Bamboo: A Data-Centric, Object-Oriented
Approach to Many-core Software

Jin Zhou

Brian Demsky

Department of Electrical Engineering and Computer Science
University of California, Irvine
Irvine, CA 92697

{jzhoul,bdemsky }@uci.edu

Abstract

Traditional data-oriented programming languages such as dataflow
languages and stream languages provide a natural abstraction for
parallel programming. In these languages, a developer focuses on
the flow of data through the computation and these systems free
the developer from the complexities of low-level, thread-oriented
concurrency primitives. This simplification comes at a cost — tra-
ditional data-oriented approaches restrict the mutation of state and,
in practice, the types of data structures a program can effectively
use. Bamboo borrows from work in typestate and software transac-
tions to relax the traditional restrictions of data-oriented program-
ming models to support mutation of arbitrary data structures.

We have implemented a compiler for Bamboo which generates
code for the TILEPro64 many-core processor. We have evaluated
this implementation on six benchmarks: Tracking, a feature track-
ing algorithm from computer vision; KMeans, a K-means cluster-
ing algorithm; MonteCarlo, a Monte Carlo simulation; FilterBank,
a multi-channel filter bank; Fractal, a Mandelbrot set computation;
and Series, a Fourier series computation. We found that our com-
piler generated implementations that obtained speedups ranging
from 26.2% to 61.6x when executed on 62 cores.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.2 [Language Classifi-
cations]: Data-flow languages; G.1.6 [Optimization]: Gradient
Methods

General Terms Algorithms, Languages

Keywords Many-core Programming, Data-Centric Languages

1. Introduction

With the wide-scale deployment of multi-core processors and the
impending arrival of many-core processors, software developers
must write parallel software to realize the benefits of continued im-
provements in microprocessors. Developing parallel software using
today’s development tools can be challenging. These tools require

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’'10, June 5-10, 2010, Toronto, Ontario, Canada.

Copyright © 2010 ACM 978-1-4503-0019/10/06. .. $10.00

developers to expose parallelism as threads and then control con-
current access to data with locks. Reasoning about the correctness
and performance of these systems has proven to be difficult.

In the past, mainstream processors have presented software de-
velopers with a relatively static programming target at the language
abstraction level. We expect this will no longer be true — in the fu-
ture as fabrication technologies advance, the number and types of
cores in each successive microprocessor generation will change.
Adapting thread-based applications to these changes may require
significant refactoring efforts. Developing software for many-core
processors will clearly benefit from both new tools and languages.

This paper presents a data-oriented extension to Java. In this
approach, the developer focuses on how data flows through the
application. Our approach borrows inspiration from dataflow and
stream-based languages and extends the basic data-oriented ap-
proach for use in imperative, object-oriented languages. Traditional
data-oriented programming approaches place severe restrictions on
how programs mutate data structures; Bamboo relaxes these restric-
tions to allow programs to freely mutate data structures.

Bamboo programs are composed of a set of tasks that imple-
ment the program’s operations. Objects have abstract states asso-
ciate with them and tasks contain parameter guards that specify
the abstract states of the parameter objects that they can operate
on. Tasks have data-oriented invocation semantics: when there ex-
ist objects with abstract states that satisfy a task’s guards, the run-
time invokes the task on the objects. Tasks can in turn modify the
abstract states of the objects they operate on.

Bamboo’s abstract object states are similar to typestates [31].
Like typestates, operations can change the abstract states of objects
and an object’s abstract state determines which operations can be
invoked on the object. However, Bamboo’s abstract object states
differ from typestates in that abstract object states are dynamically
computed and used to determine which operation to invoke next,
while typestates are used to statically detect errors in object usage.

Conceptually, abstract states serve to control access to data at
the task level. For example, an email client may have message
objects with both an edit state and a sent state. The send task
might transition a message object into the sent state, preventing
any further edits to the message.

Bamboo supports traditional method calls from both tasks and
other methods. Bamboo restricts the usage of global variables —
tasks (and methods) can only read their parameter objects or objects
reachable from the parameters. Tasks do not maintain persistent
state between invocations — therefore, a Bamboo implementation
can safely create multiple parallel instantiations of a task if these
instantiations operate on disjoint parameter objects.

The Bamboo compiler is staged as follows:

¢ Dependence Analysis: The compiler performs a static depen-
dence analysis to determine (1) the set of abstract states that
objects can reach and (2) how tasks cause objects to transition
through these abstract states. The analysis generates as output
a finite state machine for each class in which the states model
the abstract object states and the transitions model the effects of
tasks on these abstract states.

Disjointness Analysis: The compiler performs a static disjoint-
ness analysis on the Java-like imperative code inside Bamboo
tasks and methods to determine whether a task introduces alias-
ing between parameter objects. Bamboo uses the disjointness
analysis to automatically generate fine-grained locking code
that ensures transactional task semantics. Bamboo transactions
are light-weight — at invocation, a task simply locks its param-
eter objects. If the runtime cannot lock all of a task’s parame-
ters, the runtime releases the locks and executes a different task.
Tasks never abort and they incur no extra overheads.

Implementation Generation Algorithm: The implementation
generation algorithm takes as input the static analyses results
and profile information. The algorithm uses a set of transforma-
tions to generate many candidate many-core implementations
of the application to serve as starting points for optimization.

Implementation Optimization: The evaluation stage uses
high-level abstract simulation to evaluate the relative perfor-
mance of the implementations. The compiler performs a critical
path analysis on the simulated execution to identify opportuni-
ties to improve the implementation and uses the results to direct
a simulated annealing-based search. The compiler generates
code for the best implementation.

1.1 Relation with Stream, Dataflow, and Tuple-space
Languages

Bamboo is closely related to both stream and dataflow languages.
Stream and dataflow languages traditionally impose severe restric-
tions on how an application can mutate data and often forbidding
it. They often require applications to access data structures in deter-
ministic patterns. These restrictions are imposed because these lan-
guages typically do not contain concurrency primitives that restrict
access to shared state and instead must make the state immutable.

Bamboo combines transactional task semantics together with
abstract object states to control access to shared data structures.
This enables Bamboo to support mutation of structurally complex
shared data structures in a data-oriented programming model. Bam-
boo’s task parameter objects are intended to be the roots of disjoint
heap data structures. The Bamboo compiler includes a static dis-
jointness analysis that detects violations of this disjointness prop-
erty and generates a locking strategy that guarantees transactional
semantics. The disjointness analysis enables the Bamboo imple-
mentation to efficiently provide transactional task semantics.

The combination of abstract object states and task dispatch
allows Bamboo to support applications that must access shared data
structures at non-deterministic times in the computation. Abstract
object states serve to control these accesses.

Tuple-space languages contain similar constructs to Bamboo’s
global object space. However, threads in tuple-space applications
can contain internal state and can manipulate the tuple-space in
arbitrary ways. These differences make it difficult for a compiler
to automatically understand the role of a thread in a tuple-space
language and frustrate efforts to automatically parallelize the thread
by creating multiple instantiations.

[e

1.2 Contributions

This paper makes the following contributions:

e Hybrid Data-Oriented Approach: It presents the Bamboo
language, which implements a data-oriented programming
model in the context of an imperative, object-oriented program-
ming language.

Data Structure Mutation: It presents a dataflow-based pro-
gramming model that supports data structure mutation. Many
algorithms are most naturally expressed in terms of state mu-
tations. This approach allows developers to easily code these
algorithms while still benefiting from high-level language sup-
port for dataflow-type constructs.

Automatic Implementation Optimization: It presents an al-
gorithm that automatically generates many candidate many-
core implementations of the application. This algorithm com-
bines profile information with a simulation-based implementa-
tion evaluation algorithm to generate many-core implementa-
tions that are optimized for the target processor.

