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Abstract
Self-stabilizing programs automatically recover from state corrup-
tion caused by software bugs and other sources to reach the correct
state. A number of applications are inherently self-stabilizing—
such programs typically overwrite all non-constant data with new
input data. We present a type system and static analyses that to-
gether check whether a program is self-stabilizing. We combine this
with a code generation strategy that ensures that a program contin-
ues executing long enough to self-stabilize. Our experience using
SJava indicates that (1) SJava annotations are easy to write once
one understands a program and (2) SJava successfully checked that
several benchmarks were self-stabilizing.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Reliability

General Terms Languages, Reliability

Keywords Self-Stabilization, Software Robustness

1. Introduction
Software bugs have long plagued software systems. Proving soft-
ware systems correct remains a difficult problem. Practitioners have
instead relied on extensive testing to verify that programs operate
correctly in the scenarios that they are likely to be used (i.e., their
comfort zones [14]). Despite extensive testing effort, it is common
for unusual inputs to trigger a bug that corrupts the program’s state.
After a bug corrupts a program’s state, the program can in general
behave arbitrarily. Self-stabilizing systems, however, are guaran-
teed to reach the correct state after a finite number of steps [6].

This paper presents a combination of a type system and static
analyses that together check that a software application is self-
stabilizing with respect to rarely-triggered software bugs and cer-
tain types of transient hardware failures. The self-stabilization
property checked by SJava is very powerful—it ensures that if a
user returns to using a software system in the ways it was tested
for, the software system will resume working correctly.

1.1 Basic Approach
SJava checks that program executions eventually transition from
incorrect states to the correct state by showing that incorrect values
eventually leave the execution and are replaced by correct values.
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The approach targets programs that have a main event loop that ac-
quires new inputs at each iteration. SJava partitions both the heap
and variable memory locations into abstract locations using loca-
tion types. Location types form a lattice. SJava checks two prop-
erties that together ensure that a program self-stabilizes. The first
property is that values only flow from higher to lower abstract lo-
cations (hence referred to as the flow-down rule). Like information
flow [12], SJava must enforce the flow constraint on both the ex-
plicit flows caused by assignments and the implicit flows caused by
branching on a value and then storing a value. SJava leverages a lin-
ear type system to prohibit aliases that could potentially subvert the
flow-down rule. The second property is that values can only remain
at a location for a bounded time.

Figure 1 presents a graphical depiction of the effect of these
two properties on an execution whose state is corrupted by a bug.
The red ×’s indicate corrupted values while the green X’s indicate
correct values. These two properties together ensure that after a
bounded time, memory locations with the highest location types
have the same value in both the correct execution and the buggy ex-
ecution. As the execution progresses, memory locations with lower
location types have their corrupted values overwritten with correct
values. Eventually, all memory locations have correct values and
the buggy execution has self-stabilized into the correct state.

1.2 Error Model
SJava checks that applications self-stabilize in response to errors
that occur inside the event loop. We make the assumption that the
application successfully reaches the entrance to the event loop. We
believe that this is a reasonable assumption; a human can often
intervene for systems that fail to start up. Furthermore, we assume
that all input reads are performed unconditionally in every iteration
of the event loop, to eliminate the possibility of framing errors.

SJava primarily targets rarely-triggered software bugs. We as-
sume that code is mostly correct with the possibility that rare input
sequences may cause the program to behave incorrectly. We model
these errors as incorrect state transitions to an incorrect state. The
SJava system guarantees that if a program in a bad state is fed a
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Figure 1. Trace of the Program State



previously tested input sequence longer than the self-stabilization
period, the program will reach the exact state as in the test.

Our basic approach is also applicable to certain types of hard-
ware errors. For example, SJava can guarantee self-stabilization for
hardware errors that create faulty inputs to an application. In gen-
eral, SJava can handle transient hardware errors if the hardware
errors (1) do not affect the termination of loops, (2) do not corrupt
event loop invariant values in variables or memory, (3) do not vio-
late type safety, and (4) do not cause the execution to jump to arbi-
trary statements. Compiler and hardware implementations can en-
sure these types of guarantees thus preserving the self-stabilization
property [7–9].

1.3 Usage Scenarios
We envision several usage scenarios focusing on embedded con-
trollers and stream decoders. We describe a few scenarios in more
detail below:
• Multimedia Streaming: Unexpected values can easily cause

video and audio decoders to crash or misbehave and prevent
playing the remainder of a multimedia stream. Self-stabilizing
decoders might fail to decode short periods of a stream due to
software bugs, but these failures will only be transient and the
remainder of the stream will be correctly decoded.

• Embedded Controllers: Many embedded controllers are in-
tended to operate for long periods without human intervention.
Software bugs can cause these controllers to enter states where
they fail to perform as intended. In some cases, it may take sig-
nificant time for humans to recognize that the controller is mis-
behaving and reset the software systems. Self-stabilizing con-
trollers are guaranteed to return to correct operation.

• Safety Critical Code: A concern with safety critical systems is
that possibly undetected bugs might transition a software system
to a corrupted state that prevents further operation. While self-
stabilizing systems do not guarantee the absence of bugs, they
bound the time frame that even undetected errors can affect the
correct operation of a system. Self-stabilization is not intended to
replace the rigorous validation processes that are currently used
to ensure correctness, but rather to complement these processes
to limit the consequences of bugs that inevitably slip through.

1.4 Contributions
This paper makes the following contributions:
• Basic Approach: It presents a basic approach for checking

whether programs are self-stabilizing.
• Types for Self-Stabilization: It presents a type system that en-

sures that values eventually flow out of a program to return the
program to the correct state.

• Implementation: It presents an implementation of an SJava
compiler including the type system and static analyses.

• Experience: It presents our experiences using SJava to check
that several applications are self-stabilizing.
The remainder of the paper is organized as follows. Section 2

presents an example. Section 3 presents the location type abstrac-
tion. Section 4 presents the type checking rules. Section 5 presents
the static analysis that checks that corrupted values are eventually
evicted. Section 6 presents our approach for ensuring that event
loop iterations terminate. Section 7 presents our approach to code
generation. Section 8 overviews the basic correctness argument.
Section 9 evaluates our approach on several benchmark applica-
tions. Section 10 presents related work; we conclude in Section 11.

1 @LATTICE("DIR<TMP,TMP<BIN")
2 public class WDSensor{
3 @LOC("BIN") private WindRec windRec = new WindRec();
4 @LOC("DIR") private int dir;
5

6 @LATTICE("STR<WDOBJ,WDOBJ<IN")
7 @THISLOC("WDOBJ")
8 public void windDirection(){
9 SJAVA:

10 while(true){ // main event loop
11 @LOC("IN") int inDir = Device.readSensor();
12 // move old wind directions one step down
13 windRec.dir2 = windRec.dir1;
14 windRec.dir1 = windRec.dir0;
15 // add a new wind direction
16 windRec.dir0 = inDir;
17 @LOC("STR") String strDir = calculate();
18 broadcastChange(strDir);
19 }
20 }
21

22 @LATTICE("OUT<CAOBJ")
23 @THISLOC("CAOBJ")
24 @RETURNLOC("OUT")
25 public String calculate(){
26 @LOC("CAOBJ,TMP") int majorDir;
27 @LOC("OUT") String strDir;
28 // calculate the majority
29 ...
30 this.dir = majorDir;
31 strDir = convertToString(majorDir);
32 return strDir;
33 }
34 }
35

36 @LATTICE("DIR2<DIR1,DIR1<DIR0")
37 class WindRec{
38 @LOC("DIR0") public int dir0;
39 @LOC("DIR1") public int dir1;
40 @LOC("DIR2") public int dir2;
41 }

Figure 2. Wind Direction Sensor Example

2. Example
We present a Java weather station example to illustrate SJava. The
weather station processes sensor inputs and broadcasts them. Fig-
ure 2 presents the main event loop for the weather station. The loop
reads sensor data from a device in Line 11, adds it to the WindRec
object that stores the most recent three directions in Line 16, and
determines the wind direction by calling the calculate()method.
To compensate for sensor errors, the calculate() method exam-
ines the previous three directions and computes the median to dis-
card invalid direction values.

