK, a production
JVM made open source by Oracle. We are implementing our region-
based memory management on top of the parallel scavenge collector,
a state-of-the-art collector used commonly in large systems. Our ap-
proach is almost completely automatic. The only user’s involvement
we require is to annotate the application code with iteration start
and iteration end to define iterations. Compiler support will be
developed inside the JIT compiler to transform these annotations
into calls that create regions and instrument various types of instruc-
tions based on our algorithms. We will piggyback our load/store
instrumentation on the read/write barriers already implemented in
OpenJDK. These barriers have been extensively optimized and, thus,
we expect that adding a small amount of additional functionality at
each barrier would not introduce much runtime overhead.

Evaluation Plan Benchmarks will be chosen from real-world
Big Data frameworks such as GraphChi [12], a disk-based high
performance graph analytical system that can process big graphs
on a PC; Hyracks [3], a data parallel framework for running data-
intensive jobs in clusters; Spark [18], a powerful cluster computing
framework for Big Data; and Hadoop [1], a map-reduce-based data
computation framework.

We plan to evaluate our technique based on the following metrics:
(1) Overall execution time: whether our technique can significantly
improve overall performance; (2) GC overhead: the percentage
of the execution time spent on garbage collection; (3) object
relocation costs: how costly is the object promotion algorithm,
relative to the overall running time; and (4) memory usage: whether
our technique can reduce the peak heap usage of a system.

4. Related Work
Generational GC While the proposed approach and the gener-
ational GC share commonalities, they are fundamentally different
from each other. For example, they have opposite goals: the gen-
erational GC always scans young generation to find and copy live
objects to old generation, whereas our approach does not let the GC
touch regions. While the GC traverses the heap, we restrict the GC
to stay in the heap without following references that lead to other
regions. In addition, our approach considers hierarchical regions,
which have much richer semantics than generations.

Program Analyses for Memory Management There exists a
large body of work aiming to reduce the costs of the managed run-
time system by employing different levels of techniques, ranging
from programming guidelines [8] through static program analy-
ses [2, 5, 6, 13, 16] to low-level systems support [17]. However,
none of these techniques are practical enough to improve perfor-
mance for large-scale, real-world Big Data programs: sophisticated
interprocedural static analyses (such as escape analysis [5] and
object inlining [6]) cannot scale to large, framework-intensive code-
bases while purely GC-based techniques (such as Resurrector [17])
cannot scale to large heaps with billions of objects. Being designed
to specifically target practicality, our system is applicable to real-
world, Big Data systems.

Our previous work ITASK [7] provides a library-based program-
ming model for developing interruptible tasks in data-parallel sys-
tems. These tasks can be interrupted upon memory pressure with
part or all of their used memory reclaimed. Similarly to existing
techniques, ITASK requires the user to restructure existing code to
turn normal tasks into interruptible tasks. This paper proposes a
transparent, purely dynamic region-based memory management that
requires nearly zero user involvement with correctness guarantee.

Region-based Memory Management There is an increasing
interest to apply region-based memory management techniques in
Big Data systems. Our previous work FACADE [15] optimizes the
managed runtime for Big Data applications by allocating data items
into iteration-based native memory pages that are deallocated in
batch. Broom [11] aims to replace the GC system by using regions
with different scopes to manipulate objects with similar lifetimes.
While they share the same goal with the proposed technique,
they both require extensive programmer intervention. For example,
users must annotate the code and determine “data classes” and
“boundary classes” to use FACADE or explicitly use Broom APIs
to allocate objects in regions. Our approach puts minimum burden
on users by requiring only the identification of the start and the
end of the iterations, which are often very well-defined in Big Data
applications.

5. Conclusions
The paper presents a purely dynamic technique that exploits the
weak iteration hypothesis to manage memory in Big Data appli-
cations. Data objects are speculatively allocated into lattice-based
regions while the GC only scans and collects the heap, which is
much smaller than regions. By moving all data objects into regions
and deallocating them as a whole at the end of each iteration, signif-
icant reductions in GC overheads are expected. To provide memory
safety, an object promotion algorithm is developed to relocate ob-
jects that escape the iteration boundaries. Our approach is almost
completely automatic: users are required only to provide annotations
for iterations, an easy job that can be done in minutes.

Acknowledgments
We would like to thank the anonymous reviewers for their valuable
and thorough comments. This material is based upon work supported

by the National Science Foundation under grant CCF-0846195,
CCF-1217854, CNS-1228995, CCF-1319786, CNS-1321179, CCF-
1409829, and by the Office of Naval Research under grant N00014-
14-1-0549.

References
[1] Hadoop: Open-source implementation of MapReduce. http://

hadoop.apache.org.
[2] B. Blanchet. Escape analysis for object-oriented languages. Applica-

tions to Java. In OOPSLA, pages 20–34, 1999.
[3] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica.

Hyracks: A flexible and extensible foundation for data-intensive com-
puting. In ICDE, pages 1151–1162, 2011.

[4] Y. Bu, V. Borkar, G. Xu, and M. J. Carey. A bloat-aware design for big
data applications. In ISMM, pages 119–130, 2013.

[5] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape
analysis for Java. In OOPSLA, pages 1–19, 1999.

[6] J. Dolby and A. Chien. An automatic object inlining optimization and
its evaluation. In PLDI, pages 345–357, 2000.

[7] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptable tasks:
Treating memory pressure as interrupts for highly scalable data-parallel
programs. In SOSP, 2015.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[9] D. Gay and A. Aiken. Memory management with explicit regions. In
PLDI, pages 313–323, 1998.

[10] D. Gay and A. Aiken. Language support for regions. In PLDI, pages
70–80, 2001.

[11] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ra-
malingam, M. Costa, D. G. Murray, S. Hand, and M. Isard. Broom:
Sweeping out garbage collection from big data systems. In 15th Work-
shop on Hot Topics in Operating Systems (HotOS XV), 2015.

[12] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-Scale Graph
Computation on Just a PC. In OSDI, pages 31–46, 2012.

[13] O. Lhotak and L. Hendren. Run-time evaluation of opportunities for
object inlining in Java. Concurrency and Computation: Practice and
Experience, 17(5-6):515–537, 2005.

[14] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A timely dataflow system. In SOSP, 2013.

[15] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu. FACADE: A
compiler and runtime for (almost) object-bounded big data applications.
In ASPLOS, pages 675–690, 2015.

[16] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh. Exploiting prolific
types for memory management and optimizations. In POPL, pages
295–306, 2002.

[17] G. Xu. Resurrector: A tunable object lifetime profiling technique for
optimizing real-world programs. In OOPSLA, pages 111–130, 2013.

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, page 10,
Berkeley, CA, USA, 2010.

http://hadoop.apache.org
http://hadoop.apache.org

	Introduction
	Approach
	Overview
	Region Theory
	Detailed Algorithms

	Implementation and Evaluation Plan
	Related Work
	Conclusions