Evaluation: It presents an evaluation of Bamboo on a 64-core
TILEPro64 microprocessor [2] for several benchmarks. The
TILEPro64 processor is a many-core CPU and representative of
the many-core microprocessors that will become commonplace
in the future. We found that it was relatively simple to develop
Bamboo implementations of the benchmarks and that the im-
plementations made effective use of available cores. The exper-
imental results show that Bamboo is able to achieve speedups
between 26.2x and 61.6x for our benchmarks. Moreover, we
found that Bamboo successfully generated a sophisticated het-
erogeneous implementation of the MonteCarlo benchmark that
used pipelining to overlap the simulation and aggregation tasks.

The remainder of the paper is structured as follows. Section 2
presents an example that we use to illustrate our approach. Sec-
tion 3 presents the Bamboo language. Section 4 presents the imple-
mentation synthesis algorithm. Section 5 presents our evaluation
of the approach on several benchmark applications. Section 6 dis-
cusses related work; we conclude in Section 7.

2. Example

We present a keyword counting example to illustrate Bamboo.

2.1 Classes

Figure 1 presents part of the Text class declaration for the exam-
ple. The keyword counter uses instances of the Text class to divide
the input text into sections and count occurrences of each word.
Class declarations contain declarations for the class’s abstract
states. An abstract state is declared with the keyword flag fol-
lowed by a name. Bamboo’s abstract states support orthogonal clas-
sifications of objects: an object may simultaneously be in more than
one abstract state. The runtime uses the abstract state of an object
to determine which fasks to invoke on the given object. When a task
exits, it can change the values of the flags of its parameter objects.

class Text {
flag process;
flag submit;

Figure 1. Text Class Declaration

The Text class in the example contains two abstract state dec-
larations: the process flag, which indicates that the Text object
is ready to be processed, and the submit flag, which indicates that
the Text object can submit its result.

2.2 Tasks

Bamboo applications are structured as a collection of tasks. The
key difference between tasks and methods is that tasks have data-
oriented invocation semantics: the runtime invokes a task when the
heap contains objects with the appropriate abstract state to serve
as the task’s parameters. Note that while the runtime controls task
invocation, tasks can call methods. The runtime uses a task’s spec-
ification to determine which objects serve as the task’s parameters
and when to invoke the task.

Each task declaration consists of the keyword task, the
task’s name, the task’s parameters, and the body of the task.
Figure 2 presents the task declarations for the example. The
first task declaration declares the startup task. The guard in
initialstate declares that the StartupObject object must
have its initialstate flag set before the runtime can invoke
this task. The runtime invokes the task when there exist parameter
objects in the heap that satisfy the parameters’ guard expressions.
Before exiting, the taskexit statement in the startup task re-
setsthe initialstate flaginthe StartupObject to false to
prevent the runtime from repeatedly invoking the startup task.

The abstract state-based programming model is a powerful con-
struct for specifying which objects a task operates on. For many ap-
plications, it is possible to specify these dependencies with graphi-
cal task dependence diagrams. Bamboo supports the use of external
graphical tools in which a developer would draw a dependence dia-
gram from which the tool automatically generates task declarations.

task startup (StartupObject s in initialstate) {
Partitioner p = new Partitioner(s.args[0]);
while (p. morePartitions ()) {
String section = p.nextpartition ();
Text tp = new Text(section) {process:=true};

Results rp =
new Results(p.sectionNum ()) {finished:=false };
taskexit(s: initialstate :=false);
}
task processText(Text tp im process) {
tp.process ();
taskexit (tp:
}
task mergelntermediateResult(
Results rp in !finished , Text tp in submit) {
boolean allprocessed = rp.mergeResult(tp);
if (allprocessed)
taskexit(rp: finished:=true;
tp: submit:=false);
taskexit(tp: submit:=false);

}

process:=false , submit:=true);

Figure 2. Flag Specifications for Tasks

2.3 Execution

We next describe the execution of the example. It performs the
following operations (although not necessarily in this order):

e Startup: The runtime creates a StartupObject object in
the initialstate abstract state. This causes the runtime to
invoke the startup task. This task creates a Partitioner
object to partition the text stream into sections. For each sec-
tion, the task creates a new Text object in the process ab-

stract state, which indicates that the object is ready for process-
ing. The task then creates a Results object to merge the in-
termediate results. Finally, it transitions the StartupOb ject
object out of the initialstate abstract state to prevent the
runtime from repeatedly invoking the startup task.

Processing a Text Section: When the runtime identifies a
Text object in the process abstract state, it invokes the
processText task on that object to process the text section
and stores the intermediate result in the object. Upon exiting,
the object is transitioned from the process abstract state to
the submit abstract state to indicate that the intermediate re-
sult can be merged into the final result and to prevent repeated
invocations of processText task on this object.

Merging Results: The mergeIntermediateResult task
merges the intermediate results from the Text objects into
the Results object. It transitions the Text object out of
the submit abstract state to prevent merging the same object
again. If it has merged all of the intermediate results, it transi-
tions the Results object to the £inished abstract state.

2.4 Scheduling

The Bamboo compiler uses profile information and a processor de-
scription to generate a binary that is optimized for both the ap-
plication’s runtime behavior and the target processor. The Bam-
boo compiler contains an automatic implementation synthesis and
evaluation-based optimization framework that generates and evalu-
ates many possible candidate implementations of the application to
synthesize an optimized many-core implementation.

The Bamboo compiler generates a combined state transition
graph (CSTG) to reason about the possible behaviors of the ap-
plication. Figure 3 presents the CSTG for the example. The nodes
in this graph model the abstract object states for the classes that
serve as task parameters. Two concentric ellipses indicate that the
object can be allocated with this abstract state. Solid edges model
the state transitions caused by the invocation of a task on an object.
Dashed edges model the creation of new objects — a new object
edge points from the task that creates an object to the abstract state
node that abstracts the state of the newly created object.

Class StartupObject

initialstate:3

startup:<3,100 %>
A

! Class Results

Gt DL

mergelntermediateResult:<3, 75 %>

processText:<10, 100 %>|

mergelntermediateResult:<3, 25 %>

ergelntermediateResult:<3, 100 %>

@)

Figure 3. CSTG for the Keyword Counting Example

The compiler associates profile information with the nodes and
edges in the CSTG. The CSTG combined with the profile informa-
tion forms a Markov model [26] of the program’s execution. The
solid edges contain labels with the name of a task followed by a
colon and a tuple that contains the expected time the task takes to
execute if it makes this transition and the probability that the task
will take this transition. The dashed edges are labeled with a tuple
that gives the expected number of newly created objects. For exam-
ple, the edge in Figure 3 from the startup task to the process

state is labeled 4 indicating that the task may generate four new
Text objects in the process state. Each node contains an ab-
stract object state followed by a colon and a lower bound estimate
of the time it takes to complete processing an object in this state.

The compiler transforms the CSTG to optimize the application’s
implementation for a given processor. For example, the algorithm
might begin by generating multiple instantiations of the tasks that
process Text objects. The compiler uses these transformations to
generate candidate layouts (as presented in Figure 4) to serve as
starting points for the directed-simulated annealing optimization al-
gorithm. The algorithm first runs a high-level simulation to evaluate
these layouts using the profile statistics. Then it computes the crit-
ical path subject to scheduling constraints of the simulated execu-
tion and uses this critical path along with dependence information
to identify a set of tasks that can potentially be migrated to differ-
ent cores to reduce the length of the critical path. It then generates
a set of candidate layouts that implement these transformations as
the starting point for an iterative optimization procedure. When it
reaches the point of diminishing returns, the compiler selects the
best candidate layout and generates the corresponding executable.