2.1 Self-Stabilization
Software bugs or hardware failures can corrupt an application’s
state, causing problems during its subsequent execution. In our ex-
ample, there are many possible ways of arriving at an incorrect
state. In one possible scenario, the device returns an erroneous
value, which is not one of the 16 possible directions. This value
is stored in and corrupts the windRec data structure. Next, the
convertToString() method throws an uncaught null pointer ex-
ception due to the corrupted value in windRec. Finally, the program
fails to show the current wind direction.

Once a bug occurs, the system potentially has undefined and
possibly undesirable behavior because the program’s state may
contain corrupted values. Our observation is that the system will
resume normal behavior if the execution eventually arrives at the
correct state. In the example, after any erroneous value enters the
windRec data structure the program would return to the correct
execution after at most three iterations of the main loop. SJava only



computes whether a program self-stabilizes and not when it self-
stabilizes. However, it is possible to compute bounds by analyzing
the lattice.

SJava analyzes programs that employ the main event loop pat-
tern: an outer loop retrieves a new input, processes it, and produces
the output. The goal is to check that all effects of a value disappear
after a finite number of main event loop iterations.

To show that the program cannot remain indefinitely in incorrect
states, we first establish an ordering relation on the memory loca-
tions in the program. The ordering relation forms a location hierar-
chy that constrains how values flow through the program. Precisely,
it ensures that values flow in one direction: from higher locations
to lower locations. Therefore, assignments are only allowed if the
location of the left-hand side of an assignment is lower than the
location of the value to be stored.

However, forbidding assignments that violate ordering con-
straints is not sufficient to obtain the desired property because it
does not force values in the program’s memory to be evicted within
a finite number of steps. Therefore, the SJava compiler ensures that
non-loop invariant values that are live are evicted within one loop
iteration. Our analysis is designed to check eviction of memory lo-
cations within one loop iteration as checking longer eviction times
is unlikely to provide significant benefits but requires more sophis-
ticated techniques that can reason about predicates.

Even if a program does not store any values indefinitely, it may
crash before it reaches a legal state. Given the guarantee that the
system will return to the correct state, the developer may choose to
have the program log and then ignore uncaught exceptions. SJava
optionally supports ignoring uncaught exceptions to ensure that the
program will execute long enough to self-stabilize.

2.2 SJava Annotations
Line 1 of Figure 2 defines the location hierarchy for the fields in the
WDSensor class. The ordering relation, as defined by the < operator,
allows values to flow from the location type that appears after the
operator to the location type that appears before the operator. The
example location hierarchy constrains values to only flow down
from locations with the BIN location type to locations with the TMP
location type to locations with the DIR location type (flows directly
from the BIN location to the DIR location that skip the TMP location
are allowed). We use the annotation @LOC to declare that the field
windRec has the location type BIN in Line 3.

Line 22 defines the location hierarchy for the calculate()
method. Local variables have composite locations, where a com-
posite location consists of a location in the method’s hierarchy fol-
lowed by any number of locations from field hierarchies. The or-
dering of composite locations is given by comparing the elements
of the two composite locations in lexical order. Line 26 declares
the composite location type LOC〈CAOBJ, TMP〉 for the majorDir
variable. This location is lower than 〈CAOBJ, BIN〉 and higher than
〈CAOBJ, DIR〉 since the field hierarchy has the ordering relations
DIR @ TMP and TMP @ BIN. Developers must assign a location in
the hierarchy to the this variable using the annotation @THISLOC.
Line 23 assigns the CAOBJ location to the this variable.

The special label SJAVA in Line 9 specifies that the while loop
in the next line is the main event loop. We next discuss how the
compiler checks that the program statements evaluated through the
iteration of the main event loop do not violate the flow constraints.

2.3 Checking Self-Stabilization
The SJava compiler checks the parts of the program that are callable
from the main event loop. First, it checks that every field, variable,
and parameter accessed in the main event loop has been annotated
with a location type. Next, it checks that all assignments respect the
ordering relation. Specifically, an assignment is only allowed if the

left-hand side’s location is lower than the value being assigned. For
example, the assignment to this.str in line 30 is valid because
the location type 〈CAOBJ, TMP〉 of the source value is higher than
the location type 〈CAOBJ, DIR〉 of the destination.

For every call site, the compiler must check that value flows cre-
ated by the callee do not violate the caller’s ordering constraints.
Location lattices in SJava are not global—each method instance
has its own locally-scoped location lattice. SJava’s method local
location lattices allow a single method to be used in several differ-
ent contexts in which the arguments do not have the same location
types. It also makes our type system composable—the SJava loca-
tion type system captures the behavior of a method and not how the
method happens to be used in the overall system. SJava must ensure
that the location lattice of the callee enforces the flow constraints
of the caller’s argument. Alternatively, this check can be viewed
as verifying that the caller and callee lattices can be merged into a
single combined lattice. Specifically, the compiler (1) checks that
the ordering constraints of the arguments in the caller satisfy the
ordering constraints required by the location types of the callee’s
parameters and (2) computes the highest caller location for the re-
turn value that is consistent with the callee’s ordering constraints.
For example, the compiler processes the location annotations for
the calculate method to determine that its return value is lower
than its receiver object, and then checks that this is consistent with
the caller’s lattice (i.e., that the variable strDir has a lower loca-
tion than the this variable).

The SJava compiler also checks that all memory locations ac-
cessed by the event loop are either loop invariant or were overwrit-
ten in either the current or previous loop iteration. In the example,
all variables and fields are obviously overwritten by each iteration
of the event loop. A termination analysis (Section 6) ensures that
each iteration of the event loop terminates by prohibiting recursive
calls 1 and checking that inner loops terminate.

3. Location Type System
In SJava, every memory location has a location type in addition to
its Java type. A location type constrains which types can be stored
in the corresponding memory location. The compiler checks that
every assignment moves values from memory locations with higher
location types to memory locations with lower location types.

3.1 Location Types
A program execution may create a statically unbounded number of
concrete memory locations. We therefore map the concrete mem-
ory locations to a finite set of location types. Location types are as-
signed by the developer to field declarations, variable declarations,
and parameter declarations.

3.2 Location Type Lattice
The location hierarchy is defined by the lattice 〈LSET ,v〉, where
LSET is the set of location types and the binary relation v establishes
an ordering between location types. It is useful to note that we use
both the reflexive partial ordering (v) and the corresponding strict
partial ordering (@). We make use of the reflexive partial ordering
to support the standard lattice machinery while our type checking
rules rely on the strict partial ordering.

For example, low @ highmeans that the location high is higher
than low, specifying that values can legally flow from memory
locations with the location type high to memory locations with the
location type low. The location lattice includes the top and bottom
locations. The top location > is the highest location, whose values

1 Note that the type system and other static analyses currently handle recur-
sive calls. The restriction against recursive calls is only due to limitations in
our termination analysis.