Figure 4 presents a candidate layout of the keyword counting
example for a quad core processor. This implementation deploys
all tasks on core 0 while deploying only the processText task
on the other three cores. The execution distributes the Text objects
to all 4 cores in a round-robin fashion.

3. Bamboo Language

Bamboo applications are composed of a set of tasks that implement
high-level operations and a set of task declarations that describe
when to execute these tasks. Bamboo tasks are written in an object-
oriented, type-safe subset of Java. The task declaration language
describes the data dependencies between tasks.

Tasks are blocks of code that encapsulate individual conceptual
operations. Each task contains a task declaration that the runtime
uses to determine (1) when to execute the task, (2) what data the
task needs, and (3) how the task changes the role this data plays
in the computation. Thus the set of task declarations describes the
dependencies between the tasks. Bamboo associates abstract object
states with objects. The abstract object states are used to determine
which tasks should be invoked on an object.

Figure 5 presents the grammar for Bamboo’s task extensions
to Java. Each task contains a set of guards that specify when
the runtime should invoke the task. The guards contain a set of
predicates on the abstract states of the parameter objects. Only
objects whose abstract state satisfy the task’s guards can serve
as a parameter object to the task. Tasks can in turn modify an
object’s abstract state when (1) the object is allocated or (2) at the
completion of its execution.

An abstract object state is declared in a class declaration by
using the £1ag keyword followed by the state’s name. Developers
can use abstract object states to capture orthogonal aspects of an
object’s current role in the computation: therefore an object can
simultaneously be in more than one abstract object state.

The runtime uses an object’s abstract state to determine which
tasks to invoke on that object. It uses a task’s declaration to deter-
mine which objects can serve as the task’s parameters and when to
invoke the task. When the heap contains parameter objects with the
specified abstract states to serve as a task’s parameters, the runtime
invokes that task on those objects.

Bamboo provides a tag construct to support reuse of blocks
of tasks and to group related objects. Consider a Bamboo task-
based library routine’ that takes as input an Image object in the
uncompressed state, compresses the image, and then transitions

I Bamboo also supports standard method-based libraries.

r—=—==—===== - - ==
|

Runtime initialization | Text {process} oI« _processText Task: >

_startup Tasl:/ "

Text {process)}/

= Text {process}

__>’: processText Task:\
Text (submit)\i Results {!finished} —

I A -y Text {submit

@ergelntermediateResult Task S+ ¢ .

- = - ~— Text {submit}

Results {!finished} Text {submit}

‘ : processText Task >

Figure 4. Scheduling Layout on a Quad Core Processor

flagdecl := flag flagname;
tagdecl := tagtype tagname;
taskdecl := task name(taskparamlist)
taskparamlist := taskparamlist, taskparam | taskparam
taskparam := type name in flagexp with tagexp |

type name in flagexp
flagexp = flagexp and flagexp | flagexp or flagexp |
flagexp | (flagexp) | flagname | true | false
tagexp = tagexp and tagtype tagname | tagtype tagname
statements := ... | taskexit(flagactionlist) |
tag tagname = new tag(tagtype) |
new name(params){flagortagactions}

Sfagactionlist Sflagactionlist; name : flagortagactions |

name : flagortagactions
params = ... |tag tagname
flagortagactions := flagortagactions, flagortagaction |
flagortagaction

flagortagaction = flagaction | tagaction

flagaction flagname := boolliteral

tagaction := add tagname | clear tagname

Figure 5. Task Grammar

the Image object to the compressed state. A startsave task
for a graphics editing application might take as input a Drawing
object and create an uncompressed Image object. A block
of tasks in the library would then perform a set of task invoca-
tions that eventually transition the uncompressed Image object
to the compressed state. A second finishsave task would
then take as input the Drawing object and the compressed
Image object. It is important that the finishsave task re-
ceives the compressed Image for the specific Image object
the startsave task created and not some other ITmage ob-
ject. Tags solve this problem. The startsave task creates a tag
and tags both the Tmage object and the Drawing object. The
finishsave task declaration then specifies that the Drawing
object and the Tmage object both have the same tag, ensuring that
it receives the correct Image object.

Tags serve a second purpose. In addition to disambiguating
different uses of the same object, they can disambiguate differ-
ent instances of the same use. Suppose that two Drawing ob-
jects were simultaneously saved. Without tags, it is possible for
a compressed Image object to be associated with the wrong
Drawing object. Tags are allocated using the new tag state-
ment. Methods can declare tag parameters and tag instances can
be passed into a method call.

Bamboo provides a modified new object allocation statement.
This statement takes as input the initial abstract state for objects
allocated at this site and a list of tag variables whose tag instances
should be bound to the newly allocated objects. Bamboo provides
the taskexit statement that can change the abstract states and
tag bindings of the task’s parameter objects and then exits the task.

The current implementation of Bamboo is data-oriented at the
top-level — Bamboo does not contain threads and Bamboo appli-
cations are started by the creation of a StartupOb ject object.
It is straightforward to implement Bamboo as a strict extension to
Java — thread-based code would then use data-oriented compo-
nents through an asynchronous calling interface.

4. Implementation Synthesis

We next present the Bamboo compiler’s algorithm for generating
an optimized implementation. The Bamboo compiler uses the fol-
lowing staged strategy to synthesize application implementations:

1. Dependence Analysis: The dependence analysis processes the
task declarations to characterize the tasks’ data dependences.

2. Disjointness Analysis: Disjointness analysis processes the im-
perative code inside of Bamboo tasks and methods to determine
whether it introduces sharing between different task parameter
objects. The compiler uses this information to generate locks
that guarantee transactional semantics for task invocation.

3. Candidate Implementation Generation: Candidate imple-
mentation generation synthesizes non-isomorphic candidate
implementations. Several implementations are randomly gen-
erated to serve as a starting point for further optimization.

4. Simulation-based Evaluation: The evaluation phase uses pro-
file information along with an architectural specification to per-
form a high-level simulation of the candidate implementation.
If the profile indicates that the application terminates, the sim-
ulation computes an estimated execution time. Otherwise, it es-
timates the percentage of the time spent doing useful work.

5. Optimization: Based on the evaluation results, the final stage
uses directed-simulated annealing to iteratively optimize the
candidate implementations to improve their performance.

We next present each of these stages in more detail.

4.1 Dependence Analysis

The dependence analysis operates on abstract state transition
graphs (ASTGs) [17]. An ASTG is associated with an object type
and abstracts the possible state transitions of instances of that type.
An ASTG is composed of abstract state nodes and edges between
these nodes. An abstract state node represents the abstract state and
tag components of an object’s state — it contains the states of all
the object’s abstract states and a 1-limited count (0, 1, or at least
1) of the tag instances of each type that are bound to the object. If
an object in the computation can reach a given abstract state, the
abstract state transition graph for that object’s class contains the
corresponding abstract state node. The edges in the ASTG abstract
the actions of tasks on objects. If a task can transition an object
from one abstract state to a second abstract state, then there is an
edge labeled with that task from the abstract state node that cor-
responds to the first abstract state to the abstract state node that
corresponds to the second abstract state.

4.2 Disjointness Analysis

Disjointness analysis determines whether the parts of the heap
reachable from distinct task parameter objects are disjoint [23].
Disjointness analysis differs from pointer analysis in that it can de-
termine that two objects represented by the same static node are

distinct if the parameter objects they are reachable from are dis-
tinct. The analysis reasons about static reachability graphs, which
characterize the reachability of each object in the heap from a se-
lect set of root objects. Nodes in reachability graphs represent ob-
jects and edges represent heap references. The graphs are annotated
with sets of reachability states that describe which objects can reach
other objects. The analysis uses the reachability states to determine
if a task introduces sharing between the parts of the heap reachable
from two different parameter objects. If the analysis determines that
a task may create sharing between the disjoint heap regions asso-
ciated with two different parameter objects, the compiler generates
code that adds a shared lock for the two parameter objects.

4.3 Candidate Implementation Generation

This stage in the compilation process generates several candidate
implementations. These candidates serve as a starting point for later
evaluation and optimization stages. The implementation generation
process is structured as three steps: (1) generate a combined state
transition graph that characterizes the dependences between parts
of the application, (2) transform this graph to expose parallelism,
and (3) search for mappings of the transformed graph to the target
processor. We next discuss these steps in detail.

4.3.1 Characterizing the Application

The Bamboo compiler combines the ASTGs for the individual
classes into a combined state transition graph (CSTG) to charac-
terize the entire application. It then annotates the nodes and edges
in the CSTG with runtime profile information.

The Bamboo compiler uses profile data to obtain the analog of
a developer’s intuition about the behavior of applications. Bamboo
supports generating single or many-core profiling versions of ap-
plications. Single-core profiling is used to bootstrap the application
synthesis process. A profile includes cycle counts for task invoca-
tions, the task exit taken by each task invocation, and a count of the
number of parameter objects a given task invocation allocated. The
Bamboo compiler processes the profile data to compute statistics
including the average execution time a task takes for a given exit,
the probability that the task takes the exit, and the average number
of new objects allocated when the task takes the exit.

Figure 3 from Section 2.4 presents an example CSTG. A solid
rectangle in the graph represents a core group — all tasks in a
core group will be mapped onto the same core. It also describes
the possible state transitions of the objects on that core. Therefore,
a CSTG represents a possible implementation of a computation
on a many-core processor. The compiler next performs a series of
transformations on the CSTG to optimize the implementation.

4.3.2 Preprocessing

A tree transformation phase preprocesses the CSTG to prepare it
for subsequent parallelization phases. We note that core groups
may have more than one incident new object edge. These edges
represent disjoint sources of work for the core group and present an
opportunity for parallelism — the compiler can replicate the core
group for each source of work. This phase transforms the CSTG
into a tree of strongly connected components (SCCs) by duplicating
SCCs as necessary.

The algorithm begins by computing the SCCs in the CSTG.
For the purpose of computing SCCs in the CSTG, the compiler
conceptually inserts a task node on each task transition edge that
serves as the source of all the new object edges associated with
that task transition. It then duplicates SCCs which have more than
one incident edge originating from different SCCs. This process
continues until each core group (except the StartupObject
class core group) has exactly one incident new-object edge.

4.3.3 Parallelizing the Implementation

The Bamboo language is implicitly parallel. This phase transforms
the CSTG to make the parallelism inherent in the application ex-
plicit. It is structured as a set of rules, where each rule transforms
the CSTG to address an opportunity to improve performance. The
compiler implements the following transformation rules:

e Data Locality Rule: The default rule maximizes data locality
by placing tasks on the same core unless other rules apply. This
minimizes communications to coordinate the task invocation.
Moreover, this optimization is likely to improve performance
due to caching.

Data Parallelization Rule: If a task in one core group creates
objects of a class that is processed by a second core group, task
invocations on these new objects can potentially be processed
in parallel with task invocations in the first core group.

Profile information for allocation sites contains the expected
number m of objects a given task invocation will allocate. The
compiler then replicates the destination core group to generate
m — 1 new copies.

Rate Matching Rule: Short cycles in a CSTG that produce new
objects can overwhelm a consumer core group’s ability to pro-
cess these objects. We introduce a rule that replicates the con-
sumer core group as necessary to match the object consumption
rate with the creation rate. We apply this rule only if the source
core group is in a different SCC than the destination core group.
Given the expected number m of allocated objects on the allo-
cation site from the profile, the peak new object creation rate is

% and the object consumption rate for n copies of the con-
cycle

sumer core group is ——

tprocess :

For a task A that allocates new objects, let recycie be the time of
the shortest path from the destination of A to the source of A.
teyle = tA = trecycle 1S the shortest time to complete the cycle.
tprocess 18 the estimated object processing time for the consumer
core group containing the new object created by A. Matching

__ [Mprocess .

these rates we get n = [=27, The compiler compares 7 to

teycle
m. If m is greater, it applies the data parallelization rule. If n is
greater, it applies the cycle rate matching rule to generate n — 1
new copies of the destination core group.

4.3.4 Mapping to the Processor

We next discuss how the compiler maps an optimized CSTG to
layouts for a physical processor. The mapping process uses a
backtracking-based search algorithm to generate non-isomorphic
mappings of the SCCs of core groups to the cores. We have ex-
tended the standard enumeration algorithm to randomly skip sub-
sets of the search space. Thus, the extended algorithm generates a
random set of non-isomorphic mappings.

For each mapping, the compiler generates a candidate layout.
Figure 4 from Section 2.4 presents an example layout. The layout
specifies for each core: (1) which tasks are on the core and (2) a
table that lists for each destination abstract object state that may
be generated by tasks on the core where the core should send the
object. If there are multiple destinations for the same abstract object
state, the runtime distributes the objects in a round-robin fashion.

An issue arises if the generated layout includes more than one
instantiation of a task that operates on multiple parameter objects.
Such a task can fail to trigger even if objects are available to serve
as all of its parameter objects because the parameter objects could
be enqueued in different instantiations of the task. If the task decla-
ration requires that all parameter objects are tagged with the same
tag, Bamboo hashes the tag instances bound to an object to deter-
mine which core to send the object to. Otherwise, it only generates

one instantiation of the task and statically chooses one core group
to process this instantiation. The host core can be specified by the
developer or randomly chosen by the compiler.

4.4 Performance Estimation

The candidate implementation generation stage creates many can-
didate layouts for an application. A high-level discrete-event simu-
lation estimates the relative performance of these candidate layouts
using profile information. The simulation strategy was designed to
support future extensions that would allow the synthesis process to
use detailed specifications of an individual core’s capabilities and a
processor’s on-chip network to optimize the executable. Note that
the simulator does not actually execute the application — it instead
uses profile data to estimate for a given layout how long the ap-
plication will likely take to execute. We evaluate in Section 5.4,
whether the final layout generalizes well to other inputs.

The simulation begins by injecting a startup object into the heap.
The simulator then checks if there is a task that can be executed
on any core. When a task can be executed, the simulator uses a
Markov model built from the profile to estimate: (1) the destination
state of the task, (2) the time taken to execute the task, and (3) a
count of each type of new parameter object that the task allocates.
The simulator maintains a count for each possible destination state
of a task, which it increments when the simulated task takes the
given transition. For each task invocation, the simulator chooses
the destination state that minimizes the difference between these
counts and the counts predicted by the task’s recorded statistics.
The simulator can accept developer hints that specify for a given
task whether the counts are maintained on a per object basis or per
task basis. It estimates the task execution time using an average of
the execution times for a given exit point of the task.

The simulator then skips ahead to the finish time of the currently
executing task that will finish first. The simulator state is updated
to reflect the completed task. If new objects were created, the
simulator generates new object events for the destination cores.

4.5 Optimizing with Directed-Simulated Annealing

For real world applications, the synthesis stage can potentially gen-
erate several million or more non-isomorphic candidate layouts. An
exhaustive search of these layouts is infeasible for most applica-
tions. One possible solution is to randomly generate candidate im-
plementations to evaluate. Section 5.3 presents experimental results
that show that implementations with good performance are rare for
our benchmark applications and therefore randomly generating im-
plementations is unlikely to yield well-optimized implementations.

Instead, Bamboo combines random generation of several initial
candidate layouts with a directed-simulated annealing based op-
timization algorithm. The directed-simulated annealing algorithm
improves the candidate layouts to generate an optimized layout.
The design mirrors actions taken by real developers — a developer
executes an application, analyzes the execution to identify possible
opportunities for optimization, implements the optimizations, and
then repeats the process until she obtains the desired performance.