Annotation Role Applied to
@LATTICE Defines a location hierarchy Classes and Methods
@METHODDEFAULT Defines the class-wide default method hierarchy Classes
@LOC Assigns a location to a declaration Fields, Variables, and Parameters
@THISLOC Selects a location for the ‘this’ reference Methods
@PCLOC Selects a location for the program counter Methods
@GLOBALLOC Selects a location for static references Methods
@RETURNLOC Selects a location for a return value Methods
@DELEGATE Transfers ownership Method Parameters
@TRUST Indicates that a method was manually inspected Methods

Figure 3. Annotations

can flow anywhere. The bottom location ⊥ is the lowest location,
any value can flow to such locations. The location lattice has the
meet operator u, which computes the greatest lower bound (GLB)
of any two location types in the lattice. Our GLB operation is the
standard lexicographic GLB.

3.3 Method and Field Location Lattices
SJava has a separate location hierarchy for each class and method.
Each class has a field hierarchy lattice that defines an ordering be-
tween fields of the same object instance. Each method has a method
hierarchy lattice that is used to establish an ordering between the
different variables in the method. Both the field and method hier-
archies are defined as lattices. The next section discusses how the
elements of method and field hierarchies are combined into a com-
posite location that orders all memory locations in a program.

3.4 Composite Location Types
A composite location type is a sequence of location elements—
the first element of the composite location is a method location
from the current method’s method hierarchy lattice, followed by
a sequence of zero or more field locations. Consider the field ac-
cess expression foo.bar.z. It has the composite location type
〈FOO, Foo.BAR, Bar.Z〉, where the local variable foo has the loca-
tion type FOO, the field bar has the location type BAR in the field
hierarchy of class Foo, and z has the location type Z in the field
hierarchy of class Bar.

For every field access, the compiler computes the composite
location that describes the position in the ordering of the field by
combining the composite location type of the reference variable
with the field location element. Developers have the option to
declare any level of the composite location for local variables. This
enables a developer to set the local variable’s ordering relative to
specific fields so that a local variable with a composite location can
take a value from one field, and then store it back to another field
in the same object.

3.4.1 Comparison
The comparison of two composite locations is based on lexico-
graphical ordering of the location elements. The comparison begins
with the first elements of the two composite locations. If the first
elements are not identical, then the lattice for the first location de-
termines the ordering relation of two locations. If the first elements
are identical, the comparison continues onward to later elements in
the composite location types.

The composite location with n location elements has a set of
partial orders {v1,v2, ...,vn}. The partial ordering relation of the
composite location is defined as follows:

〈a1, a2, ..., an〉 vC 〈b1, b2, ..., bn〉 ⇔

∃ j ∈ {1, ..., n}.(a j @ j b j ∨ ( j = n ∧ a j = b j)) ∧ ∀i < j.ai = bi

Location elements at position i come from a lattice that defines a
partial ordering relation vi. If two field elements are from different
classes, then the composite location types are incomparable.

Lexicographical ordering addresses the following issue with
implicit information flows through heap paths. Consider a heap
path to a primitive field (e.g., x.f, where f is a primitive field)—if
a value is high enough to flow to a reference along the path to the
object with field (e.g., the variable x), with lexicographical ordering
it is also high enough to legally flow to the field (e.g., f). The
ordering therefore simplifies the typing rules because such flows
cannot violate the ordering relation.

3.5 Inheritance
As a subclass inherits fields and methods from its parent class, it
must preserve the ordering hierarchy from the parent class. The
compiler checks that every location defined in the parent is included
in the subclass’s field hierarchy. The subclass can of course de-
clare new locations in its hierarchy. The compiler checks that the
value flows allowed by the subclass are the same in the parent to
prevent the ordering constraints from being subverted by an over-
ridden method or a cast. Checking the hierarchy of an overridden
method is exactly the same as the field hierarchy check with the ad-
ditional constraint that the parameters must have the same declared
locations.

3.6 Location Type Annotations
SJava’s location type annotations are written using standard Java
annotations. Figure 3 summarizes the basic types of SJava annota-
tions. The annotation @LATTICE defines a location hierarchy and
can be applied to both class and method declarations. Figure 4
presents the grammar for lattice declarations and location declara-
tions. The value in the @LATTICE annotation consists of a series of
binary relation entries that define the ordering relation. The binary
relation uses the inequality notation <, x< ymeans that a value can
flow from y to x.

latticeDecl := @LATTICE ( orderDecls,sharedLocDecls )

orderDecls := orderDecls, orderDecl | orderDecl

orderDecl := location < location

sharedLocDecls := sharedLocDecls, location* | location*

compositeLoc := @LOC ( locationList )

deltaLoc := @DELTA ( locationList | deltaLoc )

locationList := locationList, locElement | locElement

locElement := location | ClassName.location

Figure 4. Location Declaration and Annotation Grammar



Every method must have a method hierarchy, but declaring a
lattice for every method can be labor intensive. Therefore, the SJava
provides a default lattice for the method. The @METHODDEFAULT
annotation on the class declaration defines a class-wide method
lattice. If a method is not annotated with a method hierarchy using
the @LATTICE annotation, the method uses the default lattice for
the class. When many methods’ behaviors are similar, the default
lattice can significantly reduce the annotation burden.

The developer specifies the location types of variable, field,
and parameter declarations using the annotation @LOC followed
by a parenthesized composite location. The @THISLOC annotation
designates a location in the method hierarchy for the this variable.
This allows the compiler to derive the proper composite location
for a value accessed through the this variable and compute its
ordering relations relative to other local variables.

Assigning a location to the static field references is done in a
similar manner to the this variable. The @GLOBALLOC annotation
specifies the location of static fields in the method lattice. The
type checker ensures that method lattices consistently order globals
relative to arguments using the checks that we use to preserve
ordering between arguments. At this point, SJava does not support
defining an ordering relation between static fields from different
classes. Instead, we envision that static fields will be primarily used
to store constants, and therefore can be assigned to a very high
location. However, static fields could be supported by partitioning
them into groups, using annotations to describe the locations of
groups, and checking that different methods use these locations
consistently.

The program counter location tracks implicit flows. If a method
can be safely called when the program counter location is lower
than one of the parameter locations, the developer can use the
@PCLOC to declare the initial location for the program counter.
Otherwise, the program counter has the top location.

As noted, developers can assign any composite location to lo-
cal variables and parameters. For example, on Line 26 from Fig-
ure 2, the annotation @LOC("CAOBJ,TMP") int majorDir in-
dicates that the variable majorDir has the composite location
type 〈CAOBJ, TMP〉. For method declarations, the annotation @LOC
specifies the location type for a parameter and the annotation
@RETURNLOC specifies the location type of the return value.

4. Flow-down Rule
SJava’s type checking is independent from the standard Java type
checking, so this section will focus only on the location type check-
ing rules. In SJava, every memory location has a location type that
captures how values can flow into and out of that memory location.

We define the following notations: The symbol L represents
a composite location type, which is a sequence of location ele-
ments. The symbol l represents a location element. The elements
of a composite location are 〈l0, l1, ..., ln−1〉. The function size(L) re-
turns the size of the sequence representation of the location type
L. The static environment Γ provides a mapping from identifiers
to location types, Γm provides a mapping for the callee m. The
callee init env function returns the initial type environment at the
beginning of the method body. The notation Γ(x) gives a mapping
from the identifier x to either the location type L or the location
element l bound to the field. One of the identifiers is the program
counter location pc that represents the current context constraint
that restricts the location type of the destination of any assignments.
The purpose of the program counter location is to track implicit
value flows.