Our directed-simulated annealing algorithm operates in an iter-
ative fashion — in each iteration it identifies performance problems
in the candidate layouts and then generates several new layouts de-
signed to correct those performance problems. Each iteration be-
gins by running the simulation on the set of candidate layouts. The
algorithm then prunes the set of candidate layouts using a proba-
bilistic strategy: it keeps the best layouts with a high probability
and poor layouts with a small probability. A critical path analysis
for each execution identifies possible opportunities to further im-
prove the candidate layout (see Section 4.5.1). The compiler uses
the results of this analysis to generate a new set of candidate lay-
outs that have been modified to attempt to remove the bottleneck

core 0 core 1 core 2 core 3

startup, 3

processText, 10]
: processText, 10
-7

transfer a Text object, 1

T "Move Here

‘l'.vrocess'l‘ext, 10

transfer a Text object, 1

transfer a Results object, 0 Pid

" transfer a Text object, 1

mergelntermediateResult, 3

Figure 6. Execution Trace for the Keyword Counting Example

in the previous candidate (see Section 4.5.2). This iterative pro-
cess is repeated until the current best layout has the same or bet-
ter performance than the candidate layouts from the previous iter-
ation. Because the optimization process may have simply reached
a local maxima, the algorithm probabilistically decides whether to
continue searching or not, with a high probability to continue.

The primary difference between our directed-simulated anneal-
ing algorithm and the standard simulated annealing algorithm is
that we use the results of the critical path analysis to direct the gen-
eration of future optimized candidate layouts. Section 5.3 presents
our evaluation of the directed-simulated annealing algorithm.

4.5.1 Critical Path Analysis

‘We next describe the critical path analysis used to direct the gener-
ation of new candidate layouts. The critical path analysis processes
execution traces generated from the simulated execution of the lay-
outs. Figure 6 presents an execution trace for the keyword counting
example. Nodes represent events in the simulated execution on the
cores. Node labels describe when the events happened. Edges rep-
resent either task invocations or data transfers between cores. There
are edges between (1) the nodes corresponding to the start and end
of a given task invocation, (2) the end node of one task and the start
node of the next task on the same core if the invocation of the sec-
ond task had to wait for the completion of the first task, and (3) the
end node of one task and the start node of a second task if the in-
vocation of the second task had to wait for data from the first task.
Weights are associated with each edge to indicate how long it takes
to execute the task instance or transfer the data. Edge labels give
the name of the task or the transferred data and the weight.

The dashed edges in Figure 6 indicate the critical path of this
graph. It is the path with the largest weight from the start of the
execution to the end of the execution. Note that this critical path
accounts for both resource and scheduling limitations.

4.5.2 Optimizing Implementations

For each task instance on the critical path, the optimization algo-
rithm computes the time when its data dependencies are resolved,
which is the earliest point when all the parameter objects of the task
instance are ready. The algorithm sorts task instances by the data
dependence resolution time. Task invocations whose data depen-
dencies are resolved at the same time compete with each other for
computational resources. The algorithm groups such task instances
together. Next, it randomly selects a group to attempt to optimize.
A difference between the time at which a task instance’s data
dependences are resolved and when the task is executed implies

that the task instance was delayed because of a resource conflict. If
there are spare cores during the interval between a task instance’s
expected start time and its actual start time, the optimization algo-
rithm attempts to shorten the critical path by generating a set of
new layouts in which the task instance is migrated to a spare core.

When spare cores are not available, moving tasks to other cores
can still be desirable. In this case, the optimization algorithm iden-
tifies a set of key task instances — tasks on the critical path that
produce data that the next task on the critical path consumes. Care-
fully scheduling key task instances is likely to be more important
than other tasks as there are tasks that depend on the data that key
tasks produce. The algorithm identifies situations in which a non-
key task instance on the critical path delays the invocation of a key
task instance. It attempts to move the non-key task instance to other
cores to eliminate the resource conflict.

The algorithm extends the core search algorithm described in
Section 4.3.4 to generate the new candidate layouts which redeploy
the chosen task invocations on selected cores. It then iteratively
repeats the simulation, evaluation, and optimization process until
several iterations fail to yield any improvements.

4.6 Comparison to Dynamic Scheduling

An alternative to our approach is to dynamically schedule tasks
using a centralized scheduler. Our approach has several key advan-
tages. The first advantage is that as the number of cores increases, a
centralized scheduler will quickly become the performance bottle-
neck. Our approach generates implementations that distribute the
work of scheduling tasks across all cores. The second advantage
is that our approach can generate sophisticated implementations
that account for future data dependencies. For example, we have
observed that our approach generates implementations of the Mon-
teCarlo benchmark that use pipelining to overlap the simulation
and aggregation components of the computation. Moreover, it is
straightforward to extend our basic approach to optimize for data
locality, heterogeneous cores, and new network topologies by sim-
ply extending the simulation to model these factors.

4.7 Runtime System

In general Bamboo uses a similar runtime strategy as earlier work
on Bristlecone [17]. The primary differences are that the scheduler
is distributed across all cores, the finite state machines generated by
the static analysis are used to optimize task dispatch, Bamboo does
not support task rollback or recovery, and the static analysis is used
to resolve many inter-core scheduling decisions.

Each processor core runs a lightweight Bamboo runtime that
schedules tasks for that core. Each task on a core has a parameter set
for each parameter — objects that may satisfy the task’s parameter
guard are placed in the corresponding parameter set.

For each combination of task and parameter object, the com-
bined state transition graph shows the set of tasks that can be in-
voked next on that parameter object. The compiler generates cus-
tomized code for each task that sends a message directly to the
cores that execute the next tasks to add the object to the appropriate
parameter sets. When a new object is added to a parameter set, the
runtime enqueues new task invocations (assignments of parameter
objects to parameters) that the new object makes possible. The run-
time contains optimizations to efficiently task dispatch with tags
constraints. Each tag instance contains backward references to all
objects it is bound to. The runtime uses these references to effi-
ciently prune task invocations that contain tag constraints.

The runtime selects task invocations to execute from the queue
of task invocations. Before executing a task invocation, the runtime
locks all of the parameter objects. If it is unable to acquire a lock,
it releases all locks and tries a different task invocation.

5. Evaluation

We have developed a Bamboo implementation, which contains ap-
proximately 120,000 lines of Java and C code for the compiler and
runtime system. The compiler generates C code that runs on the
TILEPro64 many-core processor. The TILEPro64 processor con-
tains 64 cores interconnected with an on-chip network. The source
code for our compiler is available at http://demsky.eecs.
uci.edu/compiler.php. We executed our benchmarks on a
700MHz TILEPro64 processor. We used 62 cores as 2 cores are
dedicated to the PCI bus.

For each benchmark, we generated three versions: a single-core
C version, a single-core Bamboo version, and a 62-core Bamboo
version. We executed these three versions on the TILEPro64 pro-
cessor and recorded how many clock cycles were taken for each ex-
ecution. Figure 7 presents the results. The reported execution times
are averaged over five executions.

Clock Cycles(10%cyc) [Speedup | Speedup | Overhead
Benchmark | I-Core | 1-Core | 62-Core |to 1-Core|to 1-Core of
C |Bamboo | Bamboo | Bamboo C Bamboo
Tracking | 405.2 | 406.4 15.5 26.2 26.1 0.3%
KMeans |[1124.6| 1243.8 | 32.0 38.9 35.1 10.6%
MonteCarlo| 44.4 47.0 1.3 36.2 342 5.9%
FilterBank | 554.6 | 554.9 14.8 37.5 37.5 0.1%
Fractal 162.5 | 172.6 2.8 61.6 58.0 6.2%
Series 1774.7| 1885.7 | 30.8 61.2 57.6 6.3%

Figure 7. Speedup of the Benchmarks on 62 cores

5.1 Results

We report our results on six benchmarks:

e Tracking The tracking benchmark extracts motion information
from a sequence of images. It was ported from the San Diego
Vision benchmark suite [32].

Figure 8 shows the task flow of the Bamboo version. The verti-
cal lines divide the task flow into the three major computation
phases: image processing, feature extraction, and feature track-
ing. Each node represents a task. Edges show how data flows
between the tasks. Dashed boxes group related tasks together.

The benchmark utilizes data parallelism: the image is divided
into multiple pieces and each piece is wrapped with a task
parameter object. The computations in the dashed boxes work
on pieces and then later aggregate these results for these pieces.

The speedup of the 62-core Bamboo version is 26.2x relative
to the single-core Bamboo version and is 26.1 x relative to the
single-core C version.

KMeans: The KMeans benchmark groups objects in an N-
dimensional space into K clusters. The algorithm is used to
partition data items into related subsets. We ported it from the
STAMP benchmark suite [9]. Our implement differs from the
original version in that it does not use transactions to update the
shared data structures. Instead, one core runs a task to update
this data structure, and the other cores send partial results to
that core. The speedup of the 62-core Bamboo version is 38.9 x
relative to the single-core Bamboo version and is 35.1 X relative
to the single-core C version.

MonteCarlo: The MonteCarlo simulation benchmark was
ported from the Java Grande benchmark suite [29]. It imple-
ments a Monte Carlo simulation. The speedup of the 62-core
Bamboo version is 36.2x relative to the single-core Bamboo
version and is 34.2x relative to the single-core C version.

Image Processing

Figure 8. Task Flow of the Tracking Benchmark

We were surprised to find that for larger workloads Bamboo
generated a sophisticated heterogeneous implementation that
used pipelining to improve performance by overlapping sim-
ulation and aggregation. We further discuss this in Section 5.4.

FilterBank: FilterBank is a multi-channel filter bank for multi-
rate signal processing. We ported this benchmark from the
StreamIt benchmark suite [20]. It performs a down-sample fol-
lowed by an up-sample on each channel and then combines the
results for all channels. The speedup of the 62-core Bamboo
version is 37.5 x relative to the single-core Bamboo version and
is 37.5x relative to the single-core C version.

Fractal: Fractal computes a Mandelbrot set. We observed a
61.6x speedup of the 62-core Bamboo version relative to the
single-core Bamboo version and a 58.0x speedup relative to
the single-core C version.

Series: Series computes Fourier coefficients. We ported it from
the Java Grande benchmark suite [29]. The speedup of the 62-
core Bamboo version is 61.2 X relative to the single-core Bam-
boo version and 57.6 x relative to the single-core C version.

The directed-simulated annealing algorithm took 1.3 minutes
to optimize the Tracking benchmark, 10 seconds for the KMeans
benchmark, and less than 0.2 seconds for the other benchmarks.
The Bamboo compiler was executed on a quad-core 2.00 GHz Intel
Xeon running 64-bit Linux version 2.6.18.

5.2 Accuracy of Scheduling Simulator

The accuracy of the high-level scheduling simulator is important as
the final implementation is selected based on the scheduling simu-
lation results. To evaluate the accuracy of the scheduling simulator,
we compared the estimated execution time for the 62-core Bam-
boo implementation strategy chosen by the scheduling simulator
with the real execution time of the corresponding 62-core binary
for each of our benchmarks.

1-Core Bamboo Version 62-Core Bamboo version

Benchmark [Clock Cycles(10%cyc) Clock Cycles(103cyc)
Estimation| Real Error |Estimation| Real Error
Tracking 405.9 4064 | -0.1% 14.9 155 |-3.9%
KMeans 1265.1 12438 | 1.7% 31.9 320 |-0.3%
MonteCarlo 47.1 47.0 0.2% 1.2 1.3 -1.7%
FilterBank 554.8 5549 [-0.02% 14.1 148 |-47%
Fractal 170.7 172.6 | -1.1% 2.8 2.8 0.0%
Series 1856.7 1885.7 | -1.5% 29.9 30.8 |-2.9%

Figure 9. Accuracy of Scheduling Simulator

Figure 9 presents the results. The simulation’s predictions are
close to the real execution time. For MonteCarlo, the estimation for
the 62-core Bamboo version is 7.7% less than the real execution
time. A closer examination of the profiling data shows that when
executing on 62 cores, the execution of individual tasks slowed
down. The 4.7% difference for FilterBank has a similar cause.

5.3 Efficiency of Directed-Simulated Annealing

We next discuss our evaluation of the directed-simulated annealing
used to efficiently optimize the many-core implementations. In this
experiment, we exhaustively generated all candidate implementa-
tions. We did the evaluation on 16 cores instead of 62 cores be-
cause an exhaustive search of all candidate implementations for 62
cores is prohibitively expensive. For each benchmark, we selected
an input and collected the corresponding profiling data. For most
benchmarks, we first generated all possible candidate implementa-
tions and used the scheduling simulator to evaluate them. We did
not perform this experiment for the Tracking benchmark as an ex-
haustive search for even 16 cores is prohibitively expensive. The
empty bars in Figure 10 present result of this experiment which
show the probability distributions for the candidate implementa-
tions. The x-axis is the estimated execution time of the candidate
implementation. The y-axis is the relative percentage of the partic-
ular estimated execution time. Candidate implementations with the
smallest estimated execution times are the best. The graphs show
that for most benchmarks there is a very small chance of randomly
generating the fastest implementation.

We next show that directed-simulated annealing greatly in-
creases the probability of synthesizing the fastest implementation.
For each benchmark, we randomly chose 1,000 candidate imple-
mentations as starting points for the directed-simulated anneal-
ing algorithm. For each starting point, we executed the directed-
simulated annealing and recorded the execution time of the best
implementation generated by the directed-simulated annealing al-
gorithm. The solid bars in Figure 10 present the probability distri-
butions for this experiment. We found that with directed-simulated
annealing, the probability of generating the best candidate imple-
mentation from a random starting point is larger than 98% for all
benchmarks. For KMeans, the probability reaches 100%.

5.4 Generality of Synthesized Implementation

We used profiling data to generate an implementation that is op-
timized for the target many-core processor. We expect that if the
profile data exposes sufficient parallelism in the application, the
optimized implementation will work well for inputs larger than the
input for the profiled execution.

We next discuss our evaluation of how well our optimized im-
plementation generalize to other inputs. For each benchmark, we
define the original input as Inputoigina and defined a second input
Inputgouble, Which contains a workload that is twice as large. We
then collected profiling data Profilegousie for Inputgeunie and gener-
ated a new 62-core Bamboo version using the Profilegoule. We ex-

PrOﬁleoriginal , Inputgouble Profilegouble, Inputdoule
Clock Cycles Clock Cycles
Benchmark (108¢yc) Speedup (108cyc) Speedup
1-Core | 62-Core 62-Core

Tracking | 1594.0 44.8 35.6 44.7 35.7
KMeans | 5147.9 125.8 40.9 125.5 41.0
MonteCarlo| 94.1 2.6 36.2 1.8 52.3
FilterBank | 1109.6 19.9 55.8 19.9 55.8
Fractal 289.8 5.8 50.0 5.1 56.8
Series 3785.4 61.3 61.8 63.6 59.5

Figure 11. Generality of Synthesized Implementations

ecuted the new version as well as the single-core Bamboo version
and the 62-core Bamboo version generated with Profileoriginal On the
new Inputgeunie. The results are presented in Figure 11.