4.1 Location Type Checking Rules
Figure 5 presents the type checking rules. There are two kinds
of type judgment rules. The judgment Γ ` e : L states that the

(LITERAL)
true

Γ ` literal : >
(OP)

Γ ` e0 : L0 Γ ` e1 : L1 L = L0 u L1

Γ ` e0�e1 : L

(ASSIGN)
Γ(x) = L Γ ` e : Le Γ ` L @ Le Γ ` L @ Γ(pc)

Γ ` x = e : L

(VAR)
Γ(x) = L
Γ ` x : L

(FD R)
Γ ` e : Le Γ( f ) = l f L = Le ⊕ l f

Γ ` e. f : L

(FD W)

Γ ` e0 : L0 Γ( f ) = l f Γ ` e1 : L1
L = L0 ⊕ l f Γ ` L @ L1 Γ ` L @ Γ(pc)

Γ ` e0. f = e1 : L

(IF)
Γ ` c : Lc Γ[pc = Γ(pc) u Lc] ` ei∈{1,2}

Γ ` if(c) e1 else e2

(WHILE)
Γ ` c : Lc Γ[pc = Γ(pc) u Lc] ` e

Γ ` while(c) e

(ARRAY VAR)
Γ ` a : La Γ ` i : Li L = La u Li

Γ ` a[i] : L

(ARRAY ASG)

Γ ` a : La Γ ` i : Li Γ ` e : Le
Γ ` La @ Li Γ ` La @ Le Γ ` La @ Γ(pc)

Γ ` a[i] = e : La

(CALL SITE)

Γm = callee init env(@RETURNLOC(Vrv) @THISLOC(Vt) @PCLOC(Vpc)
m(@LOC(Vp1)p1, ...,@LOC(Vpn)pn))

Γm ` p0 : Lm
0 ... Γm ` pn : Lm

n Γ ` a0 : L0 ... Γ ` an : Ln

∀i, j ∈ {0, ..., n} Γm ` Lm
i @ Lm

j ⇒ Γ ` Li @ L j

Xi = (if (sub(Lm
i , 0, 1) = Lm

0 ) then L0 ⊕ sub(Lm
i , 1, size(Lm

i ) else ⊥ )
∀i ∈ {1, ..., n} Γ ` (Xi @ Li ∨ Xi = Li)

Ir = {i | ∀i ∈ {0, ..., n}, Γm ` (Lm
rv @ Lm

i ∨ Lm
rv = Lm

i )} Lr =
�

i∈Ir
Li

∀i ∈ {0, ..., n} Lm
i @ Γm(pc) ⇒ Li @ Γ(pc)

call is virtual w/ multiple targets ⇒ Γm(pc) @ Lm
0

Γ ` a0.m(a1, ..., an) : Lr

〈l0, l1, ..., ln〉 ⊕ lm = 〈l0, l1, ..., ln, lm〉

sub(〈l0, l1, ..., ln〉, i, j) = 〈li, ..., l j−1〉

Figure 5. Location Type Checking Rules

expression e has the location type L in the Γ environment. The
judgment Γ ` e states that the expression e is well-typed with
respect to the environment Γ. The notation Γ[pc = v] represents
the same environment except that the program counter pc is bound
to new value v. We next describe the basic checking rules:

Literal: Every literal value has the highest location type TOP in
the location hierarchy, denoted by >. Therefore, all constant values
in a program can flow to any memory location.

Operation: The operation rule derives the location type of an
arithmetic expression of the form e0�e1. The derived location type
is the greatest lower bound of the location types of two operands.

Variable Assignment: A variable assignment causes a value
flow from its right-hand side to its left-hand side. The ASSIGN rule
checks that the destination’s location type is lower than the source’s
location type. The last premise tracks implicit flows by checking
the context constraints due to control flow.

Field Read: For a field read expression e.f, a new composite
location is derived by appending the location type of the field f to
the location type of the base expression e. The binary operation ⊕
adds a new location element to the end of the composite location.

Field Assignments: The field assignment rule is similar that for
variable assignments except that the composite location type of the
left-hand side is derived from the field access expression.

4.2 Arrays
The naı̈ve approach to handling arrays is to assign all the elements
of an array to the same location type. This approach prohibits value
flows between elements of the same array and is therefore too
restrictive for most real-world applications.



SJava supports two different approaches to arrays. In the first
approach, the array have a special shared location type that allows
value flows between array elements provided that the entire array
is cleared out (or lowered) at the same time at some point in each
iteration of the event loop. Section 4.7 presents more details on
shared locations.

Alternatively, SJava can assign unique locations to each array
element. In this case, the array elements are ordered in sequence
with the first element having the lowest location and the last having
the highest. The SJava library then provides an insertmethod that
shifts all the elements down by one index and assigns a new value to
the last position. The type system assumes that this method moves
all values in the array one step down. The eviction analysis ensures
that the insert method is called at least once in each loop iteration.

To ensure that a value flow between an index value and an array
does not violate ordering constraints, SJava has two separate rules
for array expressions. The ARRAY VAR rule checks that an array
access expression has a location type that is the greatest lower
bound of both the location type of the array and the location type of
the index. The array assignment rule ARRAY ASG has to consider the
relative ordering of an array and the index value used for that array.
The location type of the array should be lower than the location type
of the index since the value of the array index affects how values
flow into the array. The rule also checks that the location type of an
array variable is lower than the value expression being assigned.

4.3 Implicit Flow
Conditional branches may cause implicit value flows that could vi-
olate the ordering constraints. The example code below introduces
an implicit flow. The value of the variable a in the if condition
statement affects the value assigned to the variable b. As a result, if
the location type of the variable b is higher than the location type
of the variable a, it is a violation of the ordering constraint since
there exists a value flow between them.

if (a>0) b=1; else b=0;

To prevent implicit flows that violate ordering constraints, the
IF and WHILE rules update the program counter location with the
location type of the if condition or while condition, respectively.
This ensures that any conditional assignments in the body of the if
statement or loop prohibit implicit flows that are not permitted.

For the example, after evaluating an if statement, the pc is
set to the location type of the condition expression 〈A〉, then the
compiler checks that the left-hand side of the assignment b has a
location type lower than pc’s location type.

The compiler also ensures that a method call in a conditional
branch respects implicit flows. The callee’s program counter loca-
tion reflects the location type of the call site’s context constraint.

4.4 Method Invocation
Location type annotations in method declarations impose restric-
tions that both the caller and the callee must respect. When argu-
ments are passed to the parameters of the call site, the caller must
respect the callee’s restrictions on the relative orderings of the ar-
guments and the return value. The callee must in turn respect the
constraints its declared interface places on its internal value flows.
The two sets of restrictions together guarantee that method invoca-
tion respects the ordering constraints of the caller and the callee.
Alternatively, the call site checks can be viewed as checking that
the collection of method lattices can be transformed into one global
method lattice that is consistent with the program’s value flows.

4.4.1 Call Site Checking
The parameter’s location type describes how the location type of
an argument in the caller is transferred into the method hierarchy

VA

ENVC

DATA

OUT

ENV

IN

RESULT

DAOBJ

@LATTICE(”DAOBJ<IN,ENV<IN,RESULT<DAOBJ”)

@THISLOC(”DAOBJ”)

@RETURNLOC(”RESULT”)

public int compute(LOC(”IN”) Input in,

                                   LOC(”ENV”) Env env){

  @LOC(”RESULT”) int result;

  this.checksum=checksum(in1);
 

  return result;

}

@LOC(”DATA”)      

@LOC(”VA”)         

@LOC(”ENVC”)      

@LOC(”OUT”)       

out = d.compute(value,env);

Data d=new Data();

Input value;

Env env;

int out;

Callee Caller

    Callee expects:

ENV   IN, DAOBJ   IN

Caller guarantees:

ENVC   VA,  DATA   VA

Return Loca on:

   VA    DATA = DATA

...

...

Figure 6. Method Invocation

of the callee. From the perspective of the callee, relative orderings
between parameters establish ordering constraints on the location
type of a value passed in, which the caller must respect when it
assigns values to arguments.

Type checking the call site ensures that the caller provides ar-
guments that respect the callee’s ordering constraints, which re-
quires the type checker to check the mapping of location types
from the caller’s arguments to the callee’s parameters. For each
call site ms(a0, a1, ..., an) to the corresponding method declaration
m(p0, p1, .., pn), the rule CALL SITE checks that for any two pa-
rameters pi and p j if the callee has the ordering relation pi @ p j
between parameters, then the caller has to have the correspond-
ing ordering relation ai @ a j between its arguments. If the callee
does not have any ordering relation between two parameters, the
caller does not need to respect any ordering constraints on the cor-
responding two arguments because it implies that the callee will
not have a value flow between two parameters. Figure 6 illustrates
how the compiler checks constraints of the caller and the callee.
The callee has two ordering relations among parameters, ENV @ IN
and DAOBJ @ IN in its hierarchy, and therefore the callee imposes
two ordering constraints on the caller’s arguments. The caller must
guarantee that the corresponding arguments have same relation in
its hierarchy, in this case ENVC @ VA and DATA @ VA.

If the first element of a parameter location type matches the
location type of the current object this and a field element is in the
next position, the callee establishes ordering constraints relative to
the field lattice of the current object. This provides more specific
constraints on the ordering relations of fields in the current object;
the caller needs to satisfy constraints on not only the ordering
relations between arguments, but also the ordering relations of
fields given by the field hierarchy of the object referenced type
of this. For example, suppose that the parameter has the location
type 〈IOBJ, F〉 and the receiver object has the location type IOBJ.
The corresponding argument in the caller is required to be higher
than or equal to 〈O, F〉 if the object whose method is being invoked
has the location type 〈O〉 in the caller.

4.4.2 Return Value Location
The call site rule uses the location types of the parameters and the
return value to conservatively compute the set of flows that the
callee may produce. The rule then computes a caller location type
that allows all of these flows in the callee context. This check can be
viewed as checking that it is possible to combine the callee and the
caller lattices in a way that allows all existing information flows.

The CALL SITE rule in Figure 5 computes the caller’s return
value location as follows. First, it computes the set of parameter lo-
cation types that are higher than or equal to the declared return lo-



cation type. Parameters that are not higher than the return location
type are irrelevant because the ordering constraints prevent value
flows from these parameters. In Figure 6, the computemethod pro-
vides a set of parameter location types {IN, DAOBJ} for calculating
the return value location. Next, the rule creates a set of argument
location types in the caller that correspond to this set of parameters
and then computes the greatest lower bound of the location types of
these arguments. The caller in Figure 6 computes the greatest lower
bound of VA and DATA since the callee locations IN and DAOBJ cor-
respond to the locations VA and DATA, respectively, in the caller’s
hierarchy. In this case, the location type of the return value is DATA,
which means that the caller must not return a value that is lower
than the location type DATA. If the return value of the method is the
right-hand side of an assignment, the rule ASSIGN then checks that
the return value location is higher than the left-hand side. The last
assignment in the right column of the Figure 6 satisfies the ordering
constraints with the location type of the return value DATA.

4.5 Objects
Non-static fields are always accessed through an instance reference
variable. The location types of instance reference variables pro-
vide a way to compute the relative ordering between other local
instances. In the case of copying field values from one instance to
another instance, the static checking checks that the location of the
source instance is higher than the destination. The current imple-
mentation of SJava prohibits recursive data structures. Future work
could relax this constraint. One approach is to require programs to
delete all references to a recursive data structures within some loop
iteration bound.

4.5.1 Aliasing
Aliasing refers to the situation in which multiple references point
to the same object. In SJava, if two aliased references to the same
object were allowed to have different location types, this would
open the possibility of values flowing from the lower locations
to higher locations through the aliased references in violation of
the flow-down rule. For example, suppose that a program creates
two references with different location types to the same object. The
static checking as described would allow the program to use the
higher reference to access a value from a field that was written to
using the lower reference. One approach to ensuring that aliasing is
safe is to ensure that all aliases to an object have the same location
type.

SJava uses linear types to restrict aliasing. SJava’s linear type
system prohibits multiple heap aliases from referencing the same
object. This implies that the heap that can be updated by the event
loop in SJava must be a forest of objects (multiple disjoint trees).
SJava allows limited aliasing from local variables and parameters—
variable aliases are allowed as long as all aliases have the same
location type. A side effect is that if an alias exists to any object in
a tree, the location type of all objects in that tree cannot be changed.

4.5.2 Ownership Transfer
In some cases, a method may need to lower the location type of an
object passed in as a parameter. SJava supports ownership transfer
to allow a caller method to transfer ownership of a non-aliased
reference to a callee method.

The method acquires ownership of a non-aliased reference
through parameters with the @DELEGATE annotation. Exclusive
ownership allows the method to lower the location type of a refer-
ence, to transfer its ownership to other methods, to create heap ref-
erences to the object, and to remove subtrees from the heap reach-
able from the object. Ownership transfer guarantees that a given
reference must be owned by only one method and no aliases to
the object exist in other scopes. In this respect, the caller has the

responsibility to pass a unique reference argument to the callee.
Static checking of the caller checks that all references to the object
are dead after the call site. Methods can only returned owned ref-
erences. Returning aliased references could be supported with an
annotation that declares that the return value is aliased and gives
the parameter from which the alias was obtained.

The ownership status of a variable can be either (1) a parent
method owns the tree (i.e. the object is aliased), (2) in the case of
temporary variable used to traverse a locally own tree, the local
variable that contains the owned reference to the tree’s root, or
(3) the current local variable owns the reference. We only allow
changing the level of a reference if (1) the reference owns the tree
and (2) no other local variables refer to objects in the same tree. We
allow transferring ownership of a component object of a tree only if
(1) the current method owns the tree and (2) the temporary variable
used to remove the reference is the only reference other than the
owning reference.

4.6 Delta Locations
Code often uses temporary variables to access data structures. In-
cluding location types for all of these temporary variables would
greatly complicate both the method and field hierarchies. Instead,
SJava provides a special function delta that takes a composite lo-
cation and generates a new composite location, called a delta loca-
tion, which is lower than the input composite location and higher
than everything that is lower than the input composite location. The
delta function is applied to a whole composite location. The delta
function can be applied to the output of itself to generate a descend-
ing series of composite locations.

Consider a code segment that copies a value from an object field
to a local variable, computes a value using the local variable, and
then stores the value to a different, lower field of the same object.
This value flow involves a variable, so it requires the variable to
have a location between the two fields in the field hierarchy. With
the delta function applied to the composite location of the source
field, it is straightforward to generate a composite location for the
local variable that is lower than the source field and higher than the
destination field. In the example from Section 2, the composite lo-
cation 〈CAOBJ, TMP〉 can be replaced with delta(〈CAOBJ, BIN〉) in
Line 26. It generates a new location that is lower than 〈CAOBJ, BIN〉
and higher than all locations below 〈CAOBJ, BIN〉.

For correctness purposes, delta functions are syntactic sugar that
introduces new elements into the hierarchy of the last component
of the composite location and updates the lattice appropriately.

4.7 Shared Locations
The flow-down rule ensures that every assignment lowers the lo-
cation type of the value being assigned. This constraint prohibits
common computations that read from a set of memory locations,
perform computation, and store the results into the same set of
memory locations. This constraint also prohibits simple for loops,
e.g., for(int i=0;i<10;i++) ;, as the increment operation vi-
olates the standard flow-down rule.

SJava provides shared location types for primitive types to al-
low developers to specify a set of memory locations with the same
composite location that values can flow freely between. The devel-
oper can assign the same shared location to multiple locations, and
then freely flow values between those locations. Shared location are
explicitly listed in the lattice annotation with a *.