For most benchmarks, the speedup of both 62-core Bamboo ver-
sions are similar indicating that the synthesized binaries general-
ize to different inputs. For MonteCarlo, the 62-core version gener-
ated using Profilegoule performs much better on Inputgounie than the
62-core version generated using Profile,igina. After examining the
two versions, we were surprised to discover that our search-based
synthesis algorithm generated a heterogeneous implementation that
utilized pipelining to overlap the aggregation and simulation com-
putations. The smaller input size does not contain enough work
to benefit from the pipelining strategy, and therefore did not yield
a pipelined implementation. We examined Fractal and Series and
discovered that the differences between the speedups are due to
differences in the workloads on the cores, which occurs because
object are distributed in different orders for the two versions.

5.5 Overhead of Bamboo

To characterize the overhead of the Bamboo language and runtime,
we compared the performance of the single-core C version and
the single-core Bamboo version for each benchmark. Results are
listed in Figure 7. Bamboo optionally supports array bounds checks
for non-performance critical applications. We turned off the array
bounds check option for these benchmarks so as to be comparable
with the C versions. For Tracking, KMeans, MonteCarlo, Filter-
Bank, Fractal, and Series, we found that the overheads of Bamboo
are 0.3%, 10.6%, 5.9%, 0.1%, 6.2%, and 6.3%, respectively.

5.6 Discussion

We evaluated several aspects of the Bamboo implementation syn-
thesis tool. We found that the parallel implementations that the
Bamboo compiler generated not only achieved significant speedups
when compared to the single-core Bamboo/C implementations,
but they also generalized to other sized inputs. We found that
the scheduling simulator generated accurate and useful estimations
for the evaluation of candidate implementation strategies, and the
directed-simulated annealing algorithm greatly helps to efficiently
generate optimized implementations.

Moreover, we found that the implementation synthesis tool gen-
erated a sophisticated implementation for the Monte Carlo simula-
tion. We were surprised by the synthesized implementation as we
had not realized that the benchmark’s performance could be im-
proved by overlapping the simulation and aggregation components.

We found that the runtime overheads of Bamboo relative to C
were relatively small. We also found porting the applications to
Bamboo to be straightforward and freed us from many of the low-
level concerns of writing parallel code in C. The porting process
simply involved structuring the program as a set of tasks and writ-
ing a few short task declarations to describe the dependencies be-
tween the tasks.

100.0

IS =y 3

b S S

= = =
. .

Relative percentage (%)

)
S
=

0.0 -

60 -

40 -

Relative percentage (%)

80

60 -

40 -

Relative percentage (%)

N
~

99,3

28.5

0
e

g
~

m
N oD
oYy W

L

~
w

HE Distribution of performance of 1000
implementations generated by DSA

0.7
41
Estimated execution time (100,000,000 cyc)

(a) Tracking

ODistribution of performance of all

candidate impl ions

H Distribution of performance of 1000
implementations generated by DSA

Mooz

mn _

L

Estimated execution time (100,000,000 cyc)
(c) MonteCarlo

m
N oy
W

XS NI SES T LTSy
b\ebl\!\!\%%aQQQQQQ:Q]QQ@Q

O Distribution of performance of all

didate impl tations

H Distribution of performance of 1000
implementations generated by DSA

H lTn e o - - - _ _

S N S N b
%’%’e’«'%qne;‘

Estimated execution time (100,000,000 cyc)
(e) Fractal

ra S S
AR

Relative percentage (%) Relative percentage (%)

Relative percentage (%)

100

80

60

40

20

100

80

60

40

20

80

60

40

S S D D> DD D DD P
FEFSLSFTP TS ESHE

1983

I

e

O Distribution of performance of all
candidate implementations

E Distribution of performance of 1000
implementations generated by DSA

ﬁﬂhﬂﬁﬂ_m,ﬁ,ﬁ,_

n N N
€833 FFLE

Estimated execution time (100,000,000 cyc)
(b) KMeans

g D Kac IR S <
< $

ODistribution of performance of all

didate i tati

ions

HE Distribution of performance of 1000
implementations generated by DSA

Ino_ o ..

N GRG0
S S
Estimated execution time (100,000,000 cyc)

(d) FilterBank

»

S O Q
P $ <

ODistribution of performance of all
candidate implementations

H Distribution of performance of 1000
implementations generated by DSA

H M n - - -

)
$
Estimated execution tme (100,000,000 cyc)

(f) Series

e BV AY
RIS

oA
&
CN

Figure 10. Efficiency of Directed-Simulated Annealing Algorithm

6. Related Work

Researchers have developed parallelizing compilers, domain spe-
cific languages, explicitly parallel languages [5, 11, 12], work-
stealing based multi-threaded systems [18], nested data-parallel
languages [8], array-based programming languages [10], and other
external tools for developing efficient parallel software. We survey
related work in languages and automatic parallelization.

A key component of Bamboo is decoupling unrelated concep-
tual operations and tracking data dependencies between these oper-
ations. Dataflow computations also keep track of data dependencies
between operations so that the operations can be parallelized [24].
Bamboo borrows ideas from dataflow and integrates them within
the context of a standard imperative language to ease adoption by
developers. Bamboo relaxes key restrictions in the dataflow model
to permit flexible mutation of data structures and construction of
structurally complex data structures. Furthermore, Bamboo sup-
ports applications that non-deterministically access data.

Course-grained or macro-dataflow languages [14, 22] compose
several sequential operations together to construct larger granular-
ity code segments for dataflow execution. Relative to these lan-
guages, Bamboo provides a safe mechanism to support arbitrary
mutation of structurally complex data structures. Bamboo also stat-
ically generates distributed runtime schedulers that are optimized
for a program’s typical runtime behavior.

Tuple-space languages, such as Linda [19], decouple computa-
tions to enable parallelization. The threads of execution communi-
cate through primitives that manipulate a global tuple space. Be-
cause these threads can contain state, the compiler cannot automat-
ically create multiple instantiations to utilize additional cores.

The orchestration language Orc [13] specifies how work flows
between tasks. Note that if an operation fails, any work (and any
corresponding data) flowing through the task may be lost. Another
language, Oz, is a concurrent, functional language that organizes
computations as a set of tasks [30]. Tasks are created and destroyed
by the program. Task reducibility is monotonic — once a task is re-
ducible it is always reducible. Ada [1] also has tasks. However, Ada
tasks have state and therefore are not straightforward to parallelize.

Bamboo’s computational model is similar to actors. Actors
communicate through messages [3, 21]. The parallelism in an
actor-based program is limited by the number of actors the de-
veloper created. We note that because actors contain state, an indi-
vidual actor is not straightforward to parallelize.

Plaid extends object-oriented languages with support for typestate-

oriented programming [4]. While the formulations and goals of
Plaid differ from Bamboo, both projects leverage the power of
making high-level state constraints visible to the compiler infras-
tructure. The two approaches differ in how they handle the prob-
lem of tracking typestate in the presence of aliasing: Plaid uses
a type system to ensure reference uniqueness while Bamboo uses
dataflow-like dispatch model.

Previous languages have use the concept of object states or
views to express correctness constraints on concurrent accesses
to objects [15, 16]. Constraints associated with object states can
provide a natural expression of read-write locks. Bamboo’s use of
object states differs from this work in that Bamboo uses abstract
object states to coordinate task invocation.

Jade provides annotations that developers use to specify how to
decompose methods in a serial program into a set of tasks [28].
These annotations describe the data that a Jade task reads from or
writes to along with commutativity properties. Jade uses these spec-
ifications to parallelize applications at runtime. The approaches are
complementary — Bamboo can be used to extract less structured
parallelism while Jade can be used to extract more structured par-
allelism from the imperative code inside of Bamboo tasks.