SJava must ensure that a program actually clears out all mem-
ory locations with the same shared location type and does not
merely shuffle corrupted values between memory locations. A
shared memory location is cleared when a value from a higher loca-
tion is written and remains cleared until the program overwrites that
memory location with a value with the same shared location type.



SJava checks that all memory locations with the same shared loca-
tion type are simultaneously in the cleared state at least once per an
event loop iteration (or before every use). Therefore, the program
cannot use a shared location to store values indefinitely (and cir-
cumvent self-stabilization) even though a shared location may keep
values through assignments. In the next section, we describe how
SJava uses static analysis to check this constraint. Among other
uses, shared locations are useful for allowing index variables in
for loops.

5. Eviction of Values
Although the flow-down rule ensures that all value flows respect the
ordering constraints, it does not ensure that values leave a memory
location in a bounded time period. For example, suppose that a vari-
able is written by one event loop iteration, and all future iterations
of the event loop read that value. In this scenario, a corrupted value
can remain indefinitely and the execution may never self-stabilize.
This section presents a static analysis that ensures that a memory
location does not store values indefinitely.

5.1 Definitely-Written Analysis
The definitely-written analysis ensures that reads inside the event
loop either read (1) a value written outside of the event loop or (2)
a value written by the current or the immediately preceding event
loop iteration. This ensures that corrupted values cannot remain live
in the same memory location indefinitely.

The analysis checks that for each memory location M that the
event loop either (1) overwrites M or (2) overwrites a reference
that lies on the heap path to M (thus lowering M or making it
unreachable). The analysis operates in two stages. In the first stage,
it computes read and write sets. In the second stage, it checks that
the event loop body respects the definitely-written constraints.

5.1.1 Computing Read and Write Sets
The analysis generates the read set Rm, the may-write set OWm, and
the must-write set WT m for the main event loop and each method
m that is callable from the main event loop. Elements of these sets
are represented by heap paths, which are n-tuples of references that
describe the sequence of heap accesses to reach a memory location
from one of the method’s parameters. For example, accessing the
field f of an expression x that is reachable from the parameter
p1 through a sequence of references r1, ..., rn generates the heap
path 〈p1, r1, ..., rn, f〉. The analysis computes a mapping HP that
maps a variable to the heap path that describes the sequence of
references from the parameter to the object the variable references.
The analysis can safely ignore reads and writes on local variables
as they will go out of scope when the method exits.

Our analysis uses a standard fixed-point algorithm. Figure 7
presents the transfer functions for computing read and write set.
We define the helper function HP(x)={hp | 〈x, hp〉 ∈ HP}.

Read: The set Rm contains the heap paths that must either be
never written in the loop or overwritten before the method m is
called in a different iteration of the event loop. The field read
statement x=y.f generates a new heap path for x by appending
the field f to the heap path HP(y). The read statement also adds the
corresponding heap path to Rm if it or a prefix may not have been
overwritten since the method entry.

Write: The field write statement x.f=y adds the heap path
through f to the set WT and the set OWm. Note that it is not neces-
sary to ensure that we update existing heap paths when creating a
new heap path. The reason is that the flow-down rule ensures that
reference involved in new heap paths must flow down.

Call Site: For the call site c(a0, ..., an), the callee’s read and
write effects are propagated to the caller. The analysis first com-
putes the sets OWc

bound, WT c
bound and Rc

bound for all possible callees.

st

x=y.f
HP′ = HP ∪ {〈x, p ⊕ f 〉 | p ∈ HP(y)}

Rnew = {p ⊕ f | p ∈ HP(y),∃p′ ∈ WT ⇒ ¬Pre(p ⊕ f , p′)}

Rm′ = Rm ∪ Rnew

x.f=y
WT ′ = WT ∪ {HP(x) ⊕ f }

OWm′ = OWm ∪ {HP(x) ⊕ f }

call
c(a0, ..., an) Rc

bound =
⋃

c∈calleeS et(c),i∈{0,...,n}

{HP(ai) � r | r ∈ Rc ∧ Eq(r, pi)}

OWc
bound =

⋃
c∈calleeS et(c),i∈{0,...,n}

{HP(ai) � r | r ∈ OWc ∧ Eq(r, pi)}

WT c
bound =

⋂
c∈calleeS et(c),i∈{0,...,n}

{HP(ai) � r | r ∈ WT c ∧ Eq(r, pi)}

Rnew = {p | p ∈ Rc
bound ,∃p′ ∈ WT ⇒ ¬Pre(p, p′)}

Rm′ = Rm ∪ Rnew

OWm′ = OWm ∪ OWc
bound

WT ′ = WT ∪WT c
bound

merge
WT ′ =

⋂
i∈pred(st)WTi

exit
WT m =

⋂
i∈pred(st)WTi

Figure 7. Transfer Functions for Computing Read and Write Sets

〈a0, a1, ..., an〉 ⊕ b = 〈a0, ..., an, b〉

〈a0, a1, ..., an〉 � 〈b0, b1, ..., bn〉 = 〈a0, ..., an, b1, ..., bn〉

Eq(〈a0, ..., an〉, 〈b0, ..., bn〉) = (a0 = b0)

Pre(〈a0, ..., an〉, 〈b0, ..., bk〉) = k ≤ n ∧ (〈a0, ..., ak〉 = 〈b0, ..., bk〉)

Figure 8. Auxiliary Operators and Functions

The operator � converts the effects of the callee to the caller by
replacing a parameter reference with the corresponding argument
heap path. For example, the argument has the heap path 〈d, g〉 that
is passed as the parameter x to the callee c. If the callee has the
two read tuples 〈x, y, a〉 and 〈x, y, b〉 in its set Rc, the correspond-
ing caller context read tuples 〈d, g, y, a〉 and 〈d, g, y, b〉 are added
to the set Rc

bound. The set Rc
bound and OWc

bound are the union of all
possible callees, and the set WT c

bound is the intersection of all possi-
ble callees. Then, the set Rm of the caller gains an element of Rc

bound
if that element or some prefix has not been written by the caller
m. The set OWm and WT also gain write effects from OWc

bound and
WT c

bound, respectively.
Control Flow Join: The join operation of the must-write set

WT is intersection because memory locations must be overwritten
on all possible program paths.

Method Exit: Without loss of generality, we assume the method
exit node appears after all return nodes of the method. The set WT m

is the intersection of the set WTi for all predecessors i.
Arrays: Arrays are handled in a similar fashion to fields with

special support for the array specific calls in the SJava library.

5.1.2 Checking the Main Event Loop
We next describe the operation of the definitely-written analysis
on the event loop. The definitely-written analysis must ensure that
all memory locations that the event loop reads are either (1) loop
invariant, (2) overwritten in the current loop before the read, or (3)
overwritten in every loop iteration. For reads from local variables,
we check with a straightforward dataflow analysis that either (1) all



reaching definitions are from outside the event loop, (2) the variable
must be overwritten in the current loop before the read statement,
or (3) the variable must be overwritten in every loop iteration.

For reads from the heap, we check the condition in the main
event loop at each call site and each field dereference. For each
newly read heap path p in the set Rnew for the statement st, we
check that either:

1. that the heap path p is never written in the event loop, i.e.,
p < OW,

2. that the heap path p or some prefix is overwritten in the cur-
rent event loop before executing the statement st, i.e., ∃p′ ∈
WTst, Pre(p, p′), or

3. that the heap path p or some prefix is overwritten in every
loop iteration, i.e., at every loop backedge statement st′ ∃p′ ∈
WTst′ , Pre(p, p′).