Streaming languages [20, 25] are designed to support computa-
tions that can be structured as streams. While Bamboo shares sim-
ilar constructs with stream-based languages, Bamboo’s task dis-
patch is considerably more expressive and eliminates key weak-
nesses of stream languages. For example, in stream languages it is
difficult to express computations in which several different parts of
the computation access a shared data structure in an irregular pat-
tern. Bamboo’s task dispatch supports irregular dispatch patterns
on shared objects — the developer simply creates an instance of
the shared object type and then uses the task specifications to spec-
ify the shared object. Bamboo also adds supports for sharing struc-
turally complex data structures and mutating shared objects.

Spiral uses search to optimize DSP algorithms [27]. While both
approaches use search, Bamboo targets general computation rather
than Spiral’s more specific focus on linear DSP algorithms.

Bamboo borrows constructs from the Bristlecone language for
creating robust software systems [17]. Our previous work only sup-
ports single-threaded execution and contains language constructs
specific to automated recovery. Bamboo shares language ideas with
Bristlecone, but extends these ideas to support parallel execution.

CellSs dynamically schedules function invocation when a func-
tion’s operands are available [7]. Bamboo differs in that it supports
linked data structures, which are not supported by CellSs. Bamboo
also differs in that we use static analysis to eliminate scheduling
overheads and to parallelize the runtime scheduler. We expect that
our distributed schedulers would scale to much larger processors
than CellSs’s centralized runtime scheduler.

Many of the recent efforts on software synthesis for parallel ma-
chines have focused on fully automatic approaches to paralleliza-
tion (e.g., [6]). When this approach is effective, it is ideal because
it maximizes programmer productivity. Bamboo is largely comple-
mentary to this work. It is conceptually straightforward to leverage
parallelizing compilers to extract fine-grained parallelism by auto-
matically parallelizing individual Bamboo tasks.

7. Conclusion

We have successfully implemented several parallel applications in
Bamboo. Bamboo applications consist of a set of interacting tasks
with each task implementing one of the conceptual operations in
the application. The developer specifies how these tasks interact
using task declarations. Bamboo extracts data dependence infor-
mation from the declarations and combines this information with
profile data to automatically synthesize parallel implementations
that are optimized for a target many-core processor. Bamboo gen-
erated implementations of our benchmark applications that scaled
successfully to 62 cores. The implementations generalized to other
sized inputs. Moreover, Bamboo generated sophisticated imple-
mentation that used pipelining to overlap the computation and data
aggregation phases of the benchmark applications.

Our current implement performs optimization at compile time.
However, the basic technique is more generally applicable. It is
straightforward to modify the basic approach to support executa-
bles that periodically re-optimize themselves for the workloads
they encounter in the field or for new processor layouts. The basic
idea is to separate layout information from code in the application
executable. An executable would periodically profile itself and re-
port the results to a system library that implements our optimization
strategy. The library would then rerun the optimizations, generate a
new layout, and update the executable’s layout information.

Acknowledgments

This research was supported by the National Science Foundation
under grants CCF-0846195 and CCF-0725350. We would like to
thank the anonymous reviewers for their helpful comments.

References

[1] Ada Reference Manual. http://www.adaic.org/
standards/05rm/html/RM-TTL.html, 2005.

[2] Tilera. http://www.tilera.com/.

[3] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for
actor computation. Journal of Functional Programming, 7(1):1-72,
1997.

[4] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. State-oriented pro-
gramming. In Proceedings of Onward!, 2009.

[5] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Messen, S. Ryu,
G. L. Steele, and S. Tobin-Hochstadt. The Fortress Language Specifi-
cation. Sun Microsystems, Inc., September 2006.

[6] S.P. Amarasinghe, J.-A. M. Anderson, M. S. Lam, and A. W. Lim. An
overview of a compiler for scalable parallel machines. In Proceedings
of the 6th International Workshop on Languages and Compilers for
Parallel Computing, 1994.

[7] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: A
programming model for the Cell BE architecture. In Proceedings of
the ACM/IEEE SC 2006 Conference on Supercomputing, 2006.

[8] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Za-
gha. Implementation of a portable nested data-parallel language. Jour-
nal of Parallel and Distributed Computing, 21(1):4-14, Apr. 1994.

[9] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Proceed-
ings of the IEEE International Symposium on Workload Characteriza-
tion, September 2008.

[10] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and
W. D. Weathersby. The case for high level parallel programming in
ZPL. IEEE Computational Science and Engineering, pages 7686,
July—September 1998.

[11] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programma-
bility and the Chapel language. International Journal of High Perfor-
mance Computing Applications, 2007.

[12] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the
ACM SIGPLAN Conference on Object Oriented Programming, Sys-
tems, Languages, and Applications, 2005.

[13] W. R. Cook, S. Patwardhan, and J. Misra. Workflow patterns in Orc.
In Proceedings of the 2006 International Conference on Coordination
Models and Languages, 2006.

[14] K. Dai. Code parallelization for the LGDG large-grain dataflow
computation. In CONPAR 90/VAPP IV: Proceedings of the Joint
International Conference on Vector and Parallel Processing, pages
243-252, London, UK, 1990. Springer-Verlag.

[15] E. Damiani, E. Giachino, P. Giannini, N. Cameron, and
S. Drossopoulou. A state abstraction for coordination in Java-
like languages. In Electronic Proceedings of the 2006 Workshop on
Formal Techniques for Java-like Programs, 2006.

[16] B. Demsky and P. Lam. Views: Object-inspired concurrency control.
In Proceedings of the 2010 International Conference on Software
Engineering, 2010.

[17] B. Demsky and S. Sundaramurthy. Bristlecone: Language support
for robust software applications. [EEE Transactions on Software
Engineering.

[18] M. Frigo, C. Leiserson, and K. Randall. The implementation of
the Cilk-5 multithreaded language. In International Conference on
Programming Language Design and Implementation, 1998.

[19] D. Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80-112, 1985.

[20] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger,
A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and S. Amarasinghe.
A stream compiler for communication-exposed architectures. In Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October, 2002.

[21] C. Hewitt and H. G. Baker. Actors and continuous functionals. Tech-
nical report, Massachusetts Institute of Technology, 1978.

[22] C. Huang and L. V. Kale. Charisma: orchestrating migratable parallel
objects. In Proceedings of the 2007 ACM International Symposium on
High Performance Distributed Computing, pages 75-84, 2007.

[23] J. C. Jenista and B. Demsky. Disjointness analysis for Java-like
languages. Technical Report UCI-ISR-09-1, 2009.

[24] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow
programming languages. ACM Computing Surveys, 36(1), 2004.

[25] M. Kudlur and S. Mahlke. Orchestrating the execution of stream
programs on multicore platforms. In Proceedings of the Conference
on Programming Language Design and Implementation, 2008.

[26] H. J. Larson and B. O. Shubert. Probabilistic Models in Engineering
Sciences. Wiley, 1979.

[27] M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on ” Program Gen-
eration, Optimization, and Adaptation”, 93(2):232-275, 2005.

[28] M. C. Rinard. The Design, Implementation and Evaluation of Jade,
a Portable, Implicitly Parallel Programming Language. PhD thesis,
Stanford University, September 1994.

[29] L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel Java Grande
benchmark suite. In Proceedings of SC2001, 2001.

[30] G. Smolka. The Oz programming model. In Proceedings of the
European Workshop on Logics in Artificial Intelligence, page 251,
London, UK, 1996. Springer-Verlag.

[31] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. [EEE Transactions on
Software Engineering, January 1986.

[32] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-
longie, and M. B. Taylor. SD-VBS: The San Diego Vision Benchmark
Suite. In Proceedings of the IEEE International Symposium on Work-
load Characterization, October 2009.