5.2 Shared Location Extension
Recall that all memory locations with the same shared location
must be overwritten with values from a higher location at the
same time. Our analysis for shared locations checks that one of
following conditions is satisfied for all memory locations with the
same shared location type at the same program point: (1) the value
in the memory location was written in the current loop iteration
from a higher memory location or (2) one of the references in the
heap path that leads to the memory location was written in the
current loop iteration.

The shared location analysis is an extension to the definitely-
written analysis. The analysis computes a mapping from a shared
location to a set of heap paths or variables that belong to the
same shared location. When a program statement writes a shared
memory location, the analysis adds the memory location to the set
only if the value being assigned to is from a higher location. If the
value has the same shared location type, the memory location is
removed from the set.

Whenever all memory locations with the same shared location
type are cleared out, the definitely-written analysis adds the shared
location type to the currently cleared shared locations types set
for the current program point. The analysis then uses this set to
compute at each statement which shared locations must be cleared
in the current loop iteration before reaching a given statement. It
then uses the shared locations must be cleared set in an analogous
fashion to the set WT .

6. Termination of Event Loop Iterations
SJava ensures that values flow out of a program after a bounded
number of iterations of the main event loop. It is of course possible
for an iteration of the main event loop to fail to terminate due to
memory corruption, a software bug, or by design. In this situation,
an application could fail to self-stabilize because it never finishes an
iteration of the main event loop and therefore the corrupted values
never leave. We must therefore assure that every loop iteration of
the main event loop terminates.

The halting problem is of course known to be undecidable. The
proposed termination analysis instead targets checking common
terminating loop patterns. In the next section, we describe how
SJava checks that the execution of inner loops terminates. SJava
addresses the possibility of looping recursive calls by prohibiting
recursive calls.

6.1 Loop Termination Analysis
We implemented a simple loop termination analysis. Our analysis
verifies loop termination if a loop both (1) has an index variable and
at each iteration the index variable is incremented by a constant

value and (2) every iteration of the loop evaluates at least one
inequality of the appropriate form for the increment statement and
that consists of the index variable and a guard value that does
not change over the iterations. The most common type of for-loop
follows this pattern.

For every nested loop in the event loop, the compiler first com-
putes the set of induction variables and then checks that every loop
iteration evaluates at least one conditional loop exit that is com-
posed of an appropriate inequality of an induction variable and an
invariant value. This check guarantees that the loop terminates be-
cause at each iteration, the induction variable proceeds toward the
termination condition by increasing its value.

6.2 Loop Termination Annotations
This simple analysis cannot always determine that a loop termi-
nates. Prohibiting the remaining loops is unlikely to be practical.
To support loops where the SJava compiler cannot statically reason
about termination, SJava provides two loop annotations: the maxi-
mum loop annotation and the unchecked annotation.

The maximum loop annotation modifies the original loop to en-
force a developer-specified loop iteration bound. When the com-
piler flags a possible infinite loop, the developer can simply anno-
tate the loop with a maximum loop annotation to force the loop to
terminate within a given iteration bound. The compiler then gener-
ates code to enforce this bound.

It can be difficult to specify a maximum iteration bound for cer-
tain types of loops. In this case, developers can manually analyze
the loop. If the developer manually checks that the loop terminates,
the developer can apply a special unchecked annotation to the loop.
Unchecked loops are indicated with a Java loop label that starts
with the string TERMINATE . The compiler then trusts that the de-
veloper has checked that the annotated loop always terminates.

7. Code Generation for Self-Stabilization
SJava checks that if an execution continues, it will self-stabilize
into the correct state. However, an uncaught exception can cause
the program to terminate before it self-stabilizes. There are two dif-
ferent approaches for handling such errors. In many cases, it may
be appropriate to simply restart the program. Even in such cases,
checking that the program is self-stabilizing ensures that silent soft-
ware bugs cannot leave the program in incorrect states indefinitely.
In other cases, the restart time may be significant. In these cases,
the developer may choose to ignore uncaught exceptions. Note that
the period of incorrect behavior caused by ignoring the error is lim-
ited because SJava ensures that the execution will self-stabilize into
the correct state. Our compiler therefore implements an option to
eliminate uncaught exceptions—we simply generate code that logs
the error and then gives the error cases defined behavior. For exam-
ple, under this option dereferencing a null pointer simply produces
another null pointer. Virtual method calls on null receiver objects
pose a related problem—self-stabilization may rely on code inside
one of the targets of the call executing. In this case, the execution
would choose one of the possible method targets to execute.

8. Correctness
We next sketch the basic correctness argument for SJava.

Lemma 1 (Top Values). If an SJava program type checks and
passes the static analyses, then memory locations with the top
location type have the correct values after one loop iteration.

Proof Sketch: After one loop iteration, memory locations with
the top location cannot be corrupted as they are either constants or
input data for the current loop iteration.



Lemma 2 (Propagation). If SJava type checks a program and all
memory locations with location types with a maximum distance of n
from the top value in the lattice have correct values at the beginning
of a non-erroneous loop iteration, then all live memory locations
with locations types with a maximum distance of n + 1 from the top
value in the lattice must have correct values at the end of the loop
iteration.

Proof Sketch: If a memory location has a location type with a
maximum distance of n + 1, then all memory locations that are
higher than it must have correct values (they have lower maximum
distances) by assumption. If a value in a memory location is live
(there is a read that could read this value before it is overwritten),
then SJava requires each loop iteration to overwrite the memory
location. The new value must be correct as all locations higher than
this memory location have correct values.

Theorem 1 (Self-Stabilization). If an SJava program type checks
and passes the static analyses, then it self-stabilizes.

Proof Sketch: The location type lattice has a finite height, there-
fore by induction on Lemmas 1 and 2 all non-constant memory
locations will eventually have the correct values.

9. Evaluation
We implemented a compiler for SJava and evaluated it by annotat-
ing three existing Java applications: JLayer, an MP3 decoder; LEA,
an eye-tracker; and Sumo Robot, a robot controller.

We conducted experiments in which we randomly injected er-
rors to measure the self-stabilizing behavior of each benchmark.
Our compiler generated error injection code that randomly selects
memory and mathematical operations, and replaces the original
value with a random value.

9.1 MP3 Decoder
JLayer is an MP3 decoder and is available at http://www.
javazoom.net/javalayer/javalayer.html. MP3 files are
composed of a sequence of frames. In JLayer, every event loop it-
eration retrieves a BitStream object that corresponds to a frame.
The BitStream object reads and returns one frame from the in-
put audio file and maintains persistent state to store the file off-
set. The BitStream object was carefully manually designed to be
self-stabilizing by resyncing to MP3 frames, and we annotated the
BitStream object as trusted to self-stabilize.

We focused our efforts on automatically checking that the more
complex decoder is self-stabilizing. The decoder is self-stabilizing
because the event loop flushes out all non loop-invariant state
within a bounded time. As long as the event loop retrieves new valid
audio frames, it will resume the normal behavior from an arbitrary
state of the non-loop invariant storage.

We modified the program to minimize interactions between
trusted components and checked components. Interactions between
trusted and checked components (i.e., more than one method call
per loop iteration or inputs to trusted components) make manu-
ally checking trusted code more difficult. For example, if a trusted
method takes parameters from the self-stabilization code, the de-
veloper must reason about the behavior of the trusted code with
potentially corrupted parameter values.

We found that the last two steps in the original code, the IMDCT
and the Synthesis Filter Bank, use the results from the previous
frame. In the original code, the results from two different loop
iterations are stored in the same array, which makes it difficult to
reason about value flows. Therefore, we use two separate arrays—
one to store the merged results and one to forward results from the
current loop iteration to the next loop iteration.

Our experiments were designed to qualitatively evaluate how
the program self-stabilizes after an error corrupts its state. We ran-
domly injected an error during the program’s execution and mea-
sured the time until the program resumes outputting the correct
values. We performed 1,000 trials of the experiment and observed
466 trials with corrupted outputs. Figure 9 shows the distribution of
the number of output samples from when the error is injected un-
til the point at which JLayer returned to outputting normal values.
JLayer returned to normal behavior in less than 500 output sam-
ples when an error was injected into the transformation to generate
PCM samples, which is the final step of the decoding process. The
large peak at 1,700 samples occurs when an error is injected into
the frequency domain transformations for one of the two granules
that comprise a frame. Because the frequency transformation com-
putations involve many operations, such error injections are likely.
The corrupted results of the computation then continue to affect the
output for approximately 1,700 samples. In general, errors that cor-
rupted an internal data structure, for instance the buffer index of
the BitStream, affected more output samples. In all cases, errors
affected fewer than 2,208 output samples.

Figure 10 shows a section of JLayer’s decoded audio signal
output from one of the trials. The normal output of JLayer is
plotted in blue. The output from the execution with error injection
is plotted in red. The red box is due to the signal for the error
execution deviating from the normal execution by oscillating at
high frequency between -32,767 and 32,767. After 1,630 samples
the program behavior returned to normal until termination.
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Benchmark Location Lattice Method
Default

Lines

MP3 Decoder 690 54 24 15,634
Eye Tracking 143 33 21 4,571
Robot Control 77 15 13 3,201

Figure 11. Number and Type of Annotations

9.2 Eye Tracking
LEA is a lightweight eye tracking algorithm library and is available
at http://sourceforge.net/projects/lea-eyetracking/.
At each iteration, LEA takes an input image from a web cam,
tracks eye movements, and returns relative movements in 8 direc-
tions (i.e., up, left, down, ...). The algorithm first detects a face in
the input image, which allows it to localize the search region for
eye detection. When an eye position is detected, LEA determines
movement by computing the deviation from the last three eye posi-
tions. LEA stores the last three eye positions in the array to provide
a better estimation. Every iteration inserts a new position at the be-
ginning of the array and shifts the previous results down by one.
All memory locations except the array of previous positions are
overwritten in each iteration. The previous positions are not used
to compute new positions while the direction result is derived from
the three previous positions. Thus, the program returns the correct
execution within three iterations of the event loop.

We annotated LEA and checked that it self-stabilizes. We mod-
ified the original code to convert multi-threaded code to single-
threaded code. No other modifications were necessary to verify
self-stabilization.

We performed 100 executions with injected errors and observed
8 executions with changed output samples. For each trial, we ran-
domly injected errors at 10 consecutive instructions and compared
eye positions and direction decisions with the correct output gener-
ated by the non-instrumented version. In our 8 trials, LEA returned
to outputting correct values in the next iteration of the main event
loop. While the SJava annotations imply a longer worst-case self-
stabilization period, in practice it is hard to trigger this behavior
through randomized error injection.

9.3 Robot Control
Sumo Robot controls robots and is available at http://java.
net/projects/sumorobots/. The goal of a Sumo Robot is to
push the opponent out of a ring while staying away from the ring
edge. A robot is equipped with two types of sensors: a sonar sensor,
which detects the opponent, and a line sensor, which detects the
ring edge. Each iteration of the event loop reads data from the
sensors, selects a movement type and speed, and then generates a
motor controller command. The StrategyMgr object implements
the analysis of the sensor input and the selection of the movement
type. Once a motor control command is sent to the hardware,
the command persists until another command is sent. We do not
attempt to automatically analyze the motor controller because it is
not stateless. We annotated the motor controller as trusted code,
and modified the original code to make sure that every iteration
overwrites the command arguments to the motor controller.

We evaluated the behavior of the Sumo Robot controller using
simulated sensor inputs. We performed 100 error-injected execu-
tions. For each execution, we recorded the movement decisions of
the strategy controller at every iteration of the event loop, and then
compared the movement decisions with the output from an error-
free execution. In the presence of the injected errors, we observed
54 trials with changed outputs and observed that the Sumo Robot
controller resumed the normal behavior in the next iteration of the
main event loop after the error occurred.

9.4 Annotation Effort
In SJava, the developer must annotate all variable, field, and method
declarations accessed by the event loop. We found the location type
errors from the compiler helpful in correctly annotating the code.

Figure 11 summarizes our annotation effort. For each bench-
mark, we list the number of location assignments using @LOC in the
Location column, the number of lattice definitions using @LATTICE
in the Lattice column, the number of default method lattice defini-
tions using @METHODDEFAULT in the Method Default column, and
lines of code including libraries. We found defining the structure
of lattices to be straightforward. The default method lattice reduces
the number of annotations because many methods share a similar
structure and therefore we simply reused the same lattice. While
the annotations do require extra developer effort, we found that this
effort was small for our benchmarks, especially when compared to
the effort of manually checking self-stabilization.

In our experience, SJava required minimal development effort
once we understood the overall design of the program because
value flows often reflect interactions between individual modules
in the design specification. If a developer intends to develop a
new software system for SJava, our experience leads us to believe
that effort involved in annotating code will marginally exceed the
amount of effort required to write Java types.

10. Related Work
Self-stabilization was initially suggested by Dijkstra in the context
of robust distributed algorithms [6]. There has recently been work
by Dolev et al. [7–9] that proposes techniques to ensure that the
underlying layers (processor, operating system, and compiler) pre-
serve the self-stabilizing nature of an application. Their work does
not check that the actual application is self-stabilizing. Therefore,
our work on SJava to check that applications self-stabilize is com-
plementary to this work.

Language-based information flow employs type systems to
check that information flows in an application do not violate the
desired requirements[12, 15, 16]. Our approach is similar in some
aspects. The key differences are that our approach must support
much finer-grained divisions of data and must check that values
only remain in a given location for a bounded time.

Linear types have been leveraged in programming
languages[10, 11, 19] for various purposes including safe
concurrent programming, resource management, and protocol
checking. SJava uses a modified linear type system to avoid
soundness problems from aliasing. Termination analysis plays an
important role in verifying safety critical systems.

Even though it is not possible to have a sound and complete ter-
mination analysis, several proposed techniques are mature enough
to analyze termination in many cases [1–4, 18]. If necessary, we
could easily replace our termination analysis with more sophisti-
cated approaches.

Failure-oblivious computing [13] enables programs to continue
execution past memory errors by manufacturing values for reads or
discarding writes. This approach works well for applications with
short error propagation distances. Our work is complementary in
that it can guarantee that a program has short error propagation dis-
tances. Other work detect bugs and tries re-execution in a slightly
different environment [17]. Data structure repair [5] takes an in-
terventional approach; upon detecting data structure corruption, it
repairs them with respect to a specification. Data structure repair
only guarantees that a program will reach some consistent state,
while our work guarantees that all effects of the bug eventually dis-
appear. Moreover, our approach does not require a specification and
therefore eliminates the need to precisely define correct behavior.

http://sourceforge.net/projects/lea-eyetracking/
http://java.net/projects/sumorobots/
http://java.net/projects/sumorobots/


11. Conclusion
Self-stabilization has long been proposed as an approach for fault
tolerance. Wide scale guarantees of self-stabilization have the po-
tential to significantly improve the safety and user experience of
software systems. SJava is the first system for checking that ap-
plications are self-stabilizing. A developer simply annotates the
source code to capture the flow of values. The SJava compiler then
checks that incorrect values will eventually leave the program re-
turning the program to the exact correct state. Our experience indi-
cates that this approach can successfully check self-stabilization of
our benchmark applications.
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